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1. General presentation

1.1. Introduction

This work is motivated by recent advances in the asymptotic analysis of large
eigenvalues of infinite Jacobi matrices with discrete spectrum. We are interested
in possible generalisations of results on the approximation of eigenvalues of an
infinite Jacobi matrix by eigenvalues of its finite submatrices obtained in the paper
of V. Volkmer [10]. The purpose is to investigate more general Jacobi matrices
and to control the approximation of the n-th eigenvalue λn(J) when n → ∞.
This purpose has been achieved in the paper of M. Malejki [9] developing the
Rayleigh–Ritz approach from [10].

In this paper we present an alternative approach based on exploiting decay
properties of resolvent kernels to control functions of J expressed by means of
the Helffer–Sjöstrand formula. As indicated in Section 2.2 our method allows us to
recover the results from [9] and to obtain results of similar type for larger classes of
Jacobi matrices. On the other hand stronger hypotheses on the entries of J allow
us to use submatrices of smaller size while the approximation of the spectrum is
limited to suitable intervals as described in Theorem 2.3. This type of results is of
great importance in a paper in preparation [4].
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It should be noted that we consider a very large class of Jacobi matrices. In
particular we do not require that the sequence of diagonal entries is increasing.
But, if the sequence of diagonal entries (dk)∞k=1 is increasing and the off-diagonal
entries form a sequence small with respect to (dk+1 − dk)∞k=1, then more precise
estimates of large eigenvalues are proved in [3]. We also cite the papers [1, 2, 8, 6, 7]
which contain results of similar type and more references.

1.2. A class of infinite Jacobi matrices

In this paper we consider infinite tridiagonal matrices
d1 b̄1 0 0 0 . . .
b1 d2 b̄2 0 0 . . .
0 b2 d3 b̄3 0 . . .
0 0 b3 d4 b̄4 . . .
...

...
...

...
...

. . .

 (1.1)

satisfying the following two conditions

• (dk)∞k=1 is a sequence of real numbers satisfying

dk −−−−−→
k→+∞

+∞, (1.2a)

• (bk)∞k=1 is a sequence of complex numbers satisfying

|bk−1|+ |bk|
dk

−−−−−→
k→+∞

0. (1.2b)

It is well known ([5]) that a matrix (1.1) satisfying conditions (1.2) defines a self-
adjoint operator J in the Hilbert space l2 of complex valued sequences x = (xk)∞k=1

such that
∑∞
k=1|xk|2 <∞. More precisely, the domain of J is

D :=
{

(xk)∞k=1 ∈ l2 | (dkxk)∞k=1 ∈ l2
}
, (1.3)

and J : D → l2 is given by

Jx = (dkxk + b̄kxk+1 + bk−1xk−1)∞k=1, (1.4)

where, by convention x0 = 0 and b0 = 0.

Moreover, the spectrum σ(J) is discrete and bounded from below. Hence,
there is an orthonormal basis (vn)∞n=1 satisfying Jvn = λn(J)vn, where (λn(J))∞n=1

is the sequence of eigenvalues of J arranged in increasing order and repeated
according to multiplicity:

λ1(J) ≤ · · · ≤ λn(J) ≤ λn+1(J) ≤ . . .
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1.3. Approximation by finite submatrices

From now on, J is as in Section 1.2. For two integers 1 ≤ j ≤ k we denote by J[j,k]

the square matrix of size k − j + 1 given by

J[j,k] =



dj b̄j 0 . . . 0 0 0
bj dj+1 b̄j+1 . . . 0 0 0
0 bj+1 dj+2 . . . 0 0 0
...

...
. . .

...
...

0 0 0 dk−2 b̄k−2 0
0 0 0 . . . bk−2 dk−1 b̄k−1

0 0 0 . . . 0 bk−1 dk


(1.5)

Our purpose is to show that the spectrum of J in the interval [λ′, λ] is well ap-
proximated by the spectrum of the finite submatrix

Jλ′,λ := J[m(λ′), k(λ)] (1.6)

provided the two integers 1 ≤ m(λ′) ≤ k(λ) are well chosen. More precisely, for
any ν > 0 the estimate

dist
(
σ(J) ∩ [λ′, λ], σ(Jλ′,λ) ∩ [λ′, λ]

)
≤ cνλ−ν (1.7)

with a constant cν independent of λ′, λ can be obtained by comparing the counting
functions

N (λ, J) := card{n ∈ N∗ | λn(J) ≤ λ} (1.8a)

N (λ′, λ, J) := card{n ∈ N∗ | λ′ < λn(J) ≤ λ} (1.8b)

with analog quantities for Jλ′,λ. From the point of view of applications we distin-
guish two cases, according to the choice of λ′.

Case 1. We consider λ′ close to λ. Then we prove that for every ν > 0 one can
find λ(ν) such that for λ ≥ λ(ν), λ′ < λ one has the estimates (Theorem 2.3)

N (λ′ + λ−ν , λ− λ−ν , Jλ′,λ) ≤ N (λ′, λ, J) ≤ N (λ′ − λ−ν , λ+ λ−ν , Jλ′,λ). (1.9)

Case 2. We fix λ′ < inf σ(J), hence N (λ′, λ, J) = N (λ, J). This is convenient to
estimate all eigenvalues lower than λ. Let ν > 0 be fixed. If

Jλ := J[1,k(λ)] (1.10)

then for λ ≥ λ(ν) we obtain the estimates (Theorem 2.2)

N (λ− λ−ν , Jλ) ≤ N (λ, J) ≤ N (λ+ λ−ν , Jλ). (1.11)

These estimates allow us to find (Theorem 2.1) a sequence (kN )∞N=1 such that
the first N eigenvalues of J are close to the corresponding eigenvalues of a square
submatrix of size kN :

sup
1≤n≤N

|λn(J)− λn(J[1, kN ])| = O(N−ν), N →∞, (1.12)
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where (λn(J[1, kN ]))
kN
n=1 are the eigenvalues of J[1, kN ] arranged in non-decreasing

order and repeated according to multiplicity:

λ1(J[1, kN ]) ≤ · · · ≤ λn(J[1, kN ]) ≤ λn+1(J[1, kN ]) ≤ · · · ≤ λkN (J[1, kN ]).

1.4. Contents

All main results, stated in Section 2, derived from Theorem 5.3 as follows:

Theorem 5.3
=⇒ Theorem 2.2 =⇒ Theorem 2.1
=⇒ Theorem 2.3

Theorem 5.3, stated in Section 5, follows from a series of lemmas:

Lemma 3.1
Lemma 3.2

=⇒ Lemma 3.3 =⇒ Lemma 3.4

Lemma 4.1 =⇒ Lemma 4.2
=⇒ Lemma 4.3 =⇒ Lemma 4.4

Lemma 4.2 =⇒ Lemma 5.1
Lemma 4.4

=⇒ Lemma 5.2 =⇒ Theorem 5.3

The proofs of Theorems 2.1, 2.2, 2.3, and of Lemma 4.1 are given in Section 6. All
preliminary results are stated and proved in Sections 3–5.

2. Main results

2.1. Estimates of eigenvalues lower than λ

We consider the Jacobi operator J : D → l2 defined in Section 1. We assume
(dk)∞k=1 and (bk)∞k=1 behave asymptotically as follows, when k →∞:

dk = ckα + O(kβ), (2.1a)

|bk| = O(kβ), (2.1b)

where c > 0, α, β are fixed real numbers such that

0 ≤ β < α < 1 + β. (2.1c)

We will prove

Theorem 2.1. Let J be the Jacobi operator defined by (1.1) with assumptions (2.1).
Let C0 > 0 be a large enough constant, λ ≥ 1 and

κ(λ) := c−1/α(λ+ C0λ
β/α)1/α. (2.2)

If for every λ ≥ 1, k(λ) ≥ 1 is an integer ≥ κ(λ), then

sup
n≤N (λ,J)

|λn(J)− λn(J[1, k(λ)])| = O(λ−∞), λ→∞. (2.3)

Moreover, for any given ν > 0, (1.12) holds with kN = N + ĈN1+β−α provided

the constant Ĉ is large enough:

sup
1≤n≤N

|λn(J)− λn(J[1, kN ])| = O(N−ν), N →∞,
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Proof. See Section 6.2. The proof is based on a comparison of two infinite matrices
and on estimates described in Theorem 2.2 below. �

Notations. We denote by D, B : D → l2 the diagonal and off-diagonal parts of J :

Dx = (dkxk)∞k=1, (2.4)

Bx = (b̄kxk+1 + bk−1xk−1)∞k=1. (2.5)

For λ ≥ 1 we also denote by Bλ : D → l2 the operator defined by

Bλx = (b̄k,λxk+1 + bk−1,λxk−1)∞k=1, (2.6)

where (bk,λ)∞k=1 is a complex valued sequence such that

|bk,λ| ≤ |bk|. (2.7)

Theorem 2.2. Let D, B, Bλ be as above, satisfying (2.1) and (2.7), and consider

J = D +B, (2.8)

Jλ = D +Bλ. (2.9)

Let κ(λ) be as in Theorem 2.1. Then, under the additional assumption

bk = bk,λ when k ≤ κ(λ) (2.10)

and for any ν > 0, one can find λ(ν) ≥ 1 such that (1.11) holds for λ ≥ λ(ν), i.e.,

N (λ− λ−ν , Jλ) ≤ N (λ, J) ≤ N (λ+ λ−ν , Jλ).

Proof. See Section 6.1. �

2.2. Comments

(i) Conditions (2.1a) and (2.1b) with c > 0 and 0 ≤ β < α ensure (1.2).

(ii) We observe that dk ∼ ckα ∼ λ ⇐⇒ k ∼ κ(λ). More precisely,

κ(λ) = c−1/αλ1/α(1 + C0λ
(β−α)/α)1/α

has the following expansion

κ(λ) = c−1/αλ1/α + c−1/α(C0/α)λ(1+β−α)/α + o(λ(1+β−α)/α) (2.11)

when λ→∞.

(iii) The condition (2.1c) ensures α < β + 1, hence (2.11) implies

κ(λ)− c−1/αλ1/α →∞ when λ→∞.

(iv) The condition (2.1a) does not imply the monotonicity of (dk)∞k=k0
unless α >

β + 1. However, using (2.11) with α > β + 1 one obtains κ(λ) − c−1/αλ1/α → 0
when λ → ∞ and the statement of Theorem 2.1 is in general false in the case
α > β + 1. The case α > β + 1 is investigated in [3] where we show that (1.11)
holds for a given ν > 0 if one uses κ(λ) = c−1/αλ1/α + Cα,βν.

(v) The structure of κ(λ) is in general optimal modulo the choice of the constant
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C0. In our proof we do not look at the best value of C0, giving just a sufficient
condition on C0 below. If C1, C2 > 0 are such that for k ≥ k0 one has

ckα − C1k
β ≤ dk ≤ ckα + C1k

β , (2.12)

|bk| ≤ C2k
β , (2.13)

then the assertion of Theorem 2.1 is ensured by taking C0 > c−β/α(C1 + 12C2).

(vi) If in Theorem 2.2 we choose

bk,λ =

{
bk if k ≤ k(λ),

0 if k > k(λ),
(2.14)

where k(λ) ∈ N satisfies k(λ) ≥ κ(λ), then

Jλ =


J[1,k(λ)] 0 0 0 . . .

0 d1+k(λ) 0 0 . . .
0 0 d2+k(λ) 0 . . .
0 0 0 d3+k(λ)

...
...

...
. . .

 (2.15)

and σ(Jλ) = σ(J[1,k(λ)])∪ {dk}k>k(λ). This observation is the key point to deduce
Theorem 2.1 from Theorem 2.2.

(vii) In Sections 3–5 we present the proof in a slightly more general framework
— the condition (2.1b) is replaced by (3.1) and we use κ(λ) = κ0(λ) + 2λε where
κ0(λ) satisfies (4.5) and ε > 0 is an arbitrary fixed number. Then the assertion of
Theorem 2.1 follows when we take δ = β/α and ε < 1 + β − α.

(viii) The proof described in Sections 3–5 can be adapted to cover more general
behaviour of the diagonal entries. In particular we can consider the case when
(2.1b) holds and there exist α > 0, 0 < c < c′ and k0 ∈ N such that one has

ckα ≤ dk ≤ c′kα if k > k0. (2.16)

We can use δ = 1 in the proof and obtain similar assertions if

κ(λ) = ((1 + C0)λ/c)1/α, kN = (1 + Ĉ)N (2.17)

with suitable values of C0 > 0 and Ĉ > 0. In the case

dk = ckα + o(kα) when k →∞ (2.18)

we can take arbitrary constants C0 > 0 and Ĉ > 0, covering the result of M. Malejki
[9]. Finally we can replace (2.16) by

ckα ≤ dk ≤ c′kα
′

if k > k0 (2.19)

and obtain similar assertions if kN = ĈNα′/α.
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2.3. Estimates of eigenvalues in the interval [λ′, λ]

For 1 ≤ λ′ ≤ λ we consider a complex valued sequence (bk,λ′,λ)∞k=1 satisfying

|bk,λ′,λ| ≤ |bk| (2.20)

and define Bλ′,λ : D → l2 by

Bλ′,λx = (b̄k,λ′,λxk+1 + bk−1,λ′,λxk−1)∞k=1. (2.21)

Theorem 2.3. Let (dk)∞k=1, (bk)∞k=1, and (bk,λ′,λ)∞k=1, 1 ≤ λ′ ≤ λ be complex-valued
sequences satisfying (2.1) and (2.20). We denote

Jλ′,λ = D +Bλ′,λ (2.22)

with D = diag(dk) and Bλ′,λ given by (2.21). Assume moreover

bk = bk,λ′,λ when κ(λ′, λ) ≤ k ≤ κ(λ), (2.23)

where κ(λ) is given by (2.2) and

κ(λ′, λ) := c−1/α(λ′ − C0λ
β/α)1/α. (2.24)

Then for any ν > 0 there is a constant cν > 0 such that (1.9) holds:

N (λ′ + λ−ν , λ− λ−ν , Jλ′,λ) ≤ N (λ′, λ, J) ≤ N (λ′ − λ−ν , λ+ λ−ν , Jλ′,λ).

Proof. See Section 6.4. �

3. Preliminary results

We will deduce Theorem 2.1 from an analysis of a larger class of matrices.

Assumption. In Sections 3–5 we assume that (1.2a), (2.7) hold and there exist
some constants

0 < δ < 1 and C, C ′ > 0

such that the following estimate holds for all k ∈ N∗:

|bk|+ |bk−1| ≤ C(|dk|δ + C ′). (3.1)

Notations. To begin we introduce an auxiliary family of operators

J+
λ := D+

λ +Bλ (3.2)

where Bλ is given by (2.6) and D+
λ : D → l2 is the self-adjoint operator given by

D+
λ := max{|D|, λ+ 6Cλδ} (3.3)

i.e. D+
λ = diag(d+

k,λ)k∈N∗ with

d+
k,λ = max{|dk|, λ+ 6Cλδ}. (3.4)

Lemma 3.1. Let C, δ be as in (3.1). If λ ≥ (6C)1/(1−δ) then for every k ∈ N∗

d+
k,λ ≥ λ+ 3C(d+

k,λ)δ. (3.5)
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Proof. By (3.4) we have λ(1 + 6Cλδ−1) ≤ d+
k,λ, hence

λ ≤ d+
k,λ(1 + 6Cλδ−1)−1 ≤ d+

k,λ(1− 3Cλδ−1), (3.6)

where the last inequality follows from the assuption 6Cλδ−1 ≤ 1. To complete the
proof of (3.5) it suffices to write −λδ−1 ≤ −(d+

k,λ)δ−1 in the right hand side of

(3.6). �

Notations. The scalar product in l2 is given by 〈x, y〉 =
∑∞
k=1 x̄kyk. The canonical

basis (en)∞n=1 is defined by en = (δk,n)∞k=1 where δn,n = 1 and δk,n = 0 for k 6= n.
If P1, P2 : D → l2 are two operators such that P2−P1 is self-adjoint then we write

P1 ≤ P2 ⇐⇒ 〈(P2 − P1)x, x〉 ≥ 0 for all x ∈ D .

If (vk)∞k=1 is a complex-valued sequence, then V = diag(vk)k∈N∗ denotes the closed
linear operator satisfying V ek = vk ek for every integer k ≥ 1.

Lemma 3.2. If B is given by (2.5) with b0 = 0, then

±B ≤ diag(|bk|+ |bk−1|)k∈N∗ . (3.7)

Proof. For x ∈ D we can rewrite the expression

〈x,Bx〉 =
∑
j

bjxj+1x̄j +
∑
k

b̄k−1xk−1x̄k (3.8)

with k = j + 1 and estimate |〈x,Bx〉| by∑
j

2|bj | |xj+1xj | ≤
∑
j

|bj |(|xj+1|2 + |xj |2). (3.9)

Therefore the right hand side of (3.9) can be written in the form∑
k

|bk||xk+1|2 +
∑
j

|bj ||xj |2 =
∑
j

(|bj−1|+ |bj |)|xj |2 (3.10)

and the proof of (3.7) is complete. �

We apply Lemma 3.1 and Lemma 3.2 in the following

Lemma 3.3. Let C, C ′, δ be as in (3.1). If λ ≥ max{(6C)1/(1−δ), C ′1/δ}, then

J+
λ ≥ λ+ C(D+

λ )δ ≥ λ+ Cλδ. (3.11)

Proof. Lemma 3.2 applied to Bλ = J+
λ −D

+
λ gives the estimate

J+
λ − λ ≥ diag(d+

k,λ − λ− |bk,λ| − |bk−1,λ|)k∈N∗ . (3.12)

The assumption on λ and Lemma 3.1 imply the estimates

C ′ ≤ λδ ≤ (d+
k,λ)δ.

Using these estimates, (3.1) and (3.4) we obtain

|bk,λ|+ |bk−1,λ| ≤ C(|dk|δ + C ′) ≤ 2C(d+
k,λ)δ, (3.13)
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hence, by (3.13) and (3.5),

d+
k,λ − λ− |bk,λ| − |bk−1,λ| ≥ C(d+

k,λ)δ,

which completes the proof due to (3.12). �

Notations. We fix

λ̂ := max{(6C)1/(1−δ), C ′1/δ, (6/C)1/δ} (3.14)

and introduce

D̂ := D+

λ̂
= max{D, λ̂+ 6Cλ̂δ}. (3.15)

Then we denote

R+
λ := (J+

λ − z)
−1 (3.16)

for z ∈ C \ σ(J+
λ ), and define

Γ(λ) := {z ∈ C | Re z < λ+ 2, 0 < |Im z| < 2}. (3.17)

Lemma 3.4. There exists a constant c0 > 0 such that for any z ∈ Γ(λ)

‖D̂δ/2R+
λ (z)D̂δ/2‖ ≤ c0. (3.18)

Proof. We assume λ ≥ λ̂. By definition of λ̂ we can apply Lemma 3.3 and write

J+
λ ≥ λ+

1

2
Cλδ +

1

2
C(D+

λ )δ.

The definition of λ̂ ensures moreover 1
2Cλ̂

δ ≥ 3 and allows us to write

J+
λ − Re z ≥ λ− Re z + 3 +

1

2
CD̂δ.

Further on we assume Re z ≤ λ+ 2 and observe that

J+
λ − Re z ≥ 1

2
CD̂δ =⇒ R+

λ (Re z) ≤ 2C−1D̂−δ.

Thus we have proved

Re z ≤ λ+ 2 =⇒ ‖D̂δ/2R+
λ (Re z)D̂δ/2‖ ≤ 2C−1.

To complete the proof it suffices to observe that the resolvent series

∞∑
n=0

(i Im z)n(R+
λ (Re z))n+1 = R+

λ (z)

converges uniformly in Γ(λ) due to R+
λ (Re z) ≤ 2C−1D̂−δ ≤ 2C−1λ̂−δ ≤ 1

3 . �
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4. Decay of resolvent kernels

For r ∈ R we define the orthogonal projections

P+
r =

∑
k∈N∗
k>r

〈x, ek〉 ek, (4.1)

P−r = I − P+
r (4.2)

and consider the following version of the standard decay property of the kernel
〈ej , R+

λ (z) ek〉 when |k − j| → ∞:

Lemma 4.1. For 0 < r < s, λ ≥ 1 and z ∈ C \ R let

Qr,sδ,λ(z) := D̂δ/2P+
s R+

λ (z)P−r D̂
δ/2. (4.3)

Then for any ν ≥ 0 one can find cν > 0 such that one has

||Qr,sδ,λ(z)|| ≤ cν(s− r)−ν if z ∈ Γ(λ) (4.4)

Proof. The proof of Lemma 4.1 is given in Section 6.3. �

The remaining part of this section is devoted to consequences of Lemma 4.1.

Assumption. From now on we assume that κ0 : R→ R satisfies the condition

j ≥ κ0(λ) =⇒ dj ≥ λ+ 6Cλδ. (4.5)

Notations. We also fix ε > 0 and for ρ ≥ 0 we denote

κρ(λ) = κ0(λ) + ρλε. (4.6)

By (3.4), dj ≥ λ+ 6Cλδ =⇒ d+
j,λ = dj . Thus, condition (4.5) ensures

P+
κ0(λ)(D −D

+
λ ) = 0, (4.7)

which allows us to compare R+
λ (z) with

Rλ(z) = (D +Bλ − z)−1 (4.8)

in the following

Lemma 4.2. Denote

Qδ,λ(z) := D̂δ/2P+
κ1(λ)

(
R+
λ (z)−Rλ(z)

)
. (4.9)

Then for any ν ≥ 0 one can find a constant cν such that one has

||Qδ,λ(z)|| ≤ cνλ−ν |Im z|−1 if z ∈ Γ(λ). (4.10)

Proof. Using D −D+
λ = P−κ0(λ)(D −D

+
λ ) in the equality

Rλ(z)−R+
λ (z) = R+

λ (z)(D −D+
λ )Rλ(z)

we find
Qδ,λ(z) = Q

κ0(λ),κ1(λ)
δ,λ (z)D̂−δ/2(D −D+

λ )Rλ(z).

Since 0 ≤ D+
λ − D ≤ λ + 6Cλδ and ||Rλ(z)|| ≤ |Im z|−1, we complete the proof

using Lemma 4.1 with r = κ0(λ), s = κ1(λ). �
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Lemma 4.3. Denote

Q̂δ,λ(z) := D̂δ/2P+
κ2(λ)Rλ(z)P−κ1(λ). (4.11)

Then for any ν ≥ 0 one can find a constant cν such that, for any z ∈ Γ(λ),

||D̂δ/2P+
κ1(λ)Rλ(z)|| ≤ c0|Im z|−1, (4.12)

||Q̂δ,λ(z)|| ≤ cνλ−ν |Im z|−1. (4.13)

Proof. Combine Lemma 4.2 with Lemma 3.4 and Lemma 4.1. �

Assumption. We consider the assumption

Bλ −B = (Bλ −B)P+
κ2(λ) = P+

κ2(λ)(Bλ −B) (4.14)

in order to compare Rλ(z) with

R(z) = (D +B − z)−1. (4.15)

Lemma 4.4. Assume that (4.14) holds. Then for any ν > 0 one can find a constant
cν such that, for any z ∈ Γ(λ),

‖(Rλ(z)−R(z))P−κ1(λ)‖ ≤ cνλ
−ν |Im z|−2. (4.16)

Proof. Using B −Bλ = P+
κ2(λ)(B −Bλ) we can express

(Rλ(z)−R(z))P−κ1(λ) = R(z)(B −Bλ)Rλ(z)P−κ1(λ)

in the form
Q̃δ,λ(z̄)∗D̂−δ/2(B −Bλ)D̂−δ/2Q̂δ,λ(z)

where Q̂δ,λ(z) is given by (4.11) and

Q̃δ,λ(z̄) = D̂δ/2P+
κ2(λ)R(z̄).

Using (4.12) in the special case bk,λ = bk for all k ∈ N∗ we obtain, for z ∈ Γ(λ),

‖Q̃δ,λ(z̄)‖ ≤ c0|Im z|−1.

We complete the proof using ‖D̂−δ/2(B −Bλ)D̂−δ/2‖ ≤ c0 and (4.13). �

5. Application of Helffer–Sjöstrand formula

Consider g ∈ C∞0 (R) and a self-adjoint operator A. Then we express

g(A) =
i

2π

∫
supp g̃

∂g̃(w)(A− w)−1dw ∧ dw̄, (5.1)

where g̃ ∈ C∞0 (C) is an “almost analytic” extension of g, i.e.

(i) g̃(t) = g(t) for t ∈ R,
(ii) for any ν ∈ N there is a constant cν such that one has the estimate

|∂̄g̃(w)| ≤ cν |Imw|ν for w ∈ C, (5.2)

where ∂̄g̃(t+ is) = 1
2 (∂t + i∂s)g̃(t+ is) for s, t ∈ R,
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(iii) supp g̃ ⊂ {w ∈ C | Rew ∈ supp g, |Imw| ≤ 1}.

Lemma 5.1. Let g ∈ C∞0 (R) and denote

Gν,λ(τ) = P+
κ1(λ)

(
g(λν(J+

λ − τ))− g(λν(Jλ − τ))
)

(5.3)

where λ ≥ 1, τ ∈ R and ν ≥ 0. Then

sup
τ≤λ
‖Gν,λ(τ)‖ = O(λ−∞). (5.4)

Proof. Let λ0 be a large enough constant. We assume λ ≥ λ0 and τ ≤ λ. Then

z := τ + λ−νw ∈ Γ(λ) (5.5)

holds for w ∈ supp g̃. Writing (5.1) with A = λν(Jλ − τ) we can use

(A− w)−1 = λ−ν(Jλ − z)−1

with z given by (5.5). Similarly, writing (5.1) with A = λν(J+
λ −τ) and z as before,

we find the expression

Gν,λ(τ) =
i

2π

∫
Γ(λ)

∂g̃(λν(z − τ))Q0,λ(z)λνdz ∧ dz̄ (5.6)

where Q0,λ(z) is given by (4.9) with δ = 0. To complete the proof it remains to
use (4.10) with 2ν instead of ν. �

Notations. From now on, g ∈ C∞0 ((−1, 1)). For 1 ≤ λ′ < λ and ν ≥ 0 we introduce

fν,λ′,λ(t) = λν
∫ λ

λ′
g(λν(t− τ))dτ. (5.7)

Lemma 5.2. If J , Jλ and fν,λ′,λ are as in (2.8), (2.9) and (5.7), respectively, then

||fν,λ′,λ(Jλ)− fν,λ′,λ(J)|| = O(λ−∞). (5.8)

Proof. Due to Lemma 5.1 we find that the norm of

P+
κ1(λ)

(
fν,λ′,λ(Jλ))− fν,λ′,λ(J+

λ ))
)

= λν
∫ λ

λ′
Gν,λ(τ)dτ

is O(λ−∞) and since for λ ≥ λ0 one has

supp fν,λ′,λ ∩ σ(J+
λ ) ⊂ [λ′ − λ−ν , λ+ λ−ν ] ∩ [λ+ Cλδ,∞) = ∅,

we conclude that fν,λ′,λ(J+
λ ) = 0, hence

||P+
κ1(λ)fν,λ′,λ(Jλ)|| = O(λ−∞). (5.9)

In the case bλ,k = bk for all k ∈ N∗ one has B = Bλ, hence

||P+
κ1(λ)fν,λ′,λ(J)|| = O(λ−∞). (5.10)

Due to (5.9) and (5.10) it suffices to show that the norm of

Fν,λ′,λ =
(
fν,λ′,λ(Jλ))− fν,λ′,λ(J)

)
P−κ1(λ) (5.11)



Approximation of eigenvalues for unbounded Jacobi matrices 13

is O(λ−∞). However using (4.16) with 3ν instead of ν we find that the norm of

Fν,λ′,λ =
iλ2ν

2π

∫ λ

λ′
dτ

∫
Γ(λ)

∂g̃(λν(z − τ))(Rλ(z)−R(z))P−κ1(λ)dz ∧ dz̄

is O(λ−ν). �

Theorem 5.3. Let J , Jλ be as before and ν ≥ 0. If λ(ν) is large enough, then

N (λ′ + λ−ν , λ− λ−ν , Jλ) ≤ N (λ′, λ, J) ≤ N (λ′ − λ−ν , λ+ λ−ν , Jλ) (5.12)

holds for any λ ≥ λ(ν) and λ′ ≤ λ.

Proof. Let 1Z : R→ {0, 1} denote the characteristic function of Z ⊂ R. We denote
by 1[c, c′](J) the spectral projector of J with respect to the interval [c, c′]. Assume

supp g ⊂ [0, 1], g ≥ 0 and
∫
R g = 1. Then

1[λ′+λ−ν ,λ](t) ≤ fν,λ′,λ(t) ≤ 1[λ′,λ+λ−ν ](t) (5.13)

and due to Lemma 5.2 one can find λ(ν) such that

λ ≥ λ(ν) =⇒ ||fν,λ′,λ(J)− fν,λ′,λ(Jλ)|| < 1. (5.14)

Assume that the second inequality (5.12) is false. Then one has

dim Ran1[λ′+λ−ν ,λ](J) > dim Ran1[λ′,λ+λ−ν ](Jλ) (5.15)

for a certain λ ≥ λ(ν) and one can find x ∈ l2 \ {0} such that

x ∈ Ran1[λ′+λ−ν ,λ](J) ∩ Ran1[λ′,λ+λ−ν ](Jλ)⊥. (5.16)

However (5.16) ensures x = 1(λ′+λ−ν ,λ](J)x and fν,λ′,λ(J)x = x follows from

(5.13). Then x ∈ Ran1[λ′,λ+λ−ν ](Jλ)⊥ = ker1[λ′,λ+λ−ν ](Jλ) =⇒ fν,λ′,λ(Jλ)x = 0
and (

fν,λ′,λ(J)− fν,λ′,λ(Jλ)
)
x = x

gives a contradiction with (5.14). By exchange of J and Jλ in the above reasoning
we obtain the first inequality (5.12). �

6. Proofs of main results

6.1. Proof of Theorem 2.2

In order to deduce Theorem 2.2 from Theorem 5.3 we assume that (2.12) and
(2.13) hold. Then

k > k0 =⇒ |bk−1|+ |bk| ≤ 2C2k
β ∼ 2C2c

−β/αd
β/α
k

and it is clear that for any C > 2C2c
−β/α we can find C ′ such that (3.1) holds

with δ = β/α. We introduce

κ0(λ) := c−1/α(λ+ C ′0λ
δ)1/α,

κ2(λ) := κ0(λ) + 2λε with ε < 1 + β − α.
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Then κ2(λ) ≤ κ(λ) holds if C ′0 < C0, κ(λ) is given by (2.2) and λ ≥ λ0. Since

j ≥ κ0(λ) =⇒ dk ≥ cκ0(λ)α − C1κ0(λ)β ≥ λ+ (C ′0 − C1c
−δ)λδ + o(λδ)

it is clear that j ≥ κ0(λ) =⇒ dj ≥ λ+ 6Cλδ holds if C ′0 > C1c
−δ + 6C. Thus the

assumption C0 > c−δ(C1 + 12C2) allows us to choose C ′0 and C such that (4.14)
holds and Theorem 5.3 can be applied.

6.2. Proof of Theorem 2.1

Let Jλ be as in Remark (vi) in Section 2.2. We claim that

n ≤ N (λ, Jλ) =⇒ λn(Jλ) = λn(J[1,k(λ)]). (6.1)

Indeed, σ(Jλ) \ σ(J[1,k(λ)]) = {dj}j>k(λ) and (6.1) follows by combining

n ≤ N (λ, Jλ) =⇒ λn(Jλ) ≤ λ (6.2)

with the property j > k(λ) =⇒ dj ≥ λ + 6Cλδ > λ. Thus we obtain (2.3) if we
check that for any ν > 0 one has

n ≤ N (λ, Jλ) =⇒ λn(Jλ)− λ−ν ≤ λn(J) ≤ λn(Jλ) + λ−ν (6.3)

if λ ≥ λ(ν). However using (5.12) with λ′ small enough and (6.2) with J instead
of Jλ we find

n ≤ N (λn(Jλ), Jλ) ≤ N (λn(Jλ) + λ−ν , J) =⇒ λn(J) ≤ λn(Jλ) + λ−ν .

The remaining inequality of (6.3) follows by similar arguments if J and Jλ are
exchanged. To prove the last assertion we observe that N = N (λN (J), J) it suffices
to show that

kN = N(1 + ĈNβ−α) > κ(λN (J)) (6.4)

holds if Ĉ is fixed large enough. Let us assume that (2.12) and (3.1) hold. Then
introducing Λ := diag(k)k∈N∗ we can write the inequalities

cΛα − (C1 + 2C2)Λβ − C̃ ≤ J ≤ cΛα + (C1 + 2C2)Λβ + C̃.

However λn(cΛα±(C1 +2C2)Λβ) = cnα±(C1 +2C2)nβ and the min-max principle
implies

cnα − (C1 + 2C2)nβ − C̃ ≤ λn(J) ≤ cnα + (C1 + 2C2)nβ + C̃.

Therefore

κ(λN (J)) = c−1/αλN (J)1/α(1 + O(λN (J))(β−α)/α))

= c−1/α(cNα + O(Nβ))1/α(1 + O(Nβ−α))

ensures κ(λN (J)) = N(1 + O(Nβ−α)), completing the proof of (6.4).
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6.3. Proof of Lemma 4.1

Let f ∈ C∞(R) be such that for every t ∈ R one has

1(−∞, 0](t) ≤ f(t) ≤ 1(−∞, 1](t) (6.5)

and define Vr,s = diag(vk,r,s)
∞
k=1 with vk,r,s := f((k− r)/(s− r)) for k ∈ N∗. Then

f(t) = 1 for t ≤ 0 ensures P−r = Vr,sP
−
r and f(t) = 0 for t ≥ 1 ensures P+

s Vr,s = 0,
hence

P+
s R

+
λ (z)P−r = P+

s [R+
λ (z), Vr,s]P

−
r = P+

s R
+
λ (z)[Vr,s, Bλ]R+

λ (z)P−r . (6.6)

Thus denoting B′r,s,λ := [iVr,s, Bλ] we can estimate

||Qr,sδ,λ(z)|| ≤ C0||D̂−δ/2B′r,s,λD̂−δ/2|| (6.7)

and for x ∈ D we compute

i[Vr,s, Bλ]x = (b̄′k,r,s,λxk+1 + b′k−1,r,s,λxk−1)∞k=1 (6.8)

with b′k,r,s,λ = (vk+1,r,s − vk,r,s)bk,λ. Since there is a constant C1 > 0 such that

|vk+1,r,s − vk,r,s| ≤ C1|s− r|−1,

Lemma 3.1 ensures ±B′r,s,λ ≤ C ′1D̂
δ for a certain constant C ′1 > 0 and it is clear

that the right hand side of (6.7) can be estimated by c1|s− r|−1. Next we assume
that (4.4) holds for a given ν ≥ 1 and show that it still holds with 2ν instead of
ν. For this purpose we observe that

BλP
+
t − P+

t Bλ = (BλP
+
t − P+

t Bλ)P+
t−1 (6.9)

ensures −[Bλ, P
−
t ] = [Bλ, P

+
t ] = [Bλ, P

+
t ]P+

t−1 and

[Bλ, P
−
t ] = BλP

−
t − P−t Bλ = P−t+1(BλP

−
t − P−t Bλ) (6.10)

Assuming s− t ≥ 4 and taking t = (s− r)/2 we can express −P+
s R

+
λ (z)P−r as

P+
s [P−t , R

+
λ (z)]P−r = P+

s R
+
λ (z)P−t+1[Bλ, P

−
t ]P+

t−1R
+
λ (z)P−r (6.11)

and we complete the proof estimating

||Qr,tδ,λ(z)|| ≤ c′ν(s− t− 1)−ν(t− 1− r)−ν ≤ c′′ν(s− r)−2ν .

6.4. Proof of Theorem 2.3

Let J = D +Bλ, Jλ′,λ = D +Bλ′,λ and assume

bk,λ = bk,λ′,λ = 0 if dk ≥ λ+ 6Cλδ. (6.12)

We introduce

d−k,λ′,λ = min{dk, λ′ − 6Cλδ}
and denote

D−λ′,λ := min{D, λ′ − 6Cλδ} = diag(d−k,λ′,λ)k∈N∗ , (6.13)

J−λ′,λ := D−λ′,λ +Bλ′,λ (6.14)
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Then J−λ′,λ − λ′ ≤ −Cλδ and we introduce κ : R2 → R satisfying

j ≤ κ(λ′, λ) =⇒ dj ≤ λ′ − 6Cλδ, (6.15)

hence P−κ(λ′,λ)(D −D
−
λ′,λ) = 0. Then we fix ε > 0 and consider

κρ(λ
′, λ) = κ(λ′, λ)− ρλε (6.16)

with ρ ≥ 0. In order to compare

Rλ′,λ(z) := (Jλ′,λ − z)−1, (6.17)

R−λ′,λ(z) := (J−λ′,λ − z)
−1, (6.18)

we observe that reasoning similarly as in Section 6.3 we obtain

sup
z∈Γ′(λ′)

‖P+
s R−λ′,λ(z)P−r ‖ ≤ cν(s− r)−ν if s > r (6.19)

with Γ′(λ′) := {z ∈ C | Re z > λ′ − 2, 0 < |Im z| < 2} and we deduce

‖P−κ1(λ′,λ)(R
−
λ′,λ(z)−Rλ′,λ(z))‖ ≤ cνλ−ν |Im z|−1 if z ∈ Γ′(λ′), (6.20)

‖P−κ2(λ′,λ)Rλ′,λ(z)P+
κ1(λ′,λ)‖ ≤ cνλ

−ν |Im z|−1 if z ∈ Γ′(λ′), (6.21)

similarly as in Section 4. Next we assume

Bλ −Bλ′,λ = (Bλ −Bλ′,λ)P−κ2(λ′,λ) = P−κ2(λ′,λ)(Bλ −Bλ′,λ). (6.22)

and reasoning as in Section 4 we obtain

||(Rλ(z)−Rλ′,λ(z))P+
κ1(λ′,λ)|| ≤ cνλ

−ν |Im z|−2 if z ∈ Γ′(λ′). (6.23)

Then taking g and fν,λ′,λ as in Section 5 we obtain

‖P−κ1(λ′,λ)(g(λν(J−λ′,λ − τ))− g(λν(Jλ′,λ − τ)))‖ = O(λ−∞) (6.24)

and using

supp fν,λ′,λ ∩ σ(J−λ′,λ) ⊂ [λ′ − Cλ−ν , λ+ Cλ−ν ] ∩ (−∞, λ′ − Cλδ] = ∅

we deduce fν,λ′,λ(J−λ′,λ) = 0 and

‖P−κ1(λ′,λ)fν,λ′,λ(Jλ′,λ)‖+ ‖P−κ1(λ′,λ)fν,λ′,λ(Jλ)‖ = O(λ−∞). (6.25)

Finally, reasoning as in the proof of Lemma 5.2 we obtain

‖fν,λ′,λ(Jλ′,λ)− fν,λ′,λ(Jλ)‖ = O(λ−∞) (6.26)

and similarly as in the proof of Theorem 5.3 we obtain

N (λ′ + λ−ν , λ− λ−ν , Jλ,λ′) ≤ N (λ′, λ, Jλ) ≤ N (λ′ − λ−ν , λ+ λ−ν , Jλ,λ′). (6.27)

To complete the proof we observe that in (6.27) we can replace Jλ by J due to
Theorem 5.3.
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