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1 Introduction

In recent years, there has been a lot of interest in stochastic porous media and fast diffusion
equations (see, e.g., [3], [4],[5], [6], [7], [8], [10], [11], [13], [18], [20], [21], [26], [27], [29], [30]).
In this paper, we analyze a deterministic nonlinear partial differential equation (PDE) with
random coefficients, which arises from a class of stochastic porous media equations (SPME)
through a random transformation (cf. [8]). First, let us introduce this class of SPME,
describe the random transformation and the resulting random PDE.

Consider the following SPME

(1.1)
dX(t) = ∆(X(t)|X(t)|m−1)dt+ σ(X(t))dW (t)

X(0) = x ∈ H−1(O),

on H−1(O), i.e., the dual space of the Dirichlet–Sobolev space H1
0 (O) of order 1 in L2(O),

where O ⊂ Rd, O bounded, open, and d = 1, 2, 3. Here, m ∈ (0,∞) (hence stochastic fast
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diffusion equations are included) and W (t), t ∈ [0, T ], is a cylindrical Wiener process on
L2(O) over a stochastic basis (Ω,F , (Ft),P). Furthermore, ∆ is the Dirichlet Laplacian in
L2(O), which in turn is equipped with the usual inner product 〈·, ·〉, and for x ∈ H−1(O),
σ(x) : L2(O)→ H−1(O) is defined by

(1.2) σ(x)y :=
N∑
k=1

µkek 〈ek, y〉x, y ∈ L2(O),

where e1, ..., eN are the first N eigenvectors of ∆, normalized in L2(O) and µ1, ..., µN ∈ R.
Clearly, σ(x) ∈ L2(L

2(O);H−1(O)), i.e., σ(x) is a Hilbert–Schmidt operator, and x 7→ σ(x)
is Lipschitz from H−1(O) to L2(L

2(O);H−1(O)).
We recall the following result which is a special case of [26, Theorem 3.9], (see, also,

[27, Theorem 2.1] for the special formulation given here).

Theorem 1.1 Consider the situation described above. Then, for every x ∈ H−1(O), there
exists a unique X ∈ Lm+1([0, T ] × Ω, dt × P;Lm+1(O)) such that X(t), t ∈ [0, T ], is a con-
tinuous adapted process in H−1(O),

∫ t
0
X(s)|X(s)|m−1ds, t ∈ [0, T ], is a continuous process

in H1
0 (O) and P-a.s.

(1.3) X(t) = x+ ∆

(∫ t

0

X(s)|X(s)|m−1ds
)

+

∫ t

0

σ(X(s))dW (s), t ∈ [0, T ].

For the general theory of stochastic PDE with monotone coefficients, we refer to the
seminal papers [24], [19] as well as to the monograph [25].

For k ∈ {1, ..., N} and t ∈ [0, T ], set

βk(t) := 〈ek,W (t)〉 .
Then, β1, ..., βN are independent R-valued Brownian motions. Set

(1.4) µ(t) := −
N∑
k=1

µkekβk(t), t ∈ [0, T ],

and define

(1.5) Y (t) := eµ(t)X(t), t ∈ [0, T ],

where X is the solution to (1.1) from Theorem 1.1.
The following was proved in [8, Lemma 4.1].

Theorem 1.2 Consider the situation described above and let Y be given as in (1.5). Then,
P-a.s. Y is a weak solution (i.e., in the sense of Schwarz distributions) to the following
random PDE

∂Y

∂t
(t) = eµ(t)∆(e−mµ(t)Y (t)|Y (t)|m−1)− 1

2
µ̃Y (t), t ∈ [0, T ],(1.6)

Y (0) = x,

where µ̃ :=
∑N

k=1 µ
2
ke

2
k.
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The purpose of this paper is to prove that, for every ω ∈ Ω fixed, equation (1.6) has
in fact a unique strong solution, at least for a large class of initial conditions (see the next
section for precise formulations of the results).

The motivation for fulfilling this task comes from several directions:

(1) There is strong interest in the study of random attractors for stochastic PDE (see, e.g.,
[12],[14], [15], [28]). Existence of a random attractor for SPME with multiplicative
noise is an open problem. One main obstacle is to show the cocycle property for the
corresponding random dynamical systems with the exceptional set of ω ∈ Ω being the
same for all times and guaranteeing continuity in the initial condition (see, e.g., [12,
Definition 1.7] and [22], [23] for the case of mild solutions). The only rigorous method
to achieve this for stochastic PDE known so far, is to transform it to a random PDE
as above and prove the existence and uniqueness of solutions for the latter.

(2) If one can solve (1.6) for every ω ∈ Ω strongly, one gets more precise information about
the solution for (1.1). E.g., from Theorems 2.1 and 2.2 below, it follows immediately by
transforming back and using that eµ(t,ω) is a multiplier in H1

0 (O), that X(t)|X(t)|m−1 ∈
H1

0 (O) and that hence ∆ interchanges with the integral in (1.3). A much more general
result of this type was, however, obtained independently by B. Gess in [16, Theorem
5.3].

(3) ω-wise solutions of (1.6) and corresponding ω-wise inequalities (see Section 2) are quite
important instruments for establishing convergence of numerical methods for stochastic
equations with nonglobally Lipschitz coefficients (see, e.g., [17] for an example in finite-
dimensions).

(4) Last, but not least, equation (1.6), with fixed ω ∈ Ω, is a kind of scaled porous media
equation with time-dependent coefficients and it is thus a type of nonlinear PDE for
which there is no standard theory which can be applied. The reason is that the
nonlinear diffusion operator is not dissipative in the standard spaces, where the porous
media equation is treated, that is, in H−1(O) and L1(O). (See, e.g., [2].) Therefore,
it is not only an important prototype of PDE directly related to stochastics, but is of
its own interest from a purely analytical point of view.

The paper is organized as follows. In Section 2, we introduce our framework and formulate
our main results (i.e., Theorems 2.1 and 2.2). Section 3 contains the proofs.

2 Framework and main results

Let O ⊂ Rd, be a bounded open set with smooth boundary. Let Lp(O), p ∈ [1,∞], denote
the usual real Lp-space with respect to Lebesgue measure and norm ‖ · ‖p. Let ∆ be the
Dirichlet Laplacian on O modelled on L2(O), i.e. ∆ : D(∆) ⊂ L2(O) → L2(O) with
D(∆) := H1

0 (O) ∩ H2(O). Here Lp(O), p ≥ 1, denote the usual Lp-spaces with respect to
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Lebesgue measure dx on O with norms ‖·‖p and H2(O), H1
0 (O), the usual Sobolev space

in L2(O), with subindex “0” referring to Dirichlet (i.e., zero) boundary conditions. By
W k,p(O), respectively W k,p

0 (O), we denote the corresponding Sobolev spaces in Lp(O). We
also set W−k,p′(O) = (W k,p

0 (O))′, 1
p

+ 1
p′

= 1. Fix the first N normalized eigenvectors of ∆,

e1, ..., eN say, and let µ1, ..., µN ∈ R; β1, ..., βN ∈ C([0, T ];R) for some fixed T > 0. Define
µ : [0, T ]×O → R by

µ(t, ξ) := −
N∑
k=1

µkek(ξ)βk(t), (t, ξ) ∈ [0, T ]×O,

and for fixed m ∈ (0,∞) consider the following partial differential equation in H−1(O)
∂Y

∂t
= eµ∆(e−mµ Y |Y |m−1)− 1

2
µ̃Y on (0, T )×O

Y (0, ξ) = Y0(ξ) a.e. ξ ∈ O,
Y = 0 on (0, T )× ∂O.

(2.1)

Here, µ̃ ∈ C([0, T ]; H1
0 (O))∩C([0, T ]×O), µ̃ ≥ 0, and H−1(O) denotes the dual of H1

0 (O).
The space H−1(O) will be also denoted by H−1 and its norm by ‖ · ‖−1. We note that µ̃ is
a multiplier in H−1(O). By 〈·, ·〉−1, we denote the scalar product of H−1.

For our motivation to study (2.1), we refer to the introduction.
Let us recall the definition of the nonlinear operator A : D(A) ⊂ H−1(O) → H−1(O)

(“porous medium operator”) in (2.1) (cf., e.g., [2, p. 228])

D(A) := {Y ∈ H−1(O) ∩ L1(O) : Y |Y |m−1 ∈ H1
0 (O)}

and, for Y ∈ D(A),
AY := ∆(Y |Y |m−1)(∈ H−1(O)).

Our main results are the following two theorems:

Theorem 2.1 Assume 1 ≤ d ≤ 3, m ∈ (1, 5] and Y0 ∈ L∞(O). Then, for almost all ω ∈ Ω,
equation (2.1) has a unique solution Y = Y (t, Y0) on [0, T ] satisfying

(i) Y ∈ L∞((0, T )×O) ∩ C([0, T ]; H−1(O));

(ii) Y |Y |m−1 ∈ L2(0, T ;H1
0 (O));

dY

dt
∈ L2(0, T ;H−1(O)).

Moreover, if Y0 ≥ 0 on O, then Y ≥ 0 on (0, T )×O.

By a solution to (2.1) we mean a function Y which satisfies (ii) above and such that

(2.2)

d

dt
Y (t) = eµ(t)∆(e−mµ(t)Y (t)|Y (t)|m−1)− 1

2
µ̃(t)Y (t), a.e. t ∈ (0, T ),

Y (0) = Y0,
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where d
dt

is the strong derivative of Y : [0, T ]→ H−1(O). As usual, we set

W 1,2([0, T ]; H−1(O)) :=

{
Y ∈ L2(0, T ;H−1(O));

dY

dt
∈ L2(0, T ;H−1(O))

}
,

where dY
dt

is taken in the sense of (vector-valued) distributions.
In fact (see, e.g., [2, p. 22]), W 1,2([0, T ];H−1(O)) coincides with the space of all ab-

solutely continuous functions Y : [0, T ] → H−1(O) which have a strong derivative in
L2(0, T ;H−1(O)).

More generally, W 1,p([0, T ];X), where p ≥ 1 and X is a Banach space, is the space of
all X-valued absolutely continuous functions u which are a.e. differentiable in (0, T ) and
du
dt
∈ Lp(0, T ;X).
In the case m ∈ (0, 1], which corresponds to the fast diffusion porous media equation, we

do not need to restrict ourselves to bounded initial conditions, if we merely want to prove
existence.

Theorem 2.2 Assume that 1 ≤ d ≤ 3, 0 < m ≤ 1 and m ≥ 1
5

if d = 3. Then, for
each Y0 ∈ Lm+1(O), equation (2.1) has a solution Y in C([0, T ];H−1(O)) satisfying (ii) in
Theorem 2.1 and also the last assertion in Theorem 2.1 holds. If Y0 ∈ L∞(O), then Y also
satisfies (i) in Theorem 2.1.

3 Proofs of the main results

3.1 Existence of solutions in Theorem 2.1

Let βεk ∈ C1([0, T ];R), k = 1, ..., N , be such that βεk → βk uniformly on [0, T ] as ε → 0 for
all k = 1, ..., N , and set

µε := −
N∑
k=1

µk ek β
ε
k.

For ε ∈ (0, 1) consider the approximating equation

(3.1)


∂Yε
∂t

= eµε∆(e−mµε Yε|Yε|m−1 + εe−µεYε)−
1

2
µ̃Yε on (0, T )×O,

Yε(0, ξ) = Y0(ξ) a.e. ξ ∈ O,
Yε = 0 on (0, T )× ∂O.

Now, setting Zε := e−µεYε and changing variables in (3.1), we obtain that Zε solves

(3.2)


∂

∂t
Zε = ∆(Zε|Zε|m−1 + εZε)−

(
∂

∂t
µε +

1

2
µ̃

)
Zε on (0, T )×O,

Zε(0) = Y0 on O,
Zε = 0 on (0, T )× ∂O.
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Since equation (3.2) is of the form

(3.3)


∂Z

∂t
−∆β(Z)− ε∆Z + aZ = 0 on (0, T )×O,

Z(0, ξ) = Y0(ξ) on O,
Z = 0 on (0, T )× ∂O,

where β is a maximal monotone graph in R×R and a ∈ L∞((0, T )×O), β(R) = (−∞,+∞),
it follows by general existence theory for equations of type (3.3), which is essentially due
to H. Brezis (see, e.g., [2, Theorem 5.3, p. 229]), that for Y0 ∈ H−1(O) ∩ L1(O) there is a
unique solution Z ∈ C([0, T ];H−1(O)) of (3.3) such that

Z(t)|Z|m−1(t) ∈ H1
0 (O) for a.e. t ∈ [0, T ],(3.4)

t
1
2
dZ

dt
∈ L2(0, T ;H−1(O)), t

1
2Z|Z|m−1 ∈ L2(0, T ; H1

0 (O)).(3.5)

Moreover, if we set

j(r) :=

r∫
0

β(s)ds, r ∈ R,

and if j(Y0) ∈ L1(O), then

dZ

dt
∈ L2(0, T ;H−1(O)), Z|Z|m−1 ∈ L2(0, T ;H1

0 (O)).

If Y0 ∈ D(A), then

dZ

dt
∈ L∞(0, T ;H−1(O)), Z|Z|m−1 ∈ L∞(0, T ;H1

0 (O)).

This means that in our case, for any Y0 ∈ Lm+1(O) and ε > 0, the equation

(3.6)


∂Yε
∂t
− eµε∆(e−mµεYε|Yε|m−1 + εYεe

−µε) +
1

2
µ̃Yε = 0 on (0, T )×O

Yε(0) = Y0 on O
Yε = 0 on (0, T )× ∂O

has a unique solution Yε such that

Yε ∈ C ([0, T ];H−1(O))(3.7)

Yε|Yε|m−1 ∈ L2(0, T ;H1
0 (O)),

dYε
dt
∈ L2(0, T ;H−1(O)).(3.8)

Since x 7→ x|x|m−1 + εx has a Lipschitz inverse, we also have that

(3.9) Yε ∈ L2(0, T ;H1
0 (O)).
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We are going to prove that, for ε → 0, {Yε} is convergent to a solution Y to equation
(2.1). To this end, we need some preliminary results and a priori estimates on the solutions
Yε to equation (3.6). We begin with the following lemma:

Lemma 3.1 For each ε > 0, Yε ∈ L∞((0, T )×O).

Proof. Below, for a real valued function f we set f+ := sup{f, 0}. Set Z := Zε and fix
r ∈ [0,∞) such that ‖Z(r)‖∞ <∞. Set

(3.10) Ka,r(t) := K(t) := a(t− r) + ‖Z(r)‖∞ , t ≥ r,

with a ∈ (0,∞) to be chosen later. Then, (3.2) implies that

(3.11)

d

dt
(Z −K)(t)−∆(Z(t)|Z|m−1(t) + εZ(t)) +

(
∂

∂t
µε(t) +

1

2
µ̃

)
(Z −K)(t)

= −a−
(
∂

∂t
µε(t) +

1

2
µ̃

)
K(t),

where here and below d
dt

denotes the derivative of Z −K : [0, T ]→ H−1(O).
Applying (1− η∆)−1 for η > 0, multiplying by (Z −K)+ and integrating over (r, t)×O

from (3.11), we obtain that

(3.12)

∫ t

r

∫
O

(Z −K)+(s)(1− η∆)−1
d

ds
(Z −K)(s) dξ ds

−
∫ t

r

∫
O

(Z −K)+(s)(1− η∆)−1∆(Z(s)|Z|m−1(s) + εZ(s)) dξds

+

∫ t

r

∫
O

(Z −K)+(s)(1− η∆)−1
((

∂

∂s
µε(s) +

1

2
µ̃

)
(Z −K)(s)

)
dξds

= −
∫ t

r

∫
O

(Z −K)+(s)(1− η∆)−1
(
a+

(
∂

∂s
µε(s) +

1

2
µ̃

)
K(s)

)
dξds.

Setting

T0 :=

(
sup

[0,T ]×O

∣∣∣ ∂
∂s
µε

∣∣∣+ 1

)−1
,

we can choose a (= a(ε, r)) so large that

a+

(
∂

∂s
µε(s) +

1

2
µ̃

)
K(s) ≥ 0 for all s ∈ [r, r + T0].

Recalling that (1 − η∆)−1 is positivity preserving, we see that for this choice of a, the
right-hand side of (3.12) is negative for all t ∈ [r, r + T0].
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Next, we note that the second summand on the left-hand side of (3.12) is equal to

(3.13)
1

η

t∫
r

∫
O

(Z −K)+(s)
[
1− (1− η∆)−1

]
(Z(s)|Z(s)|m−1 + εZ(s)) dξds.

Recall that (1− η∆)−1 has an integral kernel gη : O ×O → [0,∞), i.e., for f ∈ L1(O),

(1− η∆)−1 f(ξ) =

∫
f(ξ̃) gη(ξ, ξ̃) dξ̃, ξ ∈ O.

Furthermore, ∫
O
IO(ξ̃)gη(ξ, ξ̃)dξ̃ ≤ 1 for all ξ ∈ O,

where IO denotes the constant function equal to 1 on O.
Plugging this into (3.13), by an elementary computation we obtain that the term in (3.13)

is equal to

(3.14)

1

2η

∫ t

r

∫
O

∫
O

((Z −K)+(s, ξ̃)− (Z −K)+(s, ξ))(Z(s, ξ̃)|Z(s, ξ̃)|m−1 + εZ(s, ξ̃)

−(Z(s, ξ)|Z(s, ξ)|m−1 + εZ(s, ξ)))gη(ξ, ξ̃) dξ dξ̃ ds

+

∫ t

r

∫
O

(IO − (1− η∆)−1IO)((Z −K)+(s))(Z(s)|Z(s)|m−1 + εZ(s)) dξ ds.

Since for k ∈ [0,∞) the maps x 7→ (x− k)+ and x 7→ x|x|m−1 + εx are increasing on R and
zero at zero, it follows that the sum in (3.14) is nonnegative. Altogether, for every η > 0,
we obtain

(3.15)

∫ t

r

∫
O

(Z −K)+(s)(1− η∆)−1
d

ds
(Z −K)(s) dξ ds

≤ −
∫ t

r

∫
O

(Z −K)+(s)(1− η∆)−1
((

∂

∂s
µε(s) +

1

2
µ̃

)
(Z −K)(s)

)
dξds.

Letting η → 0, for t ∈ [r, r + T0] we obtain that

(3.16)

∫ t

r H1
0

〈
(Z −K)+(s),

d

ds
(Z −K)(s)

〉
H−1

ds ≤ sup
[0,T ]×O

∣∣∣ ∂
∂s
µε

∣∣∣ t∫
r

∥∥(Z −K)+(s)
∥∥2
2
ds.

We claim that

(3.17)

∫ t

r H1
0

〈
(Z −K)+(s),

d

ds
(Z −K)(s)

〉
H−1

ds = 2‖(Z −K)+(t)‖22.
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Recall that d
ds

denotes the differential for a map from (r, T ) to H−1, so to prove (3.17) we
have to regularize again by applying (1− η∆)−1, η > 0. Then, s 7→ (1− η∆)−1(Z −K)(s) is
differentiable in H1

0 (O), so the left-hand side of (3.17) by Lebesgue’s dominated convergence
theorem is equal to

lim
η→0

∫ t

r

∫
O

((1− η∆)−1(Z −K)(s))+
d

ds
(1− η∆)−1(Z −K)(s)dξ

= lim
η→0

∫ t

r

d

ds
‖((1− η∆)−1(Z −K)(s))+‖22ds = 2‖(Z −K)+(t)‖22,

and (3.17) is proved. (See also Lemma 3.3 below for another argument to prove (3.17).)
Now, by Gronwall’s Lemma, (3.16) and (3.17) imply that

Z ≤ K on [r, r + T0]×O.

Since (−Z) also solves (3.2), but with initial condition −Y0, the above proof also yields

−Z ≤ K on [r, r + T0]×O.

Since ‖Z(0)‖∞ <∞, the assertion follows by iteration and because Z = Zε = e−µεYε.

Lemma 3.2 Suppose Y0 ∈ Lm+1(O) such that Y0 ≥ 0 on O and let Yε be the corresponding
solution to (3.6). Then,

(3.18) Yε ≥ 0 on (0, T )×O.

Proof. Setting Z := −e−µεYε, it suffices to prove

(3.19) Z ≤ 0 on (0, T )×O.

We have

(3.20)

d

dt
Z −∆(Z|Z|m−1 + εZ) +

(
d

dt
µε +

1

2
µ̃

)
Z = 0 on (0, T )×O

Z(0) ≤ 0 on O,
Z = 0 on (0, T )× ∂O.

Since dZ
dt
∈ L2(0, T ;H−1(O)) and Z ∈ L2(0, T ;H1

0 (O)), we have

H−1(O)

〈
d

dt
Z(t), Z+(t)

〉
H1

0 (O)
=

1

2

d

dt
‖Z+(t)‖22, a.e. t ∈ (0, T ).

Indeed, for A = −∆, D(A) = H1
0 (O) ∩H2(O) and η > 0, we have

H−1(O)

〈
d

dt
(1 + ηA)−1Z(t), ((1 + ηA)−1Z(t))+

〉
H1

0 (O)

=
1

2

d

dt
‖((1 + ηA)−1Z(t))+‖22, a.e. t ∈ (0, T ).
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This yields

1

2
‖((1 + ηA)−1Z(t))+‖22 −

1

2
‖((1 + ηA)−1Z(s))+‖22

=

∫ t

s H−1(O)

〈
d

dτ
(1 + ηA)−1Z(τ), ((1 + ηA)−1Z(τ))+

〉
H1

0 (O)
dτ.

Letting η → 0, we get

1

2
‖Z+(t)‖22 −

1

2
‖Z+(s)‖22 =

∫ t

0 H−1(O)

〈
dZ

dτ
, Z+

〉
H1

0 (O)
dτ,

for all s ≤ t ≤ T which implies the desired formula.
Then, applying H1

0 (O) 〈Z
+(t), ·〉H−1(O) to (3.20), we obtain

(3.21)

1

2
‖Z+(t)‖22 +

∫ t

0

∫
O

(∇(Z+|Z+|m−1) · ∇Z+ + ε|∇Z+|2)dξ ds

+

∫ t

0

∫
O
|Z+|2

(
d

ds
µε +

1

2
µ̃

)
dξ ds = 0.

We conclude that Z+ ≡ 0 by Gronwall’s lemma.

Lemma 3.3 Let Y0 ∈ L∞(O). Then there exists ε0 ∈ (0, 1] such that

sup
ε∈(0,ε0]

‖Yε‖∞ <∞.

Proof. Consider the solution ϕ1 ∈ C2(O) to the Dirichlet problem

(3.22) ∆ϕ1 = −1 in O, ϕ1 = 1 on ∂O.

Note that ϕ1 ≥ 1 by the maximum principle.
Now, take a partition 0 = τ0 < τ1 < · · · < τn = T such that, for all 0 ≤ i ≤ n− 1,

(3.23)

sup
t∈[τi,τi+1]

max
(
‖∇(µ(t)− µ(τi))‖∞, ‖∇(µ(t)− µ(τi))‖2∞, ‖∆(µ(t)− µ(τi))‖∞

)
<

1

4(m+ 1)2(1 + ‖ϕ1‖∞ + ‖∇ϕ1‖∞)
,

where ‖ · ‖∞ denotes supnorm over O. Let ε0 ∈ (0, 1] such that

(3.24)

sup
ε∈(0,ε0]

sup
t∈[τi,τi+1]

max
(
‖∇(µε(t)−µε(τi))‖∞, ‖∇(µε(t)−µε(τi))‖2∞, ‖∆(µε(t)−µε(τi))‖∞

)
<

1

4(m+ 1)2(1 + ‖ϕ1‖∞ + ‖∇ϕ1‖∞)
.
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Define the step function

(3.25) Kε :=
n−1∑
i=0

1[τi,τi+1]K
ε
i ,

where

(3.26) Kε
i := (1 + ‖Yε(τi)‖∞)ϕ

1
m
1 e
‖µε(τi)‖∞+µε(τi).

We shall prove by induction that for all i ∈ {0, ..., n− 1}

(3.27) sup
ε∈(0,ε0]

‖Yε(τi)‖∞ <∞

by showing that

(3.28) Yε ≤ Kε on (τi, τi+1)×O for ε ∈ (0, ε0].

Clearly, (3.27) implies that
sup

ε∈(0,ε0]
‖Kε‖∞ <∞,

and the assertion of the lemma follows (since, as in the proof of Lemma 3.1, we also get
−Yε ≤ Kε).

So, to prove (3.27), which holds by assumption for i = 0, we assume that, for some
i ∈ {0, ..., n− 1},

sup
ε∈(0,ε0]

‖Yε(τi)‖∞ <∞,

hence
sup

ε∈(0,ε0]
‖Kε

i ‖∞ <∞.

Fix ε ∈ (0, ε0] below and, for simplicity, set K := Kε
i . Then, by (3.1), we have

(3.29)

d

dt
(Yε −K)− eµε∆(e−mµε [Yε|Yε|m−1 + εe(m−1)µεYε − (Km + εe(m−1)µεK)])

+
1

2
µ̃(Yε −K) = Fε on (τi, τi+1)×O,

(Yε −K)(τi) ≤ 0 in O,
Yε −K ≤ 0 on (τi, τi+1)× ∂O,

where, for t ∈ [τi, τi+1],

(3.30)
Fε(t) = eµε(t)(1 + ‖Yε(τi)‖∞)mem‖µε(τi)‖∞∆(e−m(µε(t)−µε(τi))ϕ1)

+ εeµε(t)(1 + ‖Yε(τi)‖∞)e‖µε(τi)‖∞∆(e−(µε(t)−µε(τi))ϕ
1
m
1 )− 1

2
µ̃K.
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We note that (3.29) is, of course, meant in the sense of distributions, i.e., as an equation in
D′(O) (the dual of D(O) := C∞0 (O)), since K and Km are not in the domain of the Dirichlet
Laplacian ∆. So, in (3.29) we use the symbol ∆, also to denote the usual Laplacian acting
by duality on distributions. More precisely, we have

(3.31)

∫
O

d

dt
(Yε −K)ψ dξ +

∫
O
∇(e−mµεYε|Yε|m−1 + εe−µεYε) · ∇(eµεψ)dξ

+

∫
O
eµε∆(e−mµεKm + εe−µεK)ψ dξ +

∫
O

1

2
µ̃(Yε −K)ψ dξ =

∫
O
Fεψ dξ,

∀ψ ∈ H1
0 (O), t ∈ (τi, τi+1).

Furthermore, obviously, for t ∈ [τi, τi+1],

Fε(t) = e(1−m)µε(t)em(‖µε(τi)‖∞−µε(τi))(1 + ‖Yε(τi)‖∞)m

·[−1− 2m∇(µε(t)− µε(τi)) · ∇ϕ1

−mϕ1(∆(µε(t)− µε(τi))−m|∇(µε(t)− µε(τi))|2)]

+e‖µε(τi)‖∞−µε(τi)(1 + ‖Yε(τi)‖∞)
1

m
ϕ

1
m
−1

1

·
[
−1 +

(
1
m
− 1
)
ϕ−11 |∇ϕ1|2 − 2∇(µε(t)− µε(τi)) · ∇ϕ1

−mϕ1(∆(µε(t)− µε(τi))− |∇(µε(t)− µε(τi))|2)]−
1

2
µ̃K

≤ −1

4
e(1−m)µε(t)em(‖µε(τi)‖∞−µε(τi))(1 + ‖Yε(τi)‖∞)m

− 1

4m
e‖µε(τi)‖∞−µε(τi)(1 + ‖Yε(τi)‖∞)ϕ

1
m
−1

1

≤ 0.

Here we used that 1
m
− 1 ≤ 0, since m ≥ 1, in the previous to last step. Hence,

(3.32) Fε ≤ 0 in (τi, τi+1)×O.

Now, we come back to (3.29) and rewrite it as

(3.33)

dZ

dt
− eµε∆ϕ̃(Z) +

1

2
µ̃Z = Fε on (τi, τi+1)×O,

Z(0) ≤ 0 on O,
Z ≤ 0 on (τi, τi+1)×O,

where Z := Yε −K and the maps ϕ, ϕ̃ : R×O → R are defined by

ϕ(r, ξ) := (r +K(ξ))|r +K(ξ)|m−1 −Km(ξ),

ϕ̃(t, r, ξ) := e−mµε(t,ξ)ϕ(r, ξ) + εe−µε(t,ξ)r, (t, r, ξ) ∈ [0, T ]× R×O.
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For simplicity of notation, here and below, for z ∈ L1
loc(O) we set ϕ(z)(ξ) = ϕ(z(ξ), ξ),

ξ ∈ O. Likewise we use ϕ̃(z) (and j(z) below). We note that ϕ(·, ξ) is monotonically
increasing in r, ϕ(0, ξ) = 0 and so, ϕ(r+, ξ) = (ϕ(r, ξ))+. In particular, for z ∈ H1

0 (O) it
follows that ∇ϕ(z) = ∇ϕ+(z) = ∇ϕ(z+) on {z ≥ 0}. We shall use this fact several times
below. We can write (3.33), equivalently,

(3.34)
dZ

dt
−∆(eµεϕ̃(Z)) +

1

2
µ̃Z = −∆(eµε)ϕ̃(Z)− 2∇(eµε) · ∇ϕ̃(Z) + Fε.

We set for (r, ξ) ∈ R×O

j(r, ξ) =

∫ r

0

ϕ+(s, ξ)ds =
I[0,∞)(r)

m+ 1
((r +K(ξ))m+1 −Km+1(ξ))−Km(ξ)r.

Define the convex function φ : H−1(O)→ R = R ∪ {+∞} by

φ(z) =


∫
O
j(z(ξ), ξ)dξ if z ∈ L1

loc(O),

+∞ otherwise.

If ϕ+(z) ∈ H1
0 (O), we have ∂φ(z) = −∆ϕ+(z) in H−1(O) and, by the standard chain

differentiation rule, we have (see, e.g., [9, p. 73], [2, p. 68])

d

dt
φ(z(t)) =

〈
∂φ(z(t)),

dz

dt
(t)

〉
H−1

=
H−1

〈
dz

dt
(t), ϕ+(z(t))

〉
H1

0

if ϕ+(z) ∈ L2(0, T ;H1
0 (O)).

We note that, if ϕ(z) ∈ H1
0 (O), we have (ϕ(z))+ = ϕ(z+) ∈ H1

0 (O) and, therefore,
applying H1

0
〈ϕ(Z+), ·〉H−1 to both sides of (3.34), we get

(3.35)

d

dt

∫
O
j(Z+(t, ξ), ξ)dξ +

∫
O
∇(eµεϕ̃(Z+)) · ∇ϕ(Z+)dξ

+
1

2

∫
O
µ̃Z+ϕ(Z+)dξ = −

∫
O

∆(eµε)ϕ̃(Z+)ϕ(Z+)dξ

−2

∫
O
∇(eµε) · ∇(ϕ̃(Z+))ϕ(Z+)dξ +

∫
O
Fεϕ(Z+)dξ.

The right-hand side of (3.35) is dominated by

C

[∫
O
ϕ2(Z+)dξ + (m+ 1)

∫
O
j(Z+)dξ +

(∫
O
|∇(eµεϕ̃(Z+))|2dξ

) 1
2
(∫
O
ϕ2(Z+)dξ

) 1
2

]
,

where C is independent of ε and we used the estimate that rϕ(r) ≤ (m + 1)j(r), r ≥ 0.
Furthermore, the third integral on the left-hand side of (3.35) is positive, while the integrand
of the second, because

∇ϕ(Z+) = ∇(e(m−1)µε)e(1−m)µεϕ(Z+) + e(m−1)µε∇(e(1−m)µεϕ(Z+))
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and
e(1−m)µεϕ(Z+) = eµεϕ̃(Z+)− εZ+,

can be rewritten as

∇(eµεϕ̃(Z+)) · ∇(e(m−1)µε)e(1−m)µεϕ(Z+)

+[|∇(eµεϕ̃(Z+))|2 − ε∇(eµεϕ̃(Z+)) · ∇Z+]e(m−1)µε

= ∇(eµεϕ̃(Z+)) · ∇(e(m−1)µε)e(1−m)µεϕ(Z+) +
1

2
|∇(eµεϕ̃(Z+))|2e(m−1)µε

+
1

2
(|∇(e1−m)µεϕ(Z+))|2 − ε2|∇Z+|2)e(m−1)µε .

Plugging this and the previous into (3.35) and applying Young’s inequality, we obtain for
some (other) constant C > 0 independent of ε, after integrating (since Z+(τi) = 0), that for
a.e. t ∈ [τi, τi+1]

(3.36)

∫
O
j(Z+(t, ξ), ξ)dξ +

∫ t

τi

∫
O

(|∇(eµεϕ̃(Z+))|2 + |∇(e(1−m)µεϕ(Z+))|2)dξ ds

≤ C

∫ t

τi

∫
O

(ϕ2(Z+(t, ξ), ξ) + j(Z+(t, ξ), ξ))dξ ds+ Cε2
∫ t

τi

∫
O
|∇Z+|2dξ ds.

We proceed, similarly, by applying H1
0
〈Z+, ·〉H−1 to both sides of (3.34) and, after integration,

get (with C independent of ε)

(3.37)

∫
O
|Z+(t, ξ)|2dξ +

∫ t

τi

∫
O
∇(e(1−m)µεϕ(Z)) · ∇Z+dξ ds+ ε

∫ t

τi

∫
O
|∇Z+|2dξ ds

≤ C

∫ t

τi

∫
O
|ϕ̃(Z+)||Z+|dξ ds+ C

∫ t

τi

∫
O
|∇(eµεϕ̃(Z))||Z+|dξ ds

≤
∫ t

τi

∫
O

(Cϕ2(Z+) + C|Z+|2)dξ ds+
ε

4

∫ t

τi

∫
O
|∇Z+|2dξ ds

+C

∫ t

τi

∫
O
|∇(e(1−m)µεϕ(Z+))|2)dξ ds.

We have

∇(e(1−m)µεϕ(Z, ξ)) · ∇Z+ = (∇(e(1−m)µε) · ∇Z+)ϕ(Z, ξ) + e(1−m)µεϕ′(Z, ξ)|∇Z+|2

+e(1−m)µεϕξ(Z, ξ) · ∇Z+,

where ϕ′(r, ξ) = ∂ϕ
∂r

, ϕξ = ∂ϕ
∂ξ
. This yields, since ϕ′(r, ξ) ≥ 0,

∇(e(1−m)µεϕ(Z)) · ∇Z+ ≥ −C(|∇Z+|ϕ(Z+, ξ) + |∇Z+ · ϕξ(Z, ξ)|).
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On the other hand, we have

|∇Z+ · ϕξ(Z, ξ)| = m|∇K · ∇Z+||(Z+ +K)m−1 −Km−1|
≤ CZ+|∇Z+| sup{|r +K|m−2; 0 ≤ r ≤ Z+}

≤ C max{Km−2, ‖Z+ +K‖m−2∞ }Z+|∇Z+| ≤ ε

4
|∇Z+|2 + Cε|Z+|2.

Then, by (3.36) and (3.37), we obtain for ε sufficiently small∫
O

(j(Z+(t, ξ)) + |Z+(t, ξ)|2)dξ ≤ Cε

∫ t

τi

∫
O

(|ϕ(Z+(s, ξ))|2 + |Z+(s, ξ)|2)dξ ds, ∀t ∈ [τi, τi+1].

Taking into account that
(ϕ(s))2 ≤ Cj(s)(1 + sm−1), ∀s,

and that Z+ ∈ L∞(O), we get by Gronwall’s lemma that j(Z+) = 0 and, therefore, Z+ = 0
on [τi, τi+1]. Hence, Yε ≤ Kε

i on [τi, τi+1] and (3.27), (3.28) follow by induction.

Now, we can complete the proof of the existence part of Theorem 2.1. We shall use the
following identity which is easy to check for all u ∈ H1

0 (O):

(3.38)

eµε∆(e−mµεu) = e
1
2
(1−m)µε∆(e

1
2
(1−m)µεu)

+
1

2
(m+ 1)

[
1

2
(m+ 1)|∇µε|2 −∆µε

]
e(1−m)µεu

− (m+ 1)e
1
2
(1−m)µε∇µε · ∇(e

1
2
(1−m)µεu).

Using this in (3.1) for u := Yε(s)|Yε(s)|m−1, s ∈ [0, T ], and for m = 1 and u := Yε(s) for
the term with ε in front, and applying subsequently H1

0
〈Yε|Yε|m−1, ·〉H−1 to the resulting

equation, we find (applying the same arguments to the left-hand side as in Lemma 3.3) that

1

m+ 1

d

dt

∫
O
|Yε|m+1dξ +

∫
O
|∇(Yε|Yε|m−1e

1
2
(1−m)µε)|2dξ + εm

∫
O
|Yε|m−1|∇Yε|2dξ

+(m+ 1)

∫
O

(e
1
2
(1−m)µεYε|Yε|m−1)∇µε · ∇(e

1
2
(1−m)µεYε|Yε|m−1)dξ

+2ε

∫
O
Yε|Yε|m−1∇µε · ∇Yεdξ

=
1

2
(m+ 1)

∫
O
e(1−m)µε|Yε|2m

[
1

2
(m+ 1)|∇µε|2 −∆µε

]
dξ

+ε

∫
O

[|∇µε|2 −∆µε]|Yε|m+1 dξ, a.e. t ∈ (0, T ),

consequently, since
sup

[0,T ]×O
ε>0

(|∇µε|+ |∆µε|) <∞,

15



there exists C ∈ (0,∞) independent of ε > 0 such that for a.e. t ∈ [0, T ], we get∫
O
|Yε(t, ξ)|m+1dξ +

∫ t

0

∫
O
|∇(e

1
2
(1−m)µε|Yε|m−1Yε)|2dξ ds

≤ C

(∫
O
|Y0(ξ)|m+1dξ +

∫ t

0

∫
O
|Yε(s, ξ)|2mdξ ds

)
, ∀ε > 0, t ∈ [0, τ ].

Recalling that, by Lemma 3.3, {Yε} is bounded in L∞((0, τ)×O), we obtain that

(3.39)

∫
O
|Yε(t, ξ)|m+1dξ +

∫ t

0

∫
O
|∇(|Yε(t, ξ)|m−1Yε(t, ξ))|2dξ ds ≤ C,

a.e. t ∈ (0, τ), ∀ε ∈ (0, ε0].

We note that, from here, all arguments below also work for m ∈ (0, 1] with m ≥ 1
5
, if d = 3,

which we shall refer to in Subsection 3.3 below. (3.39) is equivalent to

(3.40) sup
t∈(0,T )

‖Yε(t)‖m+1 +

∫ T

0

‖|Yε(s)|m−1Yε(s)‖2H1
0 (O)

ds ≤ C, ∀ε ∈ (0, ε0].

Hence, along a subsequence ε→ 0, we have

Yε → Y weak-star in L∞(0, T ;Lm+1(O)),(3.41)

|Yε|m−1Yε → η weakly in L2(0, T ;H1
0 (O)).(3.42)

Hence,

dYε
dt

→ dY

dt
weakly in L2(0, T ;H−1(O)),(3.43)

since, by (3.42), also,

eµε∆(e−mµε|Yε|m−1Yε) → eµ∆(e−mµη) weakly in L2(0, T ;H−1(O)),(3.44)

and, since, by (3.40) and the Sobolev embedding theorem, {Yε} is bounded in L2(0, T ;L6m(O)),
and, therefore,

Yε → Y weakly in L2(0, T ;H−1(O)),(3.45)

hence

µ̃Yε → µ̃Y weakly in L2(0, T ;H−1(O)),(3.46)

because m ≥ 1
5

if d = 3. Hence, we may pass to the limit in (3.1) and obtain

(3.47)

dY

dt
− eµ∆(e−mµη) +

1

2
µ̃Y = 0 a.e. t ∈ (0, T ),

Y (0) = Y0 in O,
η = 0 on (0, T )× ∂O.
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(We note that εeµε∆(e−µεYε)→ 0 in D′((0, T )×O) by virtue of (3.45).)
In order to complete the proof of existence, we must show that

(3.48) η(t, ξ) = |Y (t, ξ)|m−1Y (t, ξ) a.e. (t, ξ) ∈ (0, T )×O.

To prove (3.48), it suffices to check the inequality

(3.49) lim sup
ε→0

∫ T

0

∫
O
e(1−m)µε|Yε|m+1dξ dt ≤

∫ T

0

∫
O
e(1−m)µηY dξ dt.

Indeed, if (3.49) holds, then by the inequality∫ T

0

∫
O
e(1−m)µε(|Yε|m−1Yε − |z|m−1z)(Yε − z)dξ dt ≥ 0, ∀z ∈ Lm+1((0, T )×O),

we get by (3.49) and (3.42)

(3.50)

∫ T

0

∫
O
e(1−m)µ(η − |z|m−1z)(Y − z)dξ dt ≥ 0, ∀z ∈ Lm+1((0, T )×O),

and, if we take z = z∗, the solution to the equation |z|m−1z + z = η + Y a.e. in (0, T )×O,
we obtain that z∗ = Y and η = |Y |m−1Y , as claimed.

We note that, since x 7→ |x|m−1x + x has a Lipschitz inverse, we conclude that z∗ has
the same integrability property as η + Y , i.e., z∗ ∈ L∞((0, T ) × O) in this case, where
m > 1. But, if m ∈ (0, 1], we still have z∗ ∈ Lm+1((0, T ) × O), since η ∈ L2(0, T ;L6(O))
and Y ∈ Lm+1((0, T )×O). This is used in the proof of Theorem 2.2 below.

To prove (3.49), we apply 〈Yε, ·〉−1 to (3.1) and integrate over (0, T ) to obtain

(3.51)

1

2
(‖Yε(τ)‖2−1 − ‖Y0‖2−1) +

∫ T

0

∫
O
e(1−m)µε|Yε|m+1dξ dt+ ε

∫ T

0

∫
O
|Yε|2dξ dt

= −
∫ T

0

∫
O

(−∆)−1(Yε)(e
−mµε |Yε|m−1Yε + εe−µεYε)∆(eµε)dξ dt

−2

∫ T

0

∫
O

(−∆)−1(Yε)∇(eµε) · ∇(e−mµε|Yε|m−1Yε + εe−µεYε)dξ dt

−1

2

∫ T

0

∫
O

(−∆)−1(Yε)Yεµ̃ dξ dt.

We also have that

ε

∣∣∣∣∫ T

0

∫
O

(−∆)−1(Yε)∇(eµε) · ∇(eµεYε)dξ dt

∣∣∣∣
≤ Cε

∫ T

0

‖Yε‖−1‖Yε‖2dt ≤
ε

4

∫ T

0

‖Yε‖22dt+ C1ε

∫ T

0

|Yε(t)|2−1dt.
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On the other hand, we see by (3.41), (3.43) that {(−∆)−1Yε} is bounded in
L∞((0, T );W 2,m+1(O)) (because {Yε} is bounded in L∞((0, T );Lm+1(O)) and { d

dt
(−∆)−1Yε}

is bounded in L2(0, T ;H1
0 (O))). Then, by the Aubin–Lions compactness theorem (see

[5, Theorem 5.1 in Chap. 1]), and since W 2,m+1(O) ⊂ L6(O) compactly if m ≥ 1
5

and
d = 3, and for all m ∈ (0,∞) if d = 1, 2, we may pass to the limit in (3.51) along a
subsequence and get

(3.52)

lim sup
ε→0

∫ T

0

∫
O
e(1−m)µε |Yε|m+1dξ dt ≤ −1

2
(|Y (τ)|2−1 − |Y0|2−1)

−
∫ T

0

∫
O

(−∆)−1(Y )e−mµ|Y |m−1Y∆(e−µ)dξ dt

−2

∫ T

0

∫
O

(−∆)−1Y∇(eµ) · ∇(e−mµ|Y |m−1Y )dξ dt

−1

2

∫ T

0

∫
O

(−∆)−1(Y )Y µ̃ dξ dt = I.

On the other hand, by (3.47) we obtain by a similar computation that∫ T

0

∫
O
e(1−m)µηY dt dξ = I,

which proves (3.49).

Remark 3.4 If β1, . . . , βN in the definition of µ are independent Brownian motions on a
stochastic basis (Ω,F , (Ft),P), then clearly the solution Zε to (3.2) and hence the solution
Yε to (3.6) are (Ft+σ(ε))-adapted with σ(ε) → 0 as ε → 0. Hence as a limit of these the
solution Y to (2.1) constructed in the previous proof is (Ft)-adapted.

3.2 Uniqueness of solutions in Theorem 2.1

Let Y1, Y2 be two solutions to equation (2.1) satisfying conditions (i) and (ii). We set

χ =


Y1|Y1|m−1 − |Y2|m−1Y2

Y1 − Y2
on [Y1 6= Y2],

0 on [Y1 = Y2].

We set also z = Y1 − Y2. Then, by (2.1), we have

dz

dt
−∆(e(1−m)µχz) + e−mµχz∆(eµ) + 2∇(eµ) · ∇(e−mµχz) +

1

2
µ̃z = 0 in (0, T )×O,

z(0, ξ) = 0, a.e. ξ ∈ O,
z = 0 on (0, T )× ∂O.
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Equivalently,

(−∆)−1
(
dz

dt

)
+ e(1−m)µχz + (−∆)−1(e−mµχz∆(eµ) + 2∇(eµ) · ∇(e−mµχz))

+
1

2
(−∆)−1(µ̃z) = 0.

We multiply the latter by z and integrate on (0, T )×O. We get

(3.53)

1

2

d

dt
‖z(t)‖2−1 +

∫
O
e(1−m)µχz2dξ

= −
∫
O

(−∆)−1(e−mµχz∆(eµ))z dξ − 2

∫
O

(−∆)−1(∇(eµ) · ∇(e−mµχz))z dξ

−1

2

∫
O

(−∆)−1(µ̃z)z dξ = I1(t) + I2(t) + I3(t), a.e. t ∈ (0, T ).

We have via Sobolev embedding (see, e.g., [1, p .217])

(3.54)

|I1(t)| ≤ C‖z(t)‖−1‖(χz)(t)‖−1
≤ C‖z(t)‖−1‖(χz)(t)‖m+1

m

≤ C‖z(t)‖−1
(∫
O
e(1−m)µ(t)χ(t)z2(t)dξ

) 1
2
(∫
O

(χ(t))
m+1
m−1dξ

) m−1
2(m+1)

≤ C‖z(t)‖2−1 +
1

4

∫
O
e(1−m)µ(t)(χz2)(t)dξ

because |χ(t)| ≤ C(|Y1|m−1 + |Y2|m−1) ∈ L
m+1
m−1 ((0, T )×O).

Similarly, we have

(3.55)

|I2(t)| ≤ C‖z(t)‖−1‖∇(e−mµ(t)χ(t)z(t))‖−1

≤ C‖z(t)‖−1‖χ(t)z(t)‖2 ≤ C‖z(t)‖2−1 +
1

4

∫
O
χ(t)|z(t)|2e(1−m)µ(t)dξ,

because χ ∈ L∞((0, T )×O), and

(3.56) |I3(t)| ≤ C‖z(t)‖2−1.

Substituting (3.54)–(3.56) into (3.53), we obtain

(3.57)

d

dt
‖z(t)‖2−1 +

∫
O
e(1−m)µ(t)χ(t)|z(t)|2dξ ≤ C‖z(t)‖2−1,

z(0) = 0,

which, clearly, implies z(t) ≡ 0, as claimed.
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3.3 Proof of Theorem 2.2

The proof of existence for Y0 ∈ Lm+1(O) is exactly the same as that of Theorem 2.1, with the
observation that for the solution Yε to equation (3.1), by (3.39) we get in the case m ∈ (0, 1],
with m ≥ 1

5
if d = 3, the estimate

‖Yε(t)‖m+1
m+1 +

∫ t

0

∫
O
|∇(e

1
2
(1−m)µε |Yε|m−1Yε)|2dξ dt ≤ C‖Y0‖m+1

m+1, ∀ε > 0.

Then, we can proceed as in the proof of Theorem 2.1 to get the existence of a solution on
the interval [0, T ], which satisfies (ii) in Theorem 2.1.

We furthermore emphasize that in the proof of Lemma 3.2 we did not use that m > 1. So,
the last assertion of Theorem 2.1 also holds here. To prove boundedness of Y , if Y0 ∈ L∞(O),

one just replaces ϕ
1
m in the definition of Kε

i (see (3.26)) by ϕ. Then again Fε ≤ 0 and one can
prove Lemma 3.3 for m ∈ (0, 1], with m ≥ 1

5
if d = 3, exactly analogously as in Subsection

3.1. Then boundedness of Y follows as in the proof of Theorem 2.1.
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[9] H. Brezis, Opérateurs Maximaux Monotones et Semigroupes de contractions dans les
espaces de Hilbert, North Holland, Amsterdam, 1973.

[10] G. Da Prato, B.L. Rozovskii, Feng-Yu Wang, M. Röckner, Strong solutions of stochastic
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tractor for a class of stochastic porous media equations, Comm. PDE, 36 (2011), no.3,
446–469.
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