KAWASAKI DYNAMICS IN THE CONTINUUM VIA GENERATING FUNCTIONALS EVOLUTION

DMITRI L. FINKELSHTEIN, YURI G. KONDRATIEV, AND MARIA JOÃO OLIVEIRA

Abstract

We construct the time evolution of Kawasaki dynamics for a spatial infinite particle system in terms of generating functionals. This is carried out by an Ovsjannikov-type result in a scale of Banach spaces, which leads to a local (in time) solution. An application of this approach to Vlasov-type scaling in terms of generating functionals is considered as well.

1. Introduction

Originally, Bogoliubov generating functionals (GF for short) were introduced by N. N. Bogoliubov in [2] to define correlation functions for statistical mechanics systems. Apart from this specific application, and many others, GF are, by themselves, a subject of interest in infinite dimensional analysis. This is partially due to the fact that to a probability measure μ defined on the space Γ of locally finite configurations $\gamma \subset \mathbb{R}^{d}$ one may associate a GF

$$
B_{\mu}(\theta):=\int_{\Gamma} d \mu(\gamma) \prod_{x \in \gamma}(1+\theta(x))
$$

yielding an alternative method to study the stochastic dynamics of an infinite particle system in the continuum by exploiting the close relation between measures and GF [4, 9].

Existence and uniqueness results for the Kawasaki dynamics through GF arise naturally from Picard-type approximations and a method suggested in [6, Appendix 2, A2.1] in a scale of Banach spaces (see e.g. [5, Theorem 2.5]). This method, originally presented for equations with coefficients time independent, has been extended to an abstract and general framework by T. Yamanaka in [12] and L. V. Ovsjannikov in [10] in the linear case, and many applications were exposed by F. Treves in [11]. As an aside, within an analytical framework outside of our setting, all these statements are very closely related to variants of the abstract Cauchy-Kovalevskaya theorem. However, all these abstract forms only yield a local solution, that is, a solution which is defined on a finite time interval. Moreover, starting with an initial condition from a certain Banach space, in general the solution evolves on larger Banach spaces.

As a particular application, this work concludes with the study of the Vlasov-type scaling proposed in [3] for general continuous particle systems and accomplished in [1] for the Kawasaki dynamics. The general scheme proposed in [3] for correlation functions yields a limiting hierarchy which possesses a chaos preservation property, namely, starting with a Poissonian (non-homogeneous) initial state this structural property is preserved during the time evolution. In Section 4 the same problem is formulated in terms of GF

[^0]and its analysis is carried out by the general Ovsjannikov-type result in a scale of Banach spaces presented in [5, Theorem 4.3].

2. General Framework

In this section we briefly recall the concepts and results of combinatorial harmonic analysis on configuration spaces and Bogoliubov generating functionals needed throughout this work (for a detailed explanation see [7, 9]).
2.1. Harmonic analysis on configuration spaces. Let $\Gamma:=\Gamma_{\mathbb{R}^{d}}$ be the configuration space over $\mathbb{R}^{d}, d \in \mathbb{N}$,

$$
\Gamma:=\left\{\gamma \subset \mathbb{R}^{d}:|\gamma \cap \Lambda|<\infty \text { for every compact } \Lambda \subset \mathbb{R}^{d}\right\}
$$

where $|\cdot|$ denotes the cardinality of a set. We identify each $\gamma \in \Gamma$ with the non-negative Radon measure $\sum_{x \in \gamma} \delta_{x}$ on the Borel σ-algebra $\mathcal{B}\left(\mathbb{R}^{d}\right)$, where δ_{x} is the Dirac measure with mass at x, which allows to endow Γ with the vague topology and the corresponding Borel σ-algebra $\mathcal{B}(\Gamma)$.

For any $n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$ let

$$
\Gamma^{(n)}:=\{\gamma \in \Gamma:|\gamma|=n\}, n \in \mathbb{N}, \quad \Gamma^{(0)}:=\{\emptyset\}
$$

Clearly, each $\Gamma^{(n)}, n \in \mathbb{N}$, can be identify with the symmetrization of the set $\left\{\left(x_{1}, \ldots, x_{n}\right) \in\right.$ $\left(\mathbb{R}^{d}\right)^{n}: x_{i} \neq x_{j}$ if $\left.i \neq j\right\}$, which induces a natural (metrizable) topology on $\Gamma^{(n)}$ and the corresponding Borel σ-algebra $\mathcal{B}\left(\Gamma^{(n)}\right)$. In particular, for the Lebesgue product measure $(d x)^{\otimes n}$ fixed on $\left(\mathbb{R}^{d}\right)^{n}$, this identification yields a measure $m^{(n)}$ on $\left(\Gamma^{(n)}, \mathcal{B}\left(\Gamma^{(n)}\right)\right)$. For $n=0$ we set $m^{(0)}(\{\emptyset\}):=1$. This leads to the definition of the space of finite configurations

$$
\Gamma_{0}:=\bigsqcup_{n=0}^{\infty} \Gamma^{(n)}
$$

endowed with the topology of disjoint union of topological spaces and the corresponding Borel σ-algebra $\mathcal{B}\left(\Gamma_{0}\right)$, and to the so-called Lebesgue-Poisson measure on $\left(\Gamma_{0}, \mathcal{B}\left(\Gamma_{0}\right)\right)$,

$$
\begin{equation*}
\lambda:=\lambda_{d x}:=\sum_{n=0}^{\infty} \frac{1}{n!} m^{(n)} . \tag{2.1}
\end{equation*}
$$

Let $\mathcal{B}_{c}\left(\mathbb{R}^{d}\right)$ be the set of all bounded Borel sets in \mathbb{R}^{d} and, for each $\Lambda \in \mathcal{B}_{c}\left(\mathbb{R}^{d}\right)$, let $\Gamma_{\Lambda}:=\{\eta \in \Gamma: \eta \subset \Lambda\}$. Evidently $\Gamma_{\Lambda}=\bigsqcup_{n=0}^{\infty} \Gamma_{\Lambda}^{(n)}$, where $\Gamma_{\Lambda}^{(n)}:=\Gamma_{\Lambda} \cap \Gamma^{(n)}, n \in \mathbb{N}_{0}$. Given a complex-valued $\mathcal{B}\left(\Gamma_{0}\right)$-measurable function G such that $G \Gamma_{\Gamma \backslash \Gamma_{\Lambda}} \equiv 0$ for some $\Lambda \in \mathcal{B}_{c}\left(\mathbb{R}^{d}\right)$, the K-transform of G is a mapping $K G: \Gamma \rightarrow \mathbb{C}$ defined at each $\gamma \in \Gamma$ by

$$
\begin{equation*}
(K G)(\gamma):=\sum_{\substack{n \subset \gamma \\|\eta|<\infty}} G(\eta) \tag{2.2}
\end{equation*}
$$

It has been shown in [7] that the K-transform is a linear and invertible mapping.
Let $\mathcal{M}_{\mathrm{fm}}^{1}(\Gamma)$ be the set of all probability measures μ on $(\Gamma, \mathcal{B}(\Gamma))$ with finite local moments of all orders, i.e.,

$$
\int_{\Gamma} d \mu(\gamma)|\gamma \cap \Lambda|^{n}<\infty \quad \text { for all } n \in \mathbb{N} \text { and all } \Lambda \in \mathcal{B}_{c}\left(\mathbb{R}^{d}\right)
$$

and let $B_{\mathrm{bs}}\left(\Gamma_{0}\right)$ be the set of all complex-valued bounded $\mathcal{B}\left(\Gamma_{0}\right)$-measurable functions with bounded support, i.e., $G \upharpoonright_{\Gamma_{0} \backslash\left(\sqcup_{n=0}^{N} \Gamma_{\Lambda}^{(n)}\right)} \equiv 0$ for some $N \in \mathbb{N}_{0}, \Lambda \in \mathcal{B}_{c}\left(\mathbb{R}^{d}\right)$. Given
a $\mu \in \mathcal{M}_{\mathrm{fm}}^{1}(\Gamma)$, the so-called correlation measure ρ_{μ} corresponding to μ is a measure on ($\left.\Gamma_{0}, \mathcal{B}\left(\Gamma_{0}\right)\right)$ defined for all $G \in B_{\mathrm{bs}}\left(\Gamma_{0}\right)$ by

$$
\begin{equation*}
\int_{\Gamma_{0}} d \rho_{\mu}(\eta) G(\eta)=\int_{\Gamma} d \mu(\gamma)(K G)(\gamma) \tag{2.3}
\end{equation*}
$$

This definition implies, in particular, that $B_{\mathrm{bs}}\left(\Gamma_{0}\right) \subset L^{1}\left(\Gamma_{0}, \rho_{\mu}\right) .{ }^{1}$ Moreover, still by (2.3), on $B_{\mathrm{bs}}\left(\Gamma_{0}\right)$ the inequality $\|K G\|_{L^{1}(\Gamma, \mu)} \leq\|G\|_{L^{1}\left(\Gamma_{0}, \rho_{\mu}\right)}$ holds, allowing an extension of the K-transform to a bounded operator $K: L^{1}\left(\Gamma_{0}, \rho_{\mu}\right) \rightarrow L^{1}(\Gamma, \mu)$ in such a way that equality (2.3) still holds for any $G \in L^{1}\left(\Gamma_{0}, \rho_{\mu}\right)$. For the extended operator the explicit form (2.2) still holds, now μ-a.e. In particular, for coherent states $e_{\lambda}(f)$ of complexvalued $\mathcal{B}\left(\mathbb{R}^{d}\right)$-measurable functions f,

$$
\begin{equation*}
e_{\lambda}(f, \eta):=\prod_{x \in \eta} f(x), \eta \in \Gamma_{0} \backslash\{\emptyset\}, \quad e_{\lambda}(f, \emptyset):=1 \tag{2.4}
\end{equation*}
$$

Additionally, if f has compact support we have

$$
\begin{equation*}
\left(K e_{\lambda}(f)\right)(\gamma)=\prod_{x \in \gamma}(1+f(x)) \tag{2.5}
\end{equation*}
$$

for all $\gamma \in \Gamma$, while for functions f such that $e_{\lambda}(f) \in L^{1}\left(\Gamma_{0}, \rho_{\mu}\right)$ equality (2.5) holds, but only for μ-a.a. $\gamma \in \Gamma$. Concerning the Lebesgue-Poisson measure (2.1), we observe that $e_{\lambda}(f) \in L^{p}\left(\Gamma_{0}, \lambda\right)$ whenever $f \in L^{p}:=L^{p}\left(\mathbb{R}^{d}, d x\right)$ for some $p \geq 1$. In this case, $\left\|e_{\lambda}(f)\right\|_{L^{p}}^{p}=\exp \left(\|f\|_{L^{p}}^{p}\right)$. In particular, for $p=1$, in addition we have

$$
\int_{\Gamma_{0}} d \lambda(\eta) e_{\lambda}(f, \eta)=\exp \left(\int_{\mathbb{R}^{d}} d x f(x)\right)
$$

for all $f \in L^{1}$. For more details see [8].
2.2. Bogoliubov generating functionals. Given a probability measure μ on $(\Gamma, \mathcal{B}(\Gamma))$ the so-called Bogoliubov generating functional (GF for short) B_{μ} corresponding to μ is the functional defined at each $\mathcal{B}\left(\mathbb{R}^{d}\right)$-measurable function θ by

$$
\begin{equation*}
B_{\mu}(\theta):=\int_{\Gamma} d \mu(\gamma) \prod_{x \in \gamma}(1+\theta(x)) \tag{2.6}
\end{equation*}
$$

provided the right-hand side exists. It is clear from (2.6) that the domain of a GF B_{μ} depends on the underlying measure μ and, conversely, the domain of B_{μ} reflects special properties over the measure μ. Throughout this work we will consider GF defined on the whole complex L^{1} space. This implies, in particular, that the underlying measure μ has finite local exponential moments, i.e.,

$$
\int_{\Gamma} d \mu(\gamma) e^{\alpha|\gamma \cap \Lambda|}<\infty \quad \text { for all } \alpha>0 \text { and all } \Lambda \in \mathcal{B}_{c}\left(\mathbb{R}^{d}\right)
$$

and thus $\mu \in \mathcal{M}_{\mathrm{fm}}^{1}(\Gamma)$. According to the previous subsection, this implies that to such a measure μ one may associate the correlation measure ρ_{μ}, which leads to a description of the functional B_{μ} in terms of either the measure ρ_{μ} :

$$
B_{\mu}(\theta)=\int_{\Gamma} d \mu(\gamma)\left(K e_{\lambda}(\theta)\right)(\gamma)=\int_{\Gamma_{0}} d \rho_{\mu}(\eta) e_{\lambda}(\theta, \eta)
$$

or the so-called correlation function $k_{\mu}:=\frac{d \rho_{\mu}}{d \lambda}$ corresponding to the measure μ, if ρ_{μ} is absolutely continuous with respect to the Lebesgue-Poisson measure λ :

$$
\begin{equation*}
B_{\mu}(\theta)=\int_{\Gamma_{0}} d \lambda(\eta) e_{\lambda}(\theta, \eta) k_{\mu}(\eta) \tag{2.7}
\end{equation*}
$$

[^1]Throughout this work we will assume, in addition, that GF are entire on the L^{1} space [9], which is a natural environment, namely, to recover the notion of correlation function. For a generic entire functional B on L^{1}, this assumption implies that B has a representation in terms of its Taylor expansion,

$$
B\left(\theta_{0}+z \theta\right)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} d^{n} B\left(\theta_{0} ; \theta, \ldots, \theta\right), \quad z \in \mathbb{C}, \theta \in L^{1}
$$

being each differential $d^{n} B\left(\theta_{0} ; \cdot\right), n \in \mathbb{N}, \theta_{0} \in L^{1}$ defined by a symmetric kernel

$$
\delta^{n} B\left(\theta_{0} ; \cdot\right) \in L^{\infty}\left(\mathbb{R}^{d n}\right):=L^{\infty}\left(\left(\mathbb{R}^{d}\right)^{n},(d x)^{\otimes n}\right)
$$

called the variational derivative of n-th order of B at the point θ_{0}. That is,

$$
\begin{align*}
d^{n} B\left(\theta_{0} ; \theta_{1}, \ldots, \theta_{n}\right): & =\left.\frac{\partial^{n}}{\partial z_{1} \ldots \partial z_{n}} B\left(\theta_{0}+\sum_{i=1}^{n} z_{i} \theta_{i}\right)\right|_{z_{1}=\ldots=z_{n}=0} \tag{2.8}\\
& =: \int_{\left(\mathbb{R}^{d}\right)^{n}} d x_{1} \ldots d x_{n} \delta^{n} B\left(\theta_{0} ; x_{1}, \ldots, x_{n}\right) \prod_{i=1}^{n} \theta_{i}\left(x_{i}\right)
\end{align*}
$$

for all $\theta_{1}, \ldots, \theta_{n} \in L^{1}$. Moreover, the operator norm of the bounded n-linear functional $d^{n} B\left(\theta_{0} ; \cdot\right)$ is equal to $\left\|\delta^{n} B\left(\theta_{0} ; \cdot\right)\right\|_{L^{\infty}\left(\mathbb{R}^{d n}\right)}$ and for all $r>0$ one has

$$
\begin{equation*}
\left\|\delta B\left(\theta_{0} ; \cdot\right)\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq \frac{1}{r} \sup _{\left\|\theta^{\prime}\right\|_{L^{1}} \leq r}\left|B\left(\theta_{0}+\theta^{\prime}\right)\right| \tag{2.9}
\end{equation*}
$$

and, for $n \geq 2$,

$$
\begin{equation*}
\left\|\delta^{n} B\left(\theta_{0} ; \cdot\right)\right\|_{L^{\infty}\left(\mathbb{R}^{d n}\right)} \leq n!\left(\frac{e}{r}\right)^{n} \sup _{\left\|\theta^{\prime}\right\|_{L^{1}} \leq r}\left|B\left(\theta_{0}+\theta^{\prime}\right)\right| \tag{2.10}
\end{equation*}
$$

In particular, if B is an entire GF B_{μ} on L^{1} then, in terms of the underlying measure μ, the entireness property of B_{μ} implies that the correlation measure ρ_{μ} is absolutely continuous with respect to the Lebesgue-Poisson measure λ and the Radon-Nykodim derivative $k_{\mu}=\frac{d \rho_{\mu}}{d \lambda}$ is given by

$$
k_{\mu}(\eta)=\delta^{|\eta|} B_{\mu}(0 ; \eta) \quad \text { for } \lambda \text {-a.a. } \eta \in \Gamma_{0}
$$

In what follows, for each $\alpha>0$, we consider the Banach space \mathcal{E}_{α} of all entire functionals B on L^{1} such that

$$
\|B\|_{\alpha}:=\sup _{\theta \in L^{1}}\left(|B(\theta)| e^{-\frac{1}{\alpha}\|\theta\|_{L^{1}}}\right)<\infty
$$

see [9]. This class of Banach spaces has the particularity that, for each $\alpha_{0}>0$, the family $\left\{\mathcal{E}_{\alpha}: 0<\alpha \leq \alpha_{0}\right\}$ is a scale of Banach spaces, that is,

$$
\mathcal{E}_{\alpha^{\prime \prime}} \subseteq \mathcal{E}_{\alpha^{\prime}}, \quad\|\cdot\|_{\alpha^{\prime}} \leq\|\cdot\|_{\alpha^{\prime \prime}}
$$

for any pair $\alpha^{\prime}, \alpha^{\prime \prime}$ such that $0<\alpha^{\prime}<\alpha^{\prime \prime} \leq \alpha_{0}$.

3. The Kawasaki dynamics

The Kawasaki dynamics is an example of a hopping particle model where, in this case, particles randomly hop over the space \mathbb{R}^{d} according to a rate depending on the interaction between particles. More precisely, let $a: \mathbb{R}^{d} \rightarrow[0,+\infty)$ be an even and integrable function and let $\phi: \mathbb{R}^{d} \rightarrow[0,+\infty]$ be a pair potential, that is, a $\mathcal{B}\left(\mathbb{R}^{d}\right)$ measurable function such that $\phi(-x)=\phi(x) \in \mathbb{R}$ for all $x \in \mathbb{R}^{d} \backslash\{0\}$, which we will assume to be integrable. A particle located at a site x in a given configuration $\gamma \in \Gamma$
hops to a site y according to a rate given by $a(x-y) \exp (-E(y, \gamma))$, where $E(y, \gamma)$ is a relative energy of interaction between the site y and the configuration γ defined by

$$
E(y, \gamma):=\sum_{x \in \gamma} \phi(x-y) \in[0,+\infty]
$$

Informally, the behavior of such an infinite particle system is described by

$$
\begin{equation*}
(L F)(\gamma)=\sum_{x \in \gamma} \int_{\mathbb{R}^{d}} d y a(x-y) e^{-E(y, \gamma)}(F(\gamma \backslash\{x\} \cup\{y\})-F(\gamma)) \tag{3.1}
\end{equation*}
$$

Given an infinite particle system, as the Kawasaki dynamics, its time evolution in terms of states is informally given by the so-called Fokker-Planck equation,

$$
\begin{equation*}
\frac{d \mu_{t}}{d t}=L^{*} \mu_{t},\left.\quad \mu_{t}\right|_{t=0}=\mu_{0} \tag{3.2}
\end{equation*}
$$

where L^{*} is the dual operator of L. Technically, the use of definition (2.3) allows an alternative approach to the study of (3.2) through the corresponding correlation functions $k_{t}:=k_{\mu_{t}}, t \geq 0$, provided they exist. This leads to the Cauchy problem

$$
\frac{\partial}{\partial t} k_{t}=\hat{L}^{*} k_{t}, \quad k_{t \mid t=0}=k_{0}
$$

where k_{0} is the correlation function corresponding to the initial distribution μ_{0} and \hat{L}^{*} is the dual operator of $\hat{L}:=K^{-1} L K$ in the sense

$$
\int_{\Gamma_{0}} d \lambda(\eta)(\hat{L} G)(\eta) k(\eta)=\int_{\Gamma_{0}} d \lambda(\eta) G(\eta)\left(\hat{L}^{*} k\right)(\eta)
$$

Through the representation (2.7), this gives us a way to express the dynamics also in terms of the GF B_{t} corresponding to μ_{t}, i.e., informally,

$$
\begin{align*}
\frac{\partial}{\partial t} B_{t}(\theta) & =\int_{\Gamma_{0}} d \lambda(\eta) e_{\lambda}(\theta, \eta)\left(\frac{\partial}{\partial t} k_{t}(\eta)\right)=\int_{\Gamma_{0}} d \lambda(\eta) e_{\lambda}(\theta, \eta)\left(\hat{L}^{*} k_{t}\right)(\eta) \tag{3.3}\\
& =\int_{\Gamma_{0}} d \lambda(\eta)\left(\hat{L} e_{\lambda}(\theta)\right)(\eta) k_{t}(\eta)=:\left(\tilde{L} B_{t}\right)(\theta)
\end{align*}
$$

This leads to the time evolution equation

$$
\begin{equation*}
\frac{\partial B_{t}}{\partial t}=\tilde{L} B_{t} \tag{3.4}
\end{equation*}
$$

where, in the case of the Kawasaki dynamics, \tilde{L} is given cf. [4] by

$$
\begin{align*}
& (\tilde{L} B)(\theta) \tag{3.5}\\
= & \int_{\mathbb{R}^{d}} d x \int_{\mathbb{R}^{d}} d y a(x-y) e^{-\phi(x-y)}(\theta(y)-\theta(x)) \delta B\left(\theta e^{-\phi(y-\cdot)}+e^{-\phi(y-\cdot)}-1 ; x\right)
\end{align*}
$$

Theorem 3.1. Given an $\alpha_{0}>0$, let $B_{0} \in \mathcal{E}_{\alpha_{0}}$. For each $\alpha \in\left(0, \alpha_{0}\right)$ there is a $T>0$ (which depends on α, α_{0}) such that there is a unique solution $B_{t}, t \in[0, T)$, to the initial value problem (3.4), (3.5), $B_{t \mid t=0}=B_{0}$ in the space \mathcal{E}_{α}.

This theorem follows as a particular application of an abstract Ovsjannikov-type result in a scale of Banach spaces which can be found e.g. in [5, Theorem 2.5], and the following estimate of norms.

Proposition 3.2. Let $0<\alpha<\alpha_{0}$ be given. If $B \in \mathcal{E}_{\alpha^{\prime \prime}}$ for some $\alpha^{\prime \prime} \in\left(\alpha, \alpha_{0}\right]$, then $\tilde{L} B \in \mathcal{E}_{\alpha^{\prime}}$ for all $\alpha \leq \alpha^{\prime}<\alpha^{\prime \prime}$, and we have

$$
\|\tilde{L} B\|_{\alpha^{\prime}} \leq 2 e^{\frac{\|\phi\|_{L^{1}}}{\alpha}}\|a\|_{L^{1}} \frac{\alpha_{0}}{\alpha^{\prime \prime}-\alpha^{\prime}}\|B\|_{\alpha^{\prime \prime}}
$$

To prove this result as well as other forthcoming ones the next lemma shows to be useful.
Lemma 3.3. Let $\varphi, \psi: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ be such that, for a.a. $y \in \mathbb{R}^{d}, \varphi(y, \cdot) \in L^{\infty}:=$ $L^{\infty}\left(\mathbb{R}^{d}\right), \psi(y, \cdot) \in L^{1}$ and $\|\varphi(y, \cdot)\|_{L^{\infty}} \leq c_{0},\|\psi(y, \cdot)\|_{L^{1}} \leq c_{1}$ for some constants $c_{0}, c_{1}>$ 0 independent of y. For each $\alpha>0$ and all $B \in \mathcal{E}_{\alpha}$ let

$$
\left(L_{0} B\right)(\theta):=\int_{\mathbb{R}^{d}} d x \int_{\mathbb{R}^{d}} d y a(x-y) e^{-k \phi(x-y)}(\theta(y)-\theta(x)) \delta B(\varphi(y, \cdot) \theta+\psi(y, \cdot) ; x),
$$

$\theta \in L^{1}$. Here a and ϕ are defined as before and $k \geq 0$ is a constant. Then, for all $\alpha^{\prime}>0$ such that $c_{0} \alpha^{\prime}<\alpha$, we have $L_{0} B \in \mathcal{E}_{\alpha^{\prime}}$ and

$$
\left\|L_{0} B\right\|_{\alpha^{\prime}} \leq 2 e^{\frac{c_{1}}{\alpha}}\|a\|_{L^{1}} \frac{\alpha^{\prime}}{\alpha-c_{0} \alpha^{\prime}}\|B\|_{\alpha}
$$

Proof. First we observe that from the considerations done in Subsection 2.2 it follows that $L_{0} B$ is an entire functional on L^{1} and, in addition, that for all $r>0, \theta \in L^{1}$, and a.a. $x, y \in \mathbb{R}^{d}$,

$$
\begin{aligned}
|\delta B(\varphi(y, \cdot) \theta+\psi(y, \cdot) ; x)| & \leq\|\delta B(\varphi(y, \cdot) \theta+\psi(y, \cdot) ; \cdot)\|_{L^{\infty}} \\
& \leq \frac{1}{r} \sup _{\left\|\theta_{0}\right\|_{L^{1}} \leq r}\left|B\left(\varphi(y, \cdot) \theta+\psi(y, \cdot)+\theta_{0}\right)\right|
\end{aligned}
$$

where, for all $\theta_{0} \in L^{1}$ such that $\left\|\theta_{0}\right\|_{L^{1}} \leq r$,

$$
\left|B\left(\varphi(y, \cdot) \theta+\psi(y, \cdot)+\theta_{0}\right)\right| \leq\|B\|_{\alpha} e^{\frac{\|\varphi(y, \cdot) \theta+\psi(y, \cdot)\|_{L^{1}}}{\alpha}+\frac{r}{\alpha}} \leq\|B\|_{\alpha} e^{\frac{c_{0}\|\theta\|_{L^{1}}+c_{1}+r}{\alpha}} .
$$

As a result, due to the positiveness of ϕ and to the fact that a is an even function, for all $\theta \in L^{1}$ one has

$$
\begin{aligned}
\left|\left(L_{0} B\right)(\theta)\right| & \leq \frac{1}{r} e^{\frac{c_{0}\|\theta\|_{L^{1}}+c_{1}+r}{\alpha}}\|B\|_{\alpha} \int_{\mathbb{R}^{d}} d x \int_{\mathbb{R}^{d}} d y a(x-y) e^{-k \phi(x-y)}|\theta(y)-\theta(x)| \\
& \leq \frac{2}{r} e^{\frac{c_{1}+r}{\alpha}}\|a\|_{L^{1}}\|\theta\|_{L^{1}} e^{\frac{c_{0}\|\theta\|_{L^{1}}}{\alpha}}\|B\|_{\alpha} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left\|L_{0} B\right\|_{\alpha^{\prime}} & =\sup _{\theta \in L^{1}}\left(e^{-\frac{1}{\alpha^{\prime}}\|\theta\|_{L^{1}}}\left|\left(L_{0} B\right)(\theta)\right|\right) \\
& \leq \frac{2}{r} e^{\frac{c_{1}+r}{\alpha}}\|a\|_{L^{1}}\|B\|_{\alpha} \sup _{\theta \in L^{1}}\left(e^{\left.-\left(\frac{1}{\alpha^{\prime}}-\frac{c_{0}}{\alpha}\right)\|\theta\|_{L^{1}}\|\theta\|_{L^{1}}\right)},\right.
\end{aligned}
$$

where the supremum is finite provided $\frac{1}{\alpha^{\prime}}-\frac{c_{0}}{\alpha}>0$. In such a situation, the use of the inequality $x e^{-m x} \leq \frac{1}{e m}, x \geq 0, m>0$ leads for each $r>0$ to

$$
\left\|L_{0} B\right\|_{\alpha^{\prime}} \leq \frac{2}{r}\|a\|_{L^{1}} e^{\frac{c_{1}+r}{\alpha}} \frac{\alpha \alpha^{\prime}}{e\left(\alpha-c_{0} \alpha^{\prime}\right)}\|B\|_{\alpha}
$$

The required estimate of norms follows by minimizing the expression $\frac{1}{r} e^{\frac{c_{1}+r}{\alpha}}$ in the parameter r, that is, $r=\alpha$.
Proof of Proposition 3.2. In Lemma 3.3 replace φ by $e^{-\phi}$ and ψ by $e^{-\phi}-1$, and consider $k=1$. Due to the positiveness and integrability properties of ϕ one has $e^{-\phi} \leq 1$ and $\left|e^{-\phi}-1\right|=1-e^{-\phi} \leq \phi \in L^{1}$, ensuring the conditions to apply Lemma 3.3.

Remark 3.4. Concerning the initial conditions considered in Theorem 3.1, observe that, in particular, B_{0} can be an entire $G F B_{\mu_{0}}$ on L^{1} such that, for some constants $\alpha_{0}, C>0$, $\left|B_{\mu_{0}}(\theta)\right| \leq C \exp \left(\frac{\|\theta\|_{L^{1}}}{\alpha_{0}}\right)$ for all $\theta \in L^{1}$. In such a situation an additional analysis is need in order to guarantee that for each t the local solution B_{t} given by Theorem 3.1 is a GF (corresponding to some measure). For more details see e.g. [5, 9] and references therein.

4. Vlasov scaling

We proceed to investigate the Vlasov-type scaling proposed in [3] for generic continuous particle systems and accomplished in [1] for the Kawasaki dynamics. As explained in both references, we start with a rescaling of an initial correlation function k_{0}, denoted by $k_{0}^{(\varepsilon)}, \varepsilon>0$, which has a singularity with respect to ε of the type $k_{0}^{(\varepsilon)}(\eta) \sim \varepsilon^{-|\eta|} r_{0}(\eta)$, $\eta \in \Gamma_{0}$, being r_{0} a function independent of ε. The aim is to construct a scaling of the operator L defined in (3.1), $L_{\varepsilon}, \varepsilon>0$, in such a way that the following two conditions are fulfilled. The first one is that under the scaling $L \mapsto L_{\varepsilon}$ the solution $k_{t}^{(\varepsilon)}, t \geq 0$, to

$$
\frac{\partial}{\partial t} k_{t}^{(\varepsilon)}=\hat{L}_{\varepsilon}^{*} k_{t}^{(\varepsilon)}, \quad k_{t}^{(\varepsilon)}{ }_{\mid t=0}=k_{0}^{(\varepsilon)}
$$

preserves the order of the singularity with respect to ε, that is, $k_{t}^{(\varepsilon)}(\eta) \sim \varepsilon^{-|\eta|} r_{t}(\eta)$, $\eta \in \Gamma_{0}$. The second condition is that the dynamics $r_{0} \mapsto r_{t}$ preserves the LebesguePoisson exponents, that is, if r_{0} is of the form $r_{0}=e_{\lambda}\left(\rho_{0}\right)$, then each $r_{t}, t>0$, is of the same type, i.e., $r_{t}=e_{\lambda}\left(\rho_{t}\right)$, where ρ_{t} is a solution to a non-linear equation (called a Vlasov-type equation).

The previous scheme was accomplished in [1] through the scale transformation $\phi \mapsto \varepsilon \phi$ of the operator L, that is,

$$
\left(L_{\varepsilon} F\right)(\gamma):=\sum_{x \in \gamma} \int_{\mathbb{R}^{d}} d y a(x-y) e^{-\varepsilon E(y, \gamma)}(F(\gamma \backslash\{x\} \cup\{y\})-F(\gamma))
$$

As shown in [3, Example 12], [1], the corresponding Vlasov-type equation is given by

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho_{t}(x)=\left(\rho_{t} * a\right)(x) e^{-\left(\rho_{t} * \phi\right)(x)}-\rho_{t}(x)\left(a * e^{-\left(\rho_{t} * \phi\right)}\right)(x), \quad x \in \mathbb{R}^{d} \tag{4.1}
\end{equation*}
$$

where $*$ denotes the usual convolution of functions. Existence of classical solutions $0 \leq$ $\rho_{t} \in L^{\infty}$ to (4.1) has been discussed in [1]. Therefore, it is natural to consider the same scaling, but in GF.

To proceed towards GF, we consider $k_{t}^{(\varepsilon)}$ defined as before and $k_{t, \text { ren }}^{(\varepsilon)}(\eta):=\varepsilon^{|\eta|} k_{t}^{(\varepsilon)}(\eta)$. In terms of GF, these yield

$$
B_{t}^{(\varepsilon)}(\theta):=\int_{\Gamma_{0}} d \lambda(\eta) e_{\lambda}(\theta, \eta) k_{t}^{(\varepsilon)}(\eta)
$$

and

$$
B_{t, \mathrm{ren}}^{(\varepsilon)}(\theta):=\int_{\Gamma_{0}} d \lambda(\eta) e_{\lambda}(\theta, \eta) k_{t, \mathrm{ren}}^{(\varepsilon)}(\eta)=\int_{\Gamma_{0}} d \lambda(\eta) e_{\lambda}(\varepsilon \theta, \eta) k_{t}^{(\varepsilon)}(\eta)=B_{t}^{(\varepsilon)}(\varepsilon \theta)
$$

leading, as in (3.3), to the initial value problem

$$
\begin{equation*}
\frac{\partial}{\partial t} B_{t, \text { ren }}^{(\varepsilon)}=\tilde{L}_{\varepsilon, \text { ren }} B_{t, \text { ren }}^{(\varepsilon)}, \quad B_{t, \text { ren }}^{\mid t=0}(\varepsilon)=B_{0, \text { ren }}^{(\varepsilon)} \tag{4.2}
\end{equation*}
$$

Proposition 4.1. For all $\varepsilon>0$ and all $\theta \in L^{1}$, we have

$$
\begin{align*}
\left(\tilde{L}_{\varepsilon, \text { ren }} B\right)(\theta)= & \int_{\mathbb{R}^{d}} d x \int_{\mathbb{R}^{d}} d y a(x-y) e^{-\varepsilon \phi(x-y)}(\theta(y)-\theta(x)) \\
& \times \delta B\left(\theta e^{-\varepsilon \phi(y-\cdot)}+\frac{e^{-\varepsilon \phi(y-\cdot)}-1}{\varepsilon} ; x\right) \tag{4.3}
\end{align*}
$$

Proof. Since

$$
\left(\tilde{L}_{\varepsilon, \text { ren }} B\right)(\theta)=\int_{\Gamma_{0}} d \lambda(\eta)\left(\hat{L}_{\varepsilon, \text { ren }} e_{\lambda}(\theta)\right)(\eta) k(\eta)
$$

first we have to calculate $\left(\hat{L}_{\varepsilon, \text { ren }} e_{\lambda}(\theta)\right)(\eta):=\varepsilon^{-|\eta|} \hat{L}_{\varepsilon}\left(e_{\lambda}(\varepsilon \theta, \eta)\right), \hat{L}_{\varepsilon}=K^{-1} L_{\varepsilon} K$ cf. [3]. Similar calculations done in [4, Subsection 4.2.1] show

$$
\begin{aligned}
\left(\hat{L}_{\varepsilon, \text { ren }} e_{\lambda}(\theta)\right)(\eta)=\sum_{x \in \eta} & \int_{\mathbb{R}^{d}} d y a(x-y) e^{-\varepsilon \phi(x-y)}(\theta(y)-\theta(x)) \\
& \quad \times e_{\lambda}\left(\theta e^{-\varepsilon \phi(y-\cdot)}+\frac{e^{-\varepsilon \phi(y-\cdot)}-1}{\varepsilon}, \eta \backslash\{x\}\right)
\end{aligned}
$$

and thus, using the relation between variational derivatives derived in [9, Proposition 11], one finds

$$
\begin{aligned}
\left(\tilde{L}_{\varepsilon, \mathrm{ren}} B\right)(\theta)= & \int_{\Gamma_{0}} d \lambda(\eta) k(\eta) \sum_{x \in \eta} \int_{\mathbb{R}^{d}} d y a(x-y) e^{-\varepsilon \phi(x-y)}(\theta(y)-\theta(x)) \\
& \times e_{\lambda}\left(\theta e^{-\varepsilon \phi(y-\cdot)}+\frac{e^{-\varepsilon \phi(y-\cdot)}-1}{\varepsilon}, \eta \backslash\{x\}\right) \\
= & \int_{\mathbb{R}^{d}} d x \int_{\mathbb{R}^{d}} d y a(x-y) e^{-\varepsilon \phi(x-y)}(\theta(y)-\theta(x)) \\
& \int_{\Gamma_{0}} d \lambda(\eta) k(\eta \cup\{x\}) e_{\lambda}\left(\theta e^{-\varepsilon \phi(y-\cdot)}+\frac{e^{-\varepsilon \phi(y-\cdot)}-1}{\varepsilon}, \eta\right) \\
= & \int_{\mathbb{R}^{d}} d x \int_{\mathbb{R}^{d}} d y a(x-y) e^{-\varepsilon \phi(x-y)}(\theta(y)-\theta(x)) \\
& \times \delta B\left(\theta e^{-\varepsilon \phi(y-\cdot)}+\frac{e^{-\varepsilon \phi(y-\cdot)}-1}{\varepsilon} ; x\right)
\end{aligned}
$$

Proposition 4.2. (i) If $B \in \mathcal{E}_{\alpha}$ for some $\alpha>0$, then, for all $\theta \in L^{1}$, $\left(\tilde{L}_{\varepsilon, \text { ren }} B\right)(\theta)$ converges as ε tends to zero to

$$
\left(\tilde{L}_{V} B\right)(\theta):=\int_{\mathbb{R}^{d}} d x \int_{\mathbb{R}^{d}} d y a(x-y)(\theta(y)-\theta(x)) \delta B(\theta-\phi(y-\cdot) ; x)
$$

(ii) Let $\alpha_{0}>\alpha>0$ be given. If $B \in \mathcal{E}_{\alpha^{\prime \prime}}$ for some $\alpha^{\prime \prime} \in\left(\alpha, \alpha_{0}\right]$, then $\left\{\tilde{L}_{\varepsilon, \text { ren }} B, \tilde{L}_{V} B\right\} \subset$ $\mathcal{E}_{\alpha^{\prime}}$ for all $\alpha \leq \alpha^{\prime}<\alpha^{\prime \prime}$, and we have

$$
\left\|\tilde{L}_{\#} B\right\|_{\alpha^{\prime}} \leq 2\|a\|_{L^{1}} \frac{\alpha_{0}}{\left(\alpha^{\prime \prime}-\alpha^{\prime}\right)} e^{\frac{\|\phi\|_{L^{1}}}{\alpha}}\|B\|_{\alpha^{\prime \prime}}
$$

where $\tilde{L}_{\#}=\tilde{L}_{\varepsilon, \text { ren }}$ or $\tilde{L}_{\#}=\tilde{L}_{V}$.
Proof. (i) To prove this result we first analyze the pointwise convergence of the variational derivative (4.3) appearing in $\tilde{L}_{\varepsilon, \text { ren }}$. For this purpose we will use the relation between variational derivatives derived in [9, Proposition 11], i.e.,

$$
\delta B\left(\theta_{1}+\theta_{2} ; x\right)=\int_{\Gamma_{0}} d \lambda(\eta) \delta^{|\eta|+1} B\left(\theta_{1} ; \eta \cup\{x\}\right) e_{\lambda}\left(\theta_{2}, \eta\right), \quad \text { a.a. } x \in \mathbb{R}^{d}, \theta_{1}, \theta_{2} \in L^{1}
$$

which allows to rewrite (4.3) as

$$
\begin{align*}
& \delta B\left(\theta e^{-\varepsilon \phi(y-\cdot)}+\frac{e^{-\varepsilon \phi(y-\cdot)}-1}{\varepsilon} ; x\right) \\
= & \int_{\Gamma_{0}} d \lambda(\eta) \delta^{|\eta|+1} B(\theta-\phi(y-\cdot) ; \eta \cup\{x\}) \tag{4.4}\\
& \quad \times e_{\lambda}\left(\theta\left(e^{-\varepsilon \phi(y-\cdot)}-1\right)+\frac{e^{-\varepsilon \phi(y-\cdot)}-1}{\varepsilon}+\phi(y-\cdot), \eta\right),
\end{align*}
$$

for a.a. $x, y \in \mathbb{R}^{d}$. Concerning the function

$$
f_{\varepsilon}:=f_{\varepsilon}(\theta, \phi, y):=\theta\left(e^{-\varepsilon \phi(y-\cdot)}-1\right)+\frac{e^{-\varepsilon \phi(y-\cdot)}-1}{\varepsilon}+\phi(y-\cdot)
$$

which appears in (4.4), for a.a. $y \in \mathbb{R}^{d}$, one clearly has $\lim _{\varepsilon \rightarrow 0} f_{\varepsilon}=0$ a.e. in \mathbb{R}^{d}. By definition (2.4), the latter implies that $e_{\lambda}\left(f_{\varepsilon}\right)$ converges λ-a.e. to $e_{\lambda}(0)$. Moreover, for the whole integrand function in (4.4), estimates (2.9), (2.10) yield for any $r>0$ and λ-a.a. $\eta \in \Gamma_{0}$,

$$
\begin{aligned}
& \left|\delta^{|\eta|+1} B(\theta-\phi(y-\cdot) ; \eta \cup\{x\}) e_{\lambda}\left(f_{\varepsilon}, \eta\right)\right| \\
\leq & \left\|\delta^{|\eta|+1} B(\theta-\phi(y-\cdot) ; \cdot)\right\|_{L^{\infty}\left(\mathbb{R}^{d}(|\eta|+1)\right.} e_{\lambda}\left(\left|f_{\varepsilon}\right|, \eta\right) \\
\leq & (|\eta|+1)!\left(\frac{e}{r}\right)^{|\eta|+1} e_{\lambda}\left(\left|f_{\varepsilon}\right|, \eta\right) \sup _{\left\|\theta_{0}\right\|_{L^{1} \leq r} \leq r}\left|B\left(\theta-\phi(y-\cdot)+\theta_{0}\right)\right| \\
\leq & (|\eta|+1)!\left(\frac{e}{r}\right)^{|\eta|+1} e_{\lambda}(|\theta|+2|\phi(y-\cdot)|, \eta) e^{\frac{\|\theta-\phi(y-\cdot)\|_{L^{1}}+r}{\alpha}}\|B\|_{\alpha}
\end{aligned}
$$

with
$\int_{\Gamma_{0}} d \lambda(\eta)(|\eta|+1)!\left(\frac{e}{r}\right)^{|\eta|+1} e_{\lambda}(|\theta|+2|\phi(y-\cdot)|, \eta)=\sum_{n=0}^{\infty}(n+1)\left(\frac{e}{r}\right)^{n+1}\left(\|\theta\|_{L^{1}}+2\|\phi\|_{L^{1}}\right)^{n}$
being finite for any $r>e\left(\|\theta\|_{L^{1}}+2\|\phi\|_{L^{1}}\right)$.
As a result, by an application of the Lebesgue dominated convergence theorem we have proved that, for a.a. $x, y \in \mathbb{R}^{d}$, (4.4) converges as ε tends to zero to

$$
\int_{\Gamma_{0}} d \lambda(\eta) \delta^{|\eta|+1} B(\theta-\phi(y-\cdot) ; \eta \cup\{x\}) e_{\lambda}(0, \eta)=\delta B(\theta-\phi(y-\cdot) ; x)
$$

In addition, for the integrand function which appears in $\left(\tilde{L}_{\varepsilon, \text { ren }} B\right)(\theta)$ we have

$$
\begin{aligned}
& \left|a(x-y) e^{-\varepsilon \phi(x-y)}(\theta(y)-\theta(x)) \delta B\left(\theta e^{-\varepsilon \phi(y-\cdot)}+\frac{e^{-\varepsilon \phi(y-\cdot)}-1}{\varepsilon} ; x\right)\right| \\
\leq & \frac{e}{\alpha} a(x-y)|\theta(y)-\theta(x)|\|B\|_{\alpha} \exp \left(\frac{1}{\alpha}\|\theta\|_{L^{1}}+\frac{1}{\alpha}\|\phi\|_{L^{1}}\right)
\end{aligned}
$$

for all $\varepsilon>0$ and a.a. $x, y \in \mathbb{R}^{d}$, leading through a second application of the Lebesgue dominated convergence theorem to the required limit.
(ii) In Lemma 3.3 replace φ by $e^{-\varepsilon \phi}, \psi$ by $\frac{e^{-\varepsilon \phi}-1}{\varepsilon}$, and k by ε. Arguments similar to prove Proposition 3.2 complete the proof for $\tilde{L}_{\varepsilon, \text { ren }}$. A similar proof holds for \tilde{L}_{V}.

Proposition 4.2 (ii) provides similar estimate of norms for $\tilde{L}_{\varepsilon, \text { ren }}, \varepsilon>0$, and the limiting mapping \tilde{L}_{V}. According to the Ovsjannikov-type result used to prove Theorem 3.1, this means that given any $B_{0, V}, B_{0, \text { ren }}^{(\varepsilon)} \in \mathcal{E}_{\alpha_{0}}, \varepsilon>0$, for each $\alpha \in\left(0, \alpha_{0}\right)$ there is a $T>0$ such that there is a unique solution $B_{t, \text { ren }}^{(\varepsilon)}:[0, T) \rightarrow \mathcal{E}_{\alpha}, \varepsilon>0$, to each initial value problem (4.2) and a unique solution $B_{t, V}:[0, T) \rightarrow \mathcal{E}_{\alpha}$ to the initial value problem

$$
\begin{equation*}
\frac{\partial}{\partial t} B_{t, V}=\tilde{L}_{V} B_{t, V}, \quad B_{t, V} \mid t=0=B_{0, V} \tag{4.5}
\end{equation*}
$$

In other words, independent of the initial value problem under consideration, the solutions obtained are defined on the same time-interval and with values in the same Banach space. For more details see e.g. Theorem 2.5 and its proof in [5]. Therefore, it is natural to analyze under which conditions the solutions to (4.2) converge to the solution to (4.5). This follows from a general result presented in [5] (Theorem 4.3). However, to proceed to an application of this general result one needs the following estimate of norms.

Proposition 4.3. Assume that $0 \leq \phi \in L^{1} \cap L^{\infty}$ and let $\alpha_{0}>\alpha>0$ be given. Then, for all $B \in \mathcal{E}_{\alpha^{\prime \prime}}, \alpha^{\prime \prime} \in\left(\alpha, \alpha_{0}\right]$, the following estimate holds

$$
\begin{aligned}
& \left\|\tilde{L}_{\varepsilon, \operatorname{ren}} B-\tilde{L}_{V} B\right\|_{\alpha^{\prime}} \\
\leq & 2 \varepsilon\|a\|_{L^{1}}\|\phi\|_{L^{\infty}} \frac{e \alpha_{0}}{\alpha}\|B\|_{\alpha^{\prime \prime}} e^{\frac{\|\phi\|_{L^{1}}}{\alpha}}\left(\left(2 e\|\phi\|_{L^{1}}+\frac{\alpha_{0}}{e}\right) \frac{1}{\alpha^{\prime \prime}-\alpha^{\prime}}+\frac{8 \alpha_{0}^{2}}{\left(\alpha^{\prime \prime}-\alpha^{\prime}\right)^{2}}\right)
\end{aligned}
$$

for all α^{\prime} such that $\alpha \leq \alpha^{\prime}<\alpha^{\prime \prime}$ and all $\varepsilon>0$.
Proof. First we observe that

$$
\begin{aligned}
& \left|\left(\tilde{L}_{\varepsilon, \text { ren }} B\right)(\theta)-\left(\tilde{L}_{V} B\right)(\theta)\right| \leq \int_{\mathbb{R}^{d}} d x \int_{\mathbb{R}^{d}} d y a(x-y)|\theta(y)-\theta(x)| \\
& \times\left|e^{-\varepsilon \phi(x-y)} \delta B\left(\theta e^{-\varepsilon \phi(y-\cdot)}+\frac{e^{-\varepsilon \phi(y-\cdot)}-1}{\varepsilon} ; x\right)-\delta B(\theta-\phi(y-\cdot) ; x)\right|
\end{aligned}
$$

with

$$
\begin{align*}
& \left|e^{-\varepsilon \phi(x-y)} \delta B\left(\theta e^{-\varepsilon \phi(y-\cdot)}+\frac{e^{-\varepsilon \phi(y-\cdot)}-1}{\varepsilon} ; x\right)-\delta B(\theta-\phi(y-\cdot) ; x)\right| \\
\leq & \left|\delta B\left(\theta e^{-\varepsilon \phi(y-\cdot)}+\frac{e^{-\varepsilon \phi(y-\cdot)}-1}{\varepsilon} ; x\right)-\delta B(\theta-\phi(y-\cdot) ; x)\right| \tag{4.6}\\
& +\left(1-e^{-\varepsilon \phi(x-y)}\right)|\delta B(\theta-\phi(y-\cdot) ; x)| .
\end{align*}
$$

In order to estimate (4.6), given any $\theta_{0}, \theta_{1}, \theta_{2} \in L^{1}$, let us consider the function $C_{\theta_{0}, \theta_{1}, \theta_{2}}(t)=$ $d B\left(t \theta_{1}+(1-t) \theta_{2} ; \theta_{0}\right), t \in[0,1]$, where $d B$ is the first order differential of B, defined in (2.8). One has

$$
\begin{aligned}
\frac{\partial}{\partial t} C_{\theta_{0}, \theta_{1}, \theta_{2}}(t) & =\left.\frac{\partial}{\partial s} C_{\theta_{0}, \theta_{1}, \theta_{2}}(t+s)\right|_{s=0} \\
& =\left.\frac{\partial}{\partial s} d B\left(\theta_{2}+t\left(\theta_{1}-\theta_{2}\right)+s\left(\theta_{1}-\theta_{2}\right) ; \theta_{0}\right)\right|_{s=0} \\
& =\left.\frac{\partial^{2}}{\partial s_{1} \partial s_{2}} B\left(\theta_{2}+t\left(\theta_{1}-\theta_{2}\right)+s_{1}\left(\theta_{1}-\theta_{2}\right)+s_{2} \theta_{0}\right)\right|_{s_{1}=s_{2}=0} \\
& =\int_{\mathbb{R}^{d}} d x \int_{\mathbb{R}^{d}} d y\left(\theta_{1}(x)-\theta_{2}(x)\right) \theta_{0}(y) \delta^{2} B\left(\theta_{2}+t\left(\theta_{1}-\theta_{2}\right) ; x, y\right)
\end{aligned}
$$

leading to

$$
\begin{aligned}
& \left|d B\left(\theta_{1} ; \theta_{0}\right)-d B\left(\theta_{2} ; \theta_{0}\right)\right| \\
= & \left|C_{\theta_{0}, \theta_{1}, \theta_{2}}(1)-C_{\theta_{0}, \theta_{1}, \theta_{2}}(0)\right| \\
\leq & \max _{t \in[0,1]} \int_{\mathbb{R}^{d}} d x \int_{\mathbb{R}^{d}} d y\left|\theta_{1}(x)-\theta_{2}(x)\right|\left|\theta_{0}(y)\right|\left|\delta^{2} B\left(\theta_{2}+t\left(\theta_{1}-\theta_{2}\right) ; x, y\right)\right| \\
\leq & \left\|\theta_{1}-\theta_{2}\right\|_{L^{1}}\left\|\theta_{0}\right\|_{L^{1}} \max _{t \in[0,1]}\left\|\delta^{2} B\left(\theta_{2}+t\left(\theta_{1}-\theta_{2}\right) ; \cdot\right)\right\|_{L^{\infty}\left(\mathbb{R}^{2 d}\right)},
\end{aligned}
$$

where, through estimate (2.10) with $r=\alpha^{\prime \prime}$,

$$
\left\|\delta^{2} B\left(\theta_{2}+t\left(\theta_{1}-\theta_{2}\right) ; \cdot\right)\right\|_{L^{\infty}\left(\mathbb{R}^{2 d}\right)} \leq 2 \frac{e^{3}}{\alpha^{\prime \prime 2}}\|B\|_{\alpha^{\prime \prime}} \exp \left(\frac{\left\|\theta_{2}+t\left(\theta_{1}-\theta_{2}\right)\right\|_{L^{1}}}{\alpha^{\prime \prime}}\right)
$$

As a result,

$$
\begin{aligned}
& \left|d B\left(\theta_{1} ; \theta_{0}\right)-d B\left(\theta_{2} ; \theta_{0}\right)\right| \\
\leq & 2 \frac{e^{3}}{\alpha^{\prime \prime 2}}\left\|\theta_{1}-\theta_{2}\right\|_{L^{1}}\left\|\theta_{0}\right\|_{L^{1}}\|B\|_{\alpha^{\prime \prime}} \max _{t \in[0,1]} \exp \left(\frac{t\left\|\theta_{1}\right\|_{L^{1}}+(1-t)\left\|\theta_{2}\right\|_{L^{1}}}{\alpha^{\prime \prime}}\right)
\end{aligned}
$$

for all $\theta_{0}, \theta_{1}, \theta_{2} \in L^{1}$. In particular, this shows that for all $\theta_{0} \in L^{1}$,

$$
\begin{aligned}
& \left|d B\left(\theta e^{-\varepsilon \phi(y-\cdot)}+\frac{e^{-\varepsilon \phi(y-\cdot)}-1}{\varepsilon} ; \theta_{0}\right)-d B\left(\theta-\phi(y-\cdot) ; \theta_{0}\right)\right| \\
\leq & 2 \varepsilon \frac{e^{3}}{\alpha^{\prime \prime 2}}\|\phi\|_{L^{\infty}}\|B\|_{\alpha^{\prime \prime}}\left(\|\theta\|_{L^{1}}+\|\phi\|_{L^{1}}\right)\left\|\theta_{0}\right\|_{L^{1}} \\
& \times \max _{t \in[0,1]} \exp \left(\frac{1}{\alpha^{\prime \prime}}\left(t\left(\|\theta\|_{L^{1}}+\|\phi\|_{L^{1}}\right)+(1-t)\left(\|\theta\|_{L^{1}}+\|\phi\|_{L^{1}}\right)\right)\right) \\
= & 2 \varepsilon \frac{e^{3}}{\alpha^{\prime \prime 2}}\|\phi\|_{L^{\infty}}\|B\|_{\alpha^{\prime \prime}}\left(\|\theta\|_{L^{1}}+\|\phi\|_{L^{1}}\right) \exp \left(\frac{1}{\alpha^{\prime \prime}}\left(\|\theta\|_{L^{1}}+\|\phi\|_{L^{1}}\right)\right)\left\|\theta_{0}\right\|_{L^{1}}
\end{aligned}
$$

where we have used the inequalities

$$
\begin{aligned}
\left\|\theta e^{-\varepsilon \phi(y-\cdot)}-\theta\right\|_{L^{1}} & \leq \varepsilon\|\phi\|_{L^{\infty}}\|\theta\|_{L^{1}} \\
\left\|\frac{e^{-\varepsilon \phi(y-\cdot)}-1}{\varepsilon}+\phi(y-\cdot)\right\|_{L^{1}} & \leq \varepsilon\|\phi\|_{L^{\infty}}\|\phi\|_{L^{1}} \\
\left\|\theta e^{-\varepsilon \phi(y-\cdot)}+\frac{e^{-\varepsilon \phi(y-\cdot)}-1}{\varepsilon}\right\|_{L^{1}} & \leq\|\theta\|_{L^{1}}+\|\phi\|_{L^{1}}
\end{aligned}
$$

In other words, we have shown that the norm of the bounded linear functional on L^{1}

$$
L^{1} \ni \theta_{0} \mapsto d B\left(\theta e^{-\varepsilon \phi(y-\cdot)}+\frac{e^{-\varepsilon \phi(y-\cdot)}-1}{\varepsilon} ; \theta_{0}\right)-d B\left(\theta-\phi(y-\cdot) ; \theta_{0}\right)
$$

is bounded by

$$
Q:=2 \varepsilon \frac{e^{3}}{\alpha^{\prime \prime 2}}\|\phi\|_{L^{\infty}}\|B\|_{\alpha^{\prime \prime}}\left(\|\theta\|_{L^{1}}+\|\phi\|_{L^{1}}\right) \exp \left(\frac{1}{\alpha^{\prime \prime}}\left(\|\theta\|_{L^{1}}+\|\phi\|_{L^{1}}\right)\right)
$$

Since this operator norm is given by

$$
\left\|\delta B\left(\theta e^{-\varepsilon \phi(y-\cdot)}+\frac{e^{-\varepsilon \phi(y-\cdot)}-1}{\varepsilon} ; \cdot\right)-\delta B(\theta-\phi(y-\cdot) ; \cdot)\right\|_{L^{\infty}}
$$

cf. Subsection 2.2, this means that

$$
\left\|\delta B\left(\theta e^{-\varepsilon \phi(y-\cdot)}+\frac{e^{-\varepsilon \phi(y-\cdot)}-1}{\varepsilon} ; \cdot\right)-\delta B(\theta-\phi(y-\cdot) ; \cdot)\right\|_{L^{\infty}} \leq Q
$$

In this way we obtain

$$
\begin{aligned}
& \quad\left|\left(\tilde{L}_{\varepsilon, \text { ren }} B\right)(\theta)-\left(\tilde{L}_{V} B\right)(\theta)\right| \\
& \leq \int_{\mathbb{R}^{d}} d x \int_{\mathbb{R}^{d}} d y a(x-y)|\theta(y)-\theta(x)| \\
& \quad \times\left\{\left\|\delta B\left(\theta e^{-\varepsilon \phi(y-\cdot)}+\frac{e^{-\varepsilon \phi(y-\cdot)}-1}{\varepsilon} ; \cdot\right)-\delta B(\theta-\phi(y-\cdot) ; \cdot)\right\|_{L^{\infty}}\right. \\
& \left.\quad+\varepsilon\|\phi\|_{L^{\infty}}\|\delta B(\theta-\phi(y-\cdot) ; \cdot)\|_{L^{\infty}}\right\} \\
& \leq \\
& \quad 2 \varepsilon\|\phi\|_{L^{\infty}}\|a\|_{L^{1}} \frac{e}{\alpha^{\prime \prime}} \exp \left(\frac{1}{\alpha^{\prime \prime}}\left(\|\theta\|_{L^{1}}+\|\phi\|_{L^{1}}\right)\right)\|\theta\|_{L^{1}} \\
& \quad \times\left\{2 \frac{e^{2}}{\alpha^{\prime \prime}}\left(\|\theta\|_{L^{1}}+\|\phi\|_{L^{1}}\right)+1\right\}\|B\|_{\alpha^{\prime \prime}},
\end{aligned}
$$

and thus

$$
\begin{aligned}
& \left\|\tilde{L}_{\varepsilon, \text { ren }} B-\tilde{L}_{V} B\right\|_{\alpha^{\prime}} \\
\leq & 2 \varepsilon\|\phi\|_{L^{\infty}}\|a\|_{L^{1}} \frac{e}{\alpha^{\prime \prime}} e^{\frac{\|\phi\|_{L^{1}}}{\alpha^{\prime \prime}}}\left\{2 \frac{e^{2}}{\alpha^{\prime \prime}} \sup _{\theta \in L^{1}}\left(\|\theta\|_{L^{1}}^{2} \exp \left(\|\theta\|_{L^{1}}\left(\frac{1}{\alpha^{\prime \prime}}-\frac{1}{\alpha^{\prime}}\right)\right)\right)\right. \\
& \left.+\left(2 \frac{e^{2}}{\alpha^{\prime \prime}}\|\phi\|_{L^{1}}+1\right) \sup _{\theta \in L^{1}}\left(\|\theta\|_{L^{1}} \exp \left(\|\theta\|_{L^{1}}\left(\frac{1}{\alpha^{\prime \prime}}-\frac{1}{\alpha^{\prime}}\right)\right)\right)\right\}\|B\|_{\alpha^{\prime \prime}},
\end{aligned}
$$

and the proof follows using the inequalities $x e^{-m x} \leq \frac{1}{m e}$ and $x^{2} e^{-m x} \leq \frac{4}{m^{2} e^{2}}$ for $x \geq 0$, $m>0$.

We are now in conditions to state the following result.
Theorem 4.4. Given an $0<\alpha<\alpha_{0}$, let $B_{t, \text { ren }}^{(\varepsilon)}, B_{t, V}, t \in[0, T)$, be the local solutions in \mathcal{E}_{α} to the initial value problems (4.2), (4.5) with $B_{0, \text { ren }}^{(\varepsilon)}, B_{0, V} \in \mathcal{E}_{\alpha_{0}}$. If $0 \leq \phi \in L^{1} \cap L^{\infty}$ and $\lim _{\varepsilon \rightarrow 0}\left\|B_{0, \text { ren }}^{(\varepsilon)}-B_{0, V}\right\|_{\alpha_{0}}=0$, then, for each $t \in[0, T)$,

$$
\lim _{\varepsilon \rightarrow 0}\left\|B_{t, \text { ren }}^{(\varepsilon)}-B_{t, V}\right\|_{\alpha}=0
$$

Moreover, if $B_{0, V}(\theta)=\exp \left(\int_{\mathbb{R}^{d}} d x \rho_{0}(x) \theta(x)\right), \theta \in L^{1}$, for some function $0 \leq \rho_{0} \in L^{\infty}$ such that $\left\|\rho_{0}\right\|_{L^{\infty}} \leq \frac{1}{\alpha_{0}}$, then for each $t \in[0, T)$,

$$
\begin{equation*}
B_{t, V}(\theta)=\exp \left(\int_{\mathbb{R}^{d}} d x \rho_{t}(x) \theta(x)\right), \quad \theta \in L^{1} \tag{4.7}
\end{equation*}
$$

where $0 \leq \rho_{t} \in L^{\infty}$ is a classical solution to the equation (4.1).
Proof. The first part follows directly from Proposition 4.3 and [5, Theorem 4.3], taking in [5, Theorem 4.3] $p=2$ and

$$
N_{\varepsilon}=2 \varepsilon\|a\|_{L^{1}}\|\phi\|_{L^{\infty}} \frac{e \alpha_{0}}{\alpha} e^{\frac{\|\phi\|_{L^{1}}}{\alpha}} \max \left\{2 e\|\phi\|_{L^{1}}+\frac{\alpha_{0}}{e}, 8 \alpha_{0}^{2}\right\}
$$

Concerning the last part, we begin by observing that it has been shown in [1, Subsection 4.2] that given a $0 \leq \rho_{0} \in L^{\infty}$ such that $\left\|\rho_{0}\right\|_{L^{\infty}} \leq \frac{1}{\alpha_{0}}$, there is a solution $0 \leq \rho_{t} \in L^{\infty}$ to (4.1) such that $\left\|\rho_{t}\right\|_{L^{\infty}} \leq \frac{1}{\alpha_{0}}$. This implies that $B_{t, V}$, given by (4.7), does not leave the initial Banach space $\mathcal{E}_{\alpha_{0}} \subset \mathcal{E}_{\alpha}$. Then, by an argument of uniqueness, to prove the last assertion amounts to show that $B_{t, V}$ solves equation (4.5). For this purpose we note that for any $\theta, \theta_{1} \in L^{1}$ we have

$$
\left.\frac{\partial}{\partial z_{1}} B_{t, V}\left(\theta+z_{1} \theta_{1}\right)\right|_{z_{1}=0}=B_{t, V}(\theta) \int_{\mathbb{R}^{d}} d x \rho_{t}(x) \theta_{1}(x)
$$

and thus $\delta B_{t, V}(\theta ; x)=B_{t, V}(\theta) \rho_{t}(x)$. Hence, for all $\theta \in L^{1}$,

$$
\begin{aligned}
\left(\tilde{L}_{V} B_{t, V}\right)(\theta)=B_{t, V}(\theta) & \left(\int_{\mathbb{R}^{d}} d x \int_{\mathbb{R}^{d}} d y a(x-y)(\theta(y)-\theta(x)) \rho_{t}(x) e^{-\left(\rho_{t} * \phi\right)(y)}\right) \\
=B_{t, V}(\theta) & \left(\int_{\mathbb{R}^{d}} d y \theta(y)\left(a * \rho_{t}\right)(y) e^{-\left(\rho_{t} * \phi\right)(y)}\right. \\
& \left.-\int_{\mathbb{R}^{d}} d x \theta(x)\left(a * e^{-\left(\rho_{t} * \phi\right)(y)}\right)(x) \rho_{t}(x)\right)
\end{aligned}
$$

Since ρ_{t} is a classical solution to (4.1), ρ_{t} solves a weak form of equation (4.1), that is, the right-hand side of the latter equality is equal to

$$
B_{t, V}(\theta) \frac{d}{d t} \int_{\mathbb{R}^{d}} d x \rho_{t}(x) \theta(x)=\frac{\partial}{\partial t} B_{t, V}(\theta)
$$

References

[1] C. Berns, Yu. G. Kondratiev, Yu. Kozitsky, and O. Kutoviy. Kawasaki dynamics in continuum: micro- and mesoscopic descriptions. SFB Preprint n. 11035, 2011.
[2] N. N. Bogoliubov. Problems of a Dynamical Theory in Statistical Physics. Gostekhisdat, Moscow, 1946. (in Russian). English translation in J. de Boer and G. E. Uhlenbeck (editors), Studies in Statistical Mechanics, volume 1, pages 1-118. North-Holland, Amsterdam, 1962.
[3] D. L. Finkelshtein, Yu. G. Kondratiev, and O. Kutoviy. Vlasov scaling for stochastic dynamics of continuous systems. J. Stat. Phys., 141:158-178, 2010.
[4] D. L. Finkelshtein, Yu. G. Kondratiev, and M. J. Oliveira. Markov evolutions and hierarchical equations in the continuum I. One-component systems. J. Evol. Equ., 9(2):197-233, 2009.
[5] D. L. Finkelshtein, Yu. G. Kondratiev, and M. J. Oliveira. Glauber dynamics in the continuum via generating functionals evolution. Complex Anal. Oper. Theory, doi: 10.1007/s11785-011-0170-1 (published online), 2011.
[6] I. M. Gel'fand and G. E. Shilov. Generalized Functions. Vol. 3: Theory of Differential Equations. 1958. (in Russian). English translation by Meinhard E. Mayer, Academic Press, New York and London, 1967.
[7] Yu. G. Kondratiev and T. Kuna. Harmonic analysis on configuration space I. General theory. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5(2):201-233, 2002.
[8] Yu. G. Kondratiev, T. Kuna, and M. J. Oliveira. On the relations between Poissonian white noise analysis and harmonic analysis on configuration spaces. J. Funct. Anal., 213(1):1-30, 2004.
[9] Yu. G. Kondratiev, T. Kuna, and M. J. Oliveira. Holomorphic Bogoliubov functionals for interacting particle systems in continuum. J. Funct. Anal., 238(2):375-404, 2006.
[10] L. V. Ovsjannikov. Singular operator in the scale of Banach spaces. Dokl. Akad. Nauk SSSR, 163:819-822, 1965. Soviet Math. Dokl. 6:1025-1028, 1965.
[11] F. Treves. Ovcyannikov Theorem and Hyperdifferential Operators, volume 46 of Notas de Matemática. IMPA, Rio de Janeiro, 1968.
[12] T. Yamanaka. Note on Kowalevskaja's system of partial differential equations. Comment. Math. Univ. St. Paul., 9:7-10, 1960.

Institute of Mathematics, Ukrainian National Academy of Sciences, 01601 Kiev, Ukraine
E-mail address: fdl@imath.kiev.ua
Fakultät für Mathematik, Universität Bielefeld, D 33615 Bielefeld, Germany; Forschungszentrum BiBoS, Universität Bielefeld, D 33615 Bielefeld, Germany

E-mail address: kondrat@mathematik.uni-bielefeld.de
Universidade Aberta, P 1269-001 Lisbon, Portugal; CMAF, University of Lisbon, P 1649-003 Lisbon, Portugal

E-mail address: oliveira@cii.fc.ul.pt

[^0]: Date: DD/MM/2011.
 2000 Mathematics Subject Classification. Primary 82C22; Secondary 46G20, 46E50.
 Key words and phrases. Generating functional, Kawasaki dynamics, Interacting particle system, Continuous system, Ovsjannikov's method, Vlasov scaling.

 Financial support of DFG through SFB 701 (Bielefeld University), German-Ukrainian Project 436 UKR 113/97 and FCT through PTDC/MAT/100983/2008 and ISFL-1-209 are gratefully acknowledged.

[^1]: ${ }^{1}$ Throughout this work all L^{p}-spaces, $p \geq 1$, consist of complex-valued functions.

