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Abstract

In this paper one surveys and sharpens some recent results ob-
tained by the authors on the finite time extinction property of solu-
tions to stochastic diffusion equations of the form dX − ρ∆Xmdt =
XdW and dX−ρ∆ sgnXdt = XdW , where 0 < m < 1, ρ > 0. These
equations arise as models for nonlinear diffusion processes in porous
media, plasma and self-organized criticality under stochastic Gaussian
perturbation. These equations can be also viewed as control systems
governed by fast diffusion porous media equations with a stochastic
feedback controller XdW.
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1 Introduction

We here consider stochastic differential equations of the form
dX(t)−∆Ψ(X(t))dt 3 X(t) dW (t), in (0,∞)× O,
Ψ(X(t)) 3 0, on (0,∞)× ∂O,
X(0) = x, in O,

(1.1)

where O is a bounded open domain of Rd with smooth boundary ∂O and
Ψ : R→ 2R is a maximal monotone graph in R× R, that is

(s1 − s2)(r1 − r2) ≥ 0, ∀ r1, r2 ∈ R, s1 ∈ Ψ(r1), s2 ∈ Ψ(r2)

and the range R(I + Ψ) of r 7→ r + Ψ(r) covers R. W (t) is an Ft–Wiener
process on a probability space (Ω,F ,P) with filtration (Ft)t≥0, which will
be specified later.

Equation (1.1) arises in the description of a large variety of physical phe-
nomena and processes including the following: fluid flows in porous media,
diffusion processes in kinetic gas theory, heat transfer in plasmas, population
dynamics and heat phase transitions.

If Ψ is differentiable, we may rewrite equation (1.1) in the more common
form

dX(t)− div(Ψ′(X(t))∇X(t))dt = X(t)dW (t). (1.2)

Let us denote by j the potential corresponding to Ψ, that is j(r) =
∫ r

0
Ψ(r)dr.

In most applications j(X(t)) is the diffusion coefficient and X(t) represents
the mass concentration. In other physical models j(X(t)) represents the
conductivity coefficient. (We refer to [24] for presentations of physical models
described by deterministic nonlinear diffusion equations of this form.)

The case considered here, that is (1.1), represents the classical porous me-
dia equation perturbed by a Gaussian process XdW which is proportional
to the state X of the system. By this the solution X to (1.1), is a stochas-
tic flow on the stochastic basis (Ω,F , (Ft)t≥0,P). There is strong physical
evidence justifying this stochastic model of nonlinear diffusions in which the
stochastic perturbation is of the form σ(X)dW where σ is a Lipschitz func-
tion such that σ(r)r ≥ 0 for all r ∈ R. One of the main reasons to consider
this stochastic model is that in this case the flow X(t, x) leaves invariant the
set of all nonnegative states x which in applications is an essential feature of
the model.

The standard case considered in the literature is

Ψ(r) = ρ|r|m−1r, ∀ r ∈ R, (1.3)
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where 1 < m <∞ or more generally,

rΨ(r) ≥ ρ|r|m+1, ∀ r ∈ R, (1.4)

|Ψ(r)| ≤ b|r|q + b, ∀ r ∈ R, (1.5)

where b, ρ > 0, q ≥ m.
The case m > 1, low diffusion, arises as a model of diffusion of a gas

inside a porous medium equation, whereas 0 < m < 1 describes fast diffusion
processes. The case −1 < m < 0 corresponds to superfast diffusion (see [13],
[23]). However, there are important cases described by other nonlinearities
Ψ which are briefly presented below. For instance

Ψ(r) = ρ sign r + ν(r), ∀ r ∈ R, (1.6)

where ρ > 0, ν is maximal monotone and

sign r =

{ r
|r| for r 6= 0,

[−1, 1] for r = 0.
(1.7)

In this case equation (1.1) is used to describe the self-organized criticality in
the evolution of a large variety of systems (see e.g. [4], [5], [14]) and its main
feature is that the diffusion coefficient j(r) = ρ|r| is singular in the origin.
Taking into account (1.2) we may formally represent equation (1.1) in this
case as

dX − ρ div(δ(X)∇X)dt+ ν(X)dt = XdW (t),

where δ is the Dirac function, which places the equation in the class of
superfast diffusions.

In the case where Ψ : R→ R is given by

Ψ(r) =

{
log r for r > 0,
∅ for r ≤ 0,

(1.8)

equation (1.1) arises in plasma physics as well as in the approximation of
Carleman’s model of the Boltzmann equation (see [23] for the corresponding
deterministic model).

Moreover, in the deterministic case this equation can be used to describe
the evolution of a conformally flat metric by its curvature flow (see [24]).
As a matter of fact this is the limit case m = 1 of the superfast diffusion
equation

div (X−m∇X) = ∆X1−m, 1 < m < 2. (1.9)

3



Also note that in the special case where

Ψ(r) =


br for r ≤ 0,
0 for 0 < r < ρ,
a(r − ρ) for r ≥ ρ,

(1.10)

the following version of equation (1.1)

dX −∆Ψ(X)dt = Ψ(X)dW (t),

represents a model for the stochastic two phase transition Stefan problem
dθ − a∆θdt = θdW (t) for θ > 0,

dθ − b∆θdt = θdW (t) for θ < 0,

(a∇θ+ − b∇θ−) · ∇` = −ρ in {(t, ξ) : θ(t, ξ) = 0},

(1.11)

where
{(t, ξ) : θ(t, ξ) = 0} = {(t, ξ) : t = `(ξ)},

and θ = Ψ(X) is the temperature. (See [7]).
There is now a quite complete theory for equation (1.1) in the low and fast

diffusion cases treated in [8], [10], [11], [12], [20], [22], which cover equation
(1.1) as well as that with additive noise, that is

dX −∆Ψ(X)dt = dW (t). (1.12)

Our concern here is the long time behavior and in particular the finite time
extinction property of solutions when (1.1) is a fast diffusion equation. From
the deterministic theory of nonlinear diffusion (porous media) equations one
knows that in this case the process X = X(t) terminates within a finite time
and in [5], [9] a similar result was obtained for the stochastic fast diffusion
equation. In Section 2 we treat this problem in detail, following [9] .

The case (1.6) which as mentioned earlier is relevant in self-organized
criticality models, is another situation where finite time extinction happens
with high probability and will be treated in Section 3.

1.1 Notation

We here use the standard notations for spaces Lp(O), 1 ≤ p ≤ ∞, of Lebesgue
integrable functions and Sobolev spaces Hk(O) ⊂ L2(O), k = 1, 2, H1

0 (O) =
{u ∈ H1(O) : u = 0 on ∂O}. The norm of Lp(O) is denoted by | · |p and
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the scalar product in L2(O) by 〈·, ·〉2 . Let H−1(O) denote the dual space of
H1

0 (O) with norm

‖u‖−1 =

(∫
O

(−∆)−1uu dξ

)1/2

and scalar product

〈u, v〉−1 =

∫
O

(−∆)−1u v dξ.

(Here −∆ is the Laplace operator in L2(O) with domain H2(O) ∩H1
0 (O).)

For p, q ∈ [1,+∞] and H a Hilbert space let LqW (0, T ;Lp(Ω, H)) de-
note the space of all q-integrable processes u : [0, T ] → Lp(Ω, H) which
are adapted to the filtration {Ft}t≥0. By CW ([0, T ];Lp(Ω, H)) we denote the
space of all H-valued adapted processes which are p mean square continuous.
The space L2

W (0, T ;L2(Ω, H)) is sometimes simply denoted L2
W (0, T ;H).

Finally, by L2
W (Ω;C([0, T ];H)) we denote the space of allH-valued adapted

processes which are H-continuous on [0, T ] and

E|X|2C([0,T ];H) <∞.

(We refer to [15] and [19] for basic notations and results on infinite dimen-
sional stochastic equations.)

As the Wiener process W is concerned, we shall assume that it is of the
form

W (t) =
∞∑
k=1

µkekβk(t), t ≥ 0, (1.13)

where {ek} is an orthonormal basis in L2(O) (there are αk ∈ R such that
{αkek} is an orthonormal basis in H−1(O)), {µk} a sequence of real num-
bers and {βk} a mutually independent sequence of real Brownian motions
in a stochastic basis (Ω,F , {Ft},P). We shall always assume that for some
positive constants c1, c2 we have

∞∑
k=1

µ2
k|xek|22 ≤ c1|x|22, ∀ x ∈ L2(O) (1.14)

and
∞∑
k=1

µ2
k|xek|2−1 ≤ c2|x|2−1, ∀ x ∈ H−1(O). (1.15)

By (1.14) it follows that if X ∈ L2
W (Ω;C([0, T ];H)) we have

E
∣∣∣∣∫ t

0

X(s)dW (s)

∣∣∣∣2
2

≤ c2
1E
∫ t

0

|X(s)|22 ds (1.16)
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Similarly, by (1.15) it follows that if X ∈ L2
W (C(Ω; [0, T ]);H)) we have

E
∣∣∣∣∫ t

0

X(s)dW (s)

∣∣∣∣2
−1

≤ c2
1E
∫ t

0

|X(s)|2−1 ds. (1.17)

Example 1.1. Let us consider the Wiener process (1.13) where {ek} is the
orthonormal basis of eigenfunctions of the Laplace operator in L2(O) with
homogeneous boundary conditions, that is

−∆ek = λkek in O, ek = 0 on ∂O, (1.18)

where O ⊂ Rd, d ≥ 3, O open, bounded. Clearly {λ1/2
k ek} is an orthonormal

system in H−1(O). We assume that ∂O is sufficiently regular (for instance
of class C2) in order to apply [16]. Then for each x ∈ L2(O) we have

|xek|2 ≤ |x|2 |ek|∞ ≤ cλ
d−1
2

k |x|2, ∀ k ∈ N,

because by [16] we have |ek|∞ ≤ cλ
d−1
2

k for all k ∈ N.
Therefore, (1.14) is fulfilled provided

∞∑
k=1

µ2
kλ

d−1
k <∞. (1.19)

Let us now consider (1.15). Since H−1(O) is the dual of H1
0 (O) we have

|xek|2−1 = sup
{
|〈xek, ϕ〉|22 : ϕ ∈ H1

0 (O), |ϕ|H1
0 (O) ≤ 1

}
. (1.20)

But
|〈xek, ϕ〉|22 = |〈x, ekϕ〉|22 ≤ |x|2−1|ekϕ|2H1

0 (O)

On the other hand, for all k ∈ N

|ekϕ|2H1
0 (O) = |∇(ekϕ)|22 = −

∫
O

ek ϕ∆(ek ϕ) dξ

= −
∫

O

(ek ϕ
2 ∆ek + e2

kϕ∆ϕ+ 1
2
∇(e2

k) · ∇(ϕ2))dξ

= −
∫

O

(ek ϕ
2 ∆ek + e2

kϕ∆ϕ− 1
2
e2
k ∆(ϕ2))dξ

Since
∆(ϕ2) = 2ϕ ∆ϕ+ 2|∇ϕ|2,
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we have

|ekϕ|2H1
0

=

∫
O

(λkϕ
2 + |∇ϕ|2))e2

kdξ, ∀ k ∈ N. (1.21)

Therefore,

|ekϕ|2H1
0 (O) ≤ λk|ϕek|22 + |ϕ|2H1

0 (O)|ek|
2
∞, ∀ k ∈ N. (1.22)

Now by the Sobolev embedding theorem we have H1
0 (O) ⊂ L

2d
d−2 (O) with

continuous embedding. Then, using Hölder in the first term of (1.22) we see
that there is a constant c > 0 such that

|ekϕ|2H1
0
≤ (cλk|ek|2d + |ek|2∞)|ϕ|2H1

0 (O). (1.23)

Now as mentioned earlier we know that

|ek|2∞ ≤ c1λ
d−1
k , ∀ k ∈ N,

so that, by interpolation (1)

|ek|2d ≤ c2λ
(d−1)(d−2)

d
k , ∀ k ∈ N,

Finally, we find

|ekϕ|2H1
0
≤ c(λ

1+
(d−1)(d−2)

d
k + λd−1

k )|ϕ|2H1
0
≤ c1λ

d−1
k |ϕ|

2
H1

0
, ∀ k ∈ N, (1.24)

and therefore by (1.20)

|xek|−1 ≤ C1λ
d−1
2

k |x|−1, ∀ k ∈ N. (1.25)

In conclusion (1.15) is fulfilled provided

∞∑
k=1

µ2
kλ

d−1
k <∞, ∀ k ∈ N. (1.26)

Recalling finally that λk behaves as k
2
d as k →∞ (see e.g. [1]) we conclude

that assumptions (1.14) and (1.15) are fulfilled choosing

µk = k−α

where α > 3d−2
2d

. �

(1)|f |p ≤ |f |
2
p

2 |f |
p−2

p
∞ .
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The existence and uniqueness of a strong solution to (1.1) follows for
instance under the following assumptions on Ψ : R→ 2R.

Hypothesis 1.2. (i) Ψ is a maximal monotone multivalued function (graph)
such that 0 ∈ Ψ(0) and

sup{|θ| : θ ∈ Ψ(r)} ≤ C(1 + |r|q), ∀ r ∈ R,

where q ≥ 1 and C > 0.

(ii) (1.26) is fulfilled.

We note that assumption (ii) is fulfilled in all situations encountered above
and it is more general than (1.4) which for instance is not satisfied by (1.6).

Definition 1.3. A continuous, Ft-adapted process X : [0, T ] → H−1(O) is
said to be a solution of equation (1.1) if

(i) X ∈ L2(0, T ;L2(Ω;L2(O)).

(ii) There is η ∈ L1
W (0, T ;L1(Ω;H)) such that η ∈ Ψ(X), a.e. in (0, T ) ×

O × Ω.

(iii) We have

X(t) = x+ ∆

∫ t

0

η(s)ds+

∫ t

0

X(s)dW (s), t ∈ [0, T ]. (1.27)

(iv)

∫ t

0

η(s)ds ∈ C([0, T ];H1
0 (O)), P-a.s.

There is an equivalent formulation of (1.27) in terms of the orthonormal
basis {ek} used in [8] and [10]. Namely, P-a.s., one has

〈X(t), ej〉2 = 〈x, ej〉2 +

∫ t

0

∫
O

η(s, ξ)∆ej(ξ)ds dξ

+
∞∑
k=1

µk

∫ t

0

〈X(s)ek, ej〉2 dβk(s), ∀ j ∈ N, t ∈ (0, T ).

(1.28)

It should be emphasized that the space H−1(O) is the basic functional space
for the treatment of equation (1.1) because in this space the operator F :
D(F ) ⊂ H−1(O)→ H−1(O) defined by

Fy = −∆Ψ(y), ∀ y ∈ D(F ),

D(F ) = {y ∈ H−1(O) ∩ L1(O) : ∃ η ∈ H1
0 (O) such that η ∈ Ψ(y), a. e. in O},
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(1.29)

is maximal monotone. (If Ψ is multivalued one understands by Ψ(y) one of
its sections.)

The standard way to study existence for equation (1.1) is to approximate
it by the equation

dXλ −∆(Ψλ(Xλ) + λXλ)dt = XλdW (t), in (0,∞)× O,

Ψλ(Xλ)) + λXλ = 0, on (0,∞)× ∂O,

Xλ(0) = x, in O,

(1.30)

where

Ψλ(r) =
1

λ
(r − (1 + λΨ)−1r), λ > 0, r ∈ R,

is the Yosida approximation of Ψ (see e.g. [6].) Since Ψλ is Lipschitzian and
non decreasing, equation (1.30) has a unique solution

Xλ ∈ L2(Ω× [0, T ]× O) ∩ L2
W (Ω;C([0, T ];H−1(O))),

and Xλ,Ψλ(Xλ) ∈ L2
W (0, T ;H1

0 (O)) for each x ∈ H−1(O). (It should be
emphasized that the Sobolev space H−1(O) = (H1

0 (O))′ is the basic space to
study well posedness of problem (1.30) as well as (1.1) because in this space
the operator x 7→ −∆Ψ(x) defined in (1.29) is m-accretive.)

The existence and uniqueness of a solution X to (1.1) under Hypothesis
1.2 was estabilshed in [10] (see also [8], [11] for other growth conditions on
Ψ.)

Theorem 1.4. Let x ∈ Lp(O) where p ≥ max{4, 2q} and 0 < T <∞. Then
there is a unique solution X to (1.1) which additionally satisfies

(i) X ∈ L∞W (0, T ;Lp(Ω, Lp(O))) ∩ L2(Ω;C([0, T ];H−1(O))).

(ii) η ∈ Lp/q(Ω× [0, T ]× O).

(iii) If x ≥ 0 a.e. in O then X(t, x) ≥ 0 in Ω× [0, T ]× O.

(iv) Xλ → X strongly in L2(Ω;C([0, T ];H−1(O))), weakly in Lp(Ω×[0, T ]×
O) and weak star in L∞(0, T ;Lp(Ω;Lp(O)).

(v) Ψλ(Xλ)→ η weakly in Lp/q(Ω× [0, T ]× O).
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2 Finite time extinction for fast diffusion stochas-

tic equation

We consider here equation (1.1) under the following conditions on the maxi-
mal monotone graph Ψ : R→ 2R,

ρ|r|m+1 ≤ Ψ(r)r ≤ b|r|q + c|r|, ∀ r ∈ R, (2.1)

where 0 < m < 1 and q ≥ m+ 1, ρ, b > 0, c ∈ R.
Typical examples are

Ψ(r) = ρ|r|m−1r, ∀ r ∈ R, (2.2)

Ψ(r) = ρ|r|m−1r log(1 + |r|) + ar, ∀ r ∈ R, (2.3)

Ψ(r) =


a1r

m for r > 0,
[−L, 0] for r = 0,
a2|r|m−1r − L for r < 0,

(2.4)

where a1, a2 > 0, a ≥ 0 and 0 < m < 1, L ≥ 0.
Then Theorem 1.4 is applicable in the present situation and so, equation

(1.1) has a strong solution X. We shall prove here that the process X = X(t)
terminates within finite time with positive probability. Namely one has:

Theorem 2.1. Assume that x ∈ Lmax{4,2q}(O), that d ≤ 3 and 0 < m < 1 if
d = 1, 2, 1

5
≤ m < 1 if d = 3. Let τ = inf{t ≥ 0 : |X(t, x)|−1 = 0}. Then we

have
|X(t, x)|−1 = 0 ∀ t ≥ τ, P-a.s..

Moreover, for each t > 0 we have

P(τ ≤ t) ≥ 1− (ργm+1)−1|x|1−m−1

(∫ (1−m)t

0

e−C
∗sds

)−1

. (2.5)

In particular, if |x|1−m−1 < ργm+1

C∗
then P(τ <∞) > 0.

Here

C∗ =
1

2
sup

{
∞∑
k=1

µ2
k|xek|2−1 : |x|−1 ≤ 1

}
and γ is the inverse of the norm of the Sobolev embedding Lm+1(O) ⊂
H−1(O), that is

γ−1 = sup{|u|−1 |u|−1
m+1 : u ∈ Lm+1(O)}. (2.6)
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Proof. We first establish the estimate

|X(t)|1−m−1 + ρ(1−m)γm+1

∫ t

r

1l{|X(s)|−1>0} ds

≤ |X(r)|1−m−1 + C∗(1−m)

∫ t

r

|X(s)|1−m−1 ds

+(1−m)

∫ t

r

〈|X(s)|−(m+1)
−1 X(s), X(s)dW (s)〉−1, P-a.s., r < t <∞.

(2.7)

A formal argument to show (2.7) is to apply in equation (1.1) Itô’s formula
to the function ϕ(x) = |x|1−m−1 . Then

Dϕ(x) = (1−m)x|x|−m−1
−1 ,

D2ϕ(x)h = (1−m)|x|−m−1
−1 h− (1−m2)|x|−m−2

−1 〈x, h〉−1, ∀ h ∈ H−1(O)

and we get therefore

dϕ(X(t)) + (1−m)

∫
O

Ψ(X(t))X(t)dξ |X(t)|−m−1
−1

=
1

2

∞∑
k=1

(
(1−m)|X(t)|−m−1

−1 |X(t)ek|2−1

−(1−m2)|X(t)|−m−3
−1 |X(t)ek|2−1 |X(t)|2−1

)
µ2
kdt

+(1−m)〈X(t)dW (t), X(t)〉−1|X(t)|−m−1

≤ C∗(1−m)|X(t)|−m−1
−1 dt+ (1−m)〈X(t), X(t)dW (t)〉−1|X(t)|−m−1 ,

because in virtue of (1.25) |X(t)ek|−1 ≤ λ
d−1
2

k |X(t)|−1. By (2.1) and (2.6) we
have ∫

O

Ψ(X(t))X(t) dξ ≥ ργ1+m|X(t)|m+1
−1 .

This yields by integration from r to t the inequality (2.7). A rigorous ar-
gument to prove (2.7) uses the same approach but for the equation (1.30).
Namely applying in (2.6) the Itô formula to the semi-martingale |Xλ(t)|2−1
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and to the function ϕε(r) = (r + ε2)
1−m

2 , r > −ε2, yields

dϕε(|Xλ(t)|2−1) + (1−m)(|Xλ(t)|2−1 + ε2)−
m+1

2 〈(Ψλ + λ)(Xλ(t)), Xλ(t)〉2 dt

=
1

2

∞∑
k+1

µ2
k

[
(1−m)

|Xλ(t)ek|2−1

(|Xλ(t)|2−1 + ε2)
1+m

2

− (1−m2)
|Xλ(t)ek|2−1 |Xλ(t)|2−1

(|Xλ(t)|2−1 + ε2)
3+m

2

]
dt

+2〈ϕ′ε(|Xλ(t)|2−1)Xλ(t), Xλ(t)dW (t)〉−1.

This yields as above

ϕε(|Xλ(t)|2−1)

+(1−m)

∫ t

r

(|Xλ(s)|2−1 + ε2)−
m+1

2 〈(Ψλ + λ)(Xλ(s)), Xλ(s)〉2 ds

≤ ϕε(Xλ(r)|2−1 + C∗(1−m)

∫ t

r

|Xλ(s)|2−1

(|Xλ(s)|2−1 + ε2)
m+1

2

ds

+2

∫ t

r

〈ϕ′ε(|Xλ(s)|2−1)Xλ(s), Xλ(s)dW (s)〉−1, t ≥ r

(2.8)

We are going to let λ→ 0 in (2.8). Since, as seen earlier in Theorem 1.4(iv),
|Xλ(s)|−1 → |X(s)|−1 uniformly on [0, T ], we also have

lim
λ→0

ϕε(|Xλ(s)|2−1) = ϕε(|X(s)|2−1), uniformly on [0, T ].

Moreover∫ t

r

ϕ′ε(|Xλ(s)|2−1)〈Ψλ(Xλ(s)) + λXλ(s), Xλ(s)〉2 ds

≥
∫ t

r

ϕ′ε(|Xλ(s)|2−1)〈Ψ(1 + λΨ)−1(Xλ(s)), (1 + λΨ)−1(Xλ(s))〉2 ds

≥ ρ

∫ t

r

ϕ′ε(|Xλ(s)|2−1)|(1 + λΨ)−1(Xλ(s))|m+1
m+1 ds.

We claim that

lim inf
λ→0

∫ t

r

ϕ′ε(|Xλ(s)|2−1)〈Ψλ(Xλ(s)) + λXλ(s), Xλ(s)〉2 ds

≥ ρ

∫ t

r

ϕ′ε(|X(s)|2−1)|X(s)|m+1
m+1 ds, P-a.s.

(2.9)

12



We note first that, since as seen in the proof of Theorem 1.4

E
∫

O

(Xλ(t, ξ))
m+1 dξ ≤ C, ∀ λ > 0,

and |Xλ − (1 + λΨ)−1Xλ| = λ|Ψλ(Xλ))| while {Ψλ(Xλ))} is bounded in
L2((0, T )× O × Ω), we have for λ→ 0

(1 + λΨ)−1Xλ → X, weakly in Lm+1((0, T )× O × Ω)

and therefore

ϕ′ε(|Xλ|2−1)
1

m+1 (1 + λΨ)−1(Xλ)→ (ϕ′ε(|X|2−1)
1

m+1X,

weakly in Lm+1((0, T )×O ×Ω). This implies that for each χ ∈ L∞(Ω) with
χ ≥ 0, P-a.s. in Ω, we have

χ
1

m+1ϕ′ε(|Xλ|2−1)
1

m+1 (1 + λΨ)−1(Xλ)→ χ
1

m+1 (ϕ′ε(|X|2−1)
1

m+1X,

weakly in Lm+1((0, T ) × O × Ω). By the weak lower semicontinuity of the
norm | · |m+1 we have

lim inf
λ→0

∫
Ω

∫ t

r

∫
O

χϕ′ε(|Xλ|2−1)|(1 + λΨ)−1(Xλ)|m+1 dξ dt dP(ω)

≥
∫

Ω

∫ t

r

∫
O

χϕ′ε(|X|2−1)|X|m+1 dξ dt dP(ω)

and, since χ is arbitrary, this implies the pointwise inequality (2.9) as claimed.
Now it remains to be shown that

lim
λ→0

∫ t

r

〈ϕ′ε(|Xλ(s)|2−1)Xλ(s), Xλ(s)dW (s)〉−1

=

∫ t

r

〈ϕ′ε(|X(s)|2−1)X(s), X(s)dW (s)〉−1, P -a.s.

(2.10)

To prove (2.10) we note that

E
∣∣∣∣∫ t

r

〈ϕ′ε(|Xλ(s)|2−1)Xλ(s), Xλ(s)dW (s)〉−1 −
∫ t

r

〈ϕ′ε(|X(s)|2−1)X(s), X(s)dW (s)〉−1

∣∣∣∣2

=
(1−m)2

4
E
∫ t

r

∞∑
k=1

µ2
k

∣∣∣∣∣(|Xλ(s)|2−1 + ε2)−
m+1

2 〈Xλ(s), Xλ(s)ek〉−1

−(|X(s)|2−1 + ε2)−
m+1

2 〈X(s), X(s)ek〉−1

∣∣∣∣∣
2

ds ≤ (1−m)2

2
(J1 + J2),
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where

J1 = E
∫ t

r

∞∑
k=1

µ2
k

∣∣∣(|Xλ(s)|2−1 + ε2)−
m+1

2 − (|X(s)|2−1 + ε2)−
m+1

2

∣∣∣2
×|〈Xλ(s), Xλ(s)ek〉−1|2ds

and

J2 ≤ E
∫ t

r

∞∑
k=1

µ2
k(|X(s)|2−1 + ε2)−(m+1) |〈X(s), X(s)ek〉−1 − 〈Xλ(s), Xλ(s)ek〉−1|2.

λ

Taking into account that Xλ → X in L2(Ω;C([0, T ];H)), (2.10) follows.
Now we note that the integral inequality (2.7) by Itô’s rule product implies

e−C
∗(1−m)t|X(t)|1−m−1 + ρ(1−m)γm+1

∫ t

r

e−C
∗(1−m)s1l|X(s)|−1>0 ds

≤ e−C
∗(1−m)r|X(r)|1−m−1

+(1−m)

∫ t

r

e−C
∗(1−m)s〈|X(s)|−(m+1)

−1 X(s), X(s)dW (s)〉−1,

P-a.s., r < t <∞.

(2.11)

This clearly implies that the process

t 7→ e−C
∗(1−m)t|X(t)|1−m−1 ,

is an {Ft}- supermartingale and therefore by a well known result (see e.g.
[21] or [18, Chapter 4, Lemma 3.19]) |X(t)|−1 = 0 for t ≥ τ .

If in (2.11) we take expectation and set r = 0 we obtain that for all t ≥ 0,

e−C
∗(1−m)tE|X(t)|1−m−1 + ρ(1−m)γm+1

∫ t

0

e−C
∗(1−m)sP(τ > s) ds ≤ |x|1−m−1 .

This yields

P(τ > t) ≤
(
ρ(1−m)γm+1

∫ t

0

e−C
∗(1−m)s ds

)−1

|x|1−m−1 , ∀ t > 0

and (2.5) follows. This completes the proof.

14



Remark 2.2. It is easily seen that Theorem 2.1 extends to all bounded
O ⊂ Rd with d ≥ 4 if m ∈ (d−2

d+2
, 1) but we confined to 1 ≤ d ≤ 3 because

this is really the interesting case in the applications. On the other hand, the
condition d > 1

5
in 3-D seems to be merely a technical one.

In the deterministic case the finite time extinction happens at time

T =
(
ρ(1−m)γm+1

)−1 |x|1−m−1 ,

while in the present situation it seems that the probability given by formula
(2.5) is always strictly less than 1 (see the discussion below), though so far
we have not been able to prove this.

The main conclusion of Theorem 2.1 is that fast diffusion processes per-
turbed by a Gaussian multiplicative noise terminates within a finite time
with strictly positive probability which is close to 1 if the initial datum x has
small norm in H−1(O).

The extinction in finite time of the process is due to the fact that the
diffusion coefficient |X|m−1 is large for small concentration X and so causes
a faster speed of mass. As a matter of fact the finite time extinction in the fast
diffusion equation (1.1) is due to a loss of mass during the diffusion process.
In fact if we apply Itô’s formula in (1.1) to the function x 7→ ϕ(x) ≡ 1 we get
(formally, but this can be proven rigorously by a regularization procedure)∫

O

X(t, ξ)dξ +

∫ t

0

∫
∂O

∂

∂ν
Xm(s, ξ)dσ ds

=

∫
O

x(ξ)dξ +
∞∑
k=1

µk

∫ t

0

∫
O

X(s, ξ)ek(ξ)dβk(s), ∀ t ≥ 0, P-a.s.

At time t the loss of mass is just

R(t, ω) = −
∫ t

0

∫
∂O

∂

∂ν
Xm(s, ξ)dσ ds

+
∞∑
k=1

µk

∫ t

0

∫
O

X(s, ξ)ek(ξ)dβk(s), ∀ t ≥ 0, P-a.s.

(Here ν is the exterior normal to O and the integral
∫
∂O

∂
∂ν
Xm(s, ξ)dσ should

be taken in the distributional sense.)
Of course, the process terminates in t = τ if R(t) ≥ |x|1 and so, Theorem

2.1 amounts to saying that the probability that this happens before time T
is estimated by (2.5). The expression of R explains why, contrary to the
deterministic case, one cannot expect this probability to be one for some
finite time T .
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Remark 2.3. In a slightly weaker form Theorem 2.1 was formulated and its
proof outlined in [9].

3 Finite time extinction for the stochastic self-

organized criticality equation

We consider here equation (1.1) where Ψ is given by (1.6), that is
dX(t)− ρ∆ sign(X(t))dt−∆ν(X(t))dt = X(t) dW (t), in (0,∞)× O,

ρ sign(X(t)) + ν(X(t)) = 0, on (0,∞)× ∂O,

X(0) = x, in O,

(3.1)

where ρ > 0, ν is a maximal monotone graph satisfying (2.1) such that
ν(0) ∈ 0 and sign is defined by (1.7). Since the mapping x 7→ ρ sign(x)+ν(x)
is multivalued, equation (3.1) and the boundary condition are understood to
be satisfied by a section η ∈ ρ sign(x) + ν(x) as specified in Definition 1.3.

Equation (3.1) is referred to a stochastic self-organized citicality equation
(SOC) and it is generally accepted as a mathematical model in a large variety
of physical systems which develop a spontaneous mechanism to reach critical
states. The standard SOC is the so-called sand-pile model due to Bak, Tang
and Wiesenfeld [2], [3] and likewise the fast diffusion equation (3.1) is a
nonlinear diffusion equation with singularity in the diffusion coefficient and
this is the source of finite time extinction phenomenon of the process X =
X(t). As seen earlier in Section 1, (3.1) can be viewed as a super fast diffusion
equation.

Here we briefly describe two results of this type already studied in [10],
[12]. We assume everywhere in the following that ν is a maximal monotone
graph possibly multivalued which satisfies Hypothesis 1.2.

Theorem 3.1. Assume that d = 1. Let τ = inf{t ≥ 0 : |X(t)|−1 = 0}.
Then for each t > 0 we have

P(τ ≤ t) ≥ 1− |x|−1

(
ργ

∫ t

0

e−C
∗sds

)−1

(3.2)

where
γ = inf{|x|1 |x|−1

−1 : x ∈ L1(O)}
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and

C∗ =
1

2

∞∑
k=1

µ2
kλ

2
k

In particular, if |x|−1 <
ργ
C∗

then P(τ <∞) > 0.

Proof. We proceed as in the proof of Theorem 2.1, namely, we first prove the
inequality

|X(t)|−1ργ

∫ t

r

1l{|X(s)|−1>0} ds ≤ |X(r)|−1 + C∗
∫ t

r

|X(s)|−1 ds

+

∫ t

r

〈|X(s)|−1X(s), X(s)dW (s)〉−1, P-a.s., r < t <∞.

(3.3)

To this end we apply Itô’s formula in equation (1.30) to the function ϕε(x) =
(|x|2−1 + ε2)1/2 and obtain as in the previous case

ϕε(|Xλ(t)|2−1) +

∫ t

r

(|Xλ(s)|2−1 + ε2)−
1
2 〈(Ψλ + λ)(Xλ(s)), Xλ(s)〉2 ds

= ϕε(|Xλ(r)|2−1) +
1

2

∞∑
k=1

µ2
k

∫ t

r

|Xλ(s)ek|2−1(|Xλ(s)|2−1 + ε2)− 〈Xλ(s), Xλ(s)ek〉−1

(|Xλ(s)|2−1 + ε2)
3
2

ds

+

∫ t

r

〈Xλ(s), Xλ(s)dW (s)〉−1

(|Xλ(s)|2−1 + ε2)
1
2

, t ≥ r,

and letting λ → 0 we obtain by virtue of Theorem 1.4(iv), by the same
arguments as in the proof of Theorem 2.1, that P-a.s.

ϕε(|X(t)|2−1) + ρ

∫ t

r

(|X(s)|2−1 + ε2)−
1
2 |X(s)|2−1, ds

≤ ϕε(|X(t)|2−1) +
1

2

∞∑
k=1

µ2
k

∫ t

r

|X(s)ek|2−1(|X(s)|2−1 + ε2)− 〈X(s), X(s)ek〉−1

(|X(s)|2−1 + ε2)
3
2

ds

+

∫ t

r

〈X(s), X(s)dW (s)〉−1

(|X(s)|2−1 + ε2)
1
2

, t ≥ r, P-a.s.

Now taking into account that γ|x|−1 ≤ |x|1 and letting ε→ 0 we obtain (3.3)
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as claimed. By (3.3) and Itô’s product rule we get

e−C
∗t|X(t)|−1 + ργ

∫ t

r

e−C
∗s1l{|X(s)|−1>0} ds ≤ e−C

∗r|X(r)|−1

+

∫ t

r

e−C
∗s〈|X(s)|−1

−1X(s), X(s)dW (s)〉−1, P-a.s., r < t <∞.

(3.4)

This implies that the process t 7→ e−C
∗(1−m)t|X(t)|−1, is an {Ft}- super-

martingale and so, |X(t)|−1 = 0 for t ≥ τ . Then taking expectation in (3.4)
and setting r = 0 we find that

e−C
∗tE|X(t)|−1 + ργ

∫ t

0

e−C
∗sP(τ > s) ds ≤ |x|−1, P-a.s., t > 0.

The latter clearly implies (3.2) thereby completing the proof.

For technical reasons (the Sobolev embedding Theorem), Theorem 3.1 is
confined to 1-D case. We present below an asymptotical extinction result
which works in all dimensions d.

Remark 3.2. By the previous proof it is easily seen that Theorem 3.1 re-
mains true for more general equations of the form

dX −∆Ψ(X)dt = XdW (t),

where Ψ is a maximal monotone graph satisfying (2.1) and such that [−ρ, ρ] ⊂
Ψ(0).

3.1 Asymptotic extinction to SOC

Theorem 3.3. Let x ∈ L4(O), d = 1, 2, 3, x ≥ 0 and ν = 0. Then the
solution X to equation (3.1) satisfies X ≥ 0, a.e. (0,∞)× O × Ω and

lim
t→∞

∫
O

X(t, ξ)dξ = l <∞, P-a.s., (3.5)

∫ ∞
0

m(O \ O t
0)dt <∞, P-a.s., (3.6)

where m is the Lebesgue measure and

O t
0 = {ξ ∈ O : X(t, ξ) = 0}, t ≥ 0. (3.7)
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By (3.7) it follows that for “almost all” sequences tn → ∞ we have
m(O \ O tn

0 ) → 0. Roughly speaking this means that for t large enough
X(t, ξ) = 0 on a set O t

0 which differs from O by a set of small Lebesgue
measure. In other words, for t large enough the non critical zone O \ O t

0 of
X(t) is “arbitrarily small”. (3.5) means that the total mass associated with
the process X(t) is P-a.s. convergent as t → ∞. One might suspect that
l = 0 (as it happens in deterministic case [5]) and we shall see that this is
indeed the case for a special form of the Wiener process W (t).

We now prove Theorem 3.3.

Proof. Since the complete proof of the theorem is given in work [12] here we
confine ourselves to sketch it and we refer to [12] for details.

We come back to the approximating equation (1.30) where Ψ = ρ sgn
and show first via a standard martingale integral inequality that for each
T > 0

E sup
t∈[0,T ]

|X(t)|22 ≤ CT |x|22. (3.8)

(The details are omitted.)
Next we consider a function ϕλ ∈ C3

b (R) such that ϕλ(0) = 0 and
ϕ′λ(r) = r

λ
for |r| ≤ λ, ϕ′λ(r) = 1 + λ for |r| ≥ 2λ

ϕ′λ(r) = −(1 + λ) for |r| ≤ −2λ, 0 ≤ ϕ′′λ(r) ≤ C
λ
,

(3.9)

for all r ∈ R and some C > 0.
It is easily seen that ϕλ is a smooth approximation of the function r 7→ |r|

and

|ϕ′λ(r)− (sign)λ(r)| ≤ Cλ, ∀ r ∈ R, λ > 0, (3.10)

where (sign)λ is the Yosida approximation of the sign graph (1.7), i.e. Ψλ =
ρ(sign)λ.

Next we set Y ε
λ := (1 + εA)−1Xλ, where A = −∆, D(A) := H2(O) ∩

H1
0 (O), ε > 0 and rewrite (1.30) in terms of Y ε

λ . We obtain that
dY ε

λ + A(1 + εA)−1(Ψλ(Xλ) + λXλ)dt = (1 + εA)−1XλdW (t), in (0,∞)× O,

Ψλ(Xλ)) + λXλ = 0, on (0,∞)× ∂O,

Y ε
λ (0) = (1 + εA)−1x, in O.

(3.11)
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The process t 7→ Y ε
λ (t) is H1

0 (O)-valued and continuous on [0, T ] and so,
applying Itô’s formula in (3.11)and letting ε→ 0, yields∫

O

ϕλ(Xλ)dξ +

∫ t

0

∫
O

∇(Ψλ(Xλ) + λXλ) · ∇ϕ′λ(Xλ)ds dξ

=

∫
O

ϕλ(x)dξ +
∞∑
k=1

µ2
k

∫ t

0

∫
O

ϕ′′λ(Xλ)|(Xλek)|2dξ ds

+

∫ t

0

〈ϕ′λ(Xλ), XλdW (s)〉2.

(3.12)

We also note that by (3.9) we have

∞∑
k=1

µ2
k

∫ t

0

∫
O

ϕ′′λ(Xλ)|(Xλek)|2dξ ds

≤ 4Cλ
∞∑
k=1

µ2
k

∫ t

0

∫
O

1lλ(s, ξ)dξ ds,

(3.13)

where 1lλ is the characteristic function of the set

{(s, ξ, ω) ∈ (0,∞)× O × Ω : 0 ≤ Xλ(s, ξ, ω) ≤ 2λ}.

It follows also that

lim
λ→0

∫
O

ϕλ(Xλ(t, ξ))dξ =

∫
O

X(t, ξ)dξ, weakly in L2(Ω), ∀ t ≥ 0. (3.14)

We set

Iλ(t) =

∫ t

0

∫
O

∇(Ψλ(Xλ) + λXλ) · ∇ϕ′λ(Xλ)dξ ds,

Mλ(t) =

∫ t

0

〈ϕ′λ(Xλ), Xλ)dW 〉2 =
∞∑
k=1

∫ t

0

〈ϕ′λ(Xλ), Xλek)dβk(s)〉2

and so we rewrite (3.12) as∫
O

ϕλ(Xλ(t))dξ + Iλ(t)

=

∫
O

ϕλ(x)dξ +
∞∑
k=1

µ2
k

∫ t

0

∫
O

ϕ′′λ(Xλ(t))|(Xλ(t)ek)|2dξ ds+Mλ(t).

(3.15)
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Taking into account that

Xλ → X, ϕ′λ(Xλ)→ η ∈ ρ sign x, weakly in L2((0,∞)× O × Ω),

it follows after some calculations (see [12]) that P-a.s.

lim
λ→0

Mλ(t) = M(t) =

∫ t

0

〈η,X(s)dW (s)〉2, ∀ t ≥ 0 (3.16)

Then by (3.13)–(3.16) we see that∫
O

ϕ(X(t, ξ))dξ + Ĩ(t) =

∫
O

ϕ(x)dξ +M(t), ∀ t ≥ 0, (3.17)

where

Ĩ(t) = w − lim
λ→0

Iλ(t) in L2(Ω). (3.18)

We set

Z(t) =

∫
O

ϕ(X(t, ξ))dξ

and note that it is a nonnegative semimartingale with EZ(t) < ∞,∀ t ≥ 0.
Since the function t 7→ X(t) is a weakly continuous L2(O)-valued function it
follows also that t 7→ Z(t) is continuous. Then we may define a continuous

version I(t) of Ĩ(t)

I(t) = Z(0)− Z(t) +M(t), ∀ t ≥ 0 (3.19)

and it follows also that I is a nondecreasing process on (0,∞). Moreover
M(t) is a continuous semimartingale. Then we shall apply the following
version of a martingale convergence result (see [17, page 139]).

Lemma 3.4. Let Z be a nonnegative semimartingale with EZ(t) <∞,∀ t ≥
0 and let I be a nondecreasing continuous process such that

Z(t) + I(t) = Z(0) + I1(t) +M(t), ∀ t ≥ 0, (3.20)

where M is a local martingale. Then if lim
t→∞

I1(t) <∞, P-a.s., we have

lim
t→∞

Z(t) + I(∞) <∞, P-a.s. (3.21)
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Applying Lemma 3.4 to (3.19) we infer that

lim
t→∞

∫
O

ϕ(X(t, ξ))dξ = l <∞,

exists P-a.s.
Now coming back to Iλ we see that P-a.s.

Iλ(t) ≥
∫ t

0

∫
O

∇(Ψλ(Xλ) + λXλ) · ∇ϕ′λ(Xλ)dξ ds

≥
∫ t

0

∫
O

|∇Ψλ(Xλ)|2dξ ds.

Taking into account that Ψλ(Xλ)→ η ∈ ρ sign X weakly in L2((0,∞)×O×
Ω) as λ→ 0 we infer that∫ t

0

|∇η|22 dt ≤ I(t), t ≥ 0, P-a.s.

and therefore ∫ ∞
0

|∇η|22 dt ≤ I(∞), P-a.s.

Next by the Sobolev embedding theorem we have

|η(t)|p∗ ≤ C|∇η|2, ∀ t ≥ 0,

where p∗ = 2d
d−2

for d > 2, p∗ arbitrary in [2,∞) for d = 2 and p∗ = ∞ for
d = 1. Hence∫ ∞

0

|η|2p∗ dt ≤ ∞, t ≥ 0, Pa.s. (3.22)

Taking into account that η ∈ ρ sign X a.e. in (0,∞)×O ×Ω, we have η = ρ
a.e. in {(t, ξ, ω) : X((t, ξ, ω)) >} and so (3.22) yields∫ ∞

0

(m(O \ O t
0)

2
p∗ dt <∞,

as claimed.

We shall now assume that the noise is finite dimensional,

W (t, ξ) =
N∑
k=1

µkek(ξ)βk(t), t ≥ 0, ξ ∈ O, (3.23)
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and set

µ̃(ξ)) =
N∑
k=1

µ2
ke

2
k(ξ), ξ ∈ O. (3.24)

In this case Theorem 3.3 is completed by the following asymptotic result.

Theorem 3.5. Under the assumptions of Theorem 3.3 assume further that
W is of the form (3.23). Then we have

lim
t→∞

e−W (t)X(t) = 0 in L1(O), P-a.s. (3.25)

and if µ̃(ξ) > 0 for all ξ ∈ O

lim
t→∞

X(t) = 0 in L1
loc(O), P-a.s. (3.26)

Moreover, for each compact subset K ⊂ O we have

∫
K

X(t, ξ)dξ ≤ (m(K))
1
2 |x|2 exp

sup
K

(µ̃)
1
2

(
N∑
k=1

|βk(t)|

) 1
2

 e−
t
2

infK′ eµ,
(3.27)

where K ′ is any compact neighborhood of K. In particular, one has∫
K

X(t, ξ, ω)dξ ≤ (m(K))
1
2 |x|2e−ρKt, ∀ t ≥ t0(ω), ω ∈ Ω, (3.28)

for some ρK > 0.

It should be noted that the condition µ̃ > 0 on O automatically holds
if µ1 > 0 because the first eigenfunction e1 of the Laplace operator with
homogeneous boundary conditions is positive on O.

Proof. We proceed by rescaling equation (1.1) via the transformation

X(t) = eW (t)Y (t)

and so to reduce it to the random differential equation

∂Y (t)
∂t
− e−W (t)∆Ψ(eW (t)Y (t)) + 1

2
µ̃ Y (t) = 0 in (0,∞)× O

ψ(eW (t)Y (t))) ∈ H1
0 (O), ∀ t ≥ 0, P-a.s.,

Y (0) = x.

(3.29)
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(here∂Y
∂t

is taken in H−1(O).)
We first note that via the regularized equation we have that

|Y (t)|2 ≤ |x|2, ∀ P-a.s.. (3.30)

To prove this we consider the solution Yλ to approximating equation
∂Yλ
∂t
− e−W∆(Ψλ(e

WYλ) + λeWYλ)) +
1

2
µ̃ Yλ = 0 in (0,∞)× O

Yλ(0) = x.

(3.31)

and get appropriate estimates.
Now let us prove (3.25). Assume that this is not true, that is, there exists

δ > 0 such that for some {tn} → ∞

|Y (tn)|1 ≥ δ > 0, ∀ n ∈ N, (3.32)

where Y = Y (t, ω) and ω ∈ Ω is arbitrary but fixed. By estimate (3.30)
it follows that there is f ∈ L2(O) such that Y (tn) → f weakly in L2(O)
(possibly on a subsequence of {tn}.) Clearly by (3.32) we have

0 < δ ≤
∫

O

f(ξ)dξ, f ≥ 0 a.e. in O

and so f 6= 0. On the other hand, for each n ∈ N there is tn > 0 such that∣∣∣∣∫
O

Y (t, ξ)dξ −
∫

O

Y (tn, ξ)dξ

∣∣∣∣ ≤ 1

n
, ∀ t ∈ (tn − εn, tn + εn). (3.33)

By (3.6) it follows that there is a subsequence {tnk
} → ∞ and sk ∈ (tnk

−
εnk
, tnk

+ εnk
) such that∫

O

1l{X(sk)6=0} dξ = m(O \ Osk
0 )→ 0

as k →∞. Hence (selecting a further subsequence if necessary) we have

1l{X(sk)6=0} → 0, a.s. as k →∞.

Once again by (3.30) we have that X(sk) → f̃ weakly in L2(O) and this
clearly implies that Y (sk) = Y (sk)1l{X(sk) 6=0} → 0 a.e. as k → ∞ and so

f̃ = 0 a.e. This yields (see (3.33) )∫
O

f(ξ) dξ = lim
k→∞

∫
O

Y (tnk
, ξ) dξ =

∫
O

f̃(ξ) dξ = 0.
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This contradiction proves (3.25).
To prove (3.27) we consider a compact K ⊂ O and K ′ ⊂ O a compact

neighborhood of K. Choose a function µα ∈ C∞0 (O) such that 0 ≤ µα ≤ 1,
µα ≤ 1 on K and µα = 0 on O \K. We set CK = infK′ µ̃.

Multiplying (3.31) by µαYλ and integrating over O, we obtain after some
calculation, that

(µα)
1
2 |Yλ(t)|22 ≤ |(µα)

1
2x|22e−CKt +λ

∫ t

0

e−CK(t−s)ηλ(s)ds, ∀ t ≥ 0 P-a.s..

(3.34)

Then letting λ→ 0 in (3.34) we get

|(µα)
1
2Yλ(t)|22 ≤ e−CKtµα|x|22 ≤ e−CKt|x|22, ∀ t ≥ 0 P-a.s.. (3.35)

Taking into account that∫
K

X(t, ξ)dξ =

∫
K

Y (t, ξ)e−W (t)dξ, ∀ t ≥ 0 P-a.s.,

by (3.33) we obtain the desired estimate (3.27) as claimed.

Remark 3.6. It should be noted that if W is the of form (3.23), but ek ∈
C2(O) are such that |ek|∞ > 0, then inf{µ̃(ξ) : ξ ∈ O} > 0 and so in (3.28)
we may replace K by O and so (3.28) implies that

lim
t→∞

∫
O

X(t, ξ)dξ = 0, P-a.s.

and in particular

lim
t→∞

X(t, ξ)dξ = 0 a.e. in O × Ω.

3.2 Self-organized criticality and convergence to equi-
librium

Self-organized criticality (SOC) is the property of dynamical systems which
have a critical point as attractor and converges spontaneously to this point.
The standard model for SOC is the sand-pile model [2], [3], which is at the
origin of a large class of other models. If X(t, ξ), ξ ∈ O, is the state of a
system at time t and Xc = Xc(ξ) is the critical state, O can be separated in
the following three regions:

• critical region O t
0 := {ξ ∈ O : X(t, ξ) = Xc(ξ},
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• sub critical region O t
− := {ξ ∈ O : X(t, ξ) < Xc(ξ},

• super critical region O t
+ := {ξ ∈ O : X(t, ξ) > Xc(ξ},

The sub critical and super critical regions are unstable and absorbed in time
by the critical zone.

The standard sand-pile SOC is best described via cellular automaton
formalism (see [2], [3], [4] and [5]) by the equation

dX(t)− ρ∆H(X(t)−Xc)dt = (X(t)−Xc)dW (t), in (0,∞)× O,

X(0) = x, in O,

(3.36)

where H is the Heaviside function.
We have assumed here that the SOC process is perturbed by a noise

(X(t) − Xc)W (t) which is proportional to the deviation of X(t) from the
critical state Xc. (There are other SOC models described by fast or superfast
diffusion equations of the form encountered above.) It should be said that
(3.36) is more appropriate to describe the SOC processes which are always
in critical or super critical phase and so in general SOC is better described
by the equation

dX(t)− ρ∆sign (X(t)−Xc)dt 3 (X(t)−Xc)dW (t), in (0,∞)× O,

sign (X(t)−Xc) = 0, on (0,∞)× ∂O,

X(0) = x, in O,

(3.37)

to which the above asymptotic results apply neatly. In fact, by Theorem 3.1
we have

Theorem 3.7. Assume d = 1 and x,Xc ∈ L4(O) such that x ≥ XC a.e. on
O. Let τc = inf{t ≥ 0 : |X(t)−Xc|−1 = 0}. Then for each t > 0 we have

P(τc ≤ t) ≥ 1− |x−Xc|−1

(
ργ

∫ t

0

e−C
∗sds

)−1

. (3.38)

Similarly by Theorem 3.3 we have.

Theorem 3.8. Let x,Xc ∈ L4(O), d = 1, 2, 3, x ≥ Xc a.e. on O . Then we
have

lim
t→∞

∫
O

X(t, ξ)dξ = l <∞, P-a.s.
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and ∫ ∞
0

m(O \ O t
0)dt <∞, P-a.s. (3.39)

As mentioned earlier, (3.39) amounts to saying that there is a sequence
{tn} → ∞ such that with probability 1 the whole domain O is absorbed at
moment tn with the exception of a subset (supercritical) O tn

+ of Lebesgue
measure lesser than δn → 0 as n→∞.

Theorem 3.5 has a similar interpretation in terms of SOC processes X(t)
given by (3.37). In particular, by (3.25), (3.26) we have

lim
t→∞

e−W (t)(X(t)−Xc) = 0 in L1(O), P-a.s. (3.40)

and

lim
t→∞

(X(t)−Xc) = 0 in L1
loc(O), P-a.s. (3.41)

Remark 3.9. The stochastic SOC model described here by equation (3.37)
can be realized experimentally by adding grains of sand to random loca-
tions with Gaussian distributions. The result is a process obtained from the
standard sand-pile dynamics described by the cellular automata formalism
perturbed by a stochastic process

∫ t
0
(X(s) − Xc)dW (s). The effect of this

fluctuation is described in Theorems 3.1–3.7.
As in the case of fast diffusions (see Remark 2.2) the process X reaches

the critical state Xc in time t if the loss of mass

R1(t) = −ρ
∫ t

0

∫
∂O

∂

∂ν
sign (X(s)−Xc)dσ ds+

∫ t

0

〈(X(s)−Xc), dW (s)〉2,

is greater than |(X(s)−Xc)|1. Formula (3.38) estimates the probability that
this happens before time t.
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