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We survey recent results related to uniqueness problems for parabolic equations for mea-

sures. We consider equations of the form ∂tμ = L∗μ for bounded Borel measures on

R
d×[0, T ), where L is a second order elliptic operator, for example, Lu = Δxu+(b,∇xu),

and the equation is understood as the identity

∫
(∂tu+ Lu) dμ = 0

for all smooth functions u with compact support in R
d × (0, T ). Our study are moti-

vated by equations of such a type, namely, the Fokker–Planck–Kolmogorov equations for

transition probabilities of diffusion processes. Solutions are considered in the class of

probability measures and in the class of signed measures with integrable densities. We

present some recent positive results, give counterexamples, and formulate open problems.

Bibliography: 34 titles.

1 Introduction

This paper is a survey of recent results on the uniqueness of probability and integrable solu-

tions to the Cauchy problem for the Fokker–Planck–Kolmogorov equation. We give sufficient

uniqueness conditions and construct examples of nonuniqueness.
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Let T > 0, and let

Lu(x, t) =
d∑

i,j=1

aij(x, t)∂xi∂xju(x, t) +
d∑
i=1

bi(x, t)∂xiu(x, t),

where aij andbi are Borel functions on R
d × (0, T ) such that A = (aij)1�i,j�d is a nonnegative

symmetric matrix.

We say that a Borel locally finite measure μ on R
d × (0, T ) (possibly signed) is defined by

a family of Borel locally finite measures (μt)0<t<T on R
d if for every bounded Borel set B the

mapping t �→ μt(B) is measurable and μ(dxdt) = μt(dx) dt. We will deal with measures of

bounded variation. The variation of μ is denoted by |μ|.
A Borel locally finite measure μ on R

d× (0, T ) defined by a family of measures (μt)0<t<T on

R
d satisfies the Fokker–Planck–Kolmogorov equation

∂tμ = L∗μ (1.1)

if aij , bi ∈ L1
loc(|μ|,Rd × (0, T )) and for every function u ∈ C∞

0 (Rd × (0, T ))

T∫

0

∫

Rd

[
∂tu(x, t) + Lu(x, t)

]
dμt dt = 0.

If a solution μ is given by a density � with respect to the Lebesgue measure on R
d × (0, T ),

then Equation (1.1) can be written as an equation for the density:

∂t� = ∂xi∂xj (a
ij�)− ∂xi(b

i�).

Throughout the paper, we assume that A satisfies the following condition:

(H1) for every ball U ⊂ R
d there exist numbers γ = γ(U) > 0 and M =M(U) > 0 such that

(A(x, t)y, y) � γ|y|2, ‖A(x, t)‖ �M

for all (x, t) ∈ U × [0, T ] and y ∈ R
d.

In the case of nonnegative measures, condition (H1) ensures the existence of densities (cf. [1]).

Let ν be a locally finite Borel measure on R
d. We say that a Borel locally finite measure

μ defined by a family of Borel locally finite measures (μt)0<t<T satisfies the initial condition

μ
∣∣
t=0

= ν if for every ζ ∈ C∞
0 (Rd)

lim
t→0

∫

Rd

ζ(x) dμt =

∫

Rd

ζ(x) dν.

Thus, we study the uniqueness problem for solutions to the Cauchy problem

∂tμ = L∗μ, μ
∣∣
t=0

= ν, (1.2)

and we are interested in the two classes of solutions: probability and integrable.
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A probability solution is a solution μ defined by a family of probability measures (μt)0<t<T ,

i.e., μt � 0 and μt(R
d) = 1. The set of all probability solutions μ = μt(dx) dt such that

|b| ∈ L2(μ,U × [0, T ]) for every ball U ⊂ R
d is denoted by Pν .

An integrable solution is a solution μ defined by a family of finite measures (μt)0<t<T such

that supt ‖μt‖ <∞. If a measure μ is given by a density � with respect to the Lebesgue measure

on R
d × (0, T ), then the latter condition can be written as

sup
t∈(0,T )

∫

Rd

|�(x, t)| dx <∞.

The set of all integrable solutions μ = μt(dx) dt such that for every ball U ⊂ R
d one has

|b| ∈ Lp(|μ|, U × [0, T ]) for some p > d+ 2 is denoted by Iν .

We emphasize that, in the definitions of the classes Pν and Iν , we assume that

|b| ∈ L2(μ,U × [0, T ])

in the case of a probability solution and

|b| ∈ Lp(|μ|, U × [0, T ]) with p > d+ 2

in the case of an integrable solution. So, if the drift b is bounded on U × [0, T ], these conditions

are automatically fulfilled. Moreover, in place of these conditions, one can assume that the

solution μ is given by a density � and � ∈ Lr(U × [0, T ]), b ∈ Ls(U × [0, T ]), where 2/r+1/s = 1

in the case of the class Pν and p?r + 1/s = 1 in the case of the class Iν .

We present several methods of proving the fact that the set Pν consists of at most one ele-

ment. In addition, we construct an example of an operator L with unit matrix A and an infinitely

differentiable vector field b such that the Cauchy problem (1.2) has an infinite-dimensional sim-

plex of probability solutions. We also find sufficient conditions for the uniqueness of integrable

solutions. In particular, we show that the uniqueness conditions for the class Iν differ essentially

from those for the class Pν . For example, let A = I (the unit matrix), and let b be a locally

bounded vector field. Then for the uniqueness of a probability solution to the Cauchy problem

it suffices to have a function V ∈ C2(Rd) with lim
|x|→∞

V (x) = +∞ and |∇V (x)| � C1 such that

LV (x, t) � C2, while for the uniqueness of an integrable solution the inequality LV (x, t) � −C2

is sufficient. In the case of a radial function V , such conditions actually mean that for the

uniqueness of a probability solution the quantity (b(x, t), x) should not tend too quickly to +∞
and for the uniqueness of an integrable solution (b(x, t), x) should not tend too quickly to −∞.

Such a function V is called a Lyapunov function.

Conditions involving Lyapunov functions are well known in probability theory, for example,

the Hasminskii condition [2] for the existence of global solutions to stochastic equations with

unbounded coefficients. Sufficient conditions for the existence of a probability solution to the

Cauchy problem (1.2) in terms of Lyapunov functions were obtained in [3, 4] and sufficient

conditions for uniqueness were found in [5, 6]. In [7, 8], sufficient conditions for the uniqueness

in the class C([0, T ], L1(Rd)) were expressed in terms of the behavior of the function (b(x), x)

as |x| → ∞. In [9], sufficient conditions for the uniqueness of integrable solutions were obtained

in terms of Lyapunov functions.

The uniqueness problem in various classes for solutions to parabolic equations, in particular,

for the Fokker–Planck–Kolmogorov equation was actively studied for several decades. In the
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classical works of Tychonoff [10] and Widder [11], the uniqueness of solutions to the Cauchy

problem for the heat equation was established in the class of functions growing not faster than

eC|x|2 and in the class of nonnegative functions. In addition, some examples of nonuniqueness

were constructed there. Sufficient conditions for uniqueness in the classes of integrable solutions

and nonnegative solutions and the Tychonoff class for general second order parabolic equations

in divergence form were obtained by Aronson and Besala [12, 13] and, in nondivergence form,

by Friedman (cf. for example, [14]). The existence and uniqueness of integrable solutions to

the Cauchy problem for the Fokker–Planck–Kolmogorov equation was studied in [7, 8, 15, 16].

Surveys of recent results on the uniqueness of nonnegative solutions to the Cauchy problem

for parabolic equations can be found in [17, 18]. The papers [15, 19, 20] are devoted to the

Fokker–Planck–Kolmogorov equation with degenerate matrices A.

In this paper, survey the recent results obtained in [5, 6, 9] and give new sufficient conditions

for the uniqueness of probability solutions in the case where the functions aij belong to the class

VMOx.

In some papers (cf., for example, [16]), the definition of a solution μ = μt(dx) dt (probability

or integrable) to the Cauchy problem somewhat differs from the above definition. Namely, it is

assumed that for every function ζ ∈ C∞
0 (Rd) the mapping

t �→
∫

Rd

ζ(x) dμt

is continuous on [0, T ) and for every t ∈ [0, T )

∫

Rd

ζ(x) dμt =

∫

Rd

ζ(x) dν +

t∫

0

∫

Rd

Lζ(x, s) dμs ds.

Certainly, in this case, one has to assume that aij , bi ∈ L1(|μ|, U × [0, T ]) for every ball U . The

following lemma clarifies the relation between these two definitions of a solution.

Lemma 1.1. Let μ = μt(dx) dt be a solution to the Cauchy problem (1.2) such that

sup
t∈(0,1)

‖μt‖ <∞.

Suppose that aij , bi ∈ L1(|μ|, U × [0, T ]) for every ball U ⊂ R
d. Then for every function ϕ ∈

Cb(R
d × [0, T ])

⋂
C1,2
b (Rd × (0, T ))

∫

Rd

ϕ(x, t) dμt =

∫

Rd

ϕ(x, 0) dν +

t∫

0

∫

Rd

∂tϕ+ Lϕdμs ds for a.a. t ∈ [0, T ]. (1.3)

Proof. It suffices to prove this equality in the case ϕ(x, t) = 0 for |x| > R for some numbers

R > 0 and all t ∈ [0, T ]. Let η ∈ C∞
0 ((0, T )). By definition,

1∫

0

∫

Rd

∂t(ϕη) + L(ϕη) dμt dt = 0.

4



Thus,

−
1∫

0

η′(t)
∫

Rd

ϕ(x, t) dμt dt =

1∫

0

η(t)

∫

Rd

∂tϕ+ Lϕdμt dt.

Therefore, the function

t→
∫

Rd

ϕ(x, t) dμt

has an absolutely continuous version and

d

dt

∫

Rd

ϕ(x, t) dμt =

∫

Rd

∂tϕ+ Lϕdμt.

Then for some number C ∈ R

∫

Rd

ϕ(x, t) dμt = C +

t∫

0

∫

Rd

∂sϕ+ Lϕμs ds for a.a. t ∈ [0, T ].

We observe that ϕ(x, t) converges uniformly to ϕ(x, 0) as t→ 0. In addition, we have

lim
t→0

∫

Rd

ϕ(x, 0)μt( dx) =

∫

Rd

ϕ(x, 0) ν(dx).

Therefore,

C =

∫

Rd

ϕ(x, 0) dν.

Remark 1.2. Let I be the set of all points t for which the equality (1.3) holds. Then for

all τ, t ∈ I, τ < t,

∫

Rd

ϕ(x, t) dμt =

∫

Rd

ϕ(x, τ) dμτ +

t∫

τ

∫

Rd

∂tϕ+ Lϕdμs ds.

Indeed, it suffices to subtract the equality (1.3) for τ from an analogous equality for t.

Remark 1.3. If ϕ( · , t) = ψ ∈ C2
b (R

d) for all t ∈ [0, T ], then we can write (1.3) as follows:

∫

Rd

ψ(x) dμt =

∫

Rd

ψ(x) dν +

t∫

0

∫

Rd

Lψ(x, s) dμs ds for a.a. t ∈ [0, T ]. (1.4)

Moreover, if Jμψ is the set of all points t ∈ [0, T ] where the equality (1.4) holds, then Jμψ is a full

measure set in [0, T ] and the following mapping is continuous on Jμψ :

t �→
∫

Rd

ψ(x)μt(dx).
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Remark 1.4. Let T ∈ Jμϕ( · ,T ). Then the equality (1.3) is fulfilled with t = T . Indeed,

ϕ(x, t) converges uniformly to ϕ(x, T ) as t → T . Let I be the set of all points t ∈ [0, T ] where

the equality (1.3) holds. Let tn ∈ Jμϕ( · ,T )
⋂
I, and let lim

n→∞ tn = T . Then

lim
n→∞

∫

Rd

ϕ(x, tn) dμtn =

∫

Rd

ϕ(x, T ) dμT

and the equality (1.3) is fulfilled for every tn. Letting n→ ∞, we obtain (1.3) with t = T .

The Fokker–Planck–Kolmogorov equation arises naturally in the study of diffusion processes.

We consider several examples.

Example 1.5 (the classical definition of a diffusion). The analytic theory of diffusion pro-

cesses goes back to the celebrated work of Kolmogorov [21], where differential equations for

transition densities were investigated. Let U(x, ε) = {y : |x − y| < ε}, and let V (x, ε) =

{y : |x−y| > ε}. We recall that a Markov process in R
d with transition probability P (s, x, t, B)

is called a diffusion if the following conditions are fulfilled (cf., for example, [22]):

(i) for all ε > 0, t � 0 and x ∈ R
d

lim
h→0

h−1P (t, x, t+ h, V (x, ε)) = 0,

(ii) for some ε > 0 and all t � 0, x ∈ R
d

lim
h→0

h−1

∫

U(x,ε)

(y − x)P (t, x, t+ h, dy) = b(x, t),

(iii) for some ε > 0 and all t � 0, x, z ∈ R
d

lim
h→0

h−1

∫

U(x,ε)

(y − x, z)2P (t, x, t+ h, dy) = 2(A(x, t)z, z).

Suppose that all the listed limit relationships are fulfilled locally uniformly in x and the

functions aij , bi are locally bounded. Then it is known (cf., for example, [22, Chapter 1, §1,
Theorem 7]) that the transition probabilities satisfy the Fokker–Planck–Kolmogorov equation

(1.1) in the above sense. Let us recall the proof. Let f ∈ C∞
0 (Rd). Then

d

dt

∫

Rd

f(y)P (s, x, t, dy) = lim
h→0

h−1

( ∫

Rd

f(y)P (s, x, t+ h, dy)−
∫

Rd

f(z)P (s, x, t, dz)

)
.

Applying the Kolmogorov–Chapman equation, we get

d

dt

∫

Rd

f(y)P (s, x, t, dy) = lim
h→0

∫

Rd

P (s, x, t, dz)h−1

∫

Rd

(f(y)− f(z))P (t, z, t+ h, dy).

Using conditions (i)–(iii) and the Taylor expansion for f , we obtain the equality

lim
h→0

h−1

∫

Rd

(f(y)− f(z))P (t, z, t+ h, dy) = aij(z, t)∂zi∂zjf(z) + bi(z, t)∂zif(z).
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Since the convergence as h→ 0 is uniform in z, we have

d

dt

∫

Rd

f(y)P (s, x, t, dy) = lim
h→0

∫

Rd

(
aij(z, t)∂zi∂zjf(z) + bi(z, t)∂zif(z)

)
P (s, x, t, dz).

So, we have proved that the transition probabilities satisfy Equation (1.1). In addition, condition

(i) yields that for every function ζ ∈ C∞
0 (Rd)

lim
h→0

∫

Rd

ζ(y)P (s, x, s+ h, dy) = ζ(x),

i.e., P (s, x, t, dy) satisfies the condition P
∣∣
s=t

= δx, where δx is the Dirac measure at x ∈ R
d.

Let ν be a finite Borel measure on R
d, and let

μt(dx) =

∫

Rd

P (s, y, t, dx)ν(dy).

It is readily verified that the measure μ = μt(dx) dt satisfies the Cauchy problem for Equation

(1.1) with the initial condition μ
∣∣
t=s

= ν.

One can consider diffusion processes in a broader sense, for instance, almost surely continuous

Markov processes in R
d such that their transition probabilities P (s, x, t, dy) satisfy Equation

(1.1) with the initial condition P
∣∣
t=s

= δx. Such processes are called quasidiffusions.

Let us note that since the distribution of a Markov process is completely determined by its

initial distribution and transition probabilities, the uniqueness of a probability solution to the

Cauchy problem for the Fokker–Planck–Kolmogorov equation implies the weak uniqueness of a

diffusion process whose transition probabilities solve the Fokker–Planck equation.

Example 1.6 (martingale problems). Assume that the coefficients aij and bi are locally

bounded. Let C([0,+∞)) be the space of continuous functions on [0,+∞). Let F s
t denote the

minimal σ-algebra containing all sets of the form {x ∈ C([0,+∞)) : x(τ) ∈ B}, where τ ∈ [s, t]

and B is a Borel set in R
d. Let F s∞ denote the minimal σ-algebra containing all classes F s

t with

t � s. Following [23], we say that a probability measure Ps,z on the space C([0,+∞)), where

(z, s) ∈ R
d × [0, T ), is a solution to the martingale problem for the operator L if

(i) Ps,z(x(s) = z) = 1,

(ii), for every function f ∈ C∞
0 (Rd) the expression

f(x(t))− f(x(s))−
t∫

s

Lf(x(τ)) dτ

is a martingale with respect to (Ps,z,F
s
t ).

Let Es,z denote the expectation with respect to the measure Ps,z. By the definition of Ps,z
and the properties of martingales, for every t ∈ [s, T ] we have

Es,zf(x(t)) = Es,zf(x(s)) +

t∫

s

Es,zLf(x(τ)) dτ.
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We set μt(B) = Ps,z(x : x(t) ∈ B). Then the change of variables formula yields

∫

Rd

f(x) dμt =

∫

Rd

f(x) dμs +

t∫

s

∫

Rd

Lf(x, τ) dμτ dτ.

Note also that μs = δz. Thus, the measure μ = μt(dx) dt satisfies the Cauchy problem for

Equation (1.1) with the initial condition μ
∣∣
t=s

= δz.

The proof of the uniqueness of a solution to the martingale problem consists usually of two

steps. At the first step, for a sufficiently large class of functions f , for example, f ∈ C∞
0 (Rd),

one proves the equality

E
1
s,zf(x(t)) = E

2
s,zf(x(t)) (1.5)

for every t ∈ [s, T ], where E
1
s,z and E

1
s,z are the expectations with respect to two solutions to

the martingale problem P 1
s,z and P

2
s,z. The equality (1.5) is equivalent to the coincidence of P 1

s,z

and P 2
s,z on all sets of the form {x : x(t) ∈ B}, where B is an arbitrary Borel set and t ∈ [s, T ].

The second step is concerned with deriving the equality P 1
s,z = P 2

s,z from (1.5).

We observe that the equality (1.5) is equivalent to the equality of the solutions μ1 and μ2 to

the Cauchy problem for Equation (1.1) with the initial condition μ
∣∣
t=s

= δz corresponding to

two solutions to the martingale problem P 1
s,z and P 2

s,z. So, the proof of (1.5) often reduces to

that of the uniqueness of a probability solution to the Cauchy problem for the Fokker–Planck–

Kolmogorov equation. Moreover, as shown in [16] in the case of bounded coefficients, any

probability solution to Equation (1.5) is given by some solution to the martingale problem.

If the coefficients are unbounded, the situation becomes more complicated. If one derives

the uniqueness of a probability solution to the Fokker–Planck–Kolmogorov equation from the

uniqueness of a solution to the martingale problem, then it is necessary to prove, at least

under the same assumptions providing the uniqueness for the martingale problem, that every

solution to the Cauchy problem is generated by a solution to the martingale problem. It is also

clear that if we have managed to prove the uniqueness for the Cauchy problem under the same

assumptions under which it holds for the martingale problem, then a unique probability solution

will be automatically generated by a solution to the martingale problem.

Finally, we note that the proof of the well-posedness of the martingale problem with un-

bounded coefficients often employs the following observation (cf. [23, Theorem 10.1.1]), which,

in a sense, localizes the uniqueness problem.

Suppose that Ω is a domain in R
d × [0,+∞), (s, z) ∈ Ω, and τ = inf{t � s : (t, x(t)) 	∈ Ω}.

Let the martingale problem with bounded coefficients aij and bi be well posed, and let Ps,z be

its solution. Let functions aij and b
i
be locally bounded. If aij = aij and b

i
= bi on Ω and

the measure P s,z is some solution to the martingale problem with coefficients aij and b
i
, then

Ps,z = P s,z on F s
τ , where F s

τ is the σ-algebra of events A ∈ F s∞ such that A
⋂{τ � t} ∈ F s

t .

There is no analog of this property for probability solutions to the Fokker–Planck–Kolmogorov

equation, which complicates finding sufficient conditions for the uniqueness of solutions to the

Cauchy problem.

Example 1.7 (kernels of semigroups). Suppose that aij and bi depend only on x and belong

to the class C∞(Rd). Suppose also that the matrix A = (aij) satisfies condition (H1). Following

[24] (cf. also [25]), we construct a semigroup on Cb(R
d) whose generator extends L. We set

UR = U(0, R). It is well known that for every function f ∈ Cb(R
d) there exists a unique
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function uR such that
∂tuR = LuR, x ∈ UR, t > 0,

uR(x, t) = 0, x ∈ ∂UR, t > 0,

uR(x, 0) = f(x), x ∈ UR.

Moreover, the function uR is given by a semigroup {TRt }t�0 on Cb(UR), i.e., uR = TRt f . Ac-

cording to the maximum principle, maxx |uR(x, t)| � maxx |f(x)| and, if f � 0, then uR1(x, t) �
uR2(x, t) whenever x ∈ UR and R < R1 < R2. We set

Ttf(x) = lim
R→∞

uR(x, t).

As is shown in [24, 25], the constructed semigroup possesses the following properties. Let

f ∈ Cb(R
d) and u(x, t) = Ttf(x). Then

(i) u ∈ C∞(Rd × (0,+∞)) and ∂tu = Lu,

(ii) Ttf(x) → f(x) as t→ 0 uniformly on compacts sets in R
d,

(iii) if f ∈ C∞
0 (Rd), then ∂tTtf = TtLf ,

(iv) there exists a positive function p ∈ C∞(Rd × R
d × (0,+∞)) such that

Ttf(x) =

∫

Rd

p(x, y, t)f(y) dy

By these properties, the function (y, t) → p(x, y, t) is a subprobability kernel and satisfies

the equation ∂tp = L∗p. Let ν be a finite Borel measure on R
d. Then the measure μ = μt(dx) dt,

where

μt(B) =

∫

Rd

ν(dx)

∫

B

p(x, y, t) dy,

is a solution to the Cauchy problem for Equation (1.1) with the initial condition μ
∣∣
t=0

= ν.

Indeed, let ϕ ∈ C∞
0 (Rd × (0,+∞)). Then

+∞∫

0

∫

Rd

[
∂tϕ+ Lϕ

]
dμ =

∫

Rd

ν(dx)

+∞∫

0

∫

Rd

[
∂tϕ+ Lϕ

]
p(x, y, t) dy = 0.

Let ζ ∈ C∞
0 (Rd). Taking into account property (ii), we obtain

lim
t→0

∫

Rd

ζ(y)μt(dy) = lim
t→0

∫

Rd

Ttζ(x)ν(dx) =

∫

Rd

ζ(x)ν(dx).

We use the semigroup considered in this example for constructing examples of nonuniqueness.

2 Examples of Nonuniqueness

We show that the set of probability solutions may consist of several elements. It is well

known that if A ≡ 0 and the vector field b is just continuous, then the Cauchy problem may
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have more than one solution. Indeed, let b(x) = x2/3. Then the Cauchy problem for the ordinary

equation ẋ = b(x), x(0) = 0 has different solutions x1(t) = t3/3 and x2(t) = 0. The measures

δx1(t) and δx2(t) are different solutions to the corresponding Cauchy problem (1.2).

The question arises about nonuniqueness in the case A = I and b ∈ C∞(Rd× [0, T ]). It turns

out that, in this case, there is also a nonuniqueness example a construction of which is based

not on the local nonregularity of the drift b, but on the rapid growth of |b(x, t)| at infinity.
To construct such an example , we need several auxiliary results on the stationary Fokker–

Planck–Kolmogorov equation, which we present in the following three propositions.

Proposition 2.1. Let d � 2. There exists a vector field B ∈ C∞(Rd) such that the stationary

Fokker–Planck–Kolmogorov equation L∗μ = 0 with the operator L = Δ + (B(x),∇) has an

infinite-dimensional simplex of probability solutions. Any solution is given by a positive density

of the class C∞(Rd) with respect to the Lebesgue measure.

Such examples are constructed in [26]–[28]. For a survey of recent results related to the

uniqueness for the stationary Fokker–Planck–Kolmogorov equation we refer to [29].

Proposition 2.2. Assume that d � 2 and L = Δ + (B(x),∇), where B is an infinitely

differentiable vector field on R
d. Let {Tt}t�0 be the semigroup corresponding to the operator L

in Example 1.7, and let μ be an arbitrary probability solution to the equation L∗μ = 0. Then for

every nonnegative function ϕ ∈ C∞
0 (Rd)

∫

Rd

Ttϕdμ �
∫

Rd

ϕdμ.

Proof. Let ϕ ∈ C∞
0 (Rd), ϕ � 0, and let a number R > 0 be such that supp ϕ ⊂ UR, where

UR is the ball U(0, R). As in Example 1.7, let the function uR be the solution to the mixed

problem

∂tuR = LuR, x ∈ UR, t > 0,

uR(x, t) = 0, x ∈ ∂UR, t > 0,

uR(x, 0) = ϕ(x), x ∈ UR.

By [14, Chapter 3, § 5, Theorem 12], uR ∈ C∞(UR × [0,+∞)). Moreover, by the maximum

principle, uR � 0 and uR(x, t) > 0 whenever (x, t) ∈ UR × (0,+∞). We set

vk,ε( · ) = (uR( · , t) + k)1+ε, k > 0, ε > 0.

We note that the measure μ is given by a smooth density � and the equation L∗μ = 0 can be

written as an equation for the density � as follows:

div
(∇�− b�

)
= 0.

Multiplying the last equality by the function vk,ε − k1+ε and integrating by parts, we obtain

0 =

∫

UR

[
(b,∇vk,ε) + Δvk,ε

]
� dx+

∫

∂UR

�(∇vk,ε, n)dS,
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where n is the outward normal vector to ∂UR. Note that

∇vk,ε = (1 + ε)(uR + k)ε∇uR,
Δvk,ε = ε(1 + ε)(uR + k)ε−1|∇uR|2 + (1 + ε)(uR + k)εΔuR.

Dropping the positive term ε(1 + ε)(uR + k)ε−1|∇uR|2, taking into account that uR(x, t) = 0 if

x ∈ ∂UR and uR(x, t) > 0 at all inner points x ∈ UR, and first letting k → 0 and then letting

ε→ 0, we arrive at the inequality ∫

UR

LuR� dx � 0.

Since ∂tuR = LuR, we have
d

dt

∫

UR

uR(x, t)�(x) dx � 0.

Let us extend uR by zero outside UR. Then∫

Rd

uR(x, t) dμ �
∫

Rd

ϕdμ

and it remains to observe that Ttϕ(x) = lim
R→∞

uR(x, t).

Proposition 2.3. Let τ > 0. Let the assumptions of PRoposition 2.2 be satisfied. Assume

that the measure μ is invariant under the family of operators {Tt}0�t<τ , i.e.,∫

Rd

Ttϕdμ =

∫

Rd

ϕdμ (2.1)

for every t ∈ [0, τ) and ϕ ∈ C∞
0 (Rd). Then μ is a unique probability solution to the equation

L∗μ = 0.

Proof. We first show that μ is indeed a solution to our equation. By property (iii) in

Example 1.7, we have ∂tTtϕ(x) = TtLϕ(x). Therefore,

max
x,t

t−1|Ttϕ(x)− ϕ(x)| � max
x

|Lϕ(x)|.

By the dominated convergence theorem, we have

0 = lim
t→0

∫

Rd

t−1(Ttϕ(x)− ϕ(x)) dμ =

∫

Rd

Lϕ(x) dμ,

which is equivalent to the equality L∗μ = 0. Since B ∈ C∞(Rd), the solution μ is given by a

strictly positive infinitely differentiable density � with respect to the Lebesgue measure.

Let ν be another probability solution to the equation L∗μ = 0. According to Proposition

2.2, for every nonnegative function ϕ ∈ C∞
0 (Rd)

∫

Rd

Ttϕdν �
∫

Rd

ϕdν,
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which enables us to extend the operator Tt to a continuous linear operator on L1(ν) such that

the inequality holds for all nonnegative functions in L1(ν). In particular, Tt1 � 1 ν-a.e. We

note that μ = vν, where the positive function v is the ratio of densities of μ and ν. The equality

(2.1) yields ∫

Rd

(Tt1− 1)v dν = 0,

which along with the inequality Tt1 � 1 implies the equality Tt1 = 1. On the space L∞(μ), we

have the adjoint operator T ∗
t for which the equality T ∗

t 1 = 1 holds as well. Thus,

∫

Rd

Ttϕdν =

∫

Rd

ϕT ∗
t 1 dν =

∫

Rd

ϕdν,

i.e., (2.1) is fulfilled for ν. Hence the measures μ and ν are invariant with respect to the

semigroup {Tt}t�0. Therefore, the measure μ − ν is also invariant, which yields the invariance

of the measure |μ− ν| (cf., for example, [30]). As shown above, the measure |μ− ν| satisfies the
equation L∗μ = 0 and either vanishes identically or possesses a strictly positive density, which

is impossible since both μ and ν are probability measures. Hence μ = ν.

Corollary 2.4. Let B be a vector field from Proposition 2.1, and let ν be a probability

solution to the equation L∗μ = 0, where L = Δ + (B(x),∇). Let {Tt}t�0 be the semigroup

specified in Example 1.7 corresponding to the operator L. Let

σt(B) =

∫

Rd

ν(dx)

∫

B

p(x, y, t) dy,

where p is the kernel of the semigroup {Tt}t�0. Then the measure σ = σt(dx) dt solves the

Cauchy problem (1.2) with the initial condition σ
∣∣
t=0

= ν. Moreover, σt � ν if t > 0 and for

every T > 0 one has σt 	≡ ν if t ∈ (0, T ).

Proof. Only the last two assertions require a proof. The inequality σt � ν follows from

Proposition 2.2. Indeed, for every nonnegative function ϕ ∈ C∞
0 (Rd)

∫

Rd

ϕ(x) dσt =

∫

Rd

Ttϕ(x) dν �
∫

Rd

ϕ(x) dν.

If σt = ν for all t ∈ (0, T ), then ν is an invariant measure for the semigroup {Tt}t�0 and, by

Proposition 2.3, it is a unique probability solution to the equation L∗μ = 0, which contradicts

our assumptions.

The existence of a solution σ = σt(dx) dt to the Cauchy problem with the initial condition

σ
∣∣
t=0

= ν such that ν is a nonunique solution to the equation L∗ν = 0, σt � ν, and σt 	≡ ν can

be also deduced from the results of [26] (cf. [9]).

We now proceed by constructing an example of the Cauchy problem with several probability

solutions.
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Example 2.5. We split our construction in several steps.

Step I. Let b(x, y) = (B(x), C(y)), where x, y ∈ R
2 and B = (b1, b2), C = (c1, c2) are infinitely

differentiable vector fields on R
2 such that the elliptic equations

L∗
1ν = 0, L∗

2σ = 0

with respect to measures on R
2, where

L1u = Δxu+ (B,∇xu), L2u = Δyu+ (C,∇yu),

have at least two linearly independent probability solutions. Such vector fields B and C exist

according to Proposition 2.1. We set

Lu = L1u+ L2u = Δxu+Δyu+ (B,∇xu) + (C,∇yu) = Δu+ (b,∇u).

Step II. Let ν be a probability solution to the first equation L∗
1ν = 0. According to Corollary

2.4 the measure μν( dx dt) = νt( dx) dt, where

νt(B) =

∫

Rd

ν(dx)

∫

B

p(x, y, t) dy,

is a solution to the Cauchy problem with operator L1 and initial condition ν. Moreover, νt � ν

and νt 	≡ ν. We set ν̂t = ν−νt and observe that the measure ν̂( dx dt) = ν̂t( dx) dt is nonnegative

and is a nonzero solution to the Cauchy problem ∂tν̂ = L∗
1ν̂, ν̂

∣∣
t=0

= 0.

Step III. Let σ1 and σ2 be two linearly independent probability solutions to the equation

L∗
2σ = 0. We set μt = ν · σ1 + ν̂t · (σ2 − σ1). We show that the measures ν · σ1( dx) dt and

μ( dx dt) = μt( dx) dt are probability solutions to the Cauchy problem ∂tμ = L∗μ, μ
∣∣
t=0

= ν ·σ1.
Indeed, we have the equality L∗(ν · σ1) = σ1L

∗
1ν + νL∗

2σ1 = 0 and ν · σ1 does not depend on t.

Similarly,

L∗(ν̂t · (σ2 − σ1)) = (σ2 − σ1)L
∗
1ν̂t = (σ2 − σ1)∂tν̂t = ∂t(ν̂t · (σ2 − σ1)).

Since ν − ν̂t = νt � 0, we have

μt = ν · σ1 + ν̂t · (σ2 − σ1) = (ν − ν̂t)σ1 + ν̂tσ2 � 0.

Taking into account that ν̂|t=0 = 0, we obtain μ
∣∣
t=0

= ν · σ1. It remains to observe that μt is a

probability measure for every t since (σ2 − σ1)(R
2) = 0.

Note that, by Proposition 2.1, the vector fields B and C can be chosen in such a way that

the corresponding stationary Kolmogorov equations L∗
1ν = 0 and L∗

2σ = 0 will have infinite-

dimensional simplices of probability solutions. Therefore, changing the measure σ2 in this exam-

ple, we obtain an infinite-dimensional simplex of probability solutions to the Cauchy problem.

Remark 2.6. If, in place of the strip R
d× (0, T ), we consider Rd×R and do not impose any

conditions as t→ −∞, then there exist simple examples of the equation ∂tμ = L∗μ with several

probability solutions (cf., for example, [5]). Assume that d = 1, A(x) = 1, and b(x, t) = −x.
Then for any number α the measure μα = μαt (dx) dt, where

μαt (dx) = (2π)−1/2e−
(x+e−tα)2

2 dx,

is a probability solution to our equation.

13



Concluding this section, we give an example of the Cauchy problem which has a unique

probability solution that is not a unique integrable or nonnegative solution.

Example 2.7. Assume that d = 1 and A(x) = 1. The Cauchy problem for the measure

μ = v(x, t) dx dt with the initial condition ν = u(x) dx can be written as the Cauchy problem

for the density v as follows:

vt = (vx − bv)x, v(0, x) = u(x).

We seek a nonnegative solution v in the form etΦ′(x). Substituting into the equation we obtain

Φ′ = (Φ′′ − bΦ′)′.

Integrating this equality, we arrive at the relationship

Φ = Φ′′ − bΦ′ + const .

We set Φ(x) = arc tg x and

b(x) =
Φ′′(x)− Φ(x)

Φ′(x)
.

Then b(x) = −2x(1+x2)−1− (1+x2) arc tg x. Let u(x) = (π(1+x2))−1. Since b(x)x � 0, from

Theorem 3.4 it follows that there exists a unique probability solution to the Cauchy problem.

However, there is yet another integrable and nonnegative solution; namely, etu(x) dx dt.

3 The Uniqueness of Probability Solutions
if the Diffusion Matrix Coefficients Belong to VMOx

We begin our study of the uniqueness of probability solutions with the classical Holmgren

principle, the main idea of which can be illustrated by the following trivial example. Let A

be a bounded linear operator on a Hilbert space H. Then kerA = (Im A∗)⊥. Therefore, to

prove the uniqueness of a solution to the equation Ax = f , one has to verify that the range

of A∗ is dense in H. In the general case, such an approach requires high smoothness of the

coefficients of the differential operator L. For instance, if aij and bi are continuous in (x, t)

and have continuous bounded derivatives in x up to the second order, then, as shown in [23]

and [14] (cf. also [19]), for every t > 0 and every function ψ ∈ C∞
0 (Rd) there exists a function

f ∈ Cb([0, t]× R
d)
⋂
C1,2
b ((0, t)× R

d) such that

∂tf(x, t) + Lf(x, t) = 0,

f(t, x) = ψ(x),

Using the fact that μt is a probability measure and applying Lemma 1.1, we obtain the equality∫

Rd

ψ(x) dμt =

∫

Rd

f(x, t) dν

which immediately yields the uniqueness of a solution to the Cauchy problem. Indeed, for any

two solutions μ1 and μ2 we have ∫

Rd

ψ(x) dμ1t =

∫

Rd

ψ(x) dμ2t
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for every function ψ ∈ C∞
0 (Rd), which implies that μ1 = μ2.

If the diffusion matrix is nonsingular, then the assumptions on coefficients can be considerably

weakened. It is well known (cf., for example, [23]) that, in the nondegenerate case, it suffices to

have the Hölder continuity of coefficients. In this section, we show that, combining the results

of [1] and [31], one can obtain a considerably stronger result.

The following assertion is proved in [1].

Proposition 3.1. Let Q = (qij) be a mapping from R
d × (0, T ) to the set of symmetric

nonnegative matrices. Let a locally finite nonnegative Borel measure μ on R
d × (0, T ) be such

that qij ∈ L1
loc(μ,R

d × [0, T ]), and let for every nonnegative function ϕ ∈ C∞
0 (Rd × (0, T ))

∫

Rd×(0,T )

[
∂tϕ+ qij∂xi∂xjϕ

]
dμ � C

(
sup

Rd×(0,T )

|ϕ|+ sup
Rd×(0,T )

|∇xϕ|
)
.

Then the measure (detQ)1/(d+1)μ has a density of the class L
(d+1)′
loc (Rd × (0, T )) with respect to

the Lebesgue measure on R
d × (0, T ).

Corollary 3.2. If a locally finite nonnegative Borel measure μ on R
d × (0, T ) satisfies the

equation ∂tμ = L∗μ and condition (H1) is fulfilled, then μ = � dx dt and � ∈ L
(d+1)′
loc (Rd×(0, T )).

Let g be a bounded function on R
d+1. We set

O(g,R) = sup
(x,t)∈Rd+1

sup
r�R

r−2|U(x, r)|−2

t+r2∫

t

∫ ∫

y,z∈U(x,r)

|g(y, s)− g(z, s)| dy dz ds.

If lim
R→0

O(g,R) = 0, then the function g is said to belong to the class VMOx(R
d+1).

If g ∈ VMOx(R
d+1), then one can always assume that O(g,R) � w(R) for all R > 0, where

w is a continuous function on [0,+∞) and w(0) = 0.

Suppose that a function g is defined on R
d × [0, T ] and is bounded on U × [0, T ] for every

ball U . Let us extend g by zero to the entire space R
d+1. If for every function ζ ∈ C∞

0 (Rd)

the function gζ belongs to the class VMOx(R
d+1), then we say that g belongs to the class

VMOx,loc(R
d × [0, T ]).

Remark 3.3. Assume that ω ∈ C∞
0 (R1), ω � 0, ‖ω‖L1 = 1, and

ωε(x, t) = ε−d−1ω(|x|/ε)ω(|t|/ε).
If g ∈ VMOx(R

d+1), then gε = g ∗ ωε ∈ VMOx(R
d+1) and O(gε, R) � O(g,R). It suffices to

observe that

r−2|U(x, r)|−2

t+r2∫

t

∫ ∫

y,z∈U(x,r)

|gε(y, s)− gε(z, s)| dy dz ds

�
∫

Rd+1

ω(|ξ|)ω(|τ |) dξ dτr−2|U(x+ εξ, r)|−2

t+ετ+r2∫

t+ετ

∫ ∫

y,z∈U(x+εξ,r)

|g(y, s)− g(z, s)| dy dz ds,
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where the right-hand side is estimated by the quantity O(g,R). Note also that gε → g in

Lploc(R
d+1) for every p � 1. Therefore, for every function g of class VMOx(R

d+1) one can find

a sequence of infinitely differentiable functions gk converging to g in Lploc(R
d+1) for every p � 1

such that O(gk, R) � O(g,R).

Remark 3.4. Let functions aij be defined on R
d+1, and let a symmetric matrix A = (aij)

be such that for some numbers γ > 0 and M > 0

(A(x, t)y, y) � γ|y|2, |A(x, t)| �M

for all (x, t) ∈ R
d+1 and y ∈ R

d. Then these inequalities with the same numbers γ and M are

fulfilled for the matrix Aε = (aijε ), where a
ij
ε = aij ∗ ωε and the function ωε is defined as in

Remark 3.3. It suffices to observe that ‖ω‖L1(R) = 1 and

(Aε(x, t)y, y) =

∫

Rd+1

(A(x+ εξ, t+ ετ)y, y)ω(|ξ|)ω(|τ |) dξ dτ ∀ y.

Let W 1,2
p (Rd × (−1, T )) be the space of functions u ∈ Lp(Rd × (−1, T )) having Sobolev

derivatives ∂tu, ∂xiu and ∂xi∂xju in Lp(Rd × (−1, T )) and finite norm

‖u‖
W 1,2

p (Rd×(−1,T ))
= ‖u‖Lp(Rd×(−1,T )) + ‖∂xiu‖Lp(Rd×(−1,T ))

+ ‖∂xi∂xju‖Lp(Rd×(−1,T )) + ‖∂tu‖Lp(Rd×(−1,T )).

The next result follows from [31].

Proposition 3.5. Let qij , hi ∈ C∞(Rd+1) and

sup
x,t

|qij(x, t)|+ |hi(x, t)| �M,

where the matrix Q = (qij) is symmetric, and let for some number κ > 0

(Q(x, t)y, y) � κ|y|2

for all (x, t) ∈ R
d+1 and y ∈ R

d. Suppose that there exists a continuous function w on [0,+∞)

such that w(0) = 0 and O(qij , R) � w(R) for all i, j. Assume that T > 0 and p > d+ 1. Then

the Cauchy problem

∂tf + qij∂xi∂xjf + hi∂xif = 0,

f
∣∣
t=T

= ψ,
(3.1)

where ψ ∈ C∞
0 (Rd), has a unique solution f ∈W 1,2

p (Rd× (−1, T )) and there is a number C > 0,

depending only on the numbers d, p, M , κ, T , and the functions ψ, w, such that

‖f‖
W 1,2

p (Rd×(−1,T ))
� C.

Moreover, f ∈ C∞(Rd × (−1, T ))
⋂
Cb(R

d × [−1, T ]).
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Proof. According to [31, Theorem 2.1], there exists a unique solution to the Cauchy problem

∂tg + qij∂xi∂xjg + hi∂xig = −qij∂xi∂xjψ − hi∂xiψ,

g
∣∣
t=T

= 0

in the class W 1,2
p (Rd × (−1, T )). Moreover,

‖g‖W 1,2(Rd×(−1,T )) � C1‖qij∂xi∂xjψ + hi∂xiψ‖Lp(Rd×(−1,T )),

where C1 depends only on d, p, M , κ, T , and w. The function f = g + ψ is a unique solution

to the Cauchy problem (3.1) in the Sobolev class W 1,2
p . Since the matrix Q is nonsingular and

qij , hi ∈ C∞(Rd+1), we have g ∈ C∞(Rd × (−1, T )) (cf., for example, [32, Theorem 12.2]).

Consequently, f ∈ C∞(Rd× (−1, T )). Let U be the unit ball in R
d. Since p > d+1, the Sobolev

embedding theorem yields f ∈ Cα(U × [−1, T ]) and

‖f‖Cα(U×[−1,T ]) � C2‖f‖W 1,2
p (Rd×[−1,T ])

,

where α = 1− (d+ 1)/p and C2 depends only on d and p. In particular, we have the inclusion

f ∈ Cb(R
d × [−1, T ]).

We present the main result of this section.

Theorem 3.6. Suppose that aij ∈ VMOx,loc(R
d × [0, T ]) and the matrix A = (aij) satisfies

condition (H1). Then the set

Mν = {μ ∈ Pν : a
ij , bi ∈ L1(μ,Rd × [0, T ])}

consists of at most one element.

Proof. Let ϕN (x) = η(x/N), where η ∈ C∞
0 (Rd) is a nonnegative function such that η(x) =

1 if |x| � 1 and η(x) = 0 if |x| > 2, 0 � η � 1 and there exists a number K > 0 such that for all

x the inequality |∇η(x)|2η−1(x) � K is fulfilled.

We fix N ∈ N. Let U be an open ball in R
d containing the support of ϕN , and let ζ ∈ C∞

0 (Rd)

be a function such that 0 � ζ � 1 and ζ(x) = 1 if x ∈ U . We set

A(x, t) = ζ(x)A(x, t) + (1− ζ(x))I,

where I is the unit matrix. Let A(x, t) = I if t < 0 or t > T . Then aij ∈ VMOx(R
d+1) and for

some numbers κ > 0 and M1 > 0

(A(x, t)y, y) � κ|y|2, |aij(x, t)| �M1

for all (x, t) ∈ R
d+1 and y ∈ R

d. Moreover, A(x, t) = A(x, t) for all (x, t) ∈ U × [0, T ].

Using Remarks 3.3 and 3.4, we find a sequence of matrices Qn = (qijn ) such that qijn ∈
C∞(Rd+1) and for all (x, t) ∈ R

d+1 and y ∈ R
d the following inequality holds:

(Qn(x, t)y, y) � κ|y|2, |qijn (x, t)| �M1,

one has O(qijn , R) � Q(aij , R) and lim
n→∞ ‖A−Qn‖Lr(U×[0,T ]) = 0, where r = 2(d+ 1).
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Let σ1 = σ1t (dx) dt and σ
2 = σ2t (dx) dt belong to the class Mν . Then σ = (σ1 + σ2)/2 also

belongs to Mν . By assumption, |b| ∈ L2(μ,U × [0, T ]). Let us find a sequence of vector fields

(him)1�i�d on R
d+1 such that him ∈ C∞(Rd+1), |hm(x, t)| �M2(m) for all (x, t) ∈ R

d+1, and

lim
m→∞

T∫

0

∫

U

|b(x, t)− hm(x, t)|2 dσt dt = 0.

We set

Ln,m = qijn ∂xi∂xj + him∂xi .

Let ψ ∈ C∞
0 (Rd) with maxx |ψ(x)| � 1. Let J denote the set of all points t ∈ [0, T ] for which

equality (1.4) is fulfilled for all functions ψϕk and ψ2ϕk, k ∈ N, and both measures σ1 and σ2.

It is clear that J is a full measure set in [0, T ] and Remarks 1.3 and 1.4 are applicable to it.

Let t ∈ J .

According to Proposition 3.5, there exists a solution fn,m ∈ C∞(Rd × (−1, t))
⋂
Cb(R

d ×
[−1, t]) to the Cauchy problem

∂sfn,m + Ln,mfn,m = 0,

fn,m
∣∣
s=t

= ψ.

Let I be the set of all points s ∈ [0, t] where the equality (1.3) of Lemma 1.1 holds for all

functions fn,mϕN and f2n,mϕN , where k ∈ N, and both measures σ1 and σ2. We observe that

t ∈ I and I is a full measure set in [0, t]. The measure μ = σ1−σ2 satisfies the Cauchy problem

(1.2) with zero initial condition. Assume that τ ∈ I and τ < t. Applying Lemma 1.1 to the

function fn,mϕN , we obtain
∫

Rd

ψ(x)ϕN (x) dμt −
∫

Rd

fn,m(x, τ)ϕN (x) dμτ

=

t∫

τ

∫

Rd

[
ϕN (L− Ln,m)fn,m + (A∇fn,m,∇ϕN ) + fn,mLϕN

]
dμs ds. (3.2)

Let us estimate the quantity
t∫

τ

∫

Rd

ϕN |
√
A∇fn,m|2 dσs ds.

For this purpose, we apply Lemma 1.1 to the function f2n,mϕN and the measure σ. We obtain
∫

Rd

ψ2(x)ϕN (x) dσt −
∫

Rd

f2n,m(x, τ)ϕN (x) dστ

= 2

t∫

τ

∫

Rd

|
√
A∇fn,m|2ϕN dσs ds

+

t∫

τ

∫

Rd

[
2fn,mϕN (L− Ln,m)fn,m + 2fn,m(A∇fn,m,∇ϕN ) + f2n,mLϕN

]
dσs ds.
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We observe that 0 � ϕN (x) � 1, |ψ(x)| � 1 and, by the maximum principle, |fn,m(x, s)| � 1.

Applying the inequality 2αβ � θα2 + θ−1β2 with θ > 0, we find that

2

t∫

τ

∫

Rd

|(b− hm,∇fn,m)||fn,m|ϕN dσs ds

� θ−1

t∫

τ

∫

Rd

|A−1/2(b− hm)|2ϕN dσs ds+ θ

t∫

τ

∫

Rd

|
√
A∇fn,m|2ϕN dσs ds.

Similarly,

2

t∫

τ

∫

Rd

|fn,m||(A∇fn,m,∇ϕN )| dσs ds

� θ−1

t∫

τ

∫

Rd

ϕ−1
N |

√
A∇ϕN |2 dσs ds+ θ

t∫

τ

∫

Rd

|
√
A∇fn,m|2ϕN dσs ds.

Let θ = 1/2. Using the obtained inequalities and taking into account condition (H1), we obtain

the estimate
t∫

τ

∫

Rd

ϕN |
√
A∇fn,m|2 dσs ds � 1 + I +R,

where

I = 2

t∫

τ

∫

Rd

|aij − qij ||∂xi∂xjfn,m|ϕN dσs ds+ 2κ

t∫

τ

∫

Rd

|bi − him|2ϕN dσs ds,

R =

T∫

0

∫

Rd

|LϕN |+ 2ϕ−1
N |

√
A∇ϕN |2 dσs ds.

Coming back to the equality (3.2), applying the last estimate, and taking into account that

|μ| � 2σ, we get
∫

Rd

ψ(x)ϕN (x) dμt −
∫

Rd

fn,m(x, τ)ϕN (x) dμτ

� 2

t∫

τ

∫

Rd

|aij − qij ||∂xi∂xjfn,m|ϕN dσs ds

+ 2κ1/2(1 + I +R)1/2

( T∫

0

∫

Rd

|bi − him|2ϕN dσs ds
)1/2

+ 2(1 + I +R)1/2

( T∫

0

∫

Rd

ϕ−1|
√
A∇ϕN | dσs ds

)1/2

+ 2

T∫

0

∫

Rd

|LϕN | dσs ds. (3.3)
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By Corollary 3.2, the measure σ has density � ∈ L
(d+1)′
loc (Rd×(0, T )). Let p = 2(d+1). According

to Proposition 3.5, there is a number C, depending only on p, d, κ, M1, T , U , w, ψ, hm and

independent of n, such that

max
i,j

‖∂xi∂xjfn,m‖Lp(U×[0,T ]) � C.

We recall that A = A on U . Applying the Hölder inequality, we obtain

t∫

τ

∫

Rd

|aij − qij ||∂xi∂xjfn,m|ϕN dσs ds

� ‖A−Qn‖Lr(U×(0,T ))‖∂xi∂xjfn,m‖Lp(U×(0,T )‖�‖L(d+1)′ (U×[τ,t]).

Therefore, the expression

t∫

τ

∫

Rd

|aij − qij ||∂xi∂xjfn,m|ϕN dσs ds

tends to zero as n→ ∞ provided that τ and m are fixed.

According to Proposition 3.5 and the Sobolev embedding theorem, there exists a number C1

independent of n such that

‖fn,m‖Cα(U×[0,t]) � C1,

where U is the closure of the ball U . Therefore, on the compact set U × [0, t], the family

of functions (fn,m)n is uniformly bounded and equicontinuous, which enables us to select a

uniformly convergent subsequence. Keeping the same indices n, we assume that fn,m ⇒ fm
as n → ∞ uniformly on U × [0, t]. It is clear that the function fm is continuous on U × [0, t].

Keeping τ and m fixed, we let n→ +∞ in the inequality (3.3). We obtain
∫

Rd

ψ(x)ϕN (x) dμt −
∫

Rd

fm(x, τ)ϕN (x) dμτ

� 2(1 + Im +R)1/2I1/2m + 2(1 + Im +R)1/2R1/2 + 2R (3.4)

where

Im = 2κ

T∫

0

∫

Rd

|bi − him|2ϕN dσs ds.

Let us pick a sequence τk ∈ I
⋂
(0, t) such that lim

k→∞
τk = 0. Since fm is continuous on U × [0, t],

the functions fm(x, τk) converge to fm(x, 0) uniformly in x as k → ∞. In addition, since the

initial condition is zero, one has

lim
k→0

∫

Rd

fm(x, 0)ϕN (x) dμτk = 0.

Therefore,

lim
k→0

∫

Rd

fm(x, τk)ϕN (x) dμτk = 0.

20



Replacing τ in (3.4) by τk and letting first k → ∞ and then m→ ∞, we arrive at the equality

∫

Rd

ψ(x)ϕN (x) dμt � 2(1 +R)1/2R1/2 + 2R.

Finally, letting N → ∞ and using the fact that aij , bi ∈ L1(μ,Rd × [0, T ]), we obtain

∫

Rd

ψ(x) dμt � 0.

Replacing ψ by −ψ we obtain the opposite inequality. Hence for almost all t ∈ [0, T ]

∫

Rd

ψ(x) dμt = 0.

Since ψ is an arbitrary function in C∞
0 (Rd) satisfying |ψ| � 1, we have μt = 0. Therefore,

σ1 = σ2.

Remark 3.7. (i) It is easily seen from the proof of the theorem that one can weaken

the condition aij , bi ∈ L1(μ,Rd × [0, T ]) restricting the class of probability solutions in which

uniqueness is proved. Let V ∈ C2(Rd) be a positive function such that lim
|x|→∞

V (x) = +∞.

Suppose, as above, that aij ∈ VMOx,loc(R
d× [0, T ]) and the matrix A = (aij) satisfies condition

(H1). Then the set Mν consisting of measures μ ∈ Pν such that

lim
N→∞

T∫

0

∫

N�V �N+1

|LV |
V

+
|√A∇V |2

V 2
dμ = 0

contains at most one element.

(ii) It can be also seen from the proof of the theorem that the conditions on the matrix

A can be weakened as follows. The theorem remains valid if we assume that the symmetric

matrix A = (aij), where the functions aij are Borel measurable on R
d× [0, T ], satisfies condition

(H1) and for each ball U ⊂ R
d there is a sequence of symmetric positive definite matrices

Ak = (aijk )1�i,j�d and numbers N , p, q with p−1 + q−1 = (d+ 1)−1 such that

(i) aijk ∈ C∞(U × [0, T ]), sup
k

sup
U×[0,T ]

|Ak(x, t)| <∞, and lim
k→∞

‖A−Ak‖Lq(U×(0,T )) = 0,

(ii) the following estimate holds:

‖ϕ‖
W 1,2

p (U×(0,T ))
� N‖∂tϕ+ aijk ∂xi∂xjϕ‖Lp(U×(0,T ))

for every k ∈ N and ϕ ∈ C∞(U × [0, T ]) such that ϕ( · , T ) = 0 and supp ϕ( · , t) ⊂ U for

all t ∈ [0, T ].

Example 3.8. Using estimates with Lyapunov functions (cf., for example, [33]), one can

obtain the following sufficient uniqueness condition. Let the matrix A satisfy condition (H1),

and let aij ∈ VMOx,loc(R
d × [0, T ]). Assume that α > 0 and r > 2. Suppose that for all

(x, t) ∈ R
d × [0, T ] and some positive numbers c1, c2, c3 and c4 < α, c5 < α
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(i) |x|r−2 trace A(x, t) + (r − 2)|x|r−4(A(x, t)x, x) + αr|x|2r−4(A(x, t)x, x)

+|x|r−2(b(x, t), x) � c1,

(ii) |aij(x, t)| � c2 exp
(
c4|x|r

)
and |bi(x, t)| � c3 exp

(
c5|x|r

)
.

Suppose also that ν is a probability measure on R
d such that exp

(
α|x|r) ∈ L1(ν). Then the

set Pν consists of at most one element. Indeed, inequality (i) and the condition on the initial

distribution ν enable us to conclude that exp
(
α|x|r) ∈ L1(μ,Rd × [0, T ]) for every probability

solution μ to the Cauchy problem (1.2). Condition (ii) ensures that aij , bi ∈ L1(μ,Rd × [0, T ]).

Therefore, Theorem 3.6 applies.

It should be noted that uniqueness is established under very broad assumptions on the

diffusion matrix and drift. However, our global conditions impose restrictions on the whole

class of probability solution for which we prove uniqueness. In addition, the verification of the

assumptions of the theorem by means of Lyapunov functions involves restrictions on the growth

of |b(x, t)|.

4 The Uniqueness of Probability Solutions
if the Diffusion Matrix is Lipschitzian in x

In this section, we discuss a method of proving the uniqueness of probability solutions that

requires stronger local regularity of the coefficients of the differential operator L, but enables one

to weaken considerably the global assumptions on the coefficients and solutions. The principal

results of this section were obtained in [6].

We assume that along with condition (H1) the following condition is fulfilled:

(H2) for every ball U ⊂ R
d there exists Λ = Λ(U) > 0 such that for all x, y ∈ U and t ∈ [0, T ]

|aij(x, t)− aij(y, t)| � Λ|x− y|;

As already noted in the introduction, condition (H1) implies the existence of a density � for

any probability solution μ with respect to the Lebesgue measure. Moreover, if along with (H1)

and (H2) we have b ∈ Lploc(R
d × (0, T )) for some p > d + 2, then one can choose a continuous

version of � on R
d × (0, T ) such that for almost every t ∈ (0, T ) the function �( · , t) belongs to

W 1,p(U) for every ball U ⊂ R
d. Since for almost all t ∈ (0, T ) the measure μt(dx) = �(x, t) dx is

a probability measure on R
d, the Harnack inequality yields that for every ball U in R

d and any

interval J ⊂ (0, T ) there exists C > 0 such that �(x, t) � C for all (x, t) ∈ U × J .

If we choose a continuous version of the density �, then �( · , t) may be a probability density

not for every t ∈ (0, T ), but just for almost every t with respect to the Lebesgue measure on

[0, T ]. By the Fatou theorem, for every t
∫

Rd

�(x, t) dx � 1.

Note also that for every ζ ∈ C∞
0 (Rd) the function

t �→
∫

Rd

ζ(x)�(x, t) dx
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is continuous on (0, T ) and for almost all t it coincides with the function

t �→
∫

Rd

ζ(x) dμt.

Therefore,

lim
t→0

∫

Rd

ζ(x)�(x, t) dx =

∫

Rd

ζ(x) dν.

Below, we will deal with the continuous version of the density �.

For every measure μ given by a Sobolev class density � with respect to the Lebesgue measure,

its logarithmic gradient βμ with respect to the metric generated by the matrix A is defined by

the following formula:

βiμ =

d∑
j=1

(
∂xja

ij + aij�−1∂xj�
)
.

Throughout this section, we assume that b is locally integrable to power p > d + 2 with

respect to the Lebesgue measure on R
d × (0, T ) and conditions (H1) and (H2) are fulfilled.

Suppose that there are two solutions to the Cauchy problem (1.2) in the class Pν given by

densities σ and � with respect to the Lebesgue measure. Then these densities are continuous on

R
d× (0, T ). In addition, the functions σ and � are strictly positive. Let v(x, t) = σ(x, t)/�(x, t).

The function v is continuous and positive on R
d × (0, T ).

Lemma 4.1. Suppose that for every λ > 0
∫

Rd

eλ(1−v(x,t))�(x, t) dx � 1 (4.1)

for almost all t ∈ (0, T ). Then v ≡ 1, i.e., σ = �.

Proof. Let t be such that �( · , t) and σ( · , t) are probability densities and the inequality

(4.1) holds for all natural numbers λ. We observe that the set of points t where this is not true

is a set of zero Lebesgue measure. If there is a ball U ⊂ R
d such that v(x, t) � 1 − δ for each

x ∈ U and some δ > 0, then

eλδ
∫

U

� dx �
∫

U

eλ(1−v(x,t))�(x, t) dx � 1.

Letting λ → ∞, we obtain a contradiction. Therefore, v(x, t) � 1 for all x ∈ R
d. Assume now

that there is a ball V ⊂ R
d such that for each x ∈ V and some γ > 0 we have v(x, t) � 1 + γ.

Then

1 =

∫

Rd

v(x, t)�(x, t) dx =

∫

V

v(x, t)�(x, t) dx+

∫

Rd\V

v(x, t)�(x, t) dx

� (1 + γ)

∫

V

�(x, t) dx+

∫

Rd\V

�(x, t) dx = 1 + γ

∫

V

�(x, t) dx.

We again obtain a contradiction.
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The following lemma is the main step in our approach.

Lemma 4.2. Assume that ψ ∈ C∞
0 (Rd), ψ � 0, and 0 < t < T . Let f be one of the functions

eλ(1−z) and eλ(1−z) − eλ. Then

∫

Rd

f(v(x, t))�(x, t)ψ(x) dx � f(1)

∫

Rd

ψ(x) dν +

t∫

0

∫

Rd

�f(v)Lψ dx ds. (4.2)

If, in addition, (b− βμ)� ∈ L1(U × (0, 1)) for every ball U ⊂ R
d, then

∫

Rd

f(v(x, t))�(x, t)ψ(x) dx � f(1)

∫

Rd

ψ(x) dν +
1

2

t∫

0

∫

Rd

�(A∇ψ,∇ψ)ψ−1|f ′(v)|2f ′′(v)−1 dx ds

+

t∫

0

∫

Rd

f(v)(b− βμ,∇ψ)� dx ds. (4.3)

A complete proof of the lemma can be found in [6], so we only give an informal reasoning,

which, however, becomes rigorous if we deal with the class of smooth functions on R
d × [0, T ]

and assume that the initial condition is given by a strictly positive density.

Proof of Lemma 4.2. We set

hi = bi −
d∑
j=1

∂xja
ij .

We recall certain relations following from the Leibniz formula and the chain rule. For every ξ, η

in C∞(Rd × (0, T )) and Φ ∈ C∞(R) we have the following equalities:

L∗Φ(ξ) = Φ′(ξ)L∗ξ +Φ′′(ξ)(A∇ξ,∇ξ) + (ξΦ′(ξ)− Φ(ξ)) div h,

L∗(ξ · η) = ηL∗ξ + ξL∗η + 2(A∇ξ,∇η) + ξη div h.

Thus, σ = v� and

∂tσ = L∗σ and ∂t� = L∗�.

Multiplying the equation ∂t� = L∗� by v and subtracting the obtained equality from the equation

∂tσ = L∗σ, we arrive at the following equation for the function v:

�∂tv = �L∗v + 2(A∇�,∇v) + �v div h.

Multiplying the latter relationship by the function f ′(v) and taking into account the equalities

∂tf(v) = f ′(v)∂tv and ∇f(v) = f ′(v)∇v, we obtain

�∂t(f(v)) = �f ′(v)L∗v + 2(A∇�,∇f(v)) + �vf ′(v) div h.

Since

f ′(v)L∗v = L∗f(v)− f ′′(v)(A∇v,∇v)− (vf ′(v)− f(v)) div h,

we have

�∂t(f(v)) = �L∗f(v) + 2(A∇�,∇f(v)) + �f(v) div h− �f ′′(v)(A∇v,∇v).
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Adding the last equality to the equality f(v)∂t� = f(v)L∗�, we find that

∂t(�f(v)) = L∗(�f(v))− �f ′′(v)(A∇v,∇v).

Multiplying this equation by the function ψ and integrating, we obtain

t∫

0

∫

Rd

∂t(f(v)�)ψ dx ds+

t∫

0

∫

Rd

�(A∇v,∇v)f ′′(v)ψ dx ds =
t∫

0

∫

Rd

ψL∗(�f(v)) dx ds.

Applying the Newton–Leibniz formula and taking into account the trivial equality v(x, 0) ≡ 1,

we FIND

t∫

0

∫

Rd

∂t(f(v)�)ψ dx ds =

∫

Rd

f(v(x, t))�(x, t)ψ(x) dx− f(1)

∫

Rd

ψ(x) dν.

Since L∗ is adjoint to L, one has

t∫

0

∫

Rd

ψL∗(�f(v)) dx ds =
t∫

0

∫

Rd

�f(v)Lψ dx ds.

Thus, we have the following equality:

∫

Rd

f(v(x, t))�(x, t)ψ(x) dx+

t∫

0

∫

Rd

�(A∇v,∇v)f ′′(v)ψ dx ds

= f(1)

∫

Rd

ψ(x) dν +

t∫

0

∫

Rd

�f(v)Lψ dx ds. (4.4)

Taking into account condition (H1) and the inequalities f ′′ � 0 and ψ � 0, we obtain the

estimate (4.2). To derive the estimate (4.3), we need some additional transformations in (4.4).

Integrating by parts, we obtain

d∑
i,j=1

t∫

0

∫

Rd

�f(v)aij∂xi∂xjψ dx ds = −
t∫

0

∫

Rd

�f ′(v)(A∇v,∇ψ) dx ds−
t∫

0

∫

Rd

�f(v)(βμ,∇ψ) dx ds.

The Cauchy inequality yields

|(A∇v,∇ψ)| �
√
(A∇v,∇v) ·

√
(A∇ψ,∇ψ).

Applying the inequality qr � 2−1(q2 + r2) with

q = |f ′′(v)|1/2|ψ|1/2(A∇v,∇v)1/2,
r = |f ′′(v)|−1/2|ψ|−1/2(A∇ψ,∇ψ)1/2|f ′(v)|,
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we obtain

t∫

0

∫

Rd

f ′(v)(A∇v,∇ψ)� dx ds � 1

2

t∫

0

∫

Rd

�(A∇v,∇v)f ′′(v)ψ dx ds

+
1

2

t∫

0

∫

Rd

�(A∇ψ,∇ψ)ψ−1|f ′(v)|2f ′′(v)−1 dx ds.

Thus,

∫

Rd

f(v(x, t))�(x, t)ψ(x) dx+
1

2

t∫

0

∫

Rd

�(A∇v,∇v)f ′′(v)ψ dx ds

� f(1)

∫

Rd

ψ(x) dν +
1

2

t∫

0

∫

Rd

�(A∇ψ,∇ψ)ψ−1|f ′(v)|2f ′′(v)−1 dx ds+

t∫

0

∫

Rd

f(v)(b− βμ,∇ψ) dx ds.

Since f ′′ � 0 and condition (H1) holds, the last inequality implies the estimate (4.3).

The following result shows that, in the case of sufficiently regular coefficients aij and bi in

Theorem 3.6, one can considerably weaken the restrictions on the class of probability solutions

in which uniqueness is established.

Theorem 4.3. Suppose that conditions (H1), (H2) hold and b ∈ Lploc(R
d × (0, T )) for some

p > d+ 2. Assume also that for some measure μ in the class Pν

aij , bi ∈ L1(μ,Rd × (0, T )) ∀ 1 � i, j � d.

Then the set Pν consists of exactly one element μ.

Proof. Let the measure μ be given by a density � with respect to the Lebesgue measure.

Suppose that there is yet another measure in Pν given by a density σ. As above, put v = σ/�.

Let ψ(x) = ζ(x/N), where ζ ∈ C∞
0 (Rd) is a nonnegative function such that ζ(x) = 1 if |x| � 1

and ζ(x) = 0 if |x| > 2, and there exists a number K > 0 such that for all x

|ζ(x)| � K, |∇ζ(x)| � K,

d∑
i,j=1

|∂xi∂xjζ(x)| � K.

Let f(z) = eλ(1−z). It is clear that |f(z)| � eλ for z � 0. By the inequality (4.2) of Lemma 4.2,
∫

Rd

eλ(1−v(x,t))�(x, t)ζ(x/N) dx

�
∫

Rd

ζ(x/N) dν + eλKN−2
d∑

i,j=1

t∫

0

∫

N<|x|<2N

|aij |� dx ds+ eλKN−1
d∑
i=1

t∫

0

∫

N<|x|<2N

|bi|� dx ds.

By assumption, |aij |�, |bi|� ∈ L1(Rd × (0, T )). Letting N → ∞, we obtain (4.1). Therefore,

Lemma 4.1 yields the required assertion.
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Remark 4.4. The conditions on the coefficients in this theorem can be weakened as follows.

Let V ∈ C2(Rd) be a positive function such that lim
|x|→∞

V (x) = +∞. If, in addition to conditions

(H1) and (H2) and the inclusion b ∈ Lploc(R
d × (0, T ) with some p > d + 2, there is a measure

μ ∈ Pν satisfying the condition

lim
N→∞

T∫

0

∫

N�V �N+1

|LV |
V

+
|√A∇V |2

V 2
dμ = 0,

then μ is the only element in Pν .

Theorem 4.5. Suppose that conditions (H1) and (H2) hold and b ∈ Lploc(R
d × (0, T )) for

some p > d+ 2. Assume also that for some measure μ in the class Pν

aij , bi − βiμ ∈ L1(μ,Rd × (0, T )) ∀ 1 � i, j � d.

Then the set Pν = 1 consists of this element μ.

Proof. Let the measure μ be given by a density � with respect to the Lebesgue measure.

Suppose that there is yet another measure in Pν given by a density σ. As above, we set v = σ/�.

Let ψ(x) = ζ(x/N), where ζ ∈ C∞
0 (Rd) is a nonnegative function such that ζ(x) = 1 if |x| � 1

and ζ(x) = 0 if |x| > 2, and there exists a number K > 0 such that for all x

|ζ(x)| � K, |∇ζ(x)| � K, |∇ζ(x)|2ζ−1(x) � K.

Let f(z) = eλ(1−z). Then |f(z)| � eλ for z � 0. Applying the inequality (4.3) of Lemma 4.2, we

obtain∫

Rd

eλ(1−v(x,t))�(x, t)ζ(x/N) dx

�
∫

Rd

ζ(x/N) dν + eλKN−2
d∑

i,j=1

t∫

0

∫

Rd

|aij |� dx ds+ eλKN−1
d∑
i=1

t∫

0

∫

Rd

|bi − βiμ|� dx ds.

By assumption, |aij |�, |bi − βiμ|� ∈ L1(Rd × (0, T )). Letting N → ∞ and applying Lemma 4.1,

we obtain the required assertion.

Theorem 4.6. Let conditions (H1) and (H2) hold, and let b ∈ Lploc(R
d × (0, T )) for some

p > d + 2. Suppose that there exists a positive function V ∈ C2(Rd) such that V (x) → +∞ as

|x| → +∞ and for some number C > 0 and all (x, t) ∈ R
d × [0, T ]

LV (x, t) � C, |
√
A(x, t)∇V (x)| � C.

Then Pν � 1 consists of at most one element.

Proof. Suppose that the class Pν contains two measures given by densities σ and � with

respect to the Lebesgue measure. We set v = σ/�. Let ψ(x) = ζ(N−1V (x)), where ζ ∈ C∞
0 (R)

is a nonnegative function such that ζ(z) = 1 if |z| < 1 and ζ(z) = 0 if |z| > 2, and, in addition,

ζ ′(z) � 0 if z > 0, and there exists a number K > 0 such that for all z

|ζ(z)| � K, |ζ ′(z)| � K, |ζ ′′(z)| � K.
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Let f(z) = eλ(1−z) − eλ. Then f(z) � 0 and |f(z)| � 2eλ for z � 0. We observe that

f(v)ζ ′LV � Cf(v)ζ ′

since f(v)ζ ′ � 0. Using the inequality (4.2) of Lemma 4.2, we obtain∫

Rd

(eλ(1−v(x,t)) − eλ)�(x, t)ζ(N−1V (x)) dx

� (1− eλ)

∫

Rd

ζ(N−1V (x)) dν + 2eλCK(N−1 + CN−2)

t∫

0

∫

Rd

� dx ds.

Letting N → ∞, we find∫

Rd

(eλ(1−v(x,t)) − eλ)�(x, t) dx � (1− eλ)

∫

Rd

dν.

Since for almost all t ∈ (0, T ) the function �( · , t) is a probability density and ν is a probability

measure, for almost all t we have ∫

Rd

eλ(1−v(x,t))�(x, t) dx � 1.

Applying Lemma 4.1 we complete the proof.

Remark 4.7. In the assumptions of the theorem, the inequalities LV � C and |√A∇V | � C

can be replaced by LV � CV and |√A∇V | � CV respectively. Indeed, if LV � CV and

|√A∇V | � CV , then, replacing V with lnV , we obtain the inequalities

L(lnV ) = V −1LV − V −2|
√
A∇V |2 � C,

|
√
A∇(lnV )| = V −1|

√
A∇V | � C.

Let us consider an application of the last theorem.

Example 4.8. Let V (x) = ln(ln(1 + |x|)) if |x| > 1. Then, whenever |x| > 1, we have

|
√
A(x, t)∇V (x)|2 = (A(x, t)∇V (x),∇V (x)) =

(A(x, t)x, x)

|x|2(|x|+ 1)2 ln2(|x|+ 1)
.

Let us calculate LV (x, t) for |x| > 1:

LV (x, t) = − (A(x, t)x, x)

|x|2(1 + |x|)2 ln(1 + |x|)
(
1 +

1

ln(1 + |x|) +
1 + |x|
|x|

)

+
trace A(x, t)

|x|(1 + |x|) ln(1 + |x|) +
(b(x, t), x)

|x|(|x|+ 1) ln(|x|+ 1)
.

To ensure the assumptions of the theorem, it suffices to have the estimates

trace A(x, t) � C + C|x|2 ln(1 + |x|),
(A(x, t)x, x) � C + C|x|4 ln2(1 + |x|),
(b(x, t), x) � C + C|x|2 ln(1 + |x|)

for all (x, t) ∈ R
d × (0, T ).
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Combining Theorem 4.6, the last example and Theorem 2.6.1 on the existence of a probability

solution to the Cauchy problem (1.2) in [33], we obtain the following existence and uniqueness

theorem.

Theorem 4.9. Suppose that conditions (H1) and (H2) hold and for every ball U ⊂ R
d

sup
(x,t)∈U×[0,1]

|b(x, t)| <∞.

Suppose also that there exists a number C > 0 such that

trace A(x, t) � C + C|x|2 ln(1 + |x|),
(A(x, t)x, x) � C + C|x|4 ln2(1 + |x|),
(b(x, t), x) � C + C|x|2 ln(1 + |x|)

for all (x, t) ∈ R
d × (0, T ). Then for every Borel probability measure ν on R

d there exists a

unique measure μ defined by a family of probability measures (μt)0<t<1 on R
d satisfying the

Cauchy problem (1.2).

Apart from the considered methods of proving the uniqueness of a probability solution to

the Cauchy problem (1.2), one should note yet another one suggested in [5]. The main idea is as

follows. Let P = ∂t + L. Suppose that Kν is a convex subset of the set of probability solutions

to the Cauchy problem with initial condition ν such that for every measure μ ∈ Kν we have

P (C∞
0 ([0, T )× Rd)) = L1(μ, (0, T )× R

d),

where P ( · ) denotes L1-closure. Then the set Kν consists of at most one element. Indeed, if

μ1, μ2 ∈ Kν , then μ = (μ1 + μ2)/2 ∈ Kν and μ1 = �1μ, μ2 = �2μ, and the functions �1 and �2

are bounded. In addition, one has the equality

T∫

0

∫

Rd

Pu(x, t)(�1(x, t)− �2(x, t)) dμ = 0 ∀u ∈ C∞
0 ([0, T )× R

d),

which implies that �1(x, t)− �2(x, t) = 0 for almost all (x, t) with respect to the measure μ. In

[5], there are examples of such sets Kν . In particular, if the diffusion matrix is the unit matrix

and b ∈ Lp(U × (0, T )) for every ball U and some p > d+2, then for Kν one can take the set of

all probability solutions μ to the Cauchy problem such that b ∈ L1(μ,U × (0, T )) for every ball

U ∈ R
d and

b− βμ ∈ L1(μ,Rd × (0, T )), (4.5)

where βμ is the logarithmic derivative of the measure μ. It is readily seen that Theorem 4.5

considerably reinforces the last assertion. It turns out that if the inclusion (4.5) is fulfilled for

at least one probability solution, then there are no other probability solutions independently of

whether they a priori satisfy this inclusion or not.

29



5 Uniqueness of Integrable Solutions

In the previous sections, we discussed the uniqueness of probability solutions. However,

many papers (cf., for example, [7, 8, 15, 16]) are concerned with the uniqueness of integrable

solutions and the uniqueness of a probability solution is obtained as a consequence. As we see

from Example 2.7, this approach does not always lead to precise results: the uniqueness of a

probability solution can take place also in the case where there are several linearly independent

integrable solutions. Moreover, the conditions for uniqueness in the class Iν differ principally

from those in the class Pν .

In this section, we obtain sufficient conditions for the uniqueness of integrable solutions to the

Cauchy problem (1.2) in terms of Lyapunov functions, which enables us to deal with operators

L with rapidly growing coefficients. The principal results presented below were obtained in [9]

in the case of a unit diffusion matrix. However, the case of a nonconstant diffusion matrix under

conditions (H1) and (H2) can be treated in a similar way.

We recall that, according to [1], every locally finite measure μ satisfying the equation ∂tμ =

L∗μ with b ∈ Lploc(|μ|,Rd× (0, T )), where p > d+2, possesses a continuous density �. As in the

case of a probability solution, we need several auxiliary lemmas.

Lemma 5.1. Suppose that conditions (H1) and (H2) hold. Let a measure μ = � dx dt belong

to the class Iν . Then for every nonnegative function ψ ∈ C∞
0 (Rd) and any numbers s and t in

(0, T ) with s < t

∫

Rd

ψ(x)|�(x, t)| dx �
∫

Rd

ψ(x)|�(x, s)| dx+

t∫

s

∫

Rd

Lψ(x, τ)|�(x, τ)| dx dτ.

We begin with an informal reasoning, clarifying this assertion and becoming rigorous in the

case of smooth coefficients. Then a complete proof will be given.

Assume that f ∈ C2(R) and f ′′ � 0. Let ψ ∈ C∞
0 (Rd), and let ψ � 0. We set

hi = bi −
d∑
j=1

∂xja
ij .

We have the equality

L∗f(�) = f ′(�)L∗�+ f ′′(�)(A∇�,∇�) + (�f ′(�)− f(�)) div h.

Since f ′′ � 0 and ∂t� = L∗�,

L∗f(�) � ∂t(f(�)) + (�f ′(�)− f(�)) div h.

Multiplying the last inequality by ψ and integrating, we find

∫

Rd

ψ(x)f(�(x, t)) dx �
∫

Rd

ψ(x)f(�(x, s)) dx+

t∫

s

∫

Rd

Lψ(x, τ)f(�(x, τ)) dx dτ

−
t∫

s

∫

Rd

(�(x, τ)f ′(�(x, τ))− f(�(x, τ))) div h dx dτ.
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This inequality does not involve the second order derivative of the function f . Therefore, it

remains valid for functions that are convex downwards and Lipschitz. Let us take f(z) = |z|.
Then zf ′(z)− f(z) = 0, and we obtain the desired inequality

∫

Rd

ψ(x)|�(x, t)| dx �
∫

Rd

ψ(x)|�(x, s)| dx+

t∫

s

∫

Rd

Lψ(x, τ)|�(x, τ)| dx dτ.

Now, we give the rigorous proof.

Proof of Lemma 5.1. Let ω ∈ C∞
0 (Rd), ω � 0, ‖ω‖L1 = 1, ωε(x) = ε−dω(x/ε). Let gε

denote the convolution g ∗ ωε for any locally integrable function g. The function �ε is smooth

with respect to x on every compact set in R
d × (0, T ). We observe that for all x ∈ R

d the

function t �→ �ε(x, t) is absolutely continuous on every closed interval J ⊂ (0, T ). Indeed, for all

x ∈ R
d we have the equality

∂t�ε = ∂xi∂xj (a
ij�)ε − ∂xi(b

i�)ε. (5.1)

in the sense of the theory of distributions on t ∈ (0, T ). Moreover, the right-hand side of this

equality is integrable on J because b� and � are integrable on U × J for every ball U . Let

A ϕ =
d∑

i,j=1

aij∂xi∂xjϕ, A ∗ϕ =
d∑

i,j=1

∂xi∂xj (a
ijϕ).

Let also

Ri�,ε =
d∑
j=1

(∂xj (a
ij�)ε − ∂xj (a

ij�ε))

Then we can write (5.1) as follows:

∂t�ε = A ∗�ε − div
(
(b�)ε −R�,ε

)
.

Let δ > 0. We set gδ ∈ C1(R), gδ(−r) = −gδ(r), gδ(r) = sgn r for |r| > δ, |gδ| � 1 and

|g′δ| � Cδ−1 for some number C > 0. Let

fδ(r) =

r∫

0

gδ(y) dy, r ∈ R.

Note that fδ ∈ C2(R) and lim
δ→0

fδ(r) = |r|, lim
δ→0

f ′δ(r) = sgn r. Let ψ ∈ C∞
0 (Rd). Integrating by

parts, we obtain the equality

t∫

s

∫

Rd

fδ(�ε)A ψ dx dτ =

t∫

s

∫

Rd

A
(
ψf ′δ(�ε)

)
�ε + f ′′δ (�ε)(Ad∇�ε,∇�ε)ψ dx dτ −Wε − Vε,

where

Wε =

t∫

s

∫

Rd

(�εf
′
δ(�ε)− fδ(�ε))∂xia

ij∂xjψ dx dt,

Vε =

t∫

s

∫

Rd

ψf ′′δ (�ε)�ε∂xi�ε∂xia
ij dx dt.
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Note that

t∫

s

∫

Rd

A
(
ψf ′δ(�ε)

)
�ε dx dτ =

t∫

s

∫

Rd

∂t(fδ(�ε))ψ dx dτ

−
t∫

s

∫

Rd

[
((b�)ε −R�,ε,∇ψ)f ′δ(�ε) + ((b�)ε −R�,ε,∇�ε)f ′′δ (�ε)

Thus, we have the equality

∫

Rd

ψ(x)fδ(�ε(x, t)) dx+

t∫

s

∫

Rd

f ′′δ (�ε)(Ad∇�ε,∇�ε)ψ dx dτ

=

∫

Rd

ψ(x)fδ(�ε(x, s)) dx+

t∫

s

∫

Rd

fδ(�ε)A ψ + f ′δ(�ε)((b�)ε,∇ψ) dx dτ +Wε + Vε + Zε,

where

Zε = −
t∫

s

∫

Rd

[
(R�,ε,∇ψ)f ′δ(�ε) + ((b�)ε −R�,ε,∇�ε)f ′′δ (�ε)

]
ψ dx dτ.

Let a ball U contain the support of the function ψ. Let γ = γ(U) > 0, and let Λ = Λ(U) > 0

be numbers from conditions (H1) and (H2). Recall that f ′′δ � 0. Then

t∫

s

∫

Rd

f ′′δ (�ε)(A∇�ε,∇�ε)ψ dx dτ � γ

t∫

s

∫

Rd

f ′′δ (�ε)|∇�ε|2ψ dx dτ.

Let us estimate Wε. Note that |rf ′δ(r)− fδ(r)| � Cδ. We obtain the inequality

|Wε| � dΛδT |U |max
x

|∇ψ(x)|.

Let us estimate Vε. Since f
′′
δ (r) = 0 for |r| > δ and |f ′′δ (r)| � Cδ−1, we have

|Vε| � γ

3

t∫

s

∫

Rd

f ′′δ (�ε)|∇�ε|2ψ dx dτ + 3γ−1dΛ2δT |U |max
x

|ψ|.

Finally, let us estimate Zε. We have

|Zε| �
t∫

s

∫

Rd

|R�,ε||∇ψ|+ 3γ−1δ−1ψ|R�,ε|2 dx dτ

+ 3γ−1

t∫

s

∫

Rd

f ′′δ (�ε)|(b�)ε|2ψ dx dτ +
γ

3

t∫

s

∫

Rd

f ′′δ (�ε)|∇�ε|2ψ dx dτ.
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Combining the obtained estimates, we arrive at the inequality

∫

Rd

ψ(x)fδ(�ε(x, t)) dx =

∫

Rd

ψ(x)fδ(�ε(x, s)) dx+

t∫

s

∫

Rd

fδ(�ε)A ψ + f ′(�ε)((b�)ε,∇ψ) dx dτ

+ δ · C(d,Λ, γ, ψ) +
t∫

s

∫

Rd

|R�,ε||∇ψ|+ 3γ−1δ−1ψ|R�,ε|2 dx dτ

+ 3γ−1

t∫

s

∫

Rd

f ′′δ (�ε)|(b�)ε|2ψ dx dτ.

Letting ε→ 0 and taking into account that

lim
ε→0

t∫

s

∫

U

|R�,ε|2 dx dτ = 0,

we obtain the inequality

∫

Rd

ψ(x)fδ(�(x, t)) dx =

∫

Rd

ψ(x)fδ(�(x, s)) dx+

t∫

s

∫

Rd

fδ(�)A ψ + f ′δ(�)(b�,∇ψ) dx dτ

+ δ · C(d,Λ, γ, ψ) + 3γ−1

t∫

s

∫

Rd

f ′′δ (�)|b�|2ψ dx dτ.

Recall that b ∈ Lp(|μ|, U × [0, T ]) and

∣∣∣∣∣
t∫

s

∫

Rd

f ′′δ (�)|b�|2ψ dx dτ
∣∣∣∣∣ � Cδ(p−2)/p

t∫

s

∫

Rd

|b|2|�|2/pψ dx dτ

� Cδ(p−2)/p

( t∫

s

∫

Rd

|b|p|�|ψ dx dτ
)2/p( t∫

s

∫

Rd

ψ dx dτ

)2/(p−2)

.

Hence

lim
δ→0

t∫

s

∫

Rd

f ′′δ (�)|b�|2ψ dx dτ = 0.

Letting δ → 0, we obtain the inequality

∫

Rd

ψ(x)|�(x, t)| dx �
∫

Rd

ψ(x)|�(x, s)| dx+

t∫

s

∫

Rd

[
A ψ + (b,∇ψ)]|�(x, τ)| dx dτ.

The following lemma gives some information about the behavior of the solution as t→ 0.
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Lemma 5.2. Suppose that conditions (H1) and (H2) hold and the functions aij are contin-

uous on R
d× [0, T ]. Let the measure μ = �(x, t) dx dt belong to Iν . If ν = 0, then for every ball

U ⊂ R
d

lim
t→0

∫

U

|�(x, t)| dx = 0.

Proof. The case A = I is considered in [9]. The reasoning is similar in the present more

general situation. Let us set A(x, t) = A(x,−t) for t ∈ [−T, 0]. Then the functions aij are

continuous on R
d×[−T, T ] and satisfy conditions (H1) and (H2). Assume also that ψ ∈ C∞

0 (Rd),

ψ � 0, and U is a ball containing the support of the function ψ. We can redefine the functions

aij outside U in such a way that conditions (H1) and (H2) will hold on R
d× [0, T ] with the same

numbers γ = γ(U),M =M(U), and Λ = Λ(U). We set gδ(r) = δ−1r if |r| < δ and gδ(r) = sgn r

if |r| � δ.

Let 0 < t < T . By [34, Theorem 1.3], there exists a solution Q to the Cauchy problem

∂sQ+A0Q = 0,

Q
∣∣
s=t

= gδ(�( · , t)),
(5.2)

on R
d × (−1, t), where

A0Q =

d∑
i,j=1

aij∂xi∂xjQ.

The function gδ(�( · , t)) is continuous and bounded. Moreover, |gδ(�(x, t))| � 1. According to

[34, Theorems 1.1 and 1.3] (cf. also [14]), we have the inclusion

Q ∈ Cb((−T, t]× R
d)
⋂
C1,2((−T, t)× R

d)

and the inequalities

|Q(x, u)| � C, |∇Q(x, u)| � C(t− u)−1/2

with some number C depending on γ, Λ, and d. Let s < t be fixed. Applying Lemma 1.1 with

ϕ(x, u) = Q(x, u)ψ(x) on [0, s] × R
d, which is possible since ϕ belongs to the respective class,

after integration by parts (which is again possible due to the stated properties of Q and the

compactness of the support of ψ) we obtain

∫

Rd

Q(x, s)ψ(x)�(x, s) dx =

s∫

0

∫

Rd

[
(A(x, τ)∇Q(x, τ),∇ψ(x)) +Q(x, τ)A0ϕ(x)

+ (b(x, τ),∇Q(x, τ))ψ(x) + (b(x, τ),∇ψ(x))Q(x, τ)
]
�(x, τ) dx dτ. (5.3)

We estimate the right=hand side of the equality by the expression

C sup
x∈Rd

(|ϕ(x)|+ |A∇ϕ(x)|+ |A0ϕ(x)|
)×

s∫

0

∫

Rd

(
1 + (t− τ)−1/2

)(
1 + |b(y, τ)|)|�(x, τ)| dx dτ.

Recall that � ∈ L∞((0, 1), L1(Rd)) and b ∈ Lp(|μ|,Rd × [0, 1]). Applying the Hölder inequality

to the functions |b| and (t− τ)−1/2, we obtain∫

Rd

Q(x, s)ϕ(x)�(x, s) dx � C1t
(2−p′)/2p′ ,
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where C1 does not depend on s and t. Since � and Q are continuous functions on R
d × (0, t],

letting s→ t, we obtain

∫

Rd

ϕ(x)gδ(�(x, t))�(x, t) dx � C1t
(2−p′)/2p′ .

Letting δ → 0, we arrive at the inequality

∫

Rd

ϕ(x)|�(x, t)| dx � C1t
(2−p′)/2p′ .

Since p > 2, we have p′ < 2 and t(2−p′)/2p′ → 0 as t→ 0.

Finally, we prove our main result on the uniqueness of integrable solutions.

Theorem 5.3. Let conditions (H1) and (H2) hold , and let the functions aij be continuous

on R
d × [0, T ]. Let a measure μ = �(x, t) dx dt in Iν be such that

aij

1 + |x|2 ,
bi

1 + |x| ∈ L1(|μ|,Rd × [0, T ]).

Then the function

t �→
∫

Rd

|�(x, t)| dx

is decreasing on (0, T ). Moreover, the set

Lν =

{
μ ∈ Iν :

|aij |
1 + |x|2 ,

|bi|
1 + |x| ∈ L1(|μ|,Rd × [0, T ])

}

consists of at most one element.

Proof. We set ψ(x) = ζ(x/N), where the function ζ ∈ C∞
0 (Rd) is such that ζ � 0, ζ(x) = 1

if |x| � 1 and ζ(x) = 0 if |x| > 2, and for some number K > 0 and all x

|ζ(x)| � K, |∂xiζ(x)| � K, |∂xi∂xjζ(x)| � K.

Applying Lemma (5.1), we obtain the inequality

∫

Rd

ψN (x)|�(x, t)| dx �
∫

Rd

ψN (x)|�(x, s)| dx+KN−2(1 +N2)

d∑
i,j=1

t∫

0

∫

N<|x|<2N

|aij |
1 + |x|2 |�| dx ds

+KN−1(1 +N−1)
d∑
i=1

t∫

0

∫

N<|x|<2N

|bi|
1 + |x| |�| dx ds. dx dτ.

Letting N → ∞, we obtain ∫

Rd

|�(x, t)| dx �
∫

Rd

|�(x, s)| dx.
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Assume that there are two measures μ1, μ2 ∈ Lν . Then the measure μ1−μ2 satisfies the Cauchy
problem with zero initial condition and

aij

1 + |x|2 ,
bi

1 + |x| ∈ L1(|μ1 − μ2|,Rd × [0, T ]).

Consequently, whenever t > s we have

∫

Rd

|�1(x, t)− �2(x, t)| dx �
∫

Rd

|�1(x, s)− �2(x, s)| dx.

Applying Lemma 5.2, we obtain

∫

Rd

|�1(x, t)− �2(x, t)| dx � 0

It follows that μ1 = μ2.

Remark 5.4. The conditions on the coefficients in this theorem can be weakened as follows:

the inclusions
aij

1 + |x|2 ,
bi

1 + |x| ∈ L1(|μ|,Rd × [0, T ])

can be replaced with the equality

lim
N→∞

T∫

0

∫

N�V �N+1

|LV |
V

+
|√A∇V |2

V 2
d|μ| = 0,

where V ∈ C2(Rd) is a positive function such that lim
|x|→∞

V (x) = +∞.

Theorem 5.5. Let conditions (H1) and (H2) hold, and let the functions aij be continuous

on R
d × [0, T ]. Suppose that there exists a positive function V ∈ C2(Rd) such that V (x) → +∞

as |x| → +∞ and for some number C > 0 and all (x, t) ∈ R
d × (0, 1)

LV (x, t) � −C, |
√
A∇V (x)| � C.

Then for every measure μ = �(x, t) dx dt in Iν the function

t �→
∫

Rd

|�(x, t)| dx

is decreasing on (0, T ). Moreover, if the initial distribution ν vanishes, then μ = 0. Therefore,

the set Iν consists of at most one element.

Proof. By Lemma 5.1, for every nonnegative function ψ ∈ C∞
0 (Rd) and 0 < s < t < T

∫

Rd

ψ(x)|�(x, t)| dx �
∫

Rd

ψ(x)|�(x, s)| dx+

t∫

s

∫

Rd

Lψ(x, τ)|�(x, τ)| dx dτ. (5.4)
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We set ψ(x) = ζ(N−1V (x)), where ζ is a function such that ζ � 0, ζ(z) = 1 if |z| � 1 and

ζ(z) = 0 if |z| > 2, ζ ′(z) � 0 if z > 0, and for some number M > 0 and all x

|ζ(x)| �M, |ζ ′(x)| �M, |ζ ′′(x)| �M.

Applying (5.4), we arrive at the inequality∫

Rd

ψN (x)|�(x, t)| dx �
∫

Rd

ψ(x)|�(x, s)| dx

+

t∫

0

∫

Rd

[
N−1ζ ′(N−1V (x))LV (x, τ) +N−2ζ ′′(N−1V (x))|∇V (x)|2|�(x, τ)|] dx dτ.

We observe that ζ ′LV �MC. Therefore,

∫

Rd

ψN (x)|�(x, t)| dx �
∫

Rd

ψ(x)|�(x, s)| dx+MC(N−1 + CN−2)

t∫

s

∫

Rd

|�(x, τ)| dx dτ.

Since lim
N→∞

ψN (x) = 1, letting N → ∞, we obtain

∫

Rd

|�(x, t)| dx �
∫

Rd

|�(x, s)| dx (5.5)

and the assertion about monotonicity is proved. If ν = 0, then Lemma 5.2 yields the equality

lim
s→0

∫

U

|�(x, s)| dx = 0.

Using this inequality along with (5.5), we obtain∫

Rd

|�(x, t)| dx = 0 ∀t ∈ (0, T ).

Let us consider several examples.

Example 5.6. Let V (x) = ln(ln(1 + |x|)) if |x| > 1. Then, whenever |x| > 1, we have

|
√
A(x, t)∇V (x)|2 = (A(x, t)∇V (x),∇V (x)) =

(A(x, t)x, x)

|x|2(|x|+ 1)2 ln2(|x|+ 1)
.

Let us calculate LV (x, t) for |x| > 1:

LV (x, t) = − (A(x, t)x, x)

|x|2(1 + |x|)2 ln(1 + |x|)
(
1 +

1

ln(1 + |x|) +
1 + |x|
|x|

)

+
trace A(x, t)

|x|(1 + |x|) ln(1 + |x|) +
(b(x, t), x)

|x|(|x|+ 1) ln(|x|+ 1)
.

To ensure the assumptions of the theorem, it suffices to have the estimates

(A(x, t)x, x) � C + C|x|4 ln(1 + |x|),
(b(x, t), x) � −C|x|2 ln(1 + |x|)− C

for all (x, t) ∈ R
d × (0, 1).

37



Let us give an example with a Lyapunov function that is not radial.

Example 5.7. Let A be the unit matrix, and let

V (x) =
d∑
i=1

ln(ln(2 + x2i )).

To ensure the condition LV (x, t) � −C, it suffices to have the estimate

d∑
i=1

2xib
i(x, t)

(2 + x2i ) ln(2 + x2i )
� −C1

for some numbers C1 > 0 and all (x, t) ∈ R
d × (0, 1).

Let d = 2. Then

V (x, y) = ln ln(2 + x2) + ln ln(2 + y2).

We set

b1(x, y) = y(2 + x2) ln(2 + x2),

b2(x, y) = −x(2 + y2) ln(2 + y2).

Then
2xb1(x, y)

(2 + x2) ln(2 + x2)
+

2yb2(x, y)

(2 + y2) ln(2 + y2)
= 0.

Therefore, there exists at most one integrable solution to the corresponding Cauchy problem.

Since |LV | � C in this case, for any probability initial distribution there exists a unique proba-

bility solution to the Cauchy problem, which is also a unique integrable solution.

We observe that

b1(x, y)x+ b2(x, y)y = xy[(2 + x2) ln(2 + x2)− (2 + y2) ln(2 + y2)].

Hence it is clear that b1(x, y)x + b2(x, y)y cannot be estimated from below by an expression of

the form −C(
√
x2 + y2)3 − C. Therefore, sufficient conditions of the form

(b1(x, y)x+ b2(x, y)y)√
x2 + y2

� β(
√
x2 + y2),

expressed in terms of the function β, do not work in this example.

Finally, let us mention several open problems related to the above discussion.

• Is a probability solution to the Cauchy problem on R
1 × [0, T ] with the unit diffusion

coefficient and an infinitely differentiable drift unique? Recall that we have constructed a

counterexample in dimension d = 4.

• Is it true that under merely locally assumptions about the coefficients (for example, locally

bounded) every solution to the Fokker–Planck–Kolmogorov equation is generated by a

solution to the martingale problem or it may happen that the Cauchy problem has a

probability solution whereas the martingale problem is not solvable? It would be interesting

to investigate the connections between the two problems under local assumptions.
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• Is it possible to obtain the results of Sections 4 and 5 under weaker assumptions about the

diffusion matrix, for instance, assuming that it is Hölder continuous in x?

• Our theorems involving Lyapunov functions impose the additional restriction on the Lya-

punov function V of the form |√A∇V (x)| � C. Is it really needed? We observe that

analogous results for martingale problems do not use this restriction.

• It would be interesting to find conditions ensuring that the Cauchy problem has no prob-

ability or integrable solutions.
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