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Abstract

Let L be a positive definite self-adjoint operator on the L2-space associated to a
σ-finite measure space. Let H be the dual space of the domain of L1/2 w.r.t. L2(µ).
By using an Itô type inequality for the H-norm and an integrability condition for the
hyperbound of the semigroup Pt := e−Lt, general extinction results are derived for
a class of continuous adapted processes on H. Main applications include stochastic
and deterministic fast diffusion equations with fractional Laplacians. Furthermore,
we prove exponential integrability of the extinction time for all space dimensions
in the singular diffusion version of the well-known Zhang-model for self-organized
criticality, provided the noise is small enough. Thus we obtain that the system goes
to the critical state in finite time in the deterministic and with probability one in
finite time in the stochastic case.

AMS subject Classification: 60J75, 47D07.
Keywords: Extinction, Stochastic differential equation, fast diffusion equation.

1 Introduction

In physics, self-organized criticality (SOC) is a property of dynamical systems which have
a critical point as an attractor. The concept was introduced in [1], and is considered in [3]
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to be one of the mechanisms by which complexity arises in nature. The phenomenon of
SOC has been widely studied in physics from different perspectives, see e.g. [15]. In [4] it
was proposed to describe this phenomenon, e.g. in the case of the avalanche dynamics in
the Bak-Tang-Wiesenfeld-model (see [2]) and in the Zhang-model (see [19]) by a singular
diffusion with the incoming energy being realized by adding a noise term, for instance a
linear multiplicative noise, i.e. in equation (1.1) the map B is of type (1.3) below. The
resulting stochastic partial diffusion equation is then of the following type:

(1.1) dXt −∆Ψ(Xt)dt 3 B(Xt)dWt,

where Ψ : R→ 2R is a multivalued map defined by

(1.2) Ψ(s) :=


θ1 + θ2s, if s ∈ [0,∞),

[0, θ1], if s = 0,

0, if s < 0,

where θ1, θ2 ≥ 0 are constants, with θ2 = 0 in the BTW-model whereas θ2 > 0 in the
Zhang-model. Hence in the BTW-model Ψ is just the Heaviside function considered as a
multivalued map, with jump at s = 0, i.e. we take the critical state to be equal to zero,
which we may without loss of generality, by simply shifting the s axis. In (1.1) we fix
an open bounded domain O ⊂ Rd and ∆ denotes the Dirichlet Laplacian on O, Wt is a
cylindrical Wiener process on L2(O) with natural inner product 〈·, ·〉2, but the solution
process Xt takes values in H defined to be the completion of L2(O) under the norm ‖ · ‖H
corresponding to the inner product 〈x, y〉H := 〈x, (−∆)−1y〉2, i.e. H is just the dual of the
classical Sobolev space H1,2

0 (O) ( and is usually denoted by H−1). To explain the type of
noise in (1.1), let {ek}k≥1 be a normalized eigenbasis of −∆ in L2(O) with corresponding
eigenvalues {λk}k≥1 numbered in increasing orders with multiplicities. It is well-known
that λk = O(k2/d) for large k. Then B : H → L2(L2(O), H) is defined by

(1.3) B(x)h =
∞∑
k=1

µk〈ek, h〉2xek, x ∈ H, h ∈ L2(O),

for {µk}k≥1 ⊂ R chosen in such a way that B(x) ∈ L2(L2(O), H), x ∈ H, which is e.g. the

case if there exists a constant ε ∈ (0, 1) such that (see (3.7) below)
∑∞

k=1 µ
2
kλ

d
2
∨(1+ε)

k <∞.
The fundamental question about (1.1) is now whether the system will go to the critical

state (= 0 in our case) in finite time, i.e. letting

τ0 := inf{t ≥ 0 : |X(t)|H = 0},

is τ0 < ∞ for any initial condition X0 = x ∈ H, that is; do we have extinction in finite
time?

Recently, it was proved in [7, 8] (where [8] is an improved version of [7]) that the answer
is yes if d = 1, i.e. O ⊂ R, however, only with positive probability, that is, P(τ0 <∞) > 0,
provided X0 is not too far away from 0 (see [7, 8] for details). We mention here that in
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[7] the µk, k ≥ 1, introduced above, were assumed to be zero starting from k ≥ N + 1, an
assumption that is dropped in [8]. Furthermore, in both [7, 8] for simplicity d ≤ 3 was
assumed. The question, however, whether

(1.4) P(τ0 <∞) = 1

was left open and it seemed to be out of reach of the methods in [7, 8]. For asymptotic
extinction results for all d ∈ {1, 2, 3, } and with probability one we refer to [9].

The purpose of this paper is twofold. First, we develop a general technique to prove
extinction for solutions of stochastic (ordinary and partial) differential equations, and
second to apply these results to equations of type (1.1) (in fact for a whole class of
Ψ : R → 2R) to analyze the above question, more precisely the problem whether one of
the following three properties hold:

(i) P(τ0 <∞) > 0 for small X0,

(ii) P(τ0 <∞) > 0 for all X0,

(iii) P(τ0 <∞) = 1 or, moreover, τ0 has finite (exponential or polynomial) moments.

We already want to mention here that as a consequence we obtain that for all dimen-
sions in the Zhang-model of SOC the extinction time τ0 is even exponentially integrable,
in particular we have extinction in finite time with probability one, provided the noise is
small enough and X0 = x ∈ L4(O), x ≥ 0. This has been open even in the deterministic
case. In order to also include stochastic fast diffusion equations and prove extinction
for that case, strengthening and generalizing the results from [6] we study (1.1) for the
following class of Ψ : R → 2R: Ψ is a maximal monotone graph with 0 ∈ Ψ(0) such that
for some constants r ∈ [0, 1), C > 0, θ1 > 0, q ≥ 1 + r, and θ2 ≥ 0

(1.5) C(|s|q + |s|) ≥ sy ≥ θ1|s|1+r + θ2|s|2, s ∈ R, y ∈ Ψ(s).

Recall that Ψ is called a maximal monotone graph if the set G := {(x, y) : x ∈ R, y ∈
Ψ(x)} is monotone, i.e. (x − x′)(y − y′) ≥ 0 holds for (x, y), (x′, y′) ∈ G, and for any
monotone set G̃ containing G one has G̃ = G (see [18, pages 447-449]).

In this case we call (1.1) fast diffusion-type equation. A special case of this is the
stochastic fast diffusion equation, i.e. equation (1.1) with

(1.6) Ψ(s) = sr−1|s|, s ∈ R,

where r ∈ (0, 1). In this case we, however, avoid the assumption d ≤ 3, made in [7] for
simplicity, but prove extinction with positive probability in all dimensions with the usual
dimension dependent restriction on r known from the deterministic case. As in [6, 7, 8]
the latter is, of course, always included in our results choosing µk = 0 for all k ≥ 1 in
(1.3).

Another new feature of this paper is that we prove our results for a whole class of
general operators L on a measurable space replacing the Dirichlet Laplacian (−∆) on
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O ⊂ Rd. This class, in particular, includes fractional Laplacians L = (−∆)α, α ∈ (0, 1],
which have attracted more interest recently. Existence and uniqueness of solutions to
(1.1), with (−∆) replaced by a fractional Laplacian, have first been proved in [13] in
the general, i.e. stochastic, hence including the deterministic (B = 0), case. In the
deterministic case these results have been reproved in [17] under some restrictions on
dimensions, however, by completely different methods.

The organization of this paper is as follows. In Section 2 we state and prove our two
general results on extinction of solutions for stochastic equations. The first (see Theorem
2.1 below) gives quantitative conditions so that properties (i)-(iii) above hold respectively.
It also confirms the intuition that one gets stronger extinction results if one has more
coercivity in the system (i.e. ρ2 > 0 in condition (H1) below or correspondingly θ2 > 0
in (1.5) above, as e.g. in the Zhang-model). The reason is that more coercivity means
a stronger drift towards zero, so that the part in (1.5) with θ1 in front becomes very big
and pushes the process to zero. The second result (see Theorem 2.2 below) tells us that
suitable large enough noise has the same effect. In Section 3 these results are applied to
the fast diffusion-type equations above, but for the said general class of operators replacing
(−∆). Subsection 3.1 is devoted to the case, where L = (−∆ + V )α, α ∈ (0, 1], and V
a nonnegative measurable function. In Subsection 3.2 we prove exponential integrability
of the extinction time τ0 in the strongly dissipative case even for uncoloured noise (i.e.
µk = 1 for all k ≥ 1 in (1.3)). In Subsection 3.3 we give examples of noises which lead to
extinction with probability one.

The above described SOC case, i.e. Ψ is given by (1.2), and the fast diffusion case
(1.6), both for the Laplacian and the fractional Laplacian, are considered as guiding
examples, and are discussed in detail in Section 3. Of course, our framework also cover
finite-dimensional models as when E = {1, · · · , n} and µ({i}) = 1, 1 ≤ i ≤ n, we have
L2(µ) = Rn. In this case the extinction time τ0 becomes the hitting time of the process
to point zero, which has been already well characterized in the literature, see e.g. [10] for
standard techniques to derive explicit formulae and sharp estimates on the distribution
of τ0. Thus, Section 3 we only consider infinite-dimensional examples in the framework
of SPDEs.

2 A general result

Let (E,E , µ) be a σ-finite measure space, and let (L,D(L)) be a positive definite self-
adjoint operator on L2(µ) such that for its spectrum σ(L) we have inf σ(L) > 0. Let
Pt = e−Lt. Let H be the completion of L2(µ) w.r.t. the norm ‖ · ‖H corresponding to the
inner product 〈x, y〉H := 〈x, L−1y〉2 (note that since inf σ(L) > 0, L : D(L) → L2(µ) is
bijective. So, this definition makes sense). For any p, q ≥ 1, let ‖ · ‖p and ‖ · ‖p→q the
norm on Lp(µ) and the operator norm from Lp(µ) to Lq(µ) respectively.

Let {Xt}t≥0 be an H-valued continuous adapted process on the complete filtered prob-
ability space (Ω, {Ft}t≥0,P). Let

τ0 := inf{t ≥ 0 : Xt = 0}
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be the extinction time of the process. To investigate the finiteness of τ0, we introduce the
following conditions:

(H1) There exist r ∈ [0, 1) and constants ρ1 > 0, ρ2, ρ3 ≥ 0 such that ‖Xt‖2
H is a semi-

martingale, ‖Xt‖2
2 and ‖Xt‖1+r

1+r are locally integrable in t, and the Itô differential of
‖Xt‖2

H satisfies

d‖Xt‖2
H ≤ 2

{
ρ3‖Xt‖2

H − ρ1‖Xt‖1+r
1+r − ρ2‖Xt‖2

2

}
dt+ dMt

for some local martingale Mt.

(H2) There exists θ ∈ (0, 1] such that

γ(θ) :=

∫ ∞
0

e−λ1(1−θ)t‖Pt‖θ1+r→ 1+r
r

dt <∞,

where λ1 := inf σ(L) > 0 and σ(L) is the spectrum of L.

Note that (H1) implies that for any X0 ∈ L2(Ω → H,F0,P) and T > 0, one has
(Xt)t∈[0,T ] ∈ L1+r([0, T ]×Ω→ L1+r(µ); dt× P) and furthermore, (Xt)t∈[0,T ] ∈ L2([0, T ]×
Ω→ L2(µ); dt× P) if ρ2 > 0.

Remark 2.1. (H1) implies that e−2ρ3t‖Xt‖2
H , t ≥ 0, is a non-negative local supermartin-

gale. Hence it is equal to zero for all t ≥ τ0 by a well-known result (see e.g. [12, Chap
IV, Lemma 3.19]).

Remark 2.2. We would like to indicate that assumptions (H1) and (H2) are fulfilled
for a large class of SPDEs. More precisely:

(1) Let e.g. L = −∆ + V , where ∆ is the Dirichlet Laplacian on an open domain
O ⊂ Rd and V ≥ 0 is a continuous function on O. If either O is bounded or
lim inf |x|→∞ V (x) > 0, then λ1 > 0 and

‖Pt‖1+r→ 1+r
r
≤ c1e−c2tt−d(1−r)/[2(1+r)], t > 0

holds for some constants c1, c2 > 0 (see Section 3 for details). Therefore, (H2) holds

for θ ∈ (0, 2(1+r)
d(1−r)) ∩ (0, 1].

(2) Let Xt solve the following SPDE on H:

(2.1) dXt + LΨ(Xt) 3 B(Xt)dWt,

where Wt is a cylindrical Brownian motion on L2(µ); Ψ : R → 2R is a maximal
monotone graph such that

C(|s|1+r + |s|) ≥ sy ≥ θ1|s|1+r + θ2|s|2, s ∈ R, y ∈ Ψ(s)
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for some constants C > 0, θ1 > 0, θ2 ≥ 0; and B : H → L2(L2(µ);H) (the space of
Hilbert-Schmidt linear operators from L2(µ) to H) such that

‖B(x)‖2
L2(L2(µ);H) ≤ 2ρ3‖x‖2

H , x ∈ H.

For what is meant by a solution to (2.1), we refer to Section 3 below. Then, by Itô’s
formula (H1) holds (see Section 3 below).

Theorem 2.1. Assume (H1) and (H2) and let E‖X0‖θ(1−r)H <∞.

(1) If either ρ2 > 0 or ρ2 = 0 but θ = 1, then

P(τ0 =∞) ≤ 1− Ee−θ(1−r)ρ3τ0 ≤ ρ3γ(θ)(1+r)/2

ρθ1ρ
1−θ
2 λ

(1−r)(1−θ)/2
1

E‖X0‖θ(1−r)H ,

where ρ1−θ
2 := 1, if θ = 1 and ρ2 = 0. Consequently, P(τ0 <∞) > 0 holds for small

E‖X0‖θ(1−r)H .

(2) If ρ3 < λ1ρ2 then for any β ∈ (0, θ(1− r)(ρ2λ1 − ρ3)),

Eeβτ0 ≤ 1 +
βγ(θ)(1+r)/2E‖X0‖θ(1−r)H

θ(1− r)ρθ1α1−θ
β λ

(1−r)(1−θ)/2
1

<∞

holds for αβ := ρ2 − 1
λ1

( β
θ(1−r) + ρ3) ∈ (0, ρ2).

(3) If ρ3 = λ1ρ2 and θ = 1, then

Eτ0 ≤
γ(1)(1+r)/2

(1− r)ρ1

E‖X0‖1−r
H <∞.

Remark 2.3. If in (H1) we have that ρ2 = 0 and M = 0, which is e.g. the case for
deterministic stochastic fast diffusion equations (see equation (3.4) with B ≡ 0 in Section
3 below), it follows by (1) (or (3)) in Theorem 2.1 that we have extinction in finite time.
Thus we recover the well-known results from the deterministic case.

Obviously, in cases (2) and (3) of Theorem 2.1 one has P(τ0 < ∞) = 1 for all deter-
ministic initial data X0 = x ∈ H, while in case (1) P(τ0 <∞) > 0 holds for small enough
X0 = x ∈ H. Our next result strengthens the assertion in (1): if the local martingale Mt

is strong enough but not too large, then P(τ0 <∞) > 0 holds for all X0 = x ∈ H.

Theorem 2.2. Assume that (H1) and (H2) hold with either ρ2 > 0, or ρ2 = 0 but θ = 1.
If there exist two functions g2 ≥ g1 ∈ C([0,∞)) with g1(s) > 0 for s > 0 such that

(2.2) g2(‖Xt‖2
H)dt ≥ d〈M〉t ≥ g1(‖Xt‖2

H)dt.
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define

ξ(s) :=
ρθ1ρ

1−θ
2 λ

(1+r)(1−θ)/2
1

γ(θ)(1+r)/2
s1−θ(1−r)/2 − ρ3s, s ≥ 0,

where ρ1−θ
2 := 1 if ρ2 = 0 and θ = 1; and set

g = g21{ξ≥0} + g11{ξ<0}.

Then for any X0 = x ∈ H,

(2.3) P(τ0 =∞) ≤
∫ ‖x‖2H

0
exp

[
2
∫ t

1
ξ(u)
g(u)

du
]
dt∫∞

0
exp

[
2
∫ t

1
ξ(u)
g(u)

du
]
dt

< 1.

Consequently, if g1(s) ≥ 2ρ3s
2 holds for large s, then P(τ0 <∞) = 1.

Theorem 2.2 tells us that if the quadratic variation of M is big enough (but not too
big, e.g. to avoid explosion in finite time), then we have extinction for all initial data in
H. Intuitively, this means that in this case the process X will come close enough to zero
with positive probability, so that by the strong Markov property Theorem 2.1 (1) applies.

To prove Theorems 2.1 and 2.2, we need the following two basic lemmas.

Lemma 2.3. ‖x‖H ≤
√
γ(θ) ‖x‖1−θ

2 ‖x‖θ1+r, x ∈ L2(µ) ∩ L1+r(µ).

Proof. Since by the symmetry of Pt and since inf σ(L) = λ1, we have

µ(xPtx) = ‖Pt/2x‖2
2 ≤ e−λ1t‖x‖2

2,

and by the Hölder inequality

µ(xPtx) ≤ ‖x‖1+r‖Ptx‖(1+r)/r ≤ ‖x‖2
1+r‖Pt‖1+r→ 1+r

r
,

it follows that

‖x‖2
H =

∫ ∞
0

µ(xPtx)dt

≤ ‖x‖2(1−θ)
2 ‖x‖2θ

1+r

∫ ∞
0

e−λ1(1−θ)t‖Pt‖θ1+r→ 1+r
r

dt = γ(θ)‖x‖2(1−θ)
2 ‖x‖2θ

1+r.

This completes the proof.

Lemma 2.4. For any θ ∈ (0, 1],

b(1−θ)/θ +
a

b
≥ a1−θ, b > 0, a ≥ 0,

where a1−θ := 1 for θ = 1.
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Proof. If b ≥ aθ then

b(1−θ)/θ +
a

b
≥ b(1−θ)/θ ≥ a1−θ;

while if b ≤ aθ then

b(1−θ)/θ +
a

b
≥ a

b
≥ a1−θ.

Proof of Theorem 2.1. By (H1) and Itô’s formula, we have

d‖Xt‖θ(1−r)H ≤− θ(1− r)‖Xt‖θ(1−r)−2
H

{
ρ1‖Xt‖1+r

1+r + ρ2‖Xt‖2
2 − ρ3‖Xt‖2

H

}
dt

+ dM̃t, t < τ0,
(2.4)

where
dM̃t = θ(1− r)‖Xt‖θ(1−r)−2

H dMt, t < τ0.

Let α ∈ (0, ρ2] and α = 0 if ρ2 = 0, θ = 1. By Lemma 2.3 and Lemma 2.4 for

b :=
‖Xt‖1+r

H

‖Xt‖1+r
2

, a :=
λ

(1−r)/2
1 αγ(θ)(1+r)/(2θ)‖Xt‖1−r

H

ρ1

,

and noting that ‖Xt‖2
2 ≥ λ1‖Xt‖2

H , we obtain for t < τ0

ρ1‖Xt‖1+r
1+r + ρ2‖Xt‖2

2 − ρ3‖Xt‖2
H

≥ ρ1‖Xt‖(1+r)/θ
H

γ(θ)(1+r)/(2θ)‖Xt‖(1−θ)(1+r)/θ
2

+ α‖Xt‖2
2 +

{
(ρ2 − α)λ1 − ρ3

}
‖Xt‖2

H

≥ ρ1‖Xt‖1+r
H

γ(θ)(1+r)/(2θ)

(
b(1−θ)/θ +

a

b

)
+
{

(ρ2 − α)λ1 − ρ3

}
‖Xt‖2

H

≥ ρ1‖Xt‖1+r
H

γ(θ)(1+r)/(2θ)

(
λ

(1−r)/2
1 αγ(θ)(1+r)/(2θ)‖Xt‖1−r

H

ρ1

)1−θ

+
{

(ρ2 − α)λ1 − ρ3

}
‖Xt‖2

H

=
ρθ1α

1−θλ
(1−r)(1−θ)/2
1 ‖Xt‖2−θ(1−r)

H

γ(θ)(1+r)/2
+
{

(ρ2 − α)λ1 − ρ3

}
‖Xt‖2

H .

(2.5)

Let

c1 :=
θ(1− r)ρθ1α1−θλ

(1−r)(1−θ)/2
1

γ(θ)(1+r)/2
> 0, c2 := θ(1− r)

{
(ρ2 − α)λ1 − ρ3

}
∈ R.

Combining (2.4) with (2.5) we obtain

d‖Xt‖θ(1−r)H ≤ −c1dt− c2‖Xt‖θ(1−r)H dt+ dM̃t, t < τ0.

Therefore,
d{‖Xt‖θ(1−r)H ec2t} ≤ −c1ec2tdt+ ec2tdM̃t, t < τ0.
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This implies

c1E
∫ (τ0∧t−ε)+

0

ec2sds ≤ E‖X0‖θ(1−r)H , t, ε > 0.

Letting ε→ 0 and t→∞ we arrive at

(2.6)
Eec2τ0 − 1

c2

= E
∫ τ0

0

ec2sds ≤ E‖X0‖θ(1−r)H

c1

,

where Eec2τ0−1
c2

:= Eτ0 if c2 = 0. From this we are able to prove the desired assertions as
follows.

(1) If either ρ2 > 0 or ρ2 = 0 but θ = 1, we take α = ρ2. Then c1 > 0 and
c2 = −θ(1− r)ρ3 ≤ 0. By (2.6) we obtain

E‖X0‖θ(1−r)H

c1

≥ 1− Ee−θ(1−r)ρ3τ0

θ(1− r)ρ3

,

which implies the second inequality by the definition of c1. The first inequality is trivial
if ρ3 > 0. When ρ3 = 0 we have c2 = 0, so that (2.6) implies that Eτ0 <∞ and thus, the
first inequality remains true.

(2) Let ρ3 < λ1ρ2 and β ∈ (0, θ(1− r)(λ1ρ2 − ρ3)). Take α = αβ. We have c2 = β > 0.
So, (2.6) yields that

Eeβτ0 ≤ 1 +
βE‖X0‖θ(1−r)H

c1

= 1 +
βγ(θ)(1+r)/2E‖X0‖θ(1−r)H

θ(1− r)ρθ1α1−θ
β λ

(1−r)(1−θ)/2
1

.

(3) If ρ3 = λ1ρ2 and θ = 1, we take α = 0 so that c1 > 0 and c2 = 0. Therefore, (2.6)
implies that

Eτ0 ≤
E‖X0‖1−r

H

c1

=
γ(1)(1+r)/2

(1− r)ρ1

E‖X0‖1−r
H .

Proof of Theorem 2.2. By (2.5) with α = ρ2 and (H1) we have for t < τ0

(2.7) d‖Xt‖2
H ≤ −ξ(‖Xt‖2

H)dt+ dMt.

By the definition of ξ we see that there exists a constant r0 > 0 such that ξ is strictly
positive and increasing on (0, r0], and ξ(s) ≥ c0s

1−θ(1−r)/2 holds for some constant c0 > 0
and all r ∈ [0, r0]. So,

(2.8)

∫ r0

0

1

ξ(t)
dt <∞.

For any constant N > r0 ∨ ‖x‖2
H , let

τN := inf{t ≥ 0 : ‖Xt‖2
H > N}
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and

fN(s) :=

∫ s

0

dt

∫ N

t

2

g1(u)
exp

[
− 2

∫ u

t

ξ(v)

g1(v)
dv

]
du, s ∈ (0, N ].

Since ξ is strictly positive and increasing on (0, r0], for t ∈ (0, r0] one has∫ r0

t

2

g1(u)
exp

[
− 2

∫ u

t

ξ(v)

g1(v)
dv

]
du

≤ 1

ξ(t)

∫ r0

t

2ξ(u)

g1(u)
exp

[
− 2

∫ u

t

ξ(v)

g1(v)
dv

]
du ≤ 1

ξ(t)
.

Combining this with (2.8) we conclude that fN ∈ C2((0, N ]). Moreover, it is easy to check
that f ′′N ≤ 0 and

−ξ(s)f ′N(s) +
g1(s)

2
f ′′N(s) = −1, s ∈ (0, N ].

Thus, by (2.7), d〈M〉t ≥ g1(‖Xt‖2
H)dt and Itô’s formula,

dfN(‖Xt‖2
H) ≤ −dt+ f ′N(‖Xt‖2

H)dMt, t < τ0 ∧ τN .

This implies that

0 ≤ EfN(‖Xt∧τ0∧τN‖2
H) ≤ fN(‖x‖2

H)− E(t ∧ τ0 ∧ τN), t ≥ 0.

Letting t ↑ ∞, we obtain

(2.9) E(τ0 ∧ τN) ≤ fN(‖x‖2
H) <∞.

On the other hand, taking

f(s) :=

∫ s

0

exp

[
2

∫ t

1

ξ(u)

g(u)
du

]
dt, s ≥ 0,

we have

−ξ(s)f ′(s) +
g(s)

2
f ′′(s) = 0, s > 0.

Moreover, by assumption and the definition of g

f ′′(‖Xt‖2
H)d〈M〉t ≤ f ′′(‖Xt‖2

H)g(‖Xt‖2
H)dt.

Therefore, by (2.7), f(‖Xt‖2
H) is a super-martingale up to time τ0 ∧ τN . So,

f(‖x‖2
H) ≥ Ef(‖Xt∧τ0∧τN‖2

H) ≥ P(τN ≤ t ∧ τ0)f(N), t > 0.

Combining this with (2.9) we obtain

P(τ0 =∞) = P(τ0 =∞, τN ∧ τ0 <∞) ≤ lim
t→∞

P(τN ≤ τ0 ∧ t) ≤
f(‖x‖2

H)

f(N)
.

Then the first part of the assertion follows by letting N → ∞. The second follows
by realizing that the denominator of the right-hand side of (2.3) is equal to infinity if
g(s) ≥ ρ3s

2 for large s, and that for large s one has ξ(s) < 0 and hence g(s) = g1(s).

10



3 Applications to stochastic fast-diffusion equations

The aim of this section is to apply Theorems 2.1 and 2.2 to a class of SPDEs as mentioned
in Remark 2.2 and in the Introduction.

Let (E,E , µ), L and Pt be as in Section 2 such that the spectrum of L is discrete with
strictly positive eigenvalues {λk}k≥1 counting multiplicities with increasing order, and let
{ek}k≥1 be the corresponding unit eigenfunctions forming an ONB of L2(µ). Then H is
the completion of L2(µ) w.r.t. the inner product

〈x, y〉H := 〈x, L−1y〉2 =
∞∑
k=1

〈x, ek〉2〈y, ek〉2
λk

,

where 〈·, ·〉2 also denotes both the inner product in L2(µ) and its extension to H × H∗.
Next, let

(3.1) ‖Pt‖1→∞ ≤ (c∞t)
−d/2, t > 0

hold for some constants d, c∞ ∈ (0,∞). By (3.1), ‖Pt‖2→2 ≤ e−λ1t, and the Riesz-Thorin
interpolation theorem, we have

‖Pt‖1+r→ 1+r
r
≤ (c∞t)

− d(1−r)
2(1+r) e−λ1(1−r)t/(1+r), t > 0.

Therefore,

(3.2) γ(θ) <∞, if θ ∈
(

0,
2(1 + r)

d(1− r)

)
∩ (0, 1].

A standard example for the framework is that L = −∆ + V for the Dirichlet Laplacian
∆ on a domain O ⊂ Rd having finite volume, and for a nonnegative locally bounded
measurable function V on O. It is also the case if O has infinite volume but

µ(V ≤ r) := µ({x ∈ O : V (x) ≤ r}) <∞, r ≥ 0,

where µ stands for the Lebesgue measure on O. In this case, according to [16], L has
discrete spectrum as well.

Moreover, let Ψ : R→ 2R be a maximal monotone graph such that 0 ∈ Ψ(0) and

(3.3) C(|s|q + |s|) ≥ sy ≥ θ1|s|1+r + θ2s
2, s ∈ R, y ∈ Ψ(s)

holds for some constants r ∈ [0, 1), C > 0, θ1 > 0, θ2 ≥ 0, q ≥ 1 + r.
Now, let Wt be a cylindrical Brownian motion on L2(µ). Extending the framework

investigated in [6, 7, 8], where L = −∆ on a bounded domain in Rd ( for d ≤ 3), we
consider the following SPDE on H:

(3.4) dXt + LΨ(Xt)dt 3 B(Xt)dWt,

where B : H → L2(L2(µ);H) is measurable, subject to conditions to be specified in the
following Subsections 3.1-3.3.

Following Definition 2.1 in [7] we call a continuous adapted process X := (Xt)t≥0 on
H a solution to (3.4) if:

11



(a) (Xt)t∈[0,T ] ∈ L2([0, T ]× Ω→ L2(µ); dt× P) for any T > 0.

(b) There exists a progressively measurable process η := (ηt)t≥0 such that (ηt)t∈[0,T ] ∈
L2([0, T ]× Ω→ L2(µ); dt× P) for any T > 0, η ∈ Ψ(X) dt× P× µ-a.e., and P-a.s.

〈Xt, ek〉H = 〈X0, ek〉H −
∫ t

0

〈ηs, ek〉2ds+

∫ t

0

〈B(Xs)dWs, ek〉H , t ≥ 0, k ≥ 1.

Applying Itô’s formula to 〈Xt, ek〉2H , multiplying by λk and summing over k ∈ N, it follows
that

(3.5) d‖Xt‖2
H = −2〈Xt, ηt〉2dt+ ‖B(Xt)‖2

L2(L2(µ);H)dt+ 2〈B(Xt)dWt, Xt〉H .

Using this formula, we are able to verify assumption (H1) in spectific situations. In
particular, we will derive extinction results in the following three subsections for some
concrete models.

3.1 Extinction for stochastic fast-diffusion type equations with
linear multiplicative noise

In this subsection we consider L = (−∆ +V )α for ∆ the Dirichlet Laplacian on a domain
O ⊂ Rn and V ≥ 0 being a measurable function on O such that the spectrum of L is
discrete, where n ∈ N and α ∈ (0, 1] are fixed constants. Let µ be the Lebesgue measure

on O. It is well-known that the semigroup P
(0)
t := et(∆−V ) satisfies

‖P (0)
t ‖1→∞ ≤ c0t

−n/2, t > 0

for some constant c0 ∈ (0,∞). Then (3.1) holds for Pt := e−tL with d = n
α

and some
constant c∞ ∈ (0,∞). Consider (3.4) for

(3.6) B(x)h =
∞∑
k=1

µk〈h, ek〉2xek, x ∈ L2(µ), h ∈ L2(µ),

where {µk}k≥1 is a sequence of constants such that

(3.7)
∞∑
k=1

µ2
kλ

d
2
∨(1+ε)

k <∞

holds for some constant ε > 0. When L = −∆ for ∆ the Dirichlet Laplacian on a bounded
domain in Rd,

λk = O(k2/d)

holds for large k, so that (3.7) follows from

∞∑
k=1

µ2
kk

1∨( 2
d

+ε) <∞

12



for some ε > 0. We note that when d 6= 2 (3.7) is weaker than the corresponding condition
used in [8] (in [6, 7] the condition is even stronger as only finite modes of the noise are
allowed).

To ensure that (H1) holds for solutions to (3.4), we first observe that (3.7) implies
‖B(x)‖2

L2(L2(µ);H) ≤ ρ3‖x‖2
H for some constant ρ3 > 0.

Proposition 3.1. Let B be as in (3.6). If (3.7) holds, then the linear map L2(µ) 3 x 7→
B(x) ∈ L2(L2(µ), H) extends by continuity to all of H and

(3.8) ρ3 :=
1

2
sup
‖x‖2H=1

‖B(x)‖2
L2(L2(µ);H) <∞,

so that ‖B(x)‖2
L2(L2(µ);H) ≤ 2ρ3‖x‖2

H holds for all x ∈ H.

To prove this result, we need the following lemma.

Lemma 3.2. Let (E ,D(E )) be a symmetric Dirichelt form on L2(µ) over a σ-finite mea-
sure space (E,F , µ), and let (L ,D(L )) be the associated Dirichlet operator, i.e. the neg-
ative definite self-adjoint operator on L2(µ) associated to the symmetric form (E ,D(E )).
Then for any g ∈ L∞(µ) ∩D(L ) such that Lg ∈ L∞(µ),

E (fg, fg) ≤ ‖g‖2
∞E (f, f)− µ(f 2gL g), f ∈ D(E ).

Proof. For t > 0, let Jt be the symmetric measure on E × E such that

Jt(A×B) = µ(1APt1B), A,B ∈ F ,

where Pt is the associated Markov semigroup. Then, by the symmetry of Jt,

E (h, h) = lim
t↓0

1

t

∫
E

h(h− Pth)dµ = lim
t↓0

1

t

∫
E×E

h(x)
( h

Pt1
(x)− h(y)

)
Jt(dx, dy)

= lim
t↓0

1

t

(∫
E×E

h(x)
(
h(x)− h(y)

)
Jt(dx, dy) +

∫
T

h2(1− Pt1)dµ

)
= lim

t↓0

1

t

(
1

2

∫
E×E

{
h(x)− h(y)

}2

Jt(dx, dy) +

∫
T

h2(1− Pt1)dµ

)
, h ∈ D(E ).

Combining this with{
(fg)(x)− (fg)(y)

}2

= (f(x)− f(y))2g(x)g(y) +
(
f(y)2g(y)− f(x)2g(x)

)(
g(y)− g(x)

)
,

and using the symmetry of Jt, we arrive at

E (fg, fg) = lim
t↓0

1

t

(
1

2

∫
E×E

{
(fg)(x)− (fg)(y)

}2

Jt(dx, dy) +

∫
T

f 2g2(1− Pt1)dµ

)
≤ lim

t↓0

1

t

∫
E×E

(‖g‖2
∞

2

{
f(x)− f(y)

}2 − f(x)2g(x)
(
g(y)− g(x)

))
Jt(dx, dy)

= lim
t↓0

1

t

{
‖g‖2

∞
2

∫
E×E

{
f(x)− f(y)

}2

Jt(dx, dy)−
∫
E

{
f 2g(Ptg − g) + f 2g2(1− Pt1)

}
dµ

}
≤ ‖g‖2

∞E (f, f)− µ(f 2gL g).
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Proof of Proposition 3.1. First we note that by (3.1),

(3.9) ‖ek‖∞ = e‖P1/λkek‖∞ ≤ e‖P1/λk‖2→∞ ≤ c′λ
d/4
k

holds for some constant c′ > 0. Since B(x) is linear in x, it suffices to prove (3.8). By the
definition of B(x), we have

(3.10) ‖B(x)‖2
L2(L2(µ);H) =

∞∑
k=1

‖B(x)ek‖2
H =

∞∑
k=1

µ2
k‖xek‖2

H .

So, it suffices to show that there exists a constant c > 0 such that

(3.11) ‖xek‖2
H ≤ c‖x‖2

Hλ
d
2
∨(1+ε)

k , x ∈ H, k ≥ 1.

By (3.9) and an approximation argument, we only need to prove this inequality for x ∈
L2(µ). In this case

(3.12) ‖xek‖H = sup
E (f,f)≤1

µ(xekf) ≤ ‖x‖H sup
E (f,f)≤1

√
E (ekf, ekf),

where (E ,D(E )) is the associated Dirichlet form associated to L := −L. Since 〈f 2ek, Lek〉2 =
λkµ(f 2e2

k), by Lemma 3.2 with L = −L, we obtain

(3.13) E (ekf, ekf) ≤ ‖ek‖2
∞ + λkµ(e2

kf
2).

For p := d ∨ (2 + ε
d
), it follows from (3.1) and ‖Pt‖2 ≤ e−λ1t that

‖Pt‖1→∞ ≤ ct−p/2, t > 0

holds for some constant c > 0. This implies the Sobolev inequality (cf. [11])

‖f‖2
2p
p−2

≤ CE (f, f), f ∈ D(E )

for some constant C > 0. Combining this with (3.13) and noting that ‖ek‖2 = 1, we
obtain

(3.14) E (ekf, ekf) ≤ ‖ek‖2
∞ + Cλk‖ek‖2

p ≤ ‖ek‖2
∞ + Cλk‖ek‖

2(p−2)
p

∞ .

Combining (3.9) with (3.12) and (3.14) we prove (3.11).

Now exactly the same arguments as in the proof of [7, Theorem 2.2] imply that for any
x ∈ L4∨(2q)(µ), there exists a unique solution to (3.4) with X0 = x, which is non-negative
if x ≥ 0; that is, the solution is constructed as the limit of solutions to approximating
equations where LΨ is replaced by it’s Yoshida approximation, while the uniqueness
follows from Itô’s formula according to the monotonicity of Ψ. Hence, by Proposition 3.1
and (3.5), we have the following consequence of Theorem 2.1:

Corollary 3.3. Assume X0 = x ∈ L4∨2q(O) and that (3.3) and (3.7) hold. Let ρ1 =

θ1, ρ2 = θ2, and let ρ3 be as in Proposition 3.1. Then for any θ ∈
(
0, 2(1+r)

d(1−r)

)
∩(0, 1], d := n

α
,

all assertions in Theorem 2.1 hold for solutions to (3.4) with B given in (3.12).
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Example 3.1. (i) (SOC-case). Let Ψ be as in (1.2). In this case (3.3) holds with
r = 0, some θ1 > 0, C > 0 and q = 1, θ2 = 0 in the BTW-model and q = 2, θ2 > 0 in the
Zhang-model respectively for s ≥ 0. But if X0 = x ∈ L4(O), x ≥ 0, as mentioned above,
we have Xt ≥ 0 for all t ≥ 0. Therefore, to consider s ≥ 0 is sufficient, since we may
change Ψ on (−∞, 0) to become an odd function without changing anything. Hence we
can apply Proposition 3.1 with B as in (3.6) satisfying (3.7). In the BTW-model θ2 = 0,
so we need 2α

n
> 1, i.e. n = 1 and α > 1

2
, and we have only extinction in finite time with

positive probability for small enough noise or initial conditions X0 = x ∈ L4(O), x ≥ 0,
with small enough H-norm. So, we recover the corresponding result from [7, 8] in the
special case α = 1. Furthermore, if B = 0, hence ρ3 = 0 in Theorem 2.1(3), which thus
applies for n = 1, α > 1

2
, to give extinction, recovering the deterministic case from [7, 8].

In the Zhang-model, however, we have ρ2 = θ2 > 0. Hence for all α ∈ (0, 1] and all
dimensions n, if we choose θ ∈ (0, 2α

n
), and for small enough noise we can apply Theorem

2.1(2) to get exponential integrability of the extinction time, hence in particular extinction
in finite time with probability one, provided X0 = x ∈ L4(O), x ≥ 0. In particular, for the
deterministic Zhang-model we have r = ρ3 = 0 and ρ1 = θ1, ρ2 = θ2 > 0, so that Theorem
2.1(2) implies that

τ0 = lim
β→0

1

β
(eβτ0 − 1) ≤ inf

θ∈(0,1]

γ(θ)
1
2‖X0‖θH

θθθ1θ
1−θ
2 λ

1−θ
2

1

<∞.

(ii) (Fast diffusion-case). Let Ψ be as in (1.6). Then (3.3) holds with θ1 = 1, C =
1, q = 1 + r, θ2 = 0. So, if B is not identically equal to zero, only Theorem 2.1(1) applies

with ρ2 = θ2 = 0 and θ = 1. So, we need 2α(1+r)
n(1−r) > 1, i.e. r > n−2α

n+2α
, and we only

have extinction in finite time with positive probability for small enough noise or initial
conditions with small enough H-norm. So, again we recover the corresponding results
from [6, 8] in the special case α = 1, n ≤ 3 (though for n = 3, α = 1, also the case
r = n−2α

n+2α
+ 1

5
is covered in [6, 8]). If B = 0, Theorem 2.1(3) applies with θ = 1, leading to

the same restriction r > n−2α
n+2α

. Hence we get extinction in finite time for the deterministic
case, which appears, however, to be a new result if α < 1. For α = 1 we recover the
well-known results for the deterministic fast diffusion equation. Finally, we point out,
that, adding a linear term to Ψ we again get extinction in finite time with probability one
in the same way as in the Zhang-model above.

In the next subsection, we consider much stronger noises such that µk = 1 in (3.6) is
allowed.

3.2 Exponential integrability of τ0 for strongly dissipative equa-
tions with uncoloured linear multiplicative noise

In addition to (3.3), we assume that

(3.15) Ψ ∈ C(R), (s− t)(Ψ(s)−Ψ(t)) ≥ κ|s− t|2, s, t ∈ R
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holds for some constants κ > 0. Because Ψ(0) = 0, (3.15) implies that (3.3) holds with
θ2 > 0. A simple example of Ψ satisfying (3.3) and (3.15) is

Ψ(s) = θ1|s|rsgn(s) + θ2s

for some constants r ∈ (0, 1), θ1, θ2 > 0. Let B0 be a bounded linear operator on L2(µ).
Let

ρ0 :=
1

2
‖B0‖2

2→2

∞∑
k=1

‖ek‖2
∞

λk
∈ [0,∞],

where ‖B0‖2→2 is the operator norm of B0 in L2(µ). We consider the following stochastic
differential equation on H:

(3.16) dXt = −LΨ(Xt)dt+XtB0dWt.

It will turn out that if ρ0 <∞, then this equation is a special case of (3.4), since in this
case the operator-valued function B defined by

B(x)h = xB0h, h ∈ L2(µ), x ∈ L∞(µ)

extends by continuity to all x ∈ L2(µ) (see (3.17) below) which is sufficient under condition
(3.15). We emphasize here that ρ0 <∞, e.g. if L is the Dirichlet Laplacian on (0, 1) (cf.
Remark 3.1 below). Since Ψ is single-valued we can use the result on uniqueness and
existence of solutions from [13], which holds even for random initial conditions, as then
does the following theorem.

Theorem 3.4. Assume that (3.1), (3.3), (3.15) hold. If ρ0 ∈ (0, κ] ∩ (0, θ2), then for any
X0 ∈ L2(Ω → H,F0;P), the equation (3.16) has a unique solution in the sense of [13].

If moreover (3.1) holds, then for any θ ∈
(
0, 2(1+r)

d(1−r)

)
∩ (0, 1] and any β ∈

(
0, θ(1− r)(θ2 −

ρ0)λ1

)
,

Eeβτ0 ≤ 1 +
βγ(θ)(1+r)/2E‖X0‖θ(1−r)H

θ(1− r)θθ1{θ2 − β/(λ1θ(1− r)}1−θλ
(1−r)(1−θ)/2
1

<∞

provided E‖X0‖θ(1−r)H <∞.

Proof. For the existence and uniqueness of solutions, we need only to verify the assump-
tions of [13, Theorem 2.1]. To this end, we take V = L2(µ), A(x) = −LΨ(x), R(x) = µ(x2)
and for fixed T > 0, K = L2([0, T ] × Ω × E; dt × P × µ). Then assumptions (K), (H1)
and (H4) in [13] follow immediately from (3.3) and the continuity of Ψ. It remains to
verify that for some constants c1, c2, c4 ∈ R and c3 > 0

(H2) −2〈Ψ(x)−Ψ(y), x− y〉2 + ‖B(x)−B(y)‖2
L2(L2(µ);H) ≤ c1‖x− y‖2

H , x, y ∈ L2(µ);

(H3) −2〈Ψ(x), x〉2 + ‖B(x)‖2
L2(L2(µ);H) ≤ c2‖x‖2

H − c3‖x‖2
2 + c4, x ∈ L2(µ).

16



Observe that for x ∈ L∞(µ)

‖B(x)‖2
L2(L2(µ);H) =

∞∑
k=1

‖xB0ek‖2
H =

∞∑
k,j=1

µ({B0ek}ejx)2

λj
=

∞∑
k,j=1

µ(ekB
∗
0(ejx))2

λj

=
∞∑
j=1

‖B∗0(ejx)‖2
2

λj
≤ ‖B0‖2

2→2‖x‖2
2

∞∑
j=1

‖ej‖2
∞

λj
= 2ρ0‖x‖2

2.

(3.17)

Since B(x)− B(y) = B(x− y), combining (3.17) with (3.15) and noting that κ ≥ ρ0, we
obtain (H2) for c1 = 0. Moreover, (3.3) and (3.17) imply that (H3) holds for c2 = c4 = 0
and c3 = θ2 − ρ0 > 0. Next, by (3.5), we have

d‖Xt‖2
H ≤ −2

{
θ1‖Xt‖1+r

1+r + θ2‖Xt‖2
2 − ρ0‖Xt‖2

2

}
dt+ dMt,

where
dMt = 2〈XtB0dWt, Xt〉H .

This implies (H1) for ρ1 = θ1, ρ2 = θ2 − ρ0 > 0 and ρ3 = 0. Then the desired result on τ0

follows from Theorem 2.1(2).

Remark 3.1. Let e.g. L = −∆ on (0, 1). Then we have

λk = π2k2, ek(s) =
√

2 sin(πks), k ≥ 1, s ∈ (0, 1),

so that ρ0 <∞. Therefore, ρ0 <∞ and Theorem 3.4 applies, for small enough ‖B0‖2→2.

In the next subsection, we consider the case with a noise having a component in the
direction Xt, so that Theorem 2.2 applies.

3.3 Extinction with probability 1 for special noise

Now let us consider again the situation of Subsection 3.1. Let e be an unit element in
L2(µ) and let

B(x)h = cx〈h, e〉2, x ∈ H, h ∈ L2(µ),

where c 6= 0 is a constant. Taking Bt := 〈Wt, e〉2 (a one-dimensional Brownian motion)
(3.4) reduces to

(3.18) dXt + LΨ(Xt) 3 cXtdBt.

By (3.3) and (3.5), (H1) holds for ρ1 = θ1, ρ2 = θ2 and

dMt = 2c〈Xt, Xt〉Hdt.

We have
d〈M〉t = 4c2‖Xt‖4

Hdt = g(‖Xt‖2
H)dt

for g(s) = 4c2s2.
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Corollary 3.5. Assume that (3.1) and (3.3) hold, and let ρ3 = c2

2
. If either θ2 > 0

or θ2 = 0 but 2(1+r)
d(1−r) > 1, then P(τ0 < ∞) = 1 holds for solutions to (3.19) for any

X0 = x ∈ H.

Proof. Obviously, g(s) ≥ 2ρ3s
2 and (H1) hold. By Theorem 2.2 for g1 = g2 = g, it

suffices to note that due to (3.2) one has γ(θ) <∞ for all θ ∈
(
0, 2(1+r)

d(1−r)

)
∩ (0, 1], and thus

γ(1) <∞ if 2(1+r)
d(1−r) > 1.

Remark 3.2. We note that to make stochastic perturbations in directions other than
Xt, we may consider

(3.19) dXt + LΨ(Xt) 3 cXtdBt + B̃(Xt)dW̃t,

where W̃t be a cylindrical Brownian motion on L2(µ) which is independent of Wt, and
B̃ : H → L2(L2(µ);H) is such that ‖B(x)‖2

L2(L2(µ);H) ≤ c̃2‖x‖2
H . Then Theorem 2.1

applies to ρ3 = 1
2
(c2 + c̃2), while the assertion in Theorem 2.2 holds for this ρ3 and

g1(s) = 4c2s2, g2(s) = 4(c2 + c̃2)s2.

Finally, we consider one more case which in fact generalizes the one considered above
(take N = 0 below), but for, which the noise exists not only in one, but in finitely many
directions, and both Theorem 2.1 and Theorem 2.2 apply: Let N ∈ N and consider (3.4)
for

(3.20) B(x)h =
N∑
k=1

µk〈x, ek〉2〈h, ek〉2ek + µN+1〈h, eN+1〉2π⊥N(x), x, h ∈ H,

where {µk}N+1
k=1 ⊂ R and

π⊥N(x) :=
∞∑

k=N+1

〈x, ek〉2ek.

Let

ρ3 =
1

2
sup

1≤k≤N+1
µ2
k.

We have

‖B(x)‖2
L2(L2(µ);H) =

N+1∑
i=1

‖B(x)ek‖2
H =

N∑
k=1

µ2
k

〈x, ek〉22
λk

+ µ2
N+1‖π⊥N(Xt)‖2

H ≤ 2ρ3‖x‖2
H .

By (3.3) and (3.5), (H1) holds for ρ1 = θ1, ρ2 = θ2 and

dMt = 2〈B(Xt)dWt, Xt〉H = 2
N∑
k=1

µk
λk
〈Xt, ek〉22〈dWt, ek〉2 + 2µN+1‖π⊥N(Xt)‖2

H〈dWt, eN+1〉.
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Obviously,

4
(N+1∑
k=1

µ2
k

)
‖Xt‖4

Hdt ≥ d〈M〉t = 4
{ N∑
k=1

µ2
k

λ2
k

〈Xt, ek〉42 + µ2
N+1‖π⊥N(Xt)‖4

H

}
dt

≥
4
(∑N

k=1
〈Xt,ek〉22

λk
+ ‖π⊥N(Xt)‖2

H

)2∑N+1
k=1 µ

−2
k

dt =
4‖Xt‖4

Hdt∑N+1
k=1 µ

−2
k

.

Let

c1 =
4∑N+1

k=1 µ
−2
k

, c2 = 4
N+1∑
k=1

µ2
k.

Therefore, if µ2
k > 0 for 1 ≤ k ≤ N + 1, then (2.2) holds for gi(s) = cis

2, i = 1, 2.

Corollary 3.6. Assume that (3.1) and (3.3) hold. Let ρ3 = 1
2

sup1≤k≤N+1 µ
2
k. Then for

any θ ∈
(
0, 2(1+r)

d(1−r)

)
∩ (0, 1], all assertions in Theorems 2.1 hold for solutions to (3.4) with

B given in (3.20). If moreover µ2
k > 0 for 1 ≤ k ≤ N + 1, the assertion in Theorem 2.2

holds for gi(s) = cis
2, i = 1, 2.
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[14] M. Röckner, F.-Y. Wang, Non-monotone stochastic generalized porous media equa-
tions, J. Differential Equations 245(2008), 3898-3935.

[15] D. L. Turcotte, Self-organized criticality, Reports on Progress in Physics 62:10(1999),
1377–1429.

[16] F.-Y. Wang, J.-L. Wu, Compactness of Schrödinger semigroups with unbounded below
potentials, Bulletin des Sciences Mathematiques, 132(2008), 679–689.

[17] A. de Pablo, F. Quirós, A. Rodriguez, J. L. Vázquez, A fractional porous medium
equation, Adv. Math. 226(2011), 1378–1409.

[18] K. Yoshida, Functional Analysis (Six Edition), Springer-Verlag, Berlin, 1980.

[19] Y.C. Zhang, Scaling theory of self-organized criticality, Phys. Rev. Lett. 63(1989),
470–473.

20


