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Abstract

Let L be a positive definite self-adjoint operator on the L2-space associated to a
o-finite measure space. Let H be the dual space of the domain of L'/2 w.r.t. L2(y).
By using an It6 type inequality for the H-norm and an integrability condition for the
hyperbound of the semigroup P, := e~ !, general extinction results are derived for
a class of continuous adapted processes on H. Main applications include stochastic
and deterministic fast diffusion equations with fractional Laplacians. Furthermore,
we prove exponential integrability of the extinction time for all space dimensions
in the singular diffusion version of the well-known Zhang-model for self-organized
criticality, provided the noise is small enough. Thus we obtain that the system goes
to the critical state in finite time in the deterministic and with probability one in
finite time in the stochastic case.

AMS subject Classification: 60J75, 47D07.
Keywords: Extinction, Stochastic differential equation, fast diffusion equation.

1 Introduction

In physics, self-organized criticality (SOC) is a property of dynamical systems which have
a critical point as an attractor. The concept was introduced in [1], and is considered in [3]
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to be one of the mechanisms by which complexity arises in nature. The phenomenon of
SOC has been widely studied in physics from different perspectives, see e.g. [15]. In [4] it
was proposed to describe this phenomenon, e.g. in the case of the avalanche dynamics in
the Bak-Tang-Wiesenfeld-model (see [2]) and in the Zhang-model (see [19]) by a singular
diffusion with the incoming energy being realized by adding a noise term, for instance a
linear multiplicative noise, i.e. in equation (1.1) the map B is of type (1.3) below. The
resulting stochastic partial diffusion equation is then of the following type:

(1.1) dX, — AU(X,)dt 3 B(X,)dW,,
where ¥ : R — 2% is a multivalued map defined by

01 + Oys, if s €0, 00),
(1.2) U(s) == ¢ 10,64, if s =0,
0, it s <0,

where 61,6, > 0 are constants, with #, = 0 in the BTW-model whereas 6, > 0 in the
Zhang-model. Hence in the BTW-model V¥ is just the Heaviside function considered as a
multivalued map, with jump at s = 0, i.e. we take the critical state to be equal to zero,
which we may without loss of generality, by simply shifting the s axis. In (1.1) we fix
an open bounded domain ¢ C R? and A denotes the Dirichlet Laplacian on &, W, is a
cylindrical Wiener process on L?(&) with natural inner product (-,-)s, but the solution
process X; takes values in H defined to be the completion of L?(&) under the norm || - ||z
corresponding to the inner product (z,y)g := (x, (=A)"'y)s, i.e. H is just the dual of the
classical Sobolev space Hé 2(0) (and is usually denoted by H~!). To explain the type of
noise in (1.1), let {ex}x>1 be a normalized eigenbasis of —A in L?(&) with corresponding
eigenvalues {A;}x>1 numbered in increasing orders with multiplicities. It is well-known
that A\, = O(k¥9) for large k. Then B : H — %(L*(0), H) is defined by

(1.3) B(x)h = plex, hyavey, = € H,h € L*(0),

k=1

for {1z }x>1 C R chosen in such a way that B(z) € %4 (L?(0), H),x € H, which is e.g. the

da
case if there exists a constant ¢ € (0, 1) such that (see (3.7) below) Y 72, ,ui/\,fv(lﬂ) < 00

The fundamental question about (1.1) is now whether the system will go to the critical
state (= 0 in our case) in finite time, i.e. letting

10 :=1inf{t > 0: |X(t)|g =0},

is 79 < oo for any initial condition Xy = x € H, that is; do we have extinction in finite
time?

Recently, it was proved in [7, 8] (where [8] is an improved version of [7]) that the answer
isyesifd =1,ie. ¢ C R, however, only with positive probability, that is, P(1y < oo) > 0,
provided Xj is not too far away from 0 (see [7, 8] for details). We mention here that in
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[7] the pg, k > 1, introduced above, were assumed to be zero starting from £ > N + 1, an
assumption that is dropped in [8]. Furthermore, in both [7, 8] for simplicity d < 3 was
assumed. The question, however, whether

(1.4) P(ry < o0) =1

was left open and it seemed to be out of reach of the methods in [7, 8]. For asymptotic
extinction results for all d € {1,2,3, } and with probability one we refer to [9].

The purpose of this paper is twofold. First, we develop a general technique to prove
extinction for solutions of stochastic (ordinary and partial) differential equations, and
second to apply these results to equations of type (1.1) (in fact for a whole class of
U : R — 28) to analyze the above question, more precisely the problem whether one of
the following three properties hold:

(i) P(mo < 00) > 0 for small Xy,
(ii) P(r < 00) > 0 for all X,
(ili) P(7p < 00) =1 or, moreover, 7y has finite (exponential or polynomial) moments.

We already want to mention here that as a consequence we obtain that for all dimen-
sions in the Zhang-model of SOC the extinction time 7y is even exponentially integrable,
in particular we have extinction in finite time with probability one, provided the noise is
small enough and Xy = x € L*(0),z > 0. This has been open even in the deterministic
case. In order to also include stochastic fast diffusion equations and prove extinction
for that case, strengthening and generalizing the results from [6] we study (1.1) for the
following class of ¥ : R — 2&: ¥ is a maximal monotone graph with 0 € ¥(0) such that
for some constants r € [0,1),C > 0,6, >0,¢g > 1+, and 6, > 0

(1.5) C(ls|” + Is]) = sy = O1s|"*" + Osls]*, s € R,y € U(s).

Recall that W is called a maximal monotone graph if the set G := {(x,y) : x € Ry €
U(x)} is monotone, ie. (z — a')(y —y') > 0 holds for (x,y), (¢/,y') € G, and for any
monotone set G containing G one has G = G (see [18, pages 447-449]).

In this case we call (1.1) fast diffusion-type equation. A special case of this is the
stochastic fast diffusion equation, i.e. equation (1.1) with

(1.6) U(s)=s"Ys|, seR,

where 7 € (0,1). In this case we, however, avoid the assumption d < 3, made in [7] for
simplicity, but prove extinction with positive probability in all dimensions with the usual
dimension dependent restriction on r known from the deterministic case. As in [6, 7, §]
the latter is, of course, always included in our results choosing pr = 0 for all £ > 1 in
(1.3).

Another new feature of this paper is that we prove our results for a whole class of
general operators L on a measurable space replacing the Dirichlet Laplacian (—A) on
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¢ C RY. This class, in particular, includes fractional Laplacians L = (—A)*, a € (0, 1],
which have attracted more interest recently. Existence and uniqueness of solutions to
(1.1), with (—A) replaced by a fractional Laplacian, have first been proved in [13] in
the general, i.e. stochastic, hence including the deterministic (B = 0), case. In the
deterministic case these results have been reproved in [17] under some restrictions on
dimensions, however, by completely different methods.

The organization of this paper is as follows. In Section 2 we state and prove our two
general results on extinction of solutions for stochastic equations. The first (see Theorem
2.1 below) gives quantitative conditions so that properties (i)-(iii) above hold respectively.
It also confirms the intuition that one gets stronger extinction results if one has more
coercivity in the system (i.e. py > 0 in condition (H1) below or correspondingly f5 > 0
in (1.5) above, as e.g. in the Zhang-model). The reason is that more coercivity means
a stronger drift towards zero, so that the part in (1.5) with 6; in front becomes very big
and pushes the process to zero. The second result (see Theorem 2.2 below) tells us that
suitable large enough noise has the same effect. In Section 3 these results are applied to
the fast diffusion-type equations above, but for the said general class of operators replacing
(—A). Subsection 3.1 is devoted to the case, where L = (—A + V)% « € (0,1], and V
a nonnegative measurable function. In Subsection 3.2 we prove exponential integrability
of the extinction time 7y in the strongly dissipative case even for uncoloured noise (i.e.
pur = 1 for all £ > 1in (1.3)). In Subsection 3.3 we give examples of noises which lead to
extinction with probability one.

The above described SOC case, i.e. W is given by (1.2), and the fast diffusion case
(1.6), both for the Laplacian and the fractional Laplacian, are considered as guiding
examples, and are discussed in detail in Section 3. Of course, our framework also cover
finite-dimensional models as when £ = {1,--- ;n} and pu({i}) = 1,1 < i < n, we have
L?(p) = R™. In this case the extinction time 79 becomes the hitting time of the process
to point zero, which has been already well characterized in the literature, see e.g. [10] for
standard techniques to derive explicit formulae and sharp estimates on the distribution
of 19. Thus, Section 3 we only consider infinite-dimensional examples in the framework

of SPDEs.

2 A general result

Let (F,&, 1) be a o-finite measure space, and let (L, Z(L)) be a positive definite self-
adjoint operator on L?(p) such that for its spectrum o (L) we have info(L) > 0. Let
P, = eIt Let H be the completion of L?(u) w.r.t. the norm || - || corresponding to the
inner product (z,y)y := (x, L™'y), (note that since info (L) > 0, L : Z(L) — L*(u) is
bijective. So, this definition makes sense). For any p,q > 1, let || - ||, and || - ||,—4 the
norm on L”(u) and the operator norm from LP (1) to L?(u) respectively.

Let {X:}+>0 be an H-valued continuous adapted process on the complete filtered prob-
ability space (2, {%# }+>0,P). Let

70 :=inf{t > 0: X; =0}
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be the extinction time of the process. To investigate the finiteness of 7y, we introduce the
following conditions:

(H1) There exist r € [0,1) and constants p; > 0, pg, p3 > 0 such that || X;||% is a semi-
martingale, | X,||3 and | X;||;1} are locally integrable in ¢, and the Ito differential of

| X |3 satisfies
A Xl < 2{psl Xillly — prlIXelli 37 — ol XG5 pdt + dM,

for some local martingale M,.

(H2) There exists 6 € (0, 1] such that

7(9) = / e_h(l_e)tHPtH?_Hﬂ_)ﬁdt < o0,
0

where A, :=info(L) > 0 and o(L) is the spectrum of L.

Note that (H1) implies that for any X, € L*(Q — H,%,,P) and T > 0, one has
(Xt)eep,r) € LM7([0,T] x Q@ — L' (p); dt x P) and furthermore, (X;)tejomy € L*([0, 7] x
Q — L2(p); dt x P) if py > 0.

Remark 2.1. (H1) implies that e 23| X;||%,¢ > 0, is a non-negative local supermartin-
gale. Hence it is equal to zero for all ¢ > 75 by a well-known result (see e.g. [12, Chap
IV, Lemma 3.19)).

Remark 2.2. We would like to indicate that assumptions (H1) and (H2) are fulfilled
for a large class of SPDEs. More precisely:

(1) Let e.g. L = —A + V', where A is the Dirichlet Laplacian on an open domain
O C R* and V > 0 is a continuous function on &. If either & is bounded or
liminf|z| 0 V() > 0, then A > 0 and

”PtH]_H-_)m S Cle—cztt—d(l—r)/[2(1+r)]7 t>0
holds for some constants ¢1, ca > 0 (see Section 3 for details). Therefore, (H2) holds

for 6 € (0, 515) N (0, 1].

(2) Let X; solve the following SPDE on H:
(2.1) dX; + LYU(X,) > B(X;)dW,,

where W; is a cylindrical Brownian motion on L?*(u); ¥ : R — 2% is a maximal
monotone graph such that

C(|s|™ + |s]) > sy > 01|s|"T" + 04]5]*, s € R,y € U(s)
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for some constants C' > 0,60, > 0,0, > 0; and B : H — %(L*(u1); H) (the space of
Hilbert-Schmidt linear operators from L?(u) to H) such that

B < 2pslll :
1B ()|l < 2ps|zl|}, veH

For what is meant by a solution to (2.1), we refer to Section 3 below. Then, by Ito’s
formula (H1) holds (see Section 3 below).

Theorem 2.1. Assume (H1) and (H2) and let EHXOH%PT) < 00.
(1) If either ps >0 or po =0 but 0 = 1, then

(147)/2
_ _ Ta—0(1—r)p37 p37(0)
Plro = o00) < 1= Ee i < o a2
1

B P?P2

0(1—r
E|[Xoll' ",
where py " =1, if @ = 1 and py = 0. Consequently, P(1y < co0) > 0 holds for small
0(1—r)
El[ Xollz
(2) If p3 < Aipa then for any B € (0,0(1 —1)(p2A1 — p3)),

r o(1—r
o < 14 PVOTPEIX T
N 0(1 — r)p?a%_g)\gl_r)(l_e)p

holds for ag := ps — %1(6(%7,) + p3) € (0, p2).
(3) If p3 = Aipe and 0 = 1, then

1)(+r)/2
Er < () E||Xo||5" < oo.
1

T (=)

Remark 2.3. If in (H1) we have that po = 0 and M = 0, which is e.g. the case for
deterministic stochastic fast diffusion equations (see equation (3.4) with B = 0 in Section
3 below), it follows by (1) (or (3)) in Theorem 2.1 that we have extinction in finite time.
Thus we recover the well-known results from the deterministic case.

Obviously, in cases (2) and (3) of Theorem 2.1 one has P(7y < 0o) = 1 for all deter-
ministic initial data Xy = = € H, while in case (1) P(79 < c0) > 0 holds for small enough
Xo =x € H. Our next result strengthens the assertion in (1): if the local martingale M,
is strong enough but not too large, then P(75 < c0) > 0 holds for all Xy =z € H.

Theorem 2.2. Assume that (H1) and (H2) hold with either ps > 0, or p, = 0 but 6 = 1.
If there exist two functions go > g1 € C([0,00)) with g1(s) > 0 for s > 0 such that

(2.2) go(IX%)dt > d(M), > gi (1%,



define
120y (14+)(1-6) /2
1

£(s) = P1P2

1-6(1—r)/2
~+(0))/2 §

—p3s, s2=0,
where py ™ =1 if pp =0 and 6 = 1; and set

9 = g2l{e>01 + 91l{e<o}-
Then for any Xo =x € H,

f” I exp [2 flt @du} dt

(23) P(ro = 00) < Jo” exp [2f du} dt

Consequently, if gi1(s) > 2p3s® holds for large s, then P(1y < c0) = 1.

Theorem 2.2 tells us that if the quadratic variation of M is big enough (but not too
big, e.g. to avoid explosion in finite time), then we have extinction for all initial data in
H. Intuitively, this means that in this case the process X will come close enough to zero
with positive probability, so that by the strong Markov property Theorem 2.1 (1) applies.

To prove Theorems 2.1 and 2.2, we need the following two basic lemmas.

Lemma 2.3. ||z[lr < /() [l "1y, = € L (u) N L7 ().

Proof. Since by the symmetry of P, and since inf o(L) = Ay, we have
paP) = ||z < e x5,
and by the Holder inequality
@) < lallusrl Palisnye < [2l300 1Pl i

it follows that
el = / p(aPr)dt
0
1 0 _ 1-6
< [l l3 7 )17, / MO B, sedt = 7(0) 1l
0

This completes the proof. O

Lemma 2.4. For any 6 € (0,1],
p1-0)/6 | % >a=?  b>0,a>0,

where a'=% := 1 for § = 1.



Proof. If b > a’ then
while if b < a then
p(1—6)/6 +% >

> !’

S|

Proof of Theorem 2.1. By (H1) and It6’s formula, we have

1-7) 1-7) r
| Xy 15 — 01 = )X 5T o X + o2l Xll3 — sl Xl } e

(2.4)
+ th, t < 719,

where
AM, = 6(1 — )| X |2 72aM,, ¢ < 7.

Let a € (0, po] and o = 0 if po = 0,60 = 1. By Lemma 2.3 and Lemma 2.4 for

r 1-7)/2 r —r
UK A a0 e X
Xt 1 7

and noting that || X;]|3 > || X¢||%, we obtain for ¢ < 7y

Pl Xl + p2l Xl — psll Xl
pull Xl

7(9)(1+r /(20) HX H (1-0)(1+r)/8

Pl”XtHHT 1-6)/6 2

X ( A ’")/2047(9)“”)/(29’HXtH}q‘

+ al| X3 4 {(p2 — @)X\ — p3}| Xe]|F

1-6
) + {(p2 — )\ — ps I X || T

= (6)(1+n/0) Py
1-0\ (1-r)(1-06)/2 2—60(1—-r)
pla )\ R 9
~(6)(1+0)/2 + {(P2 —a)A; — p3}||Xt||H'
Let
(1 — r)pi)oél—e)\glﬂ)(lﬁ)/?
o NOGEEE >0, c:=0(1=1){(p2— )M — ps} €R.

Combining (2.4) with (2.5) we obtain
A X5 < —eydt — | XN At + A, t < .

Therefore, 3
A{[| XI5 et} < —cre®tdt 4 et dM,, t < 7.

8



This implies
(To/\t*€)+ o(1—r)
clE/ eds < E|| X[/, te> 0.
0

Letting ¢ — 0 and ¢t — co we arrive at

Ee®™ — 1 ™ E|| Xol|5" "
(2.6) T E/ e?*ds < —H ollu ,
0

C2 &1

COT() — . . . .
Ee®0-1 .— Er, if ¢, = 0. From this we are able to prove the desired assertions as

where
follows.
(1) If either p, > 0 or po = 0 but § = 1, we take « = py. Then ¢; > 0 and

o = —0(1 —r)ps <0. By (2.6) we obtain

B|| X[ ™" 1= Bt
¢ (1 —r)ps

which implies the second inequality by the definition of ¢;. The first inequality is trivial
if p3 > 0. When p3 = 0 we have ¢, = 0, so that (2.6) implies that Ery < oo and thus, the
first inequality remains true.

(2) Let p3 < Aip2 and B € (0,0(1 —r)(A1p2 — p3)). Take o = ag. We have co = > 0.
So, (2.6) yields that

0(1—r r 0(1—r
BEIXol ™ _ |, Br(O) T E]

B0
Bert < 1 c1 0(1 — r)pfaé_e)\glfr)(lfe)/r
(3) If p3 = A1p2 and 0 = 1, we take @ = 0 so that ¢; > 0 and ¢y = 0. Therefore, (2.6)
implies that
E||Xolz" _ ()2

Ery < = E|| Xoll 3"
0 = ) 1—rp 1 X0l

Proof of Theorem 2.2. By (2.5) with a = py and (H1) we have for ¢ < 7
(2.7) dlIXellE < —€(IXellF)de + de.

By the definition of £ we see that there exists a constant ro > 0 such that £ is strictly
positive and increasing on (0, 7], and &(s) > ¢os'~(1=")/2 holds for some constant ¢y > 0
and all r € [0, 7). So,

(2.8) /0 ! %dt < .

For any constant N > ry V ||z||%, let

v = inf{t > 0 |X,[% > N}
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and
= [ [ o trew |2 [ 5

Since £ is strictly positive and increasing on (0, ro], for ¢ € (0, 7] one has

/tm gju) exp [ -2 tu gfl((l;)) dy} du
1 "0 28 (u “e(v 1
<) a2 el g

Combining this with (2.8) we conclude that f € C?((0, N]). Moreover, it is easy to check
that fy <0 and

dv] du, se (0,N].

€ ) + 2 ) = -1, se .
Thus, by (2.7), d(M); > g1(||X¢||3;)dt and 1td’s formula,
dfn(IXl7) < —dt + fu(IXllF) M, t <1 ATy,
This implies that
0 < Efn ([ Xenronry ) < Sn(lzllE) —EE AT ATN), t20.
Letting t 1 oo, we obtain
(2.9) E(ro ATwv) < fuv(ll2l7) < oo

On the other hand, taking
s t
f(s) ::/ exp {2/ iu)du} dt, s>0,
0 1 g(u)

—£(s)f'(s) + @f”(s) =0, s>0.

Moreover, by assumption and the definition of g

P X E)ADM ) < 71Xl 7) g (11Xl 7).

Therefore, by (2.7), f(||X¢||%) is a super-martingale up to time 79 A 7. So,

Flzlz) = Ef(IXnmnry ) 2 P(ry <t ATo)f(N), t> 0.
Combining this with (2.9) we obtain

we have

_ Hlal3)
Ny
Then the first part of the assertion follows by letting N — oo. The second follows
by realizing that the denominator of the right-hand side of (2.3) is equal to infinity if
g(s) > p3s? for large s, and that for large s one has £(s) < 0 and hence g(s) = g1(s). O

P(rg = 00) =P(19 = 00, 7Tnv A Tp < 00) < tlim P(ry <79 At)
—00
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3 Applications to stochastic fast-diffusion equations

The aim of this section is to apply Theorems 2.1 and 2.2 to a class of SPDEs as mentioned
in Remark 2.2 and in the Introduction.

Let (E,&, 1), L and P, be as in Section 2 such that the spectrum of L is discrete with
strictly positive eigenvalues { A, }x>1 counting multiplicities with increasing order, and let
{er}r>1 be the corresponding unit eigenfunctions forming an ONB of L?(x). Then H is
the completion of L?(x) w.r.t. the inner product

<x>y>H = <l’, L_1y>2 — Z <$’ 6k>§\]<€y, €k>2’

where (-, ), also denotes both the inner product in L?(u) and its extension to H x H*.
Next, let

(3.1) 1P ll1see < (coct)™2, >0

hold for some constants d, co, € (0,00). By (3.1), || P|[22 < e7™, and the Riesz-Thorin
interpolation theorem, we have
d(1—r)
1Bl < (o)™ KT MO0 5

Therefore,

(3.2) +(0) < oo, if 0 ¢ (o,%) n(0,1].

A standard example for the framework is that L = —A + V for the Dirichlet Laplacian
A on a domain ¢ C R? having finite volume, and for a nonnegative locally bounded
measurable function V on €. It is also the case if ¢ has infinite volume but

p(V<r)y=p{zed:V(z)<r}) <oco, r>0,

where p stands for the Lebesgue measure on ¢. In this case, according to [16], L has
discrete spectrum as well.
Moreover, let ¥ : R — 2% be a maximal monotone graph such that 0 € ¥(0) and

(3:3) C(ls|”+1s)) > sy = u]s|""" + bos®, s € R,y € U(s)

holds for some constants r € [0,1),C > 0,6; > 0,05 >0, > 1+ .
Now, let W; be a cylindrical Brownian motion on L?(u). Extending the framework

investigated in [6, 7, 8], where L = —A on a bounded domain in R? ( for d < 3), we
consider the following SPDE on H:
(3.4) dX; + LV (X,)dt 5 B(X;)dW,,

where B : H — %(L?(u); H) is measurable, subject to conditions to be specified in the
following Subsections 3.1-3.3.

Following Definition 2.1 in [7] we call a continuous adapted process X := (X;)i>0 on
H a solution to (3.4) if:
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(a) (X¢)eepory € L2([0,T) x Q@ — L*(p); dt x P) for any 7 > 0.

(b) There exists a progressively measurable process 7 := (1;)¢>0 such that (1:)cjo,r) €
L2([0,T] x Q — L*(pu);dt x P) for any T' > 0, n € ¥(X) dt x P X p-a.e., and P-a.s.

t t
(X0, ex)n = (Xo, ex)n — / (0, ex)adls + / (B(X)AW,, exbn, ¢ 0,k > 1.
0 0

Applying It6’s formula to (X, ex )%, multiplying by A, and summing over k € N, it follows
that

(35)  dIXullE = —2(Xe, meadt + | BXo) | G w2yt + 2(B(Xe)dW,, Xo)pr.

Using this formula, we are able to verify assumption (H1) in spectific situations. In
particular, we will derive extinction results in the following three subsections for some
concrete models.

3.1 Extinction for stochastic fast-diffusion type equations with
linear multiplicative noise

In this subsection we consider L = (—A +V)* for A the Dirichlet Laplacian on a domain
0 C R" and V > 0 being a measurable function on & such that the spectrum of L is

discrete, where n € N and « € (0, 1] are fixed constants. Let p be the Lebesgue measure

Pt(O) — ot(A=V)

on 0. It is well-known that the semigroup satisfies

1P| S < cot™?2, ¢ >0

for some constant ¢y € (0,00). Then (3.1) holds for P, := e™** with d = 2 and some
constant ¢, € (0,00). Consider (3.4) for

(3.6) B(x)h = Zuk<h, ex)ozer, € L2(u), h € L2 (),
k=1

where {p}x>1 is a sequence of constants such that

oo d .
(3.7) Zui)\,iv(pr ) < %

k=1

holds for some constant € > 0. When L = —A for A the Dirichlet Laplacian on a bounded
domain in R?,

Ak = O(k¥?)
holds for large k, so that (3.7) follows from

Zuiklv(gﬁ) < 00
k=1
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for some € > 0. We note that when d # 2 (3.7) is weaker than the corresponding condition
used in [8] (in [6, 7] the condition is even stronger as only finite modes of the noise are

allowed).
To ensure that (H1) holds for solutions to (3.4), we first observe that (3.7) implies
1B ()%, 12 ey < Pallzll; for some constant py > 0.

Proposition 3.1. Let B be as in (3.6). If (3.7) holds, then the linear map L*(u) > x
B(z) € (L3 (n), H) extends by continuity to all of H and

1
(38) p3 == 5 sup HB(‘%‘)||?(/2(L2(M);H) < 00,

so that | B(2)|1%, w2 (uyary < 2p3ll7 % holds for all z € H.

To prove this result, we need the following lemma.

Lemma 3.2. Let (&, 2(&)) be a symmetric Dirichelt form on L?(u) over a o-finite mea-
sure space (E, %, ), and let (L, P(Z)) be the associated Dirichlet operator, i.e. the neg-

ative definite self-adjoint operator on L?(u) associated to the symmetric form (&, 2(&)).
Then for any g € L () N 2(ZL) such that Lg € L*>(u),

Proof. For t > 0, let J; be the symmetric measure on £ x E such that

Jt(AXB)::u(]-APtlB)v AaBeﬁa
where P, is the associated Markov semigroup. Then, by the symmetry of J;,

st) =tim [ = Pmdp=tim s [ 1) (570) = b)) Ao, dy)
= 13%1 %([EXE h(z)(h(z) — h(y))Ji(dz, dy) + /T h*(1 — Ptl)du)
~ lim % (% /EE {hia) - h(y)}QJt(dx, dy) + /T R2(1 - Ptl)du), he 2(8).

Combining this with

[0)@) ~ (Fo)w)} = (F@) — F0)0(@)aw) + (F0)0(w) — F@)e(@) (9(0) — g()).

and using the symmetry of J;, we arrive at

stotn) =tm7 (5 [ {unw - Gom} aaean + [ Pea- row)

tlo ¢

10
= lim %{ H92Hg° /EXE {f(x) - f(y)}QJt(drc, dy) — [E {fzg(Ptg —9)+ f2°(1 - Ptl)}du}
< |glZ%E(f, ) — n(f9Ly).

<timt [ (g0 - 5001 - 56070 600) - 9(0)) ) Hlanan

[]
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Proof of Proposition 3.1. First we note that by (3.1),

(3.9) lerlloo = €l Pryacerlloo < el Prja, 2o < AL

holds for some constant ¢ > 0. Since B(z) is linear in z, it suffices to prove (3.8). By the
definition of B(x), we have

(3.10) 1B@) w2 = D I B@exllz = pillwenl
k=1 k=1
So, it suffices to show that there exists a constant ¢ > 0 such that
d €
(3.11) el < cllzZ 22", v e H k> 1.

By (3.9) and an approximation argument, we only need to prove this inequality for z €
L2(u). In this case

(3.12) |lzeelln = sup plzepf) < llzlla sup /&(erf exf),
S(f.)<1 £(f.H)<1

where (&, 2(&)) is the associated Dirichlet form associated to £ := —L. Since (f?ey, Ley)s =
Aep(f?e?), by Lemma 3.2 with . = —L, we obtain

(3.13) E(enf enf) < llexlls + Auplerf?).

For p:=dV (2+ 9), it follows from (3.1) and ||P,|l, < e M that
1Bill1osoe < et >0

holds for some constant ¢ > 0. This implies the Sobolev inequality (cf. [11])

If1s < CEGS). | € D)

for some constant C' > 0. Combining this with (3.13) and noting that ||ex|l2 = 1, we
obtain

2(p—2)

(3.14) & (enf,enf) < llexllse + Chellexlly < Nlexllz + Chellexll”
Combining (3.9) with (3.12) and (3.14) we prove (3.11). O

Now exactly the same arguments as in the proof of [7, Theorem 2.2] imply that for any
r € LYVC9 (1), there exists a unique solution to (3.4) with X, = , which is non-negative
if x > 0; that is, the solution is constructed as the limit of solutions to approximating
equations where LW is replaced by it’s Yoshida approximation, while the uniqueness
follows from Ito’s formula according to the monotonicity of ¥. Hence, by Proposition 3.1
and (3.5), we have the following consequence of Theorem 2.1:

Corollary 3.3. Assume Xo = x € L¥?(0) and that (3.3) and (3.7) hold. Let p,

01, po = 05, and let p3 be as in Proposition 3.1. Then for any 0 € (O, 38373) n(0,1],d:= 2,

all assertions in Theorem 2.1 hold for solutions to (3.4) with B given in (3.12).
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Example 3.1. (i) (SOC-case). Let ¥ be as in (1.2). In this case (3.3) holds with
r=20,some f; >0,C >0and ¢ =1,0, =0 in the BTW-model and ¢ = 2,6, > 0 in the
Zhang-model respectively for s > 0. But if Xy = 2 € L*(&),z > 0, as mentioned above,
we have X; > 0 for all £ > 0. Therefore, to consider s > 0 is sufficient, since we may
change ¥ on (—o00,0) to become an odd function without changing anything. Hence we
can apply Proposition 3.1 with B as in (3.6) satisfying (3.7). In the BTW-model 6, = 0,
so we need 270‘ >1,ie. n=1and o > %, and we have only extinction in finite time with
positive probability for small enough noise or initial conditions Xy = z € L*(&),z > 0,
with small enough H-norm. So, we recover the corresponding result from [7, 8] in the
special case a = 1. Furthermore, if B = 0, hence p3 = 0 in Theorem 2.1(3), which thus
applies forn =1, a > %, to give extinction, recovering the deterministic case from [7, §].
In the Zhang-model, however, we have p; = 65 > 0. Hence for all a € (0,1] and all
dimensions n, if we choose 6 € (0, 27&), and for small enough noise we can apply Theorem
2.1(2) to get exponential integrability of the extinction time, hence in particular extinction
in finite time with probability one, provided Xy = x € L*(&), 2 > 0. In particular, for the
deterministic Zhang-model we have r = p3 = 0 and p; = 01, p; = 05 > 0, so that Theorem
2.1(2) implies that

1 0)2 )| Xoll%
Tozhm—(eﬁm—l)g inf ’Y( )2” OHH

B0 3 0e(0,1] 99%379)\;%9

(ii) (Fast diffusion-case). Let ¥ be as in (1.6). Then (3.3) holds with ; = 1,C =
l,g=1+7,0,=0. So, if B is not identically equal to zero, only Theorem 2.1(1) applies
with po = 0 = 0 and 6 = 1. So, we need % > 1, ie r > Z;gg, and we only
have extinction in finite time with positive probability for small enough noise or initial
conditions with small enough H-norm. So, again we recover the corresponding results
from [6, 8] in the special case @ = 1,n < 3 (though for n = 3,a = 1, also the case
r= er% + 1 is covered in [6, 8]). If B = 0, Theorem 2.1(3) applies with § = 1, leading to
the same restriction r > Z;—gg Hence we get extinction in finite time for the deterministic
case, which appears, however, to be a new result if @ < 1. For o = 1 we recover the
well-known results for the deterministic fast diffusion equation. Finally, we point out,
that, adding a linear term to ¥ we again get extinction in finite time with probability one

in the same way as in the Zhang-model above.

In the next subsection, we consider much stronger noises such that p, = 1 in (3.6) is
allowed.

3.2 Exponential integrability of 7y for strongly dissipative equa-
tions with uncoloured linear multiplicative noise

In addition to (3.3), we assume that

(3.15) U e CO(R), (s—1t)(¥(s)—V(t)>rls—t?, steR
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holds for some constants k > 0. Because ¥(0) = 0, (3.15) implies that (3.3) holds with
0y > 0. A simple example of U satisfying (3.3) and (3.15) is

U(s) = 61]s|"sgn(s) + Oas

for some constants r € (0,1),60;,0, > 0. Let By be a bounded linear operator on L?(p).
Let

) 1 2 - ||6k||go
pPo = §HBO||2—)2; A € [0, 00,

where || Byl|2_2 is the operator norm of By in L?(1). We consider the following stochastic
differential equation on H:

(3.16) dX, = —LU(X,)dt + X, BydW,.

It will turn out that if pg < oo, then this equation is a special case of (3.4), since in this
case the operator-valued function B defined by

B(z)h = xBoh, h e L*(u), v € L=(u)

extends by continuity to all # € L?(u1) (see (3.17) below) which is sufficient under condition
(3.15). We emphasize here that py < oo, e.g. if L is the Dirichlet Laplacian on (0, 1) (cf.
Remark 3.1 below). Since VU is single-valued we can use the result on uniqueness and
existence of solutions from [13], which holds even for random initial conditions, as then
does the following theorem.

Theorem 3.4. Assume that (3.1),(3.3), (3.15) hold. If py € (0,k] N (0,0s), then for any
Xo € L%(Q — H, %;P), the equation (3.16) has a unique solution in the sense of [15].

If moreover (3.1) holds, then for any 0 € ((), ESJ—F:;) N (0,1] and any B € (0, (1 —1r)(0y —
po))\l),

By ()R X |55
‘9(1 - T)9§{92 - 5/()\10(1 — r)}l—g/\gl_T)(l—f))/Q

provided E||X0||%1_T) < 00.

Eef™ <1+ < 00

Proof. For the existence and uniqueness of solutions, we need only to verify the assump-
tions of [13, Theorem 2.1]. To this end, we take V. = L?(u), A(z) = —LY(z), R(z) = p(x?)
and for fixed T'> 0, K = L*([0,T] x 2 x E;dt x P x p). Then assumptions (K), (H1)
and (H4) in [13] follow immediately from (3.3) and the continuity of W. It remains to
verify that for some constants c¢1,cs,¢4 € R and ¢3 >0

(H2) —2(¥(z) = ¥(y),z —y)2 + | B(x) = BWIIp e < allr —yllf 2,y € L2 (p);
(L2 (u); )

(H3) —2(¥(x),2)2 + [ B@) @ < 2zl — esllells +ca v € L2 ().
(L2 ();H)
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Observe that for = € L*(u)

,u{Boek}e uekB €T
1B(@) 2 oy = ZHxBoekuH— Z 2 Z e

k,j=1 k,j=1

185 (e;2) 13 — lle; H2
= Z—O ; 2 < HBoHigHszZ 22 = 2p |3
j=1 J j=1

(3.17)

Since B(x) — B(y) = B(z — y), combining (3.17) with (3.15) and noting that x > pg, we
obtain (H2) for ¢; = 0. Moreover, (3.3) and (3.17) imply that (H3) holds for ¢; = ¢4 =0
and c3 = 6y — po > 0. Next, by (3.5), we have

dIX % < 24X + 0 X3 — poll Xo 3}t + d M,

where

th — 2<XtB0dM/t, Xt)H

This implies (H1) for p; = 61, p2 = 63 — po > 0 and p3 = 0. Then the desired result on 7,
follows from Theorem 2.1(2). O

Remark 3.1. Leteg. L =—A on (0,1). Then we have
Ao = 12k%, ep(s) = V2sin(mks), k>1,s€(0,1),

so that py < co. Therefore, py < co and Theorem 3.4 applies, for small enough || By||2—2-

In the next subsection, we consider the case with a noise having a component in the
direction X, so that Theorem 2.2 applies.

3.3 Extinction with probability 1 for special noise

Now let us consider again the situation of Subsection 3.1. Let e be an unit element in
L2(u) and let
B(z)h = cx(h,e)s, x€ H, heL*(u),

where ¢ # 0 is a constant. Taking B, := (W}, e)s (a one-dimensional Brownian motion)
(3.4) reduces to

(3.18) dX, + LU(X,) 5 cX,dB,.
By (3.3) and (3.5), (H1) holds for p; = 0y, po = 65 and
th = 2C<Xt,Xt>Hdt.

We have
(M), = A3 Xyt = g(|| X,]|7)de

for g(s) = 4c*s?
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Corollary 3.5. Assume that (3.1) and (3.3) hold, and let p3 = % If either 6, > 0

or 03 = 0 but dé”; > 1, then P(1g < o0) = 1 holds for solutions to (3.19) for any

Xo—.TEH.

Proof. Obviously, g(s) > 2pss* and (H1) hold. By Theorem 2.2 for g; = g5 = g, it

suffices to note that due to (3.2) one has y(6) < oo for all § € (0, 5 21 4r) ) (0, 1], and thus

a(i—r
v(1) < oo if 1+T; > 1. ]

Remark 3.2. We note that to make stochastic perturbations in directions other than
X, we may consider

(3.19) dX; + LY(X,) 3 ¢X,dB; + B(X,)dW,,

where W, be a cylindrical Brownian motion on L2(z) which is independent of W;, and
B : H — %(L*(u); H) is such that HB(ZE)”?%(LQ(M);H) < &||z||%,. Then Theorem 2.1
applies to p3 = %(02 + ¢?), while the assertion in Theorem 2.2 holds for this p3 and
g1(s) = 4c2s?, ga(s) = 4(c* + &) s?

Finally, we consider one more case which in fact generalizes the one considered above
(take N = 0 below), but for, which the noise exists not only in one, but in finitely many
directions, and both Theorem 2.1 and Theorem 2.2 apply: Let N € N and consider (3.4)

for

N
(3'20) B(:U)h = Zﬂk’<$’€k>2<h7ek>2€k+#N+1<ha€N+1>27T]J\_I($)a I7h € Hv

k=1

where {1 }2-' C R and

(@) = Z (z, ex)aer
k=N+1
Let
1
ps =75 Sub [
1<k<N+1
We have

N+1

LE ek
1B (@) 1%, w2 oy = ZHB Jexll7 = Z vl (Xl < 28]l
k=

By (3.3) and (3.5), (H1) holds for p; = 60y, ps = 65 and

B |

N
AM, = 2(B(X,)dW,, X,) Z” (X, er) (AW, ex)a + 2payn |75 (X0 |4 (AW, e
k=1
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Obviously,

N+1

N 2
o
(Zuk) Xt = An)e = 4{ D7 L5 (X e + el (X I pat

(Xt,e 2
AT S IO’ a1l

- N+1 —9 zN—i—l

k=1 Hi k=1 Mk
Let
4 N+1
q= v e=4) ki
k=1 Mk _

Therefore, if 2 > 0 for 1 < k < N + 1, then (2.2) holds for g;(s) = ¢;s?, i = 1,2.

Corollary 3.6. Assume that (3.1) and (3.3) hold. Let p3 = §sup,<p<n41 1y. Then for

any 6 € (0, Elwg) N (0,1], all assertions in Theorems 2.1 hold for solutions to (3.4) with

B given in (3.20). ]f moreover pi > 0 for 1 <k < N + 1, the assertion in Theorem 2.2
holds for gi(s) = ¢;s%, i =1,2.
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