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Abstract In this addendum, we improve the results of the article [V.
Barbu, G. Da Prato, M. Rockner, SIAM J. Math. Anal. 41(2009), pp.1106-
1120) on existence and uniqueness of solutions to stochastic nonlinear diffu-
sion equations and complete them with a new result on finite time extinction
of the solution. Also, some technical points are clarified and a misleading
conclusion is corrected.
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Consider the stochastic singular diffusion equation in H = L2(O)

(1)
dX = div sgn(∇(X))dt+XdW in (0,∞)×O,
X = 0 on (0,∞)× ∂O, X(0) = x in O,

where O is a bounded and open domain of Rd and W (t) is a Wiener process
of the form W (t) =

∑∞
k=1 µkekβk(t), {βk} is a sequence of independent real-

valued Brownian motions on a filtered probability space {Ω,F , {Ft}t>0,P}
and {ek} is an orthonormal basis in H = L2(O). The multi-valued function
u→ sgnu from Rd to Rd is defined by

sgnu =
u

|u|d
for u 6= 0; sgn 0 = {v ∈ Rd; |v|d ≤ 1},

∗Octav Mayer Institute of Mathematics (Romanian Academy), 700506 Iaşi, Romania.
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where | · |d is the Euclidean norm of Rd.
Equation (1) is not well posed in the sense of the classical Ito integral

but only in a generalized (variational) sense to be recalled below ([3]). Let
BV (O) be the space of functions u with bounded variations on O, that is
(see [1]))

‖Du‖ = sup

{∫
O
u divϕdξ; ϕ ∈ C∞0 (O;Rd), |ϕ|∞ ≤ 1

}
<∞.

Consider the function φ : L2(O)→ R =]−∞,+∞] defined by

φ(u) =

 ‖Du‖+

∫
∂O
|γ0(u)|dHd−1 if u ∈ BV (O) ∩ L2(O),

+∞ otherwise,

where γ0 is the trace operator on the boundary of O .Equivalently,

φ(u) = ‖Dũ‖ if ũ ∈ BV (Rd); +∞ otherwise,

where ũ is the extension of u by zero outside O.
The function φ is lower-semicontinuous on L2(O) and, as a matter of fact,

it is the closure in L1(O) of the norm of the Sobolev space W 1,1
0 (O). For this

reason, we may interpret φ(u) <∞ as a Dirichlet boundary condition.

Definition 1 Let 0 < T < ∞ and let x ∈ L2(O). A stochastic process
X : [0, T ]→ L2(O) is said to be a variational solution (or strong solution) to
(1), if the following conditions hold.

(i) X is (Ft)-adapted and has P-a.s. continuous sample paths in L2(O),
X(0) = x.

(ii) X ∈ C([0, T ];L2(Ω;L2(O)))∩L1((0, T )×Ω;BV (O))), φ(X) ∈ L1((0, T )×Ω).

(iii) For all (Ft) adapted processes G ∈ L2(0, T ;L2(Ω;L2(O))) and Z ∈
C([0, T ];L2(Ω, L2(O))),φ(Z) ∈ L1(0, T ; Ω) solving the equation

(2) dZ(t) +G(t)dt = Z(t)dW (t), t ∈ [0, T ], Z(0) ∈ L2(Ω,F0, L
2(O)),
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we have

(3)

1

2
E|X(t)− Z(t)|22 + E

∫ t

0

φ(X(τ))dτ

≤ 1

2
E|x− Z(0)|22 + E

∫ t

0

φ(Z(τ))dτ

+
1

2
E
∞∑
k=1

µ2
k

∫ t

0

∫
O

(ek(X(τ)− Z(τ)))2dξ dτ

+E
∫ t

0

〈X(τ)− Z(τ), G(τ)〉 dτ, t ∈ [0, T ].

Here, 〈·, ·〉 is the pairing in duality with the pivot space L2(O) and | · |2 is its
norm .

The definition of a variational (strong ) solution to (1) with additive noise is
completely similar except that the quadratic term from the right hand side
of (3) is missing and the inequality is taken P-a.s.

It should be said that this definition of a strong solution was given in [3]
for d = 1, 2, but with a different function φ, namely, for

φ0(u) =

{
‖Du‖ if u ∈ BV (O), γ0(u) = 0,

+∞ otherwise.

Though φ0 is not l.s.c in L2(O), its l.s.c. closure is just φ, and so the defi-
nitions are equivalent. It is true however that φ0(u) < +∞ does not mean
that u ∈ BV0(O) as was erroneously claimed in [3]). As regards existence for
(1) we have:

Theorem 2 Assume that d ≥ 1 and

(4) C∗ =
1

2

∞∑
k=1

µ2
k|ek|2∞ < +∞

and that x ∈ L2(O). Then, there is a unique variational solution X ∈
L2(Ω;C([0, T ];L2(O))) to (1) such that

(5) lim
λ→0

E{ sup
t∈[0,T ]

|X(t)−Xλ(t)|2} = 0, ∀T > 0,
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where Xλ ∈ L2(Ω;C([0, T ];L2(O))) is the solution to the equation

(6)

dXλ − (I + λA)−1(divψλ(∇(I + λA)−1Xλ))dt = XλdWt

in (0,∞)×O,
Xλ(0) = x.

Here, A = −∆, D(A) = H1
0 (O)∩H2(O) and ψλ is the Yosida approximation

of the sgn-multivalued function.
The existence part of Theorem 2 was established in [3] for d = 1, 2, but

the proof is exactly the same for a general d. (The choice of d = 1, 2 in [3]
was dictated by the inclusion of BV (O) into L2(O) for p = 1, 2 but this is not
essential for the existence and uniqueness proof.) As regards the uniqueness
of the solution X, it was established in [3] only for (1) with additive noise,
but it was recently proved for the case of multiplicative noise as in [5]. It is
claimed in [3] that X(t) ∈ BV 0(O)={u ∈ BV (O); γ0(u)=0} as a consequence
of the fact that

E
∫ T

0

φ((1 + λA)−1Xλ(t))dt ≤ C, ∀ε > 0,

which implies by lower semicontinuity φ(X) ∈ L1((0, T )×Ω). As mentioned
earlier, this is false and Theorem 2 is the correct formulation while the proof
is exactly the same as in [3].

Equation (1) with the Neumann boundary condition ∇X · ~n = 0 can be
similarly treated by taking in Definition 1 the functional φ=φN : L2(O)→ R,

φN(u) = ‖Du‖ if u ∈ L2(O) ∩BV (O), +∞ otherwise.

Also, the periodic boundary conditions X(t, ξ + π) ≡ X(t, ξ) can be incor-
porated into Definition 1 by a suitably chosen function φ. (See, e.g., [6].)

A striking feature of solutions to singular nonlinear diffusion stochastic
equations is the extinction in finite time with positive probability. (See [4] )

Theorem 3 Let d = 1, 2 and let X be the variational solution to (1) given
by Theorem 2. Let τ = inf{t; |X(t)|2 = 0}. Then, we have

(7) P[τ ≤ t] ≥ 1− ρ−1
(∫ t

0

e−C
∗sds

)−1
s|x|2, ∀t ≥ 0,

where ρ = sup{|y|2/|y|W 1,1
0 (O); y ∈ W

1,1
0 (O)}and C∗ is as in (4).
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Proof. Let Xλ be the solution to (6) and X̃λ = (I+λA)−1Xλ. We note that

(8) dXλ − (I + λA)−1div ψλ(∇X̃λ)dt = XλdW.

We apply Itô’s formula to|Xλ|22 and subsequently for ε > 0 to the function

ϕ(r) = (r + ε)
1
2 , r ∈ R, and obtain

(9)

dϕε(|Xλ(t)|22) +

(∫
O
ψλ(∇X̃λ) · ∇X̃λdξ

)
(|Xλ|22 + ε)−

1
2dt

≤ C∗|Xλ(t)|22(|Xλ(t)|22 + ε)−
1
2dt

+2 〈Xλ(t)dW (t), ϕ′ε(|Xλ(t)|22)Xλ(t))〉2 .

Recalling that, by the Sobolev embedding theorem for d ≥ 1

|∇y|L1(O) ≥ ρ|y| d
d−1
, ∀y ∈ W 1,1

0 (O)

and that ψλ(r) · r ≥ |r|2d,∀r ∈ Rd, we get by (9) that

dϕε(|Xλ(t))|22 + ρ|X̃λ(t)|2(|Xλ(t)|2 + ε)−
1
2dt

≤ C∗|Xλ(t))|2dt+ 〈Xλ(t)dW (t), Xλ(t)〉2 (|Xλ(t)|22 + ε)−
1
2 .

Integrating from s to t and letting first λ and then ε tend to zero, we obtain
P-a.s. for all 0 ≤ s ≤ t

(10)

e−C
∗t|X(t)|2 + ρ

∫ t

s

1[|X(θ)|2>0]e
−C∗θdθ

≤ e−C
∗s|X(s)|2 +

∫ t

s

1[|X(θ)|2>0]e
−C∗θ|X(θ)|−12 〈X(θ), dW (θ)〉2 .

In particular, this implies that the process t → e−θ
∗t|X(t)|2 is an {Ft}-

supermartingale and, therefore,

|X(t)|2 = 0 for t ≥ τ = inf{t ≥ 0; |X(t)|2 = 0}.

If we take expectation and set s = 0, we see that

e−C
∗tE|X(t)|2 + ρ

∫ t

0

e−C
∗θP[τ > θ]dθ ≤ |x|2, ∀t > 0.

This yields

P[τ > t] ≤
(
ρ

∫ t

0

e−C
∗θdθ

)−1
|x|2, ∀λ > 0

as claimed.This completes the proof.

5



Remark 4 In particular, taking in (4) µk = 0 for all k, implying C∗ = 0, we
have τ ≤ |x|d/ρ and recover the deterministic case for d = 1, 2(see [2].) As in
deterministic case that is for C∗ = 0 there is an analogous extinction result
for all dimensions d ≥ 1 also in the stochastic case. The proof,however, is
much more involved than the above and would go beyond the scope of this
Addendum.It will be contained instead in a forthcomong paper which is in
preparation.
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