Addendum to : "Stochastic nonlinear diffusion equations with singular diffusivity "

Viorel Barbu^{*} Giuseppe Da Prato[†] Michael Röckner[‡]

Abstract In this addendum, we improve the results of the article [V. Barbu, G. Da Prato, M. Rockner, SIAM J. Math. Anal. 41(2009), pp.1106-1120) on existence and uniqueness of solutions to stochastic nonlinear diffusion equations and complete them with a new result on finite time extinction of the solution. Also, some technical points are clarified and a misleading conclusion is corrected.

Keywords: stochastic, bounded variation, Wiener process. **AMS Subject Classification:** 60H15, 35K55.

Consider the stochastic singular diffusion equation in $H = L^2(\mathcal{O})$

(1)
$$dX = \operatorname{div} \operatorname{sgn}(\nabla(X))dt + XdW \quad \text{in } (0,\infty) \times \mathcal{O}, \\ X = 0 \quad \text{on } (0,\infty) \times \partial \mathcal{O}, X(0) = x \quad \text{in } \mathcal{O},$$

where \mathcal{O} is a bounded and open domain of \mathbb{R}^d and W(t) is a Wiener process of the form $W(t) = \sum_{k=1}^{\infty} \mu_k e_k \beta_k(t), \{\beta_k\}$ is a sequence of independent realvalued Brownian motions on a filtered probability space $\{\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t>0}, \mathbb{P}\}$ and $\{e_k\}$ is an orthonormal basis in $H = L^2(\mathcal{O})$. The multi-valued function $u \to \operatorname{sgn} u$ from \mathbb{R}^d to \mathbb{R}^d is defined by

$$\operatorname{sgn} u = \frac{u}{|u|_d} \text{ for } u \neq 0; \qquad \operatorname{sgn} 0 = \{ v \in \mathbb{R}^d; |v|_d \le 1 \},$$

^{*}Octav Mayer Institute of Mathematics (Romanian Academy), 700506 Iași, Romania. †Scuola Normale Superiore di Pisa, 56126, Pisa, Italy.

[‡]Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany.

where $|\cdot|_d$ is the Euclidean norm of \mathbb{R}^d .

Equation (1) is not well posed in the sense of the classical Ito integral but only in a generalized (variational) sense to be recalled below ([3]). Let $BV(\mathcal{O})$ be the space of functions u with bounded variations on \mathcal{O} , that is (see [1]))

$$\|Du\| = \sup\left\{\int_{\mathcal{O}} u \operatorname{div} \varphi \, d\xi; \ \varphi \in C_0^{\infty}(\mathcal{O}; \mathbb{R}^d), |\varphi|_{\infty} \le 1\right\} < \infty.$$

Consider the function $\phi: L^2(\mathcal{O}) \to \overline{\mathbb{R}} =]-\infty, +\infty]$ defined by

$$\phi(u) = \begin{cases} \|Du\| + \int_{\partial \mathcal{O}} |\gamma_0(u)| d\mathcal{H}^{d-1} & \text{if } u \in BV(\mathcal{O}) \cap L^2(\mathcal{O}), \\ +\infty & \text{otherwise,} \end{cases}$$

where γ_0 is the trace operator on the boundary of \mathcal{O} . Equivalently,

$$\phi(u) = \|D\widetilde{u}\|$$
 if $\widetilde{u} \in BV(\mathbb{R}^d)$; $+\infty$ otherwise,

where \widetilde{u} is the extension of u by zero outside \mathcal{O} .

The function ϕ is lower-semicontinuous on $L^2(\mathcal{O})$ and, as a matter of fact, it is the closure in $L^1(\mathcal{O})$ of the norm of the Sobolev space $W_0^{1,1}(\mathcal{O})$. For this reason, we may interpret $\phi(u) < \infty$ as a Dirichlet boundary condition.

Definition 1 Let $0 < T < \infty$ and let $x \in L^2(\mathcal{O})$. A stochastic process $X : [0,T] \to L^2(\mathcal{O})$ is said to be a variational solution (or strong solution) to (1), if the following conditions hold.

- (i) X is (\mathcal{F}_t) -adapted and has \mathbb{P} -a.s. continuous sample paths in $L^2(\mathcal{O})$, X(0) = x.
- (ii) $X \in C([0,T]; L^2(\Omega; L^2(\mathcal{O}))) \cap L^1((0,T) \times \Omega; BV(\mathcal{O}))), \phi(X) \in L^1((0,T) \times \Omega).$
- (iii) For all (\mathcal{F}_t) adapted processes $G \in L^2(0,T; L^2(\Omega; L^2(\mathcal{O})))$ and $Z \in C([0,T]; L^2(\Omega, L^2(\mathcal{O}))), \phi(Z) \in L^1(0,T;\Omega)$ solving the equation

(2)
$$dZ(t) + G(t)dt = Z(t)dW(t), t \in [0,T], Z(0) \in L^2(\Omega, \mathcal{F}_0, L^2(\mathcal{O})),$$

we have

(3)

$$\frac{1}{2} \mathbb{E}|X(t) - Z(t)|_{2}^{2} + \mathbb{E} \int_{0}^{t} \phi(X(\tau)) d\tau$$

$$\leq \frac{1}{2} \mathbb{E}|x - Z(0)|_{2}^{2} + \mathbb{E} \int_{0}^{t} \phi(Z(\tau)) d\tau$$

$$+ \frac{1}{2} \mathbb{E} \sum_{k=1}^{\infty} \mu_{k}^{2} \int_{0}^{t} \int_{\mathcal{O}} (e_{k}(X(\tau) - Z(\tau)))^{2} d\xi d\tau$$

$$+ \mathbb{E} \int_{0}^{t} \langle X(\tau) - Z(\tau), G(\tau) \rangle d\tau, t \in [0, T].$$

Here, $\langle \cdot, \cdot \rangle$ is the pairing in duality with the pivot space $L^2(\mathcal{O})$ and $|\cdot|_2$ is its norm.

The definition of a variational (strong) solution to (1) with additive noise is completely similar except that the quadratic term from the right hand side of (3) is missing and the inequality is taken \mathbb{P} -a.s.

It should be said that this definition of a strong solution was given in [3] for d = 1, 2, but with a different function ϕ , namely, for

$$\phi_0(u) = \begin{cases} \|Du\| & \text{if } u \in BV(\mathcal{O}), \ \gamma_0(u) = 0, \\ +\infty & \text{otherwise.} \end{cases}$$

Though ϕ_0 is not l.s.c in $L^2(\mathcal{O})$, its l.s.c. closure is just ϕ , and so the definitions are equivalent. It is true however that $\phi_0(u) < +\infty$ does not mean that $u \in BV_0(\mathcal{O})$ as was erroneously claimed in [3]). As regards existence for (1) we have:

Theorem 2 Assume that $d \ge 1$ and

(4)
$$C^* = \frac{1}{2} \sum_{k=1}^{\infty} \mu_k^2 |e_k|_{\infty}^2 < +\infty$$

and that $x \in L^2(\mathcal{O})$. Then, there is a unique variational solution $X \in L^2(\Omega; C([0,T]; L^2(\mathcal{O})))$ to (1) such that

(5)
$$\lim_{\lambda \to 0} \mathbb{E} \{ \sup_{t \in [0,T]} |X(t) - X_{\lambda}(t)|_2 \} = 0, \ \forall T > 0,$$

where $X_{\lambda} \in L^2(\Omega; C([0, T]; L^2(\mathcal{O})))$ is the solution to the equation

(6)

$$dX_{\lambda} - (I + \lambda A)^{-1} (\operatorname{div} \psi_{\lambda} (\nabla (I + \lambda A)^{-1} X_{\lambda})) dt = X_{\lambda} dW_{t}$$

$$in \ (0, \infty) \times \mathcal{O},$$

$$X_{\lambda}(0) = x.$$

Here, $A = -\Delta$, $D(A) = H_0^1(\mathcal{O}) \cap H^2(\mathcal{O})$ and ψ_{λ} is the Yosida approximation of the sgn-multivalued function.

The existence part of Theorem 2 was established in [3] for d = 1, 2, but the proof is exactly the same for a general d. (The choice of d = 1, 2 in [3] was dictated by the inclusion of $BV(\mathcal{O})$ into $L^2(\mathcal{O})$ for p = 1, 2 but this is not essential for the existence and uniqueness proof.) As regards the uniqueness of the solution X, it was established in [3] only for (1) with additive noise, but it was recently proved for the case of multiplicative noise as in [5]. It is claimed in [3] that $X(t) \in BV^0(\mathcal{O}) = \{u \in BV(\mathcal{O}); \gamma_0(u) = 0\}$ as a consequence of the fact that

$$\mathbb{E}\int_0^T \phi((1+\lambda A)^{-1}X_\lambda(t))dt \le C, \quad \forall \varepsilon > 0,$$

which implies by lower semicontinuity $\phi(X) \in L^1((0,T) \times \Omega)$. As mentioned earlier, this is false and Theorem 2 is the correct formulation while the proof is exactly the same as in [3].

Equation (1) with the Neumann boundary condition $\nabla X \cdot \vec{n} = 0$ can be similarly treated by taking in Definition 1 the functional $\phi = \phi_N : L^2(\mathcal{O}) \to \overline{\mathbb{R}}$,

$$\phi_N(u) = \|Du\|$$
 if $u \in L^2(\mathcal{O}) \cap BV(\mathcal{O}), +\infty$ otherwise.

Also, the periodic boundary conditions $X(t, \xi + \pi) \equiv X(t, \xi)$ can be incorporated into Definition 1 by a suitably chosen function ϕ . (See, e.g., [6].)

A striking feature of solutions to singular nonlinear diffusion stochastic equations is the extinction in finite time with positive probability. (See [4])

Theorem 3 Let d = 1, 2 and let X be the variational solution to (1) given by Theorem 2. Let $\tau = \inf\{t; |X(t)|_2 = 0\}$. Then, we have

(7)
$$\mathbb{P}[\tau \le t] \ge 1 - \rho^{-1} \left(\int_0^t e^{-C^* s} ds \right)^{-1} s |x|_2, \ \forall t \ge 0,$$

where $\rho = \sup\{|y|_2/|y|_{W_0^{1,1}(\mathcal{O})}; y \in W_0^{1,1}(\mathcal{O})\}$ and C^* is as in (4).

Proof. Let X_{λ} be the solution to (6) and $\widetilde{X}_{\lambda} = (I + \lambda A)^{-1} X_{\lambda}$. We note that

(8)
$$dX_{\lambda} - (I + \lambda A)^{-1} \text{div } \psi_{\lambda}(\nabla X_{\lambda}) dt = X_{\lambda} dW.$$

We apply Itô's formula to $|X_{\lambda}|_2^2$ and subsequently for $\varepsilon > 0$ to the function $\varphi(r) = (r + \varepsilon)^{\frac{1}{2}}, r \in \mathbb{R}$, and obtain

(9)
$$d\varphi_{\varepsilon}(|X_{\lambda}(t)|_{2}^{2}) + \left(\int_{\mathcal{O}}\psi_{\lambda}(\nabla\widetilde{X}_{\lambda})\cdot\nabla\widetilde{X}_{\lambda}d\xi\right)(|X_{\lambda}|_{2}^{2}+\varepsilon)^{-\frac{1}{2}}dt$$
$$\leq C^{*}|X_{\lambda}(t)|_{2}^{2}(|X_{\lambda}(t)|_{2}^{2}+\varepsilon)^{-\frac{1}{2}}dt$$
$$+2\left\langle X_{\lambda}(t)dW(t),\varphi_{\varepsilon}'(|X_{\lambda}(t)|_{2}^{2})X_{\lambda}(t)\right)\right\rangle_{2}.$$

Recalling that, by the Sobolev embedding theorem for $d \ge 1$

$$|\nabla y|_{L^1(\mathcal{O})} \ge \rho |y|_{\frac{d}{d-1}}, \quad \forall y \in W_0^{1,1}(\mathcal{O})$$

and that $\psi_{\lambda}(r) \cdot r \ge |r|_d^2, \forall r \in \mathbb{R}^d$, we get by (9) that

$$d\varphi_{\varepsilon}(|X_{\lambda}(t))|_{2}^{2} + \rho |\widetilde{X}_{\lambda}(t)|_{2}(|X_{\lambda}(t)|_{2} + \varepsilon)^{-\frac{1}{2}}dt$$

$$\leq C^{*}|X_{\lambda}(t)|_{2}dt + \langle X_{\lambda}(t)dW(t), X_{\lambda}(t)\rangle_{2}(|X_{\lambda}(t)|_{2}^{2} + \varepsilon)^{-\frac{1}{2}}.$$

Integrating from s to t and letting first λ and then ε tend to zero, we obtain \mathbb{P} -a.s. for all $0 \le s \le t$

(10)
$$e^{-C^{*}t}|X(t)|_{2} + \rho \int_{s}^{t} \mathbb{1}_{[|X(\theta)|_{2}>0]} e^{-C^{*}\theta} d\theta$$
$$\leq e^{-C^{*}s}|X(s)|_{2} + \int_{s}^{t} \mathbb{1}_{[|X(\theta)|_{2}>0]} e^{-C^{*}\theta}|X(\theta)|_{2}^{-1} \langle X(\theta), dW(\theta) \rangle_{2}$$

In particular, this implies that the process $t \to e^{-\theta^* t} |X(t)|_2$ is an $\{\mathcal{F}_t\}$ -supermartingale and, therefore,

$$|X(t)|_2 = 0$$
 for $t \ge \tau = \inf\{t \ge 0; |X(t)|_2 = 0\}.$

If we take expectation and set s = 0, we see that

$$e^{-C^*t}\mathbb{E}|X(t)|_2 + \rho \int_0^t e^{-C^*\theta} \mathbb{P}[\tau > \theta] d\theta \le |x|_2, \ \forall t > 0.$$

This yields

$$\mathbb{P}[\tau > t] \le \left(\rho \int_0^t e^{-C^*\theta} d\theta\right)^{-1} |x|_2, \ \forall \lambda > 0$$

as claimed. This completes the proof.

Remark 4 In particular, taking in (4) $\mu_k = 0$ for all k, implying $C^* = 0$, we have $\tau \leq |x|_d/\rho$ and recover the deterministic case for d = 1, 2 (see [2].) As in deterministic case that is for $C^* = 0$ there is an analogous extinction result for all dimensions $d \geq 1$ also in the stochastic case. The proof, however, is much more involved than the above and would go beyond the scope of this Addendum. It will be contained instead in a forthcomong paper which is in preparation.

References

- [1] L. Ambrosio, N. Fusco, D. Pallara, *Functions of Bounded Variation and Free Discontinuity Problems*, Oxford Universityt Press, New York, 2000.
- [2] F. Andreu, V. Caselles, J. Díaz, J. Mazón, Some qualitative properties for the total variation flow, J. Funct. Anal., 188 (2002), 516-547.
- [3] V. Barbu, G. Da Prato, M. Röckner, Stochastic nonlinear diffusion equations with singular diffusivity, SIAM J. Math. Anal., vol. 41, 3 (20009), 1106-1120.
- [4] V. Barbu, G. Da Prato, M. Röckner, Stochastic porous media equations and self-organized criticality, *Comm. Math. Phys.* 285 (2009), 901-923.
- [5] B. Gess, J.M. Tölle, Multivalued singular stochastic evolution inclusion, http:arxiv.org/ads/112.5672
- [6] Y. Giga, R. Kobayashi, On constrained equations with singular diffusivity, *Methods and Appl. Analysis*, vol. 10, 2 (2003), 253-278.