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1 Introduction and framework

In all this paper E represents a Polish space with metric d. We denote by
B(E) the σ–algebra of all Borel subsets of E and by P(E) the set of all prob-
ability measures defined on (E,B(E)). Moreover, Bb(E), Cb(E), UCb(E)
is the Banach space of all real bounded functions, which are Borel measur-
able, continuous, uniformly continuous, respectively, endowed with the norm
‖ϕ‖0 = supx∈E |ϕ(x)|.

Let T > 0 be fixed. While in Sections 1-3 of this paper T is assumed to
be finite and we consider the interval [0, T ], in Section 4 we work on all of
R. We say that π = πs,t(·, ·), 0 ≤ s ≤ t ≤ T, is a Markovian transition
probability on E, if

(i) πs,t(x, ·) is a probability measure on (E,B(E)) for each 0 ≤ s ≤ t ≤
T, x ∈ E.

(ii) πs,t(·,Γ) belongs to Bb(E) for each 0 ≤ s ≤ t ≤ T, Γ ∈ B(E).

(iii) πs,t(x,Γ) =

∫
E

πs,r(x, dy)πr,t(y,Γ), for each 0 ≤ s ≤ t ≤ T, Γ ∈ B(E).

(iv) πs,s(x,Γ) = 1l
Γ
(x), for each x ∈ E, Γ ∈ B(E).

(v) π is called forward continuous, if for all u ∈ Cb(E), x ∈ E,
0 ≤ s ≤ t ≤ T

lim
r→t, r∈[s,T ]

∫
E

u(y)πs,r(x, dy) =

∫
E

u(y)πs,t(x, dy).
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(vi) π is called parabolic Feller, if for all u ∈ Cb([0, T ]× E), τ > 0

(s, x) 7→
∫
E

u(s, y)πs,s+τ (x, dy).

is uniformly continuous on [0, T ]× E.

Any Markovian transition probability π on E defines a family of linear op-
erators Ps,t, 0 ≤ s ≤ t ≤ T, on the space Bb(E), by the formula

Ps,tϕ(x) =

∫
E

ϕ(y)πs,t(x, dy), 0 ≤ s ≤ t ≤ T, x ∈ E, ϕ ∈ Bb(E). (1.1)

Ps,t, 0 ≤ s ≤ t ≤ T, is called the Markovian transition evolution operator
associated to the transition function π. By (1.1) it follows that

Ps,t = Ps,rPr,t, ∀ 0 ≤ s ≤ r ≤ t ≤ T, Ps,s = I, ∀ s ∈ [0, T ]. (1.2)

Remark 1.1. Clearly (vi) implies that Ps,t(UCb(E)) ⊂ UCb(E) for all
0 ≤ s ≤ t ≤ T. For the time homogeneous case this is even equivalent
to (vi). Indeed, suppose π is time homogeneous, i.e. πs,s+τ = π0,τ for all
s ∈ [0, T ], τ ∈ [0, T − s]. Then π is parabolic Feller (see property (vi) above)
if and only if

P0,τ (UCb(E)) ⊂ UCb(E), ∀ τ ≥ 0.

That (vi) implies the latter is obvious. The converse follows by Lemma A.1
in the Appendix.

Example 1.2. Let us consider the stochastic differential equation
dX(t) = (AX(t) + F (t,X(t))dt+BdW (t), t ∈ [s, T ]

X(s) = x ∈ L2(Ω,Fs,P;H),
(1.3)

on a separable real Hilbert space H, where A : D(A) ⊂ H → H is the
infinitesimal generator of a strongly continuous semigroup etA in H, B ∈
L(H) and F : D(F ) ⊂ [0, T ]×H → H is measurable possibly nonlinear. We
assume that for any t > 0 we have Tr Qt < +∞ where

Qtx =

∫ t

0

esABB∗esA
∗
xds, x ∈ H.

To express the dependence on s, x, we denote a solution of (1.3) by

X(t, s, x), t ≥ s.
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Concerning F we assume that problem (1.3) is well-posed. Define the corre-
sponding transition evolution operator

Ps,tϕ(x) := E[ϕ(X(t, s, x))], ϕ ∈ Cb(H). (1.4)

Then denoting by πs,t(x, dy) the law of X(t, s, x) it is clear that πs,t(·, ·), 0 ≤
s ≤ t ≤ T, is a Markovian transition probability, which is forward continuous,
if t 7→ X(t, s, x) is P-a.s. continuous. Note that for u ∈ Cb([0, T ] × E),
(s, x) ∈ [0, T ]× E and τ > 0

E[u(s+ τ,X(s+ τ, s, x))] =

∫
E

u(s+ τ, y)πs,s+τ (x, dy).

Hence π is parabolic Feller if the law of the space time process

Z(τ, (s, x)) := (s+ τ,X(s+ τ, s, x)), τ ≥ 0,

depends uniformly continuously on its initial condition (s, x). To ensure this
we need corresponding conditions on F in assumptions (1.3), as e.g. that
D(F ) = [0, T ] × H, F : [0, T ] × H → H is uniformly continuous and there
exists a constant K > 0 such that

|F (t, x)− F (t, y)| ≤ K|x− y|

for a x.y ∈ H, t ∈ [0, T ].

2 The transition semigroup on Cb,T ([0, T ]×E)
We fix T > 0 and a Markovian transition probability π = πs,t, 0 ≤ s ≤ t ≤ T,
satisfying (v) and (vi), with corresponding Markovian transition evolution

operators (Ps,t)0≤s≤t≤T . Define a semigroup S
(T )
τ , τ ≥ 0, of linear operators

on

Cb,T ([0, T ]× E) := {u ∈ UCb([0, T ]× E) : u(T, x) = 0, ∀ x ∈ E}

as follows

(S(T )
τ u)(t, x) =


(Pt,t+τ (u(t+ τ, ·)))(x), if 0 ≤ t ≤ T − τ, x ∈ E,

0, if T − τ ≤ t ≤ T, x ∈ E.
(2.1)

To show that S
(T )
τ u ∈ Cb,T ([0, T ] × E), by (vi) and Lemma A.1 in the Ap-

pendix we have only to check that

[0, T ] 3 t 7→ Pt,t+τ (u(t+ τ, ·)) ∈ UCb(E),
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is left continuous in t := T − τ . So, let tn ∈ [0, T − t], tn → T − t, as n→∞.
Then since u is uniformly continuous on [0, T ]×E and u(t, x) = 0 for x ∈ E
we have limn→∞ ‖u(tn+ τ, ·)‖0 = 0, where ‖ ·‖0 denotes the supremum norm.
But

‖Ptn,tn+τu(tn + τ, ·))‖0 ≤ ‖u(tn + τ, ·)‖0,
so, in UCb(E)

lim
n→∞

Ptn,tn+τu(tn + τ, ·)) = 0 = PT−τ,T (u(T, ·)).

Furthermore, we note that obviously for all f ∈ Cb,T ([0, T ]× E)

S
(T )
0 f = f

and
S(T )
τ f(t, x) = 1l[0,T−τ)(t)S

(T )
τ f(t, x), ∀ (t, x) ∈ [0, T ]× E.

If, in particular u(t, x) = α(t)ϕ(x), t ∈ [0, T ], x ∈ E, we have

(S(T )
τ u)(t, x) = α(t+ τ)(Pt,t+τϕ)(x), t ∈ [0, T ], x ∈ E. (2.2)

By (1.2) it follows that S
(T )
τ , τ ≥ 0, is a semigroup of linear operators on

Cb,T ([0, T ]× E). However, it is not strongly continuous in general as is well
known from the literature on Markov semigroups, see e. g. [Dy56], [EtKu86],
[Ce94], [Pr99], [DZ02], [GoKo01], [Ku03], [LoBe06] and [Ma08].

Let us introduce the notion of π-convergence following [Pr99]. Let (un) ⊂
Cb,T ([0, T ] × E) and u ∈ Cb,T ([0, T ] × E). We say that (un) is π-convergent

to u and write un
π→ u if

(i) lim
n→∞

un(t, x) = u(t, x), ∀ (t, x) ∈ [0, T ]× E.

(ii) sup
n∈N
‖un‖0 <∞, (with ‖ · ‖0 denoting the supremum norm).

We call an operator S on Cb,T ([0, T ] × E) π-continuous if un
π→ u implies

Sun
π→ Su for u, un ∈ Cb,T ([0, T ]× E).

Proposition 2.1. S
(T )
τ is π-continuous for all τ ≥ 0.

Proof. Obviously,

sup
n∈N
‖S(T )

τ un‖0 ≤ sup
n∈N
‖un‖0 <∞.

Moreover if 0 ≤ t ≤ T − τ , we have

|(S(T )
τ u)(t, x)− (S(T )

τ un)(t, x)| ≤ (Pt,t+τ |u(t+ τ, ·)− un(t+ τ, ·)|)(x).

Now the conclusion follows from the dominated convergence theorem.
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Proposition 2.2. Let u ∈ Cb,T ([0, T ] × E). Then whenever τ, τn ∈ [0,∞),
n ∈ N, such that limn→∞ τn = τ , we have

S(T )
τn u

π→ S(T )
τ u, as n→∞.

Proof. Case 1. Consider (t, x) ∈ [0, T − τ) × E. Then for large enough n,
also (t, x) ∈ [0, T − τn)× E. Hence∣∣∣(S(T )

τn u)(t, x)− (S
(T )
τ u)(t, x)

∣∣∣
= |(Pt,t+τn(u(t+ τn, ·)))(x)− (Pt,t+τ (u(t+ τ, ·)))(x)| → 0 as n→∞,

since
lim
n→∞

‖u(t+ τn, ·)− u(t+ τ, ·)‖0 = 0.

Case 2. Consider (t, x) ∈ (T − τ, T ]× E.
Since then for large n also (t, x) ∈ (T − τn, T ]× E we have

(S(T )
τn u)(t, x) = 0 = (S(T )

τ u)(t, x).

Case 3. Consider (T − τ, x) ∈ [0, T ]× E.
Then if τn ≥ τ we have

(S(T )
τn u)(T − τ, x) = 0 = (S(T )

τ u)(T − τ, x).

So, we may assume τn < τ for all n ∈ N.
Then ∣∣∣(S(T )

τn u)(T − τ, x)
∣∣∣

= |(PT−τ,T−τ+τn(u(T − τ + τn, ·)))(x)|

≤ ‖u(T − τ + τn, ·)‖0 → 0 as n→∞,
hence

lim
n→∞

(S(T )
τn u)(T − τ, x) = 0 = (S(T )

τ u)(T − τ, x).
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2.1 The infinitesimal generator of S
(T )
τ , τ ≥ 0

Definition 2.3. We say that u ∈ Cb,T ([0, T ] × E) belongs to the domain of
K (T ) if

(i) For each (t, x) ∈ [0, T ]× E there exists the limit

lim
ε→0

1

ε
((S(T )

ε u)(t, x)− u(t, x)) =: (K (T )u)(t, x)

and K (T )u ∈ Cb,T ([0, T ]× E).

(ii) sup
ε∈(0,1]

1

ε
‖S(T )

ε u− u‖0 < +∞.

K (T ) is called the infinitesimal generator of S
(T )
τ .

In the following we set

∆ε :=
1

ε
(S(T )

ε − 1).

Proposition 2.4. Let u ∈ D(K (T )) and let τ ≥ 0. Then S
(T )
τ u ∈ D(K (T ))

and we have

K (T )S(T )
τ u = S(T )

τ K (T )u. (2.3)

Moreover, for each (t, x) ∈ [0, T ] × E, (S
(T )
τ u)(t, x) is differentiable at each

τ ≥ 0 and

d

dτ
(S(T )

τ u)(t, x) = (K (T )S(T )
τ u)(t, x) = (S(T )

τ K (T )u)(t, x). (2.4)

Proof. Let u ∈ D(K (T )) and (t, x) ∈ [0, T ]× E. Then we have

(∆εS
(T )
τ u)(t, x) = (S(T )

τ ∆εu)(t, x).

Since ∆εu
π→ K (T )u, by Proposition 2.1 it follows that as ε→ 0

(∆εS
(T )
τ u)(t, x)

π→ (S(T )
τ K (T )u)(t, x).

So, S
(T )
τ u ∈ D(K (T )) and K (T )S

(T )
τ u = S

(T )
τ K (T )u. On the other hand,

(D+
τ S

(T )
τ u)(t, x) = lim

ε→0+
(S(T )

τ ∆εu)(t, x) = (S(T )
τ K (T )u)(t, x).

Since (S
(T )
τ K (T )u)(t, x) is continuous in τ by Proposition 2.2 , we have,

by an elementary result, that (S
(T )
τ u)(t, x) is continuously differentiable and

(DτS
(T )
τ u)(t, x) = S

(T )
τ K u(t, x).

6



We shall denote by ρ(K (T )) the resolvent set of K (T ), i. e. the set of all
λ ∈ R such that

λ−K (T ) : D(K (T ))→ Cb,T ([0, T ]× E)

is bijective and its resolvent R(λ,K (T )) := (λ−K (T ))−1 is π-continuous.

Proposition 2.5. ρ(K (T )) = R. Moreover, for any λ ∈ R and any f ∈
Cb,T ([0, T ]× E) we have for (t, x) ∈ [0, T ]× E

(R(λ,K (T ))f)(t, x) =

∫ ∞
0

e−λτ (S(T )
τ f)(t, x)dτ

=

∫ T−t

0

e−λτ (S(T )
τ f)(t, x)dτ.

(2.5)

Proof. Let f ∈ Cb,T ([0, T ] × E) and for any λ ∈ R, (t, x) ∈ [0, T ] × E set,
following [Ce94]

(F (λ)f)(t, x) =

∫ ∞
0

e−λτ (S(T )
τ f)(t, x)dτ.

It is easy to see that F (λ)f ∈ Cb,T ([0, T ]×E) and that F (λ) is π-continuous.
Now we show that λ ∈ ρ(K (T )). We write

(∆εF (λ)f)(t, x)

=
1

ε

[
eλε
∫ T−t

ε

e−λτ (S(T )
τ f)(t, x)dτ −

∫ T−t

0

e−λτ (S(T )
τ f)(t, x)dτ

]

=
1

ε
(eλε − 1)

∫ T−t

ε

e−λτ (S(T )
τ f)(t, x)dτ − 1

ε

∫ ε

0

e−λτ (S(T )
τ f)(t, x)dτ.

Therefore,

lim
ε→0

(∆εF (λ)f)(t, x) = λ(F (λ)f)(t, x)− f(t, x). (2.6)

On the other hand,

‖∆εF (λ)f‖0 ≤
(
eλε − 1

ελ
+ 1

)
‖f‖0 max{1, e−λτ}.

and therefore F (λ)f ∈ D(K (T )) and

K (T )F (λ)f = λF (λ)− f. (2.7)
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It remains to show that

F (λ)(λ−K (T ))ϕ = ϕ, ∀ ϕ ∈ D(K (T )), (2.8)

which then implies that λ ∈ ρ(K (T )). Let us prove (2.8). If ϕ ∈ D(K (T ))
taking into account Proposition 2.4, we have

(F (λ)K (T )ϕ)(t, x) =

∫ ∞
0

e−λτ (S(T )
τ K (T )ϕ)(t, x)dτ

=

∫ T−t

0

e−λτ
d

dτ
(S(T )

τ ϕ)(t, x)dτ

= −ϕ(t, x) + λ(F (λ)ϕ)(t, x), ∀ (t, x) ∈ [0, T ]× E.

which implies (2.8).

Remark 2.6. The domain D(K (T )) of K (T ) is not dense in Cb,T ([0, T ]×E)
in general; however, it is easy to check that it is π–dense in Cb,T ([0, T ]×E),
that is for any u ∈ Cb,T ([0, T ] × E) there exists (un) ⊂ D(K (T )) such that

un
π→ u. (See the proof of Proposition 2.8 below.)

Remark 2.7. By (2.5) it follows that for λ > 0

‖R(λ,K (T ))f‖0 ≤
1

λ
‖f‖0, ∀ f ∈ Cb,T ([0, T ]× E).

Therefore K (T ) is m–dissipative in Cb,T ([0, T ]× E).

Proposition 2.8. D(K (T )) is π–dense in Cb,T ([0, T ] × E), i.e., for every

f ∈ Cb,T ([0, T ]× E) there exist un ∈ D(K (T )), n ∈ N, such that un
π→ f .

Proof. Let f ∈ Cb,T ([0, T ] × E) and define un := nR(n,K (T ))f , i.e. for
(t, x) ∈ [0, T ]× E

un(t, x) : = n

∫ ∞
0

e−nτ (S(T )
τ f)(t, x)dτ

=

∫ ∞
0

e−τ (S
(T )
τ/nf)(t, x)dτ

→ (S
(T )
0 f)(t, x) = f(t, x),

by Proposition 2.2. Now the assertion follows by Remark 2.7.

8



3 Fokker–Planck equations

A probability kernel on [0, T ]× E is a mapping

[0, T ]→P(E), t 7→ µt

such that for any I ∈ B(E) the mapping

[0, T ]→ R, t 7→ µt(I)

is measurable.
We shall identify a probability kernel (µt)t∈[0,T ] with the Borel measure

on [0, T ]× E defined by

µ(A) =

∫
[0,T ]×E

1lA(t, x)µt(dx)dt, A ∈ B([0, T ]× E).

Definition 3.1. We say that a probability kernel µ is a solution of the
Fokker–Planck equation if∫

[0,T ]×E
(K (T )u)(t, x)µt(dx)dt = −

∫
E

u(0, x)µ0(dx), ∀ u ∈ D(K (T )).

(3.1)

Remark 3.2. Let u ∈ D(K (T )) and τ ≥ 0. Then by (3.1), replacing u by

S
(T )
τ u we deduce∫

[0,T ]×E
(K (T )S(T )

τ u)(t, x)µt(dx)dt = −
∫
E

(S(T )
τ u)(0, x)µ0(dx).

By Proposition 2.4 integrating with respect to τ , yields∫
[0,T ]×E

(S(T )
τ u)(t, x)µt(dx)dt−

∫
[0,T ]×E

u(t, x)µt(dx)dt

= −
∫ τ

0

dt

∫
E

(P0,tu(t, ·))(x)µ0(dx).

(3.2)

Therefore, if µ ∈P([0, T ]×E) is a solution to the Fokker–Planck equation
(3.1), then (3.2) holds for any u ∈ Cb,T ([0, T ] × E), because D(K (T )) is
π-dense in Cb,T ([0, T ] × E). Conversely, it is easy to see that if (3.2) holds
for any u ∈ Cb,T ([0, T ] × E), then (3.1) is fulfilled. So, (3.1) and (3.2) are
equivalent.
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There are in general several solutions to (3.1); to select one of them one
has to specify the initial value µ0.

Theorem 3.3. For any ζ ∈P(E) there exists a unique solution µ to (3.1)
such that µ0 = ζ.

Proof. Existence. Let ζ ∈P(E) and for any t ∈ (0, T ] set µt =: P ∗0,tζ (where
P ∗0,t is the dual operator of P0,t in the dual space C∗b (E) of Cb(E)), that is∫

H

ϕ(x)µt(dx) =

∫
E

(P0,tϕ)(x)ζ(dx), ∀ ϕ ∈ Cb(E).

We claim that µ(dt, dx) := µt(dx)dt is a solution to (3.1). For this it is
enough to check (3.2). We have in fact∫ T−τ

0

dt

∫
E

(Pt,t+τu(t+ τ, ·))(x)µt(dx)

=

∫ T−τ

0

dt

∫
E

(P0,tPt,t+τu(t+ τ, ·))(x)ζ(dx)

=

∫ T−τ

0

dt

∫
E

(P0,t+τu(t+ τ, ·))(x)ζ(dx)

=

∫ T

τ

dt

∫
E

(P0,tu(t, ·))(x)ζ(dx)

and (3.2) follows.

Uniqueness. Assume that µ1 and µ2 are two solutions of (3.1) such that
µ1
0 = µ2

0 = ζ. We claim that µ1 = µ2. In fact from (3.1) it follows that∫
[0,T ]×E

(K (T )u)(t, x)(µ1
t (dx)− µ2

t (dx))dt = 0,

for all u ∈ D(K (T )). On the other hand, the range of K (T ) is Cb,T ([0, T ]×E)
because 0 is in the resolvent set of K (T ). So, µ1 = µ2

Remark 3.4. For time homogeneous Markov semigroups Theorem 3.3 has
been proved in [Ma08].

Proposition 3.5. Let ζ ∈ P(E), µt =: P ∗0,tζ for any t ∈ (0, T ] and

µ(dt, dx) = µt(dx)dt. Then S
(T )
τ , τ > 0, is uniquely extendable to a strongly

continuous semigroup of contractions S
(T,µ)
τ , τ > 0, in L1(H× [0, T ],µ). By

K (T,µ) we shall denote its infinitesimal generator.
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Proof. We claim that∫
[0,T ]×E

|S(T,µ)
τ u|dµ ≤

∫
[0,T ]×E

|u|dµ, ∀ u ∈ Cb,T ([0, T ]× E). (3.3)

It is enough to show (3.3) for any u ≥ 0. In this case (3.3) follows from
(3.2).

Remark 3.6. It is clear that D(K (T )) is a core for K (T,µ).

3.1 Comparison with other notions of Fokker–Planck
equations

Let E be a separable Hilbert space with inner product 〈·, ·〉. In the liter-
ature one is generally concerned with a different concept of Fokker–Planck
equations. Namely, one considers a concrete differential operator

N u(t, x) = Dtu(t, x) +
1

2
[BB∗D2

xu(t, x)] + 〈Ax+ F (t, x), Dxu(t, x)〉,

defined in some space D(N ) of smooth functions. Then, given a suitable
ζ0 ∈P(E), one looks for a probability kernel µt(dx)dt such that∫

[0,T ]×E
N u(t, x)µt(dx)dt = −

∫
E

u(0, x)µ(0)(dx), u ∈ D(N ). (3.4)

To explain the difference, let us go back to Example 1.2 assuming again that
problem (1.3) is well posed. In this case the well posedness of the problem
is equivalent to saying that D(N ) is a core for K (T,µ) for every solution of
(3.4).

It is important to consider the case when it is not known that the SDE cor-
responding to N is well posed. In this case solving the Fokker–Planck equa-
tion will produce a kind of weak solution. See [DL07], [BDR08], [BDR09],
[BDR10], [BDR11].

4 Asymptotic behavior

We are here concerned with a Markovian transition probability π = πs,t(x, ·)
on E, with −∞ < s ≤ t < +∞ satisfying (i)–(vi) from Section 1 with
R replacing the interval [0, T ]. In this case we can define a semigroup in
Cb(R× E) setting

(Sτu)(t, x) = (Pt,t+τu)(t+ τ, ·))(x), u ∈ Cb(R× E). (4.1)
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It is easy to prove several properties for Sτ similar to those seen for S
(T )
τ .

In particular, we can define the infinitesimal generator K of Sτ through its
resolvent. We prove again that K is m-dissipative, however, we can only
say that its resolvent set contains [0,+∞).

Following [DR06], [DR07], we say that a family νt, t ∈ R, is an evolution
system of measures if∫

E

Ps,tϕdνs =

∫
E

ϕdνt, ∀ ϕ ∈ Cb(E), −∞ < s ≤ t < +∞. (4.2)

(4.2) is equivalent to

P ∗s,tνs = νt, −∞ < s ≤ t < +∞. (4.3)

Note that from property (v) it follows from (4.3) that νt, t ∈ R, is continuous
in the sense that

t 7→
∫
E

ϕdνt

is continuous on R for all ϕ ∈ Cb(E) (or, equivalently, for all ϕ ∈ UCb(E)).
Evolution systems of measures are naturally connected to invariant mea-

sures of Sτ , τ ≥ 0, as the following proposition shows.

Proposition 4.1. Let νt, t ∈ R, be continuous. Then νt, t ∈ R, is an
evolution system of measures if and only if we have∫

R×E
Sτu dν =

∫
R×E

u dν, ∀ u ∈ Cb(R×E)∩L1(R×E;ν), τ > 0, (4.4)

where ν(dt, dx) = νt(dx)dt. (1)

Proof. Assume that νt, t ∈ R, is an evolution system of measures. It is
enough to show (4.4) when

u(t, x) = α(t)ϕ(x), t ∈ R, x ∈ E,

where α ∈ Cb(R) ∩ L1(R) and ϕ ∈ Cb(E). In this case we have, taking into

(1)ν is not a probability measure on R× E.
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account that νt = P ∗s,tνs∫
R×E

Sτu dν =

∫
R
α(t+ τ)

∫
E

Pt,t+τϕ(x)νt(dx)dt

=

∫
R
α(t+ τ)

∫
E

Ps,tPt,t+τϕ(x)νs(dx)dt

=

∫
R
α(t+ τ)

∫
E

Ps,t+τϕ(x)νs(dx)dt

=

∫
R
α(t)

∫
E

Ps,tϕ(x)νs(dx)dt

=

∫
R

∫
E

α(t)ϕ(x)νt(dx)dt,

and (4.4) follows.

Conversely, assume that∫
R×E

Sτu dν =

∫
R
α(t+ τ)

∫
E

Pt,t+τϕ(x)νt(dx)dt =

∫
R×E

u dν,

for all τ > 0, where u(t, x) = α(t)ϕ(x) and α and ϕ are as before. Then we
have ∫

R
α(t)

∫
E

ϕ(x)νt(dx)dt =

∫
R
α(t+ τ)

∫
E

Pt,t+τϕ(x)νt(dx)dt

=

∫
R
α(t+ τ)

∫
E

ϕ(x)P ∗t,t+τνt(dx)dt

=

∫
R
α(s)

∫
E

ϕ(x)P ∗s−τ,sνs−τ (dx)ds.

By the arbitrariness of α it follows that∫
E

ϕ(x)νt(dx) =

∫
E

Pt−τ,tϕ(x)νt−τ (dx), for dt-a.s. t ∈ R.

To complete the proof we have to show that this holds for every t ∈ R. Since
the left hand side is continuous in t by assumption, it remains to show that
for all τ ≥ 0

R 3 s 7→
∫
E

Ps,s+τϕdνs

is continuous. But this is an immediate consequence of the continuity of
νs, s ∈ R, and property (vi) of π.
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4.1 Asymptotic behavior

Concerning the asymptotic behavior of Ps,t both for s→ −∞ and t→ +∞
there are interesting situations where there is a unique evolution system of
measures νt, t ∈ R, which, in addition, enjoys the following properties

lim
s→−∞

Ps,tϕ(x) =

∫
E

ϕdνt, ∀ ϕ ∈ Cb(E), t ∈ R, (4.5)

and

lim
t→+∞

[
Ps,tϕ(x)−

∫
E

ϕdνt

]
= 0, ∀ ϕ ∈ Cb(E), s ∈ R. (4.6)

Equations (4.5) and (4.6) were first proved in [DR06] for reaction-diffusion
equations, then in [DL07] and [GeLu09] for Ornstein–Uhlenbeck semigroups
with time dependent coefficients and in [DD10] for the 2D Navier–Stokes
equation, see also [LLZ10].

(4.6) gives also some information about the Fokker–Planck equation (3.1).
Namely if µ(t, dx) = µt(dx)dt is the solution of (3.1) with µ0 = ζ, we have

lim
t→+∞

[∫
E

ϕdµt −
∫
E

ϕdνt

]
= 0, ∀ ϕ ∈ Cb(E). (4.7)

This shows that asymptotically for t→∞, µt is close to νt independently of
µ0.

A Appendix

Lemma A.1. We have

C([0, T ];UCb(E)) = UCb([0, T ]× E),

with the same norms.

Proof. “⊃” Let u ∈ UCb([0, T ]×E) and let d denote the metric in E. Then
for any ε > 0 there exists δ > 0 such that

|t− s|+ d(x, y) < δ ⇒ |u(t, x)− u(s, y)| < ε

⇒ |u(t, x)− u(s, x)| < ε

⇒ ‖u(t, ·)− u(s, ·)‖0 < ε

⇒ u ∈ C([0, T ];UCb(E)).
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“⊂” Let u ∈ C([0, T ];UCb(E)). Then for any ε > 0 there exists δ > 0 such
that

|t− s| < δ ⇒ ‖u(t, ·)− u(s, ·)‖0 < ε.

Furthermore, {u(s, ·) : s ∈ [0, T ]} as a continuous image of the compact set
[0, T ] is compact in UCb(E). Hence for any ε > 0 there exists s1, ..., sn ∈ [0, T ]
such that

{u(s, ·) : s ∈ [0, T ]} ⊂
n⋃
i=1

{v ∈ UCb(E) : ‖v − u(si, ·)‖0 < ε} .

Claim. {u(s, ·) : s ∈ [0, T ]} is uniformly equicontinuous.

Proof of the claim (see proof of Ascoli–Arzelà).
Let ε > 0 and choose δ > 0 such that

d(x, y) < δ ⇒ |u(si, x)− u(si, y)| < ε

3
, i = 1, ..., n.

Then for any s ∈ [0, T ] there exists i ∈ {1, ..., n} such that

‖u(s, ·)− u(si, ·)‖0 <
ε

3
.

Hence we have

|u(s, x)− u(s, y)| ≤ |u(s, x)− u(si, x)|

+ |u(si, x)− u(si, y)|

+ |u(si, y)− u(s, y)| < ε,

provided d(x, y) < δ, which proves the claim.
Now let ε > 0. Then there exists δ > 0 such that

|t− s| < δ ⇒ ‖u(t, ·)− u(s, ·)‖0 <
ε

2
, i = 1, ..., n

and (by Claim)

d(x, y) < δ ⇒ |u(s, x)− u(s, y)| < ε

2
∀ s ∈ [0, T ].

Therefore

|t− s|+ d(x, y) < δ ⇒ |u(t, x)− u(s, y)|

≤ |u(t, x)− u(s, x)|

+ |u(s, x)− u(s, y)| ≤ ε.
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