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Abstract

Unique existence of solutions to porous media equations driven by continuous linear
multiplicative space-time rough signals is proven for initial data in L

1(O) on bounded
domains O. The generation of a continuous, order-preserving random dynamical sys-
tem (RDS) on L

1(O) and the existence of a random attractor for stochastic porous
media equations perturbed by linear multiplicative noise in space and time is obtained.
The random attractor is shown to be compact and attracting in L

∞(O) norm. Uniform
L
∞ bounds and uniform space-time continuity of the solutions is shown. General noise

including fractional Brownian motion for all Hurst parameters is treated. A pathwise
Wong-Zakai result for driving noise given by a continuous semimartingale is obtained.
For fast diffusion equations driven by continuous linear multiplicative space-time rough
signals existence of solutions is proven for initial data in L

m+1(O).
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0 Introduction

The qualitative study of stochastic dynamics induced by stochastic partial differential equa-
tions (SPDE) especially in the case of non-Markovian noise is based on the theory of RDS
(cf. e.g. [1]). Since the foundational work [32, 11, 10] the long-time behaviour of several
quasilinear SPDE has been investigated by means of the existence of random attractors.
However, all these results are restricted to simple models of the noise (e.g. additive or real
multiplicative), not including the important case of linear multiplicative space-time noise.
This is mainly due to the difficulty to even define an associated RDS for more general SPDE.
The generation of an RDS is usually shown by use of a transformation of the SPDE into
a random PDE. Depending on the structure of the noise monotonicity and coercivity prop-
erties of the drift are preserved under this transformation. For example, this is the case
for additive, real multiplicative and first order linear multiplicative noise [15] with suitable
assumptions on the diffusion coefficients. For linear multiplicative noise, however, this is not
the case, thus making the analysis of the random PDE much harder. The generation of an
RDS and the existence of random attractors for stochastic porous media equations (SPME)
with additive noise has been obtained in [8, 18]. A first approach to tackle the generation of
an RDS for SPME with linear multiplicative space-time noise, i.e. for equations of the form

(0.0) dXt = ∆
(

|Xt|msgn(Xt)
)

dt+

N
∑

k=1

µkekXtdβ
(k)
t , 1 < m < ∞

has been given in [7] by proving the unique existence of pathwise solutions to a correspond-
ing random PDE for essentially bounded initial conditions x ∈ L∞(O). The existence and
uniqueness up to indistinguishability of probabilistically strong solutions to (0.0) even includ-
ing 0 < m < 1 and all initial conditions x ∈ (H1

0(O))
∗
has been obtained in [30]. However,

this does not yield the existence of an RDS. The pathwise solutions to the transformed equa-
tion constructed in [7] yield a stochastic flow ϕ(t, ω)x satisfying the perfect cocycle property
on L∞(O). However, neither continuity of x 7→ ϕ(t, ω)x nor continuity of t 7→ ϕ(t, ω)x
has been obtained. These properties of RDS are crucial to obtain the existence of random
attractors. Due to the strong norm on the state space L∞(O) especially the continuity in
the initial condition is not clear. In this paper we prove the generation of an RDS corre-
sponding to SPME driven by multiplicative space-time rough signals for all initial conditions
X0 ∈ L1(O), i.e. to equations of the form

dXt = ∆(|Xt|msgn(Xt)) dt+

N
∑

k=1

fkXt ◦ dz(k)t , on OT

X(0) = X0, on O
(0.1)

with Dirichlet boundary conditions, rough driving signals z(k) ∈ C([0, T ];R) and with fk ∈
C∞(Ō). We assume the number of signals N to be finite and high regularity for fk for
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simplicity only. In fact, most of the proofs only require
∑∞

k=1 fk(ξ)z
k
t ∈ C([0, T ];C2(Ō)).

The stochastic Stratonovich integral occurring in (0.1) is informal, the rigorous justification
of this notation is part of our results. The resulting stochastic flow is proven to be an
RDS ϕ on L1(O) which is continuous in the initial condition and in time. Generalizing the
notion of quasi-continuity of RDS we show that ϕ is quasi-weakly-continuous on Lp(O) for
all p ∈ [1,∞) and quasi-weakly∗-continuous on L∞(O). Moreover, we prove the existence of
an absorbing random set F ⊆ X which even is bounded in L∞(O), as well as asymptotic
compactness of ϕ on each Lp(O), p ∈ [1,∞] (requiring a uniform convexity condition for O
if p = ∞). Generalizing an existence result for random attractors of quasi-continuous RDS
we deduce the existence of a random attractor A for ϕ (as an RDS on L1(O)), which is
compact and attracting in each Lp(O) with p ∈ [1,∞].

We obtain new spatial and temporal regularity properties for solutions to (0.1) analogous
to those proved for deterministic porous media type equations by De Giorgi, Nash, Moser
type iteration techniques in [14]. More precisely, we prove that the solution X is locally
equicontinuous on OT (i.e. continuous on each compact set K ⊆ (0, T ]×O with a modulus
of continuity independent of the initial condition). Under appropriate assumptions on the
boundary ∂O (on the initial data X0 resp.), also equicontinuity up to the boundary (continu-
ity up to initial time t = 0 resp.) is obtained. Applied to driving signals given by independent
Brownian motions this implies a new regularity result for the variational stochastic solution
X corresponding to (0.1), namely P-a.s. local equicontinuity on OT . This complements the
regularity results given in [17], where it is shown that Φ(X) ∈ L2([0, T ] × Ω;H1

0 (O)) and
X ∈ L∞([0, T ];Lm+1(Ω×O)) if the initial condition is regular enough.

Recently, increasing attention has been paid to PDE driven by rough signals (RPDE). Start-
ing from the theory of rough paths [27, 28, 16] several distinct approaches to RPDE have
been suggested (cf. [25, 26, 19, 20, 9] and references therein). We construct solutions to
porous media equations (PME) driven by rough paths, assuming only continuity of the driv-
ing signal which again acts linear multiplicatively in space and time. As usual in the theory
of PDE driven by rough paths the construction proceeds by a Wong-Zakai approximation of
the driving noise, proving the existence of a limit solution independent of the chosen approxi-
mating sequence. If the driving signal is given by a continuous semimartingale we prove that
this limit solution solves the corresponding SPDE and thus we prove a pathwise Wong-Zakai
result for SPME driven by linear multiplicative space-time semimartingale noise.

The long-time behaviour of SPDE can be analyzed in terms of the associated Markovian
semigroup and its ergodicity or in terms of the associated RDS and its random attractor. As
soon as the driving noise lacks the Markov property the SPDE does not induce a Markovian
semigroup anymore. In contrast, analyzing the associated RDS merely requires the noise to
have stationary increments and some path regularity (cf. e.g. [18]). In particular, RDS can
be used to study long-time behaviour of SPDE driven by fractional Brownian Motion (fBm).
The characteristic long-range dependence of fBm makes an investigation of the induced
stochastic dynamics especially intriguing. In this paper we only assume that the noise has
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stationary increments and continuous paths, thus including fBm for all Hurst parameters.

Our methods to prove the existence of solutions to (0.1) for initial conditions X0 ∈ Lm+1(O)
also apply in the case of fast diffusions (i.e. for 0 < m < 1) driven by continuous signals. In
particular, this generalizes results given in [7] since no restrictions on the dimension d nor
on the exponent 0 < m < 1 are assumed. In order not to overload the presentation, the case
of fast diffusion equations is treated as a remark (Remark 1.5) only.

SPME and stochastic fast diffusion equations (SFDE) have been intensively investigated
in recent years (cf. e.g. [12, 21, 13, 30, 31, 2, 3, 4] and references therein). The long-
time behaviour of SPME with Brownian additive noise in terms of the existence of random
attractors has first been treated in [8] which then has been partially extended to more
generally distributed additive noise in [18]. The SFDE (0 < m < 1) with linear multiplicative
space-time noise has been first solved in [30]. Subsequently, extinction in finite time with
positive probability has been shown in [5] and in a more singular case which is used as model
to study self-organized criticality in [6].

Survey of the construction of the RDS and of the proofs of its properties :
Let 1 < m < ∞ and Φ ∈ C(R) be given by

Φ(r) := |r|msgn(r).

First part : In the first part we construct “pathwise“ solutions to the rough partial differential
equation (0.1). Step by step we will allow rougher signals z(k) and initial conditions X0 at
the expense of weaker notions of solutions. The construction of solutions to (0.1) for signals
of bounded variation proceeds by first transforming the equation into a PDE and then
constructing solutions to this transformed equation. Let

(0.2) µt(ξ) := −
N
∑

k=1

fk(ξ)z
(k)
t .

Defining Y = eµX we obtain the transformed equation (which was first studied in [6, 7])

∂tYt = eµt∆Φ(e−µtYt), on OT

Y (0) = Y0, on O,
(0.3)

with Dirichlet boundary conditions. This transformation is rigorous for driving signals of
bounded variation (Theorem 1.2) as well as for signals given by paths of a continuous semi-
martingale (Theorem 1.18). Next, we prove uniqueness of essentially bounded solutions to
(0.3) (Theorem 1.3).
For continuous driving signals we construct weak solutions to (0.3) as limits of solutions to a
non-degenerate, smooth approximation, i.e. we approximate Φ by Φ(δ) with 0 < C(δ) ≤ Φ̇(δ)

and the signal z by z(δ) ∈ C∞([0, T ];RN). Solutions to these non-degenerate approximations
are obtained via classical existence results for quasilinear equations. Passing to the limit
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δ → 0 in order to obtain weak solutions to (0.3) requires a-priori L∞(O) bounds for the
approximating solutions Y (δ). Such bounds are obtained by construction of bounded super-
solutions to (0.3). Thereby, unique existence of weak solutions to (0.3) satisfying analogous
L∞(O) bounds is obtained for essentially bounded initial conditions (Theorem 1.4). In case
of signals of bounded variation this yields weak solutions to (0.1) by transformation.
Next, we approximate general continuous driving signals z by continuous signals of bounded
variation z(ε) and prove that the corresponding weak solutions X(ε) converge to a limit X
independent of the chosen approximating sequence z(ε). We call the limit X a rough weak
solution to (0.1) and observe X = e−µY , where Y denotes the weak solution to (0.3) for the
continuous driving signal z (Theorem 1.7).
In order to construct solutions for general initial data X0 ∈ L1(O) we prove Lipschitz conti-
nuity of X in the initial condition with respect to the L1(O) norm. For X0 ∈ L1(O) solutions
are then obtained as limit solutions by approximation of X0 by essentially bounded initial
conditions (Theorem 1.9). Using an L1 − L∞ regularizing property of the flow, these limit
solutions are characterized as unique generalized weak solutions to (0.3) (Theorem 1.17).
This regularization property also builds the foundation of the proof of bounded absorption.
The key idea is to combine an interval splitting technique as in [7, proof of Lemma 3.3] with
the known deterministic case, where it is known that there is a function of the form

U(t) := At−
1

m−1 (R2 − |ξ|2) 1
m

that is a uniform (i.e. independent of the initial condition) supersolution to the PME. Com-
bining these ideas we construct a new uniform supersolution for (0.3). The resulting con-
struction is quite different from the one given in [7].
Based on continuity results presented in [14] we then prove that the limit solutions are uni-
formly continuous on each compact set K ⊆ (0, T ] × O (Theorem 1.12). This finishes the
treatment of the pathwise case.

Second part: In the second part we consider SPME driven by signals given by stochastic
processes:

dXt = ∆Φ(Xt)dt+
N
∑

k=1

fkXt ◦ dz(k)t , on OT

X(0) = X0, on O.

(0.4)

with Dirichlet boundary conditions, where z is an R
N valued stochastic process with sta-

tionary increments and continuous paths. Defining

ϕ(t, ω)x = X(t, 0;ω)x

yields an RDS on L1(O) satisfying a comparison principle (Theorem 1.31), where X(t, 0;ω)x
is the solution obtained in the first part driven by the signal z = z(ω) . The uniform L∞(O)
bound and the regularity results obtained for the rough PDE (0.1) continue to hold for ϕ,
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which induces asymptotic compactness of ϕ in each Lp(O) and thereby the existence of a
random attractor (Theorem 1.32).

In Section 1 we introduce the detailed setup and present the main results. Proofs of the
pathwise results are given in Section 2 while the ones for the stochastic case and the RDS ϕ
are given in Section 3.

As usual in probability theory we denote the time-dependency of functions by a subscript
Xt rather than by X(t) in order to keep the equations at a bearable length. We would like
to apologize to the readers with a more analytical background for this maybe unfamiliar
notation.

1 Setup and Main Results

Let O ⊆ R
d be a smooth, bounded domain, T > 0 and OT := [0, T ] × O. By POT we

denote the parabolic boundary [0, T ]× ∂O ∪ {0} × O. Let C(O) be the set of continuous
functions on O, Cm,n(ŌT ) ⊆ C(ŌT ) be the set of all continuous functions on OT having m-th
continuous derivatives in time and n-th continuous derivative in space. By C1−var([0, T ];H)
we denote the set of all continuous functions of bounded variation and by Cw([0, T ];H) the
weakly continuous functions taking values in H . As usual, Wm,p(O) denotes the Sobolev
space of order m in Lp(O), Wm,p

0 (O) the subspace of functions vanishing on ∂O. We denote
by H1

0 (O) the first order Sobolev space with zero boundary in L2(O) and its dual by H . For
a subset K of a Banach space X we define ‖K‖X := supk∈K ‖k‖X .

1.1 Porous Medium Equation driven by rough signals

Let us first define what we mean by a solution to (0.1) and (0.3). Setting B(x)(z) :=
∑N

k=1 fkxz
(k) for x ∈ L1(O) and z ∈ R

N we can rewrite

B(Xt) ◦ dzt =
N
∑

k=1

fkXt ◦ dz(k)t .

As outlined in the introduction, we will introduce several notions of solutions to (0.1) and
(0.3), corresponding to the intermediate steps in the construction of the solution for initial
values in L1(O) and continuous driving signals. The final result will be the unique existence
of a function X ∈ L1(OT ) such that the transformation Y = eµX is a generalized weak
solution of (0.3) (cf. Definition 1.15 below) as well as its continuity properties (cf. Theorem
1.12 below). Defining X to be a solution to (0.1) is further justified by the construction since
X is obtained as the unique limit of solutions to approximating equations, independent of
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the chosen approximating sequence. In order to underline this fact, to explain the structure
of the construction and to point out the higher regularity of solutions for more regular initial
data and driving signals, we explicitly formulate the intermediate existence and uniqueness
results. We will use the usual notation for (very) weak solutions as in [14].

Definition 1.1 (weak & very weak solutions). i. Let Y0 ∈ L1(O). A function Y ∈ L1(OT )
with Φ(e−µY ) ∈ L1(OT ) is called a very weak solution to (0.3) if

(1.5) −
∫

OT

Yr∂rη dξdr−
∫

O

Y0η0 dξ =

∫

OT

Φ(e−µrYr)∆(eµrηr) dξdr,

for all η ∈ C1,2(ŌT ) with η = 0 on {T} × O and on [0, T ] × ∂O. If in addition
Φ(e−µY ) ∈ L1([0, T ];W 1,1

0 (O)) then Y is said to be a weak solution to (0.3).

ii. Let z ∈ C1−var([0, T ];RN) and X0 ∈ L1(O). A function X ∈ L1(OT ) such that
t 7→

(∫

O
B(Xt)ηt dξ

)

is continuous and Φ(X) ∈ L1(OT ) is called a very weak solution
to (0.1) if

−
∫

OT

Xr∂rη dξdr−
∫

O

X0η0 dξ =

∫

OT

Φ(Xr)∆ηr dξdr +

∫ T

0

(
∫

O

B(Xr)ηr dξ

)

dzr,

for all η ∈ C1,2(ŌT ) with η = 0 on {T} × O and on [0, T ] × ∂O. If in addition
Φ(X) ∈ L1([0, T ];W 1,1

0 (O)) then X is said to be a weak solution to (0.1).

A function Y ∈ L1(OT ) ∩ C([0, T ];H) with Φ(e−µY ) ∈ L1([0, T ];H1
0(O)) is a weak solution

to (0.3) iff
dYt

dt
= eµt∆Φ(e−µtYt),

for a.e. t ∈ [0, T ] as an equation in H . Similarly, X ∈ L1(OT ) ∩ C([0, T ];H) with Φ(X) ∈
L1([0, T ];H1

0(O)) is a weak solution to (0.1) iff

Xt = X0 +

∫ t

0

∆Φ(Xr)dr +

∫ t

0

B(Xr)dzr,

for all t ∈ [0, T ] as an equation in H . If we replace H by some weaker space H−k ⊇ L1(O)
then similar equivalences hold for very weak solutions in Cw([0, T ];L1(O)).

For very weak solutions we will prove that the equations (0.1) and (0.3) are indeed in one
to one correspondence under the transformation Y = eµX .

Theorem 1.2. Let X0 ∈ L1(O), z ∈ C1−var([0, T ];RN) and X ∈ L1(OT ) such that t 7→
(∫

O
B(Xt)ηt dξ

)

is continuous for all η ∈ C0,2(ŌT ) with η = 0 on {T}×O and on [0, T ]×∂O.
Then X is a very weak solution to (0.1) iff Y := eµX is a very weak solution to (0.3).
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As an immediate consequence we obtain that X is a weak solution to (0.1) iff Y := eµX is
a weak solution to (0.3). We will prove the following uniqueness of very weak solutions:

Theorem 1.3. Essentially bounded very weak solutions to (0.1) and (0.3) are unique.

Note that in the case of very weak solutions to (0.1) we implicitly assume z ∈ C1−var([0, T ];RN).
As outlined in the introduction by a non-degenerate approximation of (0.3) we obtain:

Theorem 1.4. i. Let Y0 ∈ L∞(O) and z ∈ C([0, T ];RN). Then there exists a unique
weak solution Y ∈ C([0, T ];H)∩L∞(OT ) to (0.3) satisfying Φ(e−µY ) ∈ L2([0, T ];H1

0(O)).
There is a function U : [0, T ]×O → R̄ (taking the value ∞ at t = 0) that is piecewise
smooth on (0, T ] such that for all Y0 ∈ L∞(O)

Yt ≤ Ut, a.e. in O, ∀t ∈ [0, T ].

(U is more explicitly defined in the proof below).

ii. Let z ∈ C1−var([0, T ];RN) and X0 ∈ L∞(O). Then there exists a unique weak solution
X ∈ C([0, T ];H) ∩ L∞(OT ) to (0.1) satisfying Φ(X) ∈ L2([0, T ];H1

0(O)) and Xt ≤ Ut

a.e. in O, ∀t ∈ [0, T ] with a function U as in (i).

The existence of such an upper bound Ut that is independent of the initial condition is due
to the nonlinearity of the porous medium operator and is well known in the deterministic

case (cf. [34] and references therein) with Ut being of the form Ut = At−
1

m−1 (R2 − |ξ|2) 1
m .

Remark 1.5. For the case of fast diffusion equations, i.e. for 0 < m < 1 we obtain:

i. For Y0 ∈ Lm+1(O) and z ∈ C([0, T ];RN) there exists a weak solution Y ∈ C([0, T ];H)
to (0.3) satisfying Φ(e−µY ) ∈ L2([0, T ];H1

0(O)). If Y0 ∈ L∞(O) then

Yt ≤ Kt, a.e. in O, ∀t ∈ [0, T ],

with K = K(‖Y0‖L∞(O)) : [0, T ]×O → R+ being a piecewise smooth function on [0, T ].
The map t 7→ Yt is weakly continuous in each Lp(O), p ∈ [1,∞).

ii. Let z ∈ C1−var([0, T ];RN) and X0 ∈ Lm+1(O). Then there exists a weak solution
X ∈ C([0, T ];H) to (0.1) satisfying Φ(X) ∈ L2([0, T ];H1

0(O)). If X0 ∈ L∞(O) then
Xt ≤ Kt a.e. in O, ∀t ∈ [0, T ] with a function K as in (i). The map t 7→ Xt is weakly
continuous in each Lp(O), p ∈ [1,∞).

No uniqueness is obtained for the fast diffusion case.

So far we can solve (0.3) for driving signals being merely continuous while for (0.1) we require
continuous signals of bounded variation. Since we aim to include rough paths (as they occur
for example as sample paths of fractional Brownian motion) we need to allow rougher signals
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z ∈ C([0, T ];RN) for (0.1) as well. Similar as in the theory of rough paths such solutions
will be constructed as limits of solutions to smoothed signals z(ε) ∈ C1−var([0, T ];RN) with
zε → z in C([0, T ];RN). We prove that the solutions X(ε) to (0.1) driven by these smoothed
signals converge to X := e−µY , i.e. to a limit not depending on the chosen approximating
sequence. In other words, X is the limit obtained by any Wong-Zakai approximation of
(0.1).

Definition 1.6. Let z ∈ C([0, T ];RN). We call X ∈ C([0, T ];H) a rough weak solution to
(0.1) if X(0) = X0 and for all approximations z(ε) ∈ C1−var([0, T ];RN) of the driving signal
z with z(ε) → z in C([0, T ];RN) and corresponding weak solutions X(ε) to (0.1) driven by
z(ε) we have

X
(ε)
t → Xt, in H, ∀t ∈ [0, T ].(1.6)

Theorem 1.7. Let X0 ∈ L∞(O) and z ∈ C([0, T ];RN). Then there exists a unique rough
weak solution X to (0.1) with Φ(X) ∈ L2([0, T ];H1

0(O)) given by X = e−µY , where Y is the
corresponding weak solution to (0.3). X satisfies Xt ≤ Ut a.e. in O for all t ∈ [0, T ], with U
as in Theorem 1.4.

Since the weak solutions to (0.1) obtained in Theorem 1.4 are also given by X = e−µY , the
notions of rough weak solutions and weak solutions to (0.1) coincide for continuous driving
signals of bounded variation and essentially bounded initial conditions.

Definition 1.8. Let X0 ∈ L1(O) and z ∈ C([0, T ];RN). A function X ∈ Cw([0, T ];L1(O))

is said to be a limit solution to (0.1) if X(0) = X0 and for all approximations X
(δ)
0 ∈ L∞(O)

with X
(δ)
0 → X0 in L1(O) and corresponding rough weak solutions X(δ) to (0.1) we have

X
(δ)
t → Xt in L1(O) uniformly in time.

These limit solutions play an important role for allowing initial conditions in L1(O). In
Lemma 2.6 below we will establish uniform L1(O) continuity in the initial condition for
rough weak solutions. This will allow to construct limit solutions for initial values in L1(O)
by approximation in the initial condition.

Theorem 1.9. Let z ∈ C([0, T ];RN). For each X0 ∈ L1(O) there is a unique limit solution

X satisfying Φ(X) ∈ L1(OT ). For X
(i)
0 ∈ L1(O), i = 1, 2 the corresponding limit solutions

satisfy

sup
t∈[0,T ]

‖(X(1)
t −X

(2)
t )+‖L1(O) + ‖(Φ(X(1))− Φ(X(2)))+‖L1(OT ) ≤ C‖(X(1)

0 −X
(2)
0 )+‖L1(O),

and

sup
t∈[0,T ]

‖X(1)
t −X

(2)
t ‖L1(O) + ‖Φ(X(1))− Φ(X(2))‖L1(OT ) ≤ C‖X(1)

0 −X
(2)
0 ‖L1(O).

We further have Xt ≤ Ut a.e. in O for all t ∈ [0, T ], where U is as in Theorem 1.4.
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As a special case we obtain the following comparison principle

Corollary 1.10. Let X
(1)
0 , X

(2)
0 ∈ L1(O) with X

(1)
0 ≤ X

(2)
0 a.e. in O. Then

X
(1)
t ≤ X

(2)
t ,

for all t ∈ [0, T ], a.e. in O. In particular, if 0 ≤ X0 then 0 ≤ X.

Let X be a limit solution. By Theorem 1.9 there are rough weak solutions with X(δ) → X
in L∞([0, T ];L1(O)) and Φ(X(δ)) → Φ(X) in L1(OT ). Hence, there are weak solutions
Y (δ) = eµX(δ) converging in L∞([0, T ];L1(O)) to Y := eµX and Φ(e−µY (δ)) → Φ(e−µY ) in
L1(OT ). Passing to the limit δ → 0 in (1.5) yields

Remark 1.11. Let X0 ∈ L1(O) and X be the corresponding limit solution. Then Y := eµX
is a very weak solution of (0.3).

The limit solution X turns out to be in fact more regular. The proof proceeds by choosing
the approximations used in the construction of weak solutions in a way that allows to apply
the regularity results presented in [14]. We say that a quantity depends only on the data if
it is a function of d, m, T .

Theorem 1.12. Let z ∈ C([0, T ];RN), X0 ∈ L1(O) and X be the corresponding limit
solution. Then

i. X is uniformly continuous on every compact set K ⊆ (0, T ] × O, with modulus of
continuity depending only on the data and dist(K, ∂OT ).

ii. If X0 ∈ L∞(O) is continuous on a compact set K ⊆ O, then X is uniformly continuous
on [0, T ] × K ′ for every compact set K ′ ⊆ K̊, with modulus of continuity depending
only on the data, ‖X0‖L∞(O), dist(K, ∂O), dist(K ′, ∂K) and the modulus of continuity
of X0 over K.

iii. Assume:

(O1) There exist θ∗ > 0, R0 > 0 such that ∀x0 ∈ ∂O and every R ≤ R0

|O ∩ BR(x0)| < (1− θ∗)|BR(x0)|.

Then for every τ > 0, X is uniformly continuous on [τ, T ] × Ō with modulus of
continuity depending only on the data, θ∗ and τ .

By dominated convergence we obtain:

Corollary 1.13. Let z ∈ C([0, T ];RN).

i. If X0 ∈ L1(O) then X ∈ C([0, T ];L1(O)) ∩ C((0, T ];Lp(O)) for every p ∈ [1,∞).
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ii. If X0 ∈ L∞(O) then X ∈ C([0, T ];Lp(O)) for every p ∈ [1,∞).

The continuity obtained in Theorem 1.12 together with the L∞-bounds from Theorem 1.4
imply that the convergence of the various approximating solutions used to construct limit
solutions driven by rough signals in fact holds locally uniformly. For example we obtain

Corollary 1.14. Let z ∈ C([0, T ];RN), X0 ∈ L1(O). Then the convergence in (1.6) holds
uniformly on compact sets K ⊆ (0, T ]×O.

In Remark 1.11 we have shown that the limit solutions X are solutions to (0.1) in the
sense that their transformations Y := eµX are very weak solutions to (0.3). However, since
uniqueness of very weak solutions has only been obtained in the essentially bounded case,
this does not yield a characterization of limit solutions. To overcome this problem we recall
that the limit solutions constructed in Theorem 1.9 enjoy an L1 −L∞ regularizing property.
This regularization can be used in order to characterize the transformation Y := eµX of
limit solutions X as generalized weak solutions.

Definition 1.15. Let z ∈ C([0, T ];RN). A map Y ∈ C([0, T ];L1(O)) is said to be a gen-
eralized weak solution to (0.3) if Y is an essentially bounded weak solution to (0.3) on each
interval [τ, T ] with τ > 0. I.e. Y ∈ L∞([τ, T ]×O), Φ(e−µY ) ∈ L1([τ, T ];W 1,1

0 (O)) and

−
∫

[τ,T ]×O

Yr ∂rη dξdr −
∫

O

Yτητ dξ = −
∫

[τ,T ]×O

∇Φ(e−µrYr) · ∇(eµrηr) dξdr,

for all η ∈ C1([τ, T ]× Ō) with η = 0 on [τ, T ]× ∂O and on {T} × O.
X ∈ C([0, T ];L1(O)) is said to be a generalized weak solution to (0.1) if Y = eµX is a
generalized weak solution to (0.3).

Using the continuity X ∈ C([0, T ];L1(O)) of generalized weak solutions and Lipschitz con-
tinuity of weak solutions in the initial condition (Theorem 1.9) we obtain

Proposition 1.16 (Uniqueness of generalized weak solutions). Let X(i) be generalized weak

solutions with initial conditions X
(i)
0 , i = 1, 2. Then

sup
t∈[0,T ]

‖X(1)
t −X

(2)
t ‖L1(O) ≤ C‖X(1)

0 −X
(2)
0 ‖L1(O).

In Theorem 1.9 we have obtained that every limit solution X is essentially bounded on
[τ, T ]×O for all τ > 0. By uniqueness of limit solutions this implies that X is a rough weak
solution on [τ, T ]. Thus Y = eµX is a generalized weak solution.

Theorem 1.17. Let X0 ∈ L1(O) and let X be the corresponding limit solution to (0.1).
Then X is the unique generalized weak solution to (0.3).
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1.2 Stochastic Porous Medium Equation and RDS

So far we did not require the driving signal to be given by a stochastic process. We aim to
study the qualitative behaviour, in particular the long-time behaviour of solutions to PME
driven by rough noise. If the rough signal is given by a stationary random process this
additional structure can be used to significantly simplify this task. This approach is nicely
captured by the theory of RDS.

For signals given by the paths of a continuous semimartingale stochastic calculus may be
used to give a meaning to the integral over the rough signal occurring in (0.1). This allows
to further justify the notion of a rough weak solution which was based on a Wong-Zakai
approximation of the noise (Definition 1.6).

Theorem 1.18. Let z : [0, T ] × Ω → R
N be a continuous semimartingale on a normal

filtered probability space (Ω,F ,Ft,P), X0 ∈ L0(Ω,F0;L
1(O)) and X(ω) be the corresponding

(pathwise) limit solution to (0.1). Then

∫

O

Xtϕ dξ =

∫

O

Xsϕ dξ +

∫ t

s

∫

O

Φ(Xr)∆ϕ dξdr +

∫ t

s

(
∫

O

B(Xr)ϕ dξ

)

◦ dzr,(1.7)

for all ϕ ∈ C2
0(Ō) and all 0 ≤ s ≤ t ≤ T , P-almost surely.

The process X : Ω → C([0, T ];L1(O)) is adapted to the filtration generated by z by con-
tinuity in the driving process (Theorem 1.7). Hence, the stochastic integral in (1.7) is well
defined for every ϕ ∈ L∞(O).

Remark 1.19. By Theorem 1.7 we know that for any approximation z(ε) ∈ C1−var([0, T ];RN)

with z(ε) → z in C([0, T ];RN) (pathwise) we have X
(ε)
t (ω) → Xt(ω) in H for all t ∈ [0, T ]

and all ω ∈ Ω. Since X is a solution to (1.7), this yields a pathwise Wong-Zakai result.

1.2.1 Quasi-continuity of random dynamical systems

We will now first recall basic notions from the theory of RDS and then develop an exis-
tence result for random attractors based on weakened continuity assumptions for RDS and
asymptotic compactness. This generalized result is needed since the RDS corresponding to
(0.1), while being continuous on L1(O), is only continuous in some weaker sense on Lp(O),
p ∈ (1,∞]. For more details on the theory of RDS and random attractors we refer to
[32, 11, 10, 1].

Definition 1.20. Let (X, d) be a complete and separable metric space. A random dynamical
system (RDS) over (θt)t∈R is a measurable map ϕ : R+ ×X × Ω → X, such that ϕ(0, ω) =
id and

ϕ(t + s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω), (cocycle property)
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for all t, s ∈ R+ and ω ∈ Ω. ϕ is said to be a continuous RDS if x 7→ ϕ(t, ω)x is continuous
for all t ∈ R+ and ω ∈ Ω.

We now recall the stochastic generalization of notions of absorption, attraction and Ω-limit
sets.

Definition 1.21. i. A set-valued map D : Ω → 2X is called measurable if ω 7→ D(ω)
takes values in the closed subsets of X and for all x ∈ X the map ω 7→ d(x,D(ω)) is
measurable, where for nonempty sets A,B ∈ 2X we set

d(A,B) := sup
x∈A

inf
y∈B

d(x, y)

and d(x,B) = d({x}, B). A measurable set-valued map is also called a (closed) random
set.

ii. A set universe D is a collection of families of subsets (D(ω))ω∈Ω of X such that if
D ∈ D and D̂(ω) ⊆ D(ω) for all ω ∈ Ω then D̂ ∈ D. A universe of random sets is a
set universe consisting of random closed sets.

iii. Let A, B be random sets. A is said to absorb B if there exists an absorption time
tB(ω) such that for all t ≥ tB(ω)

ϕ(t, θ−tω)B(θ−tω) ⊆ A(ω).

A is said to attract B if

d(ϕ(t, θ−tω)B(θ−tω), A(ω)) −−−→
t→∞

0, ∀ω ∈ Ω.

iv. Let D be a universe of random sets and D ∈ D. Then D is said to be a D-absorbing
set for ϕ if D absorbs every set D ∈ D. D-attracting sets are defined analogously.

We require absorption and attraction to hold for all ω ∈ Ω in order to state our results in
their full strength. This is stronger than usual in the theory of RDS where an exceptional
P-zero set is allowed.

Definition 1.22. Let D be a universe of random sets. Then ϕ is said to be D-asymptotically
compact in X if the sequence ϕ(tn, θ−tnω)xn has a convergent subsequence in X, for all ω ∈ Ω,
tn → ∞, xn ∈ D(θ−tnω) and D ∈ D.

Definition 1.23. Let D be a universe of random sets. A D-random attractor for an RDS
ϕ is a compact random set A ∈ D satisfying:

(i) A is invariant, i.e. ϕ(t, ω)A(ω) = A(θtω) for all t > 0.
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(ii) A is D-attracting.

Since we require A ∈ D the random attractor for an RDS is uniquely determined.

In [23] the assumption of continuity of RDS has been weakened while preserving sufficient
criteria for the existence of random attractors. This allowed to study RDS on subspaces of
their ”original“ state spaces. We prove generalizations of these results and identify some
underlying structures, which will allow to prove the existence of random attractors for ϕ
seen as an RDS on Lp(O) for all p ∈ [1,∞). If condition (O1) is satisfied we will also obtain
the existence of random attractors with respect to the L∞ norm.

Definition 1.24. An RDS ϕ on a Banach space X endowed with some topology τ is said to
be quasi-τ -continuous if ϕ(tn, ω)xn →τ ϕ(t, ω)x, whenever (tn, xn) ∈ R+ ×X is a sequence
such that ϕ(tn, ω)xn is bounded and (tn, xn) → (t, x) for n → ∞. Here ”→τ” denotes
convergence with respect to τ -topology.

In [23] a general result proving quasi-continuity for restrictions of continuous RDS to sub-
spaces of the state space has been proven. More precisely:

Proposition 1.25 (Proposition 3.3 [23]). Let Y , X be Banach spaces such that i : Y →֒ X
and i∗ : X∗ →֒ Y ∗ are dense and continuous. If ϕ is an RDS on X, Y (resp.) and ϕ is (norm-
weak) continuous on X, then ϕ is quasi-weakly-continuous on Y , i.e. quasi-τ -continuous for
τ being the weak topology on Y .

If Y is a reflexive space then continuity and density of i : Y →֒ X implies the same for
i∗ : X∗ →֒ Y ∗. For non-reflexive spaces the situation may be more involved and in general
one may only conclude the existence of the continuous map i∗ : X∗ →֒ Y ∗. However, even
in the non-reflexive case Y ∗〈, 〉Y : i∗(X∗)× Y → R defines a duality mapping, i.e.

i. Y ∗〈i∗(x∗), y〉Y = 0 for all y ∈ Y implies i∗(x∗) = 0,

ii. Y ∗〈i∗(x∗), y〉Y = 0 for all x∗ ∈ X∗ implies y = 0.

Since i∗(X∗) ⊆ Y ∗ is a linear subspace and Y ∗〈, 〉Y : i∗(X∗)× Y → R is a duality mapping,
the corresponding weak topology σ(Y, i∗(X∗)) on Y is Hausdorff, where i∗(X∗) denotes
the closure of i∗(X∗) with respect to ‖ · ‖Y ∗ . Norm-weak continuity of ϕ in X just means
continuity of (t, x) 7→ X∗〈x∗, ϕ(t, ω)x〉X for all x∗ ∈ X∗, ω ∈ Ω. Hence, norm-weak continuity
of ϕ in X implies norm-σ(Y, i∗(X∗)) continuity on Y . On bounded sets B ⊆ Y we have
σ(Y, i∗(X∗))∩B = σ(Y, i∗(X∗))∩B. This is the precise idea of quasi-continuity. We obtain

Proposition 1.26. Let X, Y be Banach spaces such that i : Y →֒ X is dense and continuous.
If ϕ is an RDS on X, Y and ϕ is (norm-weak) continuous on X, then ϕ is quasi-σ(Y, i∗(X∗))-
continuous on Y .
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In the following let D be a universe of random sets and κ be the Kuratowski measure of
non-compactness. We will prove that in the proof of existence of random attractors the
assumption of omega-limit-compactness can be replaced by asymptotic compactness. This
indeed weakens the assumptions since every D-omega-limit compact RDS ϕ, i.e. satisfying

lim
T→∞

κ

(

⋃

t≥T

ϕ(t, θ−tω)D(θ−tω)

)

= 0,

for all ω ∈ Ω and D ∈ D is D-asymptotically compact.

For a topology τ on a Banach space X and a random set B we define the Ω-limit set

Ωτ (B, ω) = {y ∈ X| ∃tn → ∞, xn ∈ B(θ−tnω), ϕ(tn, θ−tnω)xn →τ y}.

Ω-limit sets with respect to the norm topology are simply denoted by Ω(B, ω). One of
the ideas in [23] in order to allow quasi-weak-continuity of ϕ is to consider Ω-limit sets with
respect to the weak topology replacing the usual norm topology. For asymptotically compact
RDS these notions actually coincide:

Lemma 1.27. Let ϕ be a D-asymptotically compact RDS on the Banach space X endowed
with a Hausdorff topology τ that is weaker than the norm topology. Then

Ω(B, ω) = Ωτ (B, ω), ∀B ∈ D.

In the proof of existence of random attractors we can replace D-omega-limit-compactness
by D-asymptotic compactness due to the following observation

Lemma 1.28. Let ϕ be a D-asymptotically compact, quasi-τ -continuous RDS on the Banach
space X endowed with a Hausdorff topology τ that is weaker than the norm topology. Further
assume that there is a bounded D-absorbing set F . Then Ω(B, ω) is a nonempty, compact,
invariant set for each B ∈ D, B 6= ∅, ω ∈ Ω.

If we work with the weaker notion of absorption occuring only P-a.s. then invariance in
Lemma 1.28 is satisfied only crudely. That is ϕ(t, ω)Ω(B, ω) = Ω(B, θtω) on a P-zero that
may depend on t. In the proof of the existence of random attractors this obstacle can
be resolved by a “perfection“ result proving that there is an indistinguishable, perfectly
invariant modification of Ω(B, ω).

With these preparations it is easy to see that the proof of [23, Theorem 4.1] can be modified
so that only quasi-τ -continuity and asymptotic compactness with respect to the universe of
all bounded deterministic sets has to be assumed.
In our case the universe of absorbed sets will be much larger than just deterministic bounded
sets. This allows to drop the assumption of ergodicity of the underlying metric dynamical
system. In conclusion we obtain the following:
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Theorem 1.29. Let ϕ be a quasi-τ -continuous RDS on a Banach space X, where τ is a
Hausdorff topology that is weaker than the norm topology. Then ϕ has a D-random attractor
iff

i. ϕ has a bounded D-absorbing random set F ∈ D.

ii. ϕ is D-asymptotically compact in X.

1.3 RDS and random attractors for (0.1)

Let (Ω,F ,Ft,P) be a filtered probability space, (zt)t∈R be an R
N -valued adapted stochastic

process and ((Ω,F ,P), (θt)t∈R) be a metric dynamical system, i.e. (t, ω) 7→ θt(ω) is B(R)⊗
F/F measurable, θ0 = id, θt+s = θt ◦ θs and θt is P-preserving, for all s, t ∈ R. We assume

(S1) (Strictly stationary increments) For all t, s ∈ R, ω ∈ Ω:

zt(ω)− zs(ω) = zt−s(θsω).

We assume z0 = 0 for notational convenience only.

(S2) (Regularity) zt has continuous paths.

Adaptedness and (S2) imply joint measurability of z, i.e. z : R×Ω → R
N is B(R)⊗F/B(RN )

measurable. Note:

µt(ω)− µs(ω) =

N
∑

k=1

fk(z
k
t (ω)− zks (ω)) = µt−s(θsω)(1.8)

and recall that fk are functions depending on the space variable.

By [18, Lemma 3.1] for each R
N valued process z̃t with z̃0 = 0 a.s., stationary increments and

a.s. continuous paths there exists a metric dynamical system ((Ω,F ,P), (θt)t∈R) and a version
zt of z̃t on ((Ω,F ,P), (θt)t∈R) such that zt satisfies (S1), (S2). In particular, applications
include fractional Brownian motion with arbitrary Hurst parameter.

Using the pathwise results obtained in Section 1.1 we define the RDS ϕ on X := L1(O)
associated to (0.4). For t ≥ s, ω ∈ Ω and x ∈ L1(O) let X(t, s;ω)x denote the unique limit
solution to (0.1) on [s,∞) with Xs = x and driving signal z = z(ω).

Definition 1.30. For t ≥ s, ω ∈ Ω and x ∈ L1(O) define

ϕ(t− s, θsω)x := X(t, s;ω)x.
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Theorem 1.31. The map ϕ from Definition 1.30 is a continuous RDS on X = L1(O) and
thus a quasi-weakly-continuous RDS on each Lp(O), p ∈ [1,∞). In addition, ϕ is a quasi-
weakly∗-continuous RDS on L∞(O). ϕ satisfies comparison, i.e. for x1, x2 ∈ X with x1 ≤ x2

a.e. in O
ϕ(t, ω)x1 ≤ ϕ(t, ω)x2, a.e. in O.

Moreover, ϕ satisfies ϕ(t, ω)0 = 0 and

i. x 7→ ϕ(t, ω)x is Lipschitz continuous on X, locally uniformly in t.

ii. t 7→ ϕ(t, ω)x is continuous in X.

iii. ϕ(t, ω)x ≤ Ut(ω) a.e. in O for all t ≥ 0, ω ∈ Ω, with U as in Theorem 1.4.

iv. ϕ satisfies the same regularity properties as for the pathwise solutions obtained in The-
orem 1.12.

Let D be the universe of all random closed sets in X . Using the uniform L∞ bound obtained
in Theorem 1.31 we obtain the existence of a D-absorbing set F which is bounded even
in L∞(O). In fact, the absorption time tD(ω) can be chosen independent of ω and D (cf.
Proposition 3.1 below).
If the domain O satisfies condition (O1), by combining the uniform L∞(O) estimate and
Theorem 1.31 (iii) we will conclude that the set ϕ(δ, ω)F (ω) with δ > 0 is compact in C0(Ō)
and D-absorbing in D. By Theorem 1.29 this implies the existence of a D-random attractor.
If the domain O does not necessarily satisfy condition (O1) we only get inner continuity,
i.e. equicontinuity of ϕ(δ, ω)K(ω) on each compact set K ⊆ O. In this case we cannot
conclude the existence of a compact D-absorbing set, but we can still prove D-asymptotic
compactness for ϕ. By Theorem 1.29 we arrive at the following:

Theorem 1.32. Let D be the universe of all random closed sets. The RDS ϕ has a D-
random attractor A (as an RDS on L1(O)). A is compact in each Lp(O) and attracts all
sets in D in Lp-norm, p ∈ [1,∞).

Moreover, A(ω) is a bounded set in L∞(O) and the functions in A(ω) are equicontinuous on
every compact set K ⊆ O.

If (O1) is satisfied then A(ω) is a compact set in C0(Ō) and attracts all sets in D in L∞-
norm.

17



2 Porous Medium Equation driven by rough signals

2.1 Transformation for signals of bounded variations

In this section we prove Theorem 1.2. Let z ∈ C1−var([0, T ];RN), η ∈ C1,2(ŌT ) with η = 0
on {T} × O and on [0, T ]× ∂O and let X be a very weak solution to (0.1). We prove that
Y := eµX is a very weak solution to (0.3). Let zε ∈ C1([0, T ];RN) such that z(ε) → z in
C([0, T ];RN) with uniformly bounded variation, i.e. sup

ε>0
‖z(ε)‖C1−var < ∞. Define µε as in

(0.2). Then

−
∫

OT

Yr∂rηr dξdr = −
∫

OT

Xre
µr∂rηr drdξ = − lim

ε→0

∫

OT

Xre
µ
(ε)
r ∂rηr dξdr

and

−
∫

OT

Xre
µ
(ε)
r ∂rηr dξdr = −

∫

OT

Xr∂r

(

eµ
(ε)
r ηr

)

dξdr +

∫

OT

Xrηr∂re
µ
(ε)
r dξdr

=

∫

O

X0e
µ
(ε)
0 η0 dξ +

∫

OT

Φ(Xr)∆
(

eµ
(ε)
r ηr

)

dξdr +

∫ T

0

(
∫

O

B(Xr)
(

eµ
(ε)
r ηr

)

dξ

)

dzr

−
∫

OT

Xrηre
µ
(ε)
r ∂rµ

(ε) dξdr

=

∫

O

X0e
µ
(ε)
0 η0 dξ +

∫

OT

Φ(Xr)∆
(

eµ
(ε)
r ηr

)

dξdr +

∫ T

0

(
∫

O

B(Xr)
(

eµ
(ε)
r ηr

)

dξ

)

dzr

−
∫ T

0

(
∫

O

B(Xr)
(

ηre
µ
(ε)
r

)

dξ

)

dz(ε)r .

By continuity of the Riemann-Stieltjes integral with respect to the convergence z(ε) → z
specified above and uniform convergence of the integrands (cf. [16, Proposition 2.7]) we
can take the limit ε → 0 to obtain the assertion. The other implication follows by similar
arguments.

2.2 Uniqueness of essentially bounded very weak solutions

We prove Theorem 1.3. Let Y (1), Y (2) be two essentially bounded very weak solutions to
(0.3) with the same initial condition Y0 ∈ L1(O) and let Y = Y (1) − Y (2). Then

∫

OT

Yr∂rη dξdr = −
∫

OT

(

Φ(e−µrY (1)
r )− Φ(e−µrY (2)

r )
)

∆(eµrηr) dξdr

= −
∫

OT

arYr∆(eµrηr) dξdr,
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for all η ∈ C1,2(ŌT ) with η = 0 on {T} × O and on [0, T ]× ∂O, where

at :=







Φ(e−µtY
(1)
t )−Φ(e−µtY

(2)
t )

Y
(1)
t −Y

(2)
t

, for Y
(1)
t 6= Y

(2)
t

0 , otherwise.

Let zε ∈ C∞([0, T ];RN) with z(ε) → z in C([0, T ];RN) such that for µ(ε) as in (0.2) we

have supt∈[0,T ] ‖eµ
(ε)
t − eµt‖C2(O) ≤ ε2. By equicontinuity of z(ε) we can choose a partition

0 = τ0 < ... < τN = T such that

δ :=‖eµ
(

2|∇(µ(ε) − µτi)|4 + 2|∆(µ(ε) − µτi)|2 + |∇(µ(ε) − µτi)|2
)

‖L∞([τi,τi+1]×O)

<
1

16C
,

(2.9)

for all i = 0, ..., N − 1, ε > 0, where C is a constant that will be specified below. Let
γ = max

i
{|τi+1− τi|}. We prove Y = 0 a.e. via induction over i = 0, ..., N − 1. Thus, assume

Y = 0 on [0, τi]×O almost everywhere. We can modify τi so that (2.9) is preserved and
Y (τi) = 0 a.e. in O. Define Oi := [τi, τi+1]×O. Then

∫

Oi

Yr

(

∂rηr + ar∆(eµrηr)
)

dξdr = 0,

for all η ∈ C1,2([τi, τi+1]× Ō) with η = 0 on {τi+1} × O and on [τi, τi+1]× ∂O.

For Y
(1)
t 6= Y

(2)
t we have at = e−µtΦ̇(ζt) with ζt ∈ [e−µtY

(1)
t , e−µtY

(2)
t ] and thus ‖a‖L∞(OT ) < ∞

by essential boundedness of Y (i). We consider a non-degenerate, smooth approximation of
a. Set âε := a ∨ ε and let aε,δ be a smooth approximation of âε such that aε,δ ≥ ε and
∫

OT
|Y |2(âε − aε,δ)

2 dxdr ≤ δ. Then choose aε = aε,ε2.

Let η = e−µτiϕ with ϕ being the classical solution to

∂tϕ+ aεe
µτi∆(eµ

(ε)−µτiϕ)− θ = 0, on OT

ϕ = 0, on [τi, τi+1]× ∂O
ϕ(τi+1) = 0, on O,

(2.10)

where θ is an arbitrary smooth testfunction. Time inversion transforms (2.10) into a uni-
formly parabolic linear equation with smooth coefficients. Thus, unique existence of classical
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solutions follows from [22, Theorem 6.2, p. 457]. Then

0 =

∫

Oi

Yr

(

∂rη + ar∆(eµrηr)
)

dξdr

=

∫

Oi

Yr

(

∂rη + aε,r∆(eµ
(ε)
r η)

)

dξdr +

∫

Oi

Yr(ar − aε,r)∆(eµ
(ε)
r ηr) dξdr

+

∫

Oi

Yrar∆((eµr − eµ
(ε)
r )ηr) dξdr

=

∫

Oi

e−µτiYrθr dξdr +

∫

Oi

Yr(ar − aε,r)∆(eµ
(ε)
r −µτiϕr) dξdr

+

∫

Oi

Yrar∆((eµr − eµ
(ε)
r )e−µτiϕr) dξdr.

(2.11)

We need to prove that the last two terms vanish for ε → 0. For this we first derive a

bound for
∫

Oi
aε,r|∆(eµ

(ε)
r −µτiϕr)|2 dξdr. Let ζ ∈ C∞(R) with ζ(τi) = 0, ζ ≤ 1 on [0, T ] and

ζ̇ ≥ c > 0, for some c ≤ 1
4γ
. Multiplying (2.10) by ζ∆ϕ and integrating yields

∫

Oi

(∂rϕr) ζr∆ϕr dξdr =

∫

Oi

(

−aε,re
µτi∆(eµ

(ε)
r −µτiϕ)ζr∆ϕr + θrζr∆ϕr

)

dξdr.

Note that

∆ϕ = ∆
(

e−(µ(ε)−µτi
)eµ

(ε)−µτiϕ
)

= ϕ(−|∇(µ(ε) − µτi)|2 −∆(µ(ε) − µτi))− 2∇(µ(ε) − µτi)∇ϕ+ e−(µ(ε)−µτi
)∆eµ

(ε)−µτiϕ.

Hence

1

2

∫

Oi

|∇ϕr|2ζ̇r dξdr +
∫

Oi

aε,re
2µτi

−µ
(ε)
r |∆(eµ

(ε)
r −µτiϕr)|2ζr dξdr

=

∫

Oi

aε,rζre
µτi |ϕr∆(eµ

(ε)
r −µτiϕr)|

(

|∇(µ(ε)
r − µτi)|2 + |∆(µ(ε)

r − µτi)|
)

dξdr

+

∫

Oi

2
(

aε,rζre
µτi |∆(eµ

(ε)
r −µτiϕr)||∇(µ(ε)

r − µτi)||∇ϕr|+ θrζr∆ϕr

)

dξdr.

The first term on the right hand side is bounded by

∫

Oi

aε,rζre
µτi |ϕr∆(eµ

(ε)
r −µτiϕr)|

(

|∇(µ(ε)
r − µτi)|2 + |∆(µ(ε)

r − µτi)|
)

dξdr

≤
∫

OT

1

4
aε,rζre

2µτi
−µ

(ε)
r |∆(eµ

(ε)
r −µτiϕr)|2dξdr + Cδ

∫

OT

ζ̇r|∇ϕr|2 dξdr
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and the second by
∫

Oi

(2aε,rζre
µτi |∆(eµ

(ε)
r −µτiϕr)||∇(µ(ε)

r − µτi)||∇ϕr|+ θrζr∆ϕr) dξdr

≤
∫

Oi

1

4
aε,rζre

2µτi
−µ

(ε)
r |∆(eµ

(ε)
r −µτiϕr)|2 dξdr + (Cδ +

1

8
)

∫

Oi

ζ̇r|∇ϕr|2 dξdr + C

∫

Oi

|∇θr|2 dξdr.

Using this we obtain

1

2

∫

Oi

|∇ϕr|2ζ̇r dξdr +
∫

Oi

aε,re
2µτi

−µ
(ε)
r |∆(eµ

(ε)
r −µτiϕr)|2ζr dξdr

≤
∫

Oi

1

2
aε,rζre

2µτi
−µ

(ε)
r |∆(eµ

(ε)
r −µτiϕr)|2 dξdr + (2Cδ +

1

8
)

∫

Oi

ζ̇r|∇ϕr|2 dξdr + C

∫

Oi

|∇θr|2 dξdr,

where C = C(‖Y (i)‖L∞([0,T ]×O), T, ‖eµ‖L∞(OT )) is a generic constant. Since C is independent
of the choice of ζ , using Fatou’s Lemma and (2.9) we obtain

∫

Oi

aε,re
2µτi

−µ
(ε)
r |∆(eµ

(ε)
r −µτiϕr)|2dξdr ≤ C

∫

Oi

|∇θr|2 dξdr.(2.12)

By the choice aε we have
∫

Oi

|Yr|2
(ar − aε,r)

2

aε,r
dξdr ≤ 1

ε

(
∫

Oi

2|Yr|2(ar − âε,r)
2 dξdr +

∫

Oi

2|Yr|2(âε,r − aε,r)
2 dξdr

)

≤ 4ε

∫

Oi

|Yr|2 dξdr.

For the second term in (2.11) we obtain
∫

Oi

Yr(ar − aε,r)∆(eµ
(ε)
r −µτiϕr) dξdr

≤
(
∫

Oi

|aε,r||∆(eµ
(ε)
r −µτiϕr)|2 dξdr

)
1
2
(
∫

Oi

|Yr|2
(ar − aε,r)

2

aε,r
dξdr

)
1
2

≤ C
√
ε‖∇θ‖L2(Oi)‖Y ‖L2(Oi) → 0,

for ε → 0. For the third term in (2.11) we use (2.12) and aε ≥ ε to get

‖ϕ‖H2(O) ≤
C‖∇θ‖L2(Oi)

ε
.

Hence

∫

Oi

Yrar∆((eµr − eµ
(ε)
r )e−µτiϕr) dξdr ≤ C‖∇θ‖L2(Oi)

‖eµr − eµ
(ε)
r ‖C2(O)

ε

≤ εC‖∇θ‖L2(Oi) → 0,
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for ε → 0. Taking ε → 0 in in (2.11) yields

0 =

∫

Oi

e−µτiYrθr dξdr,

for any smooth testfunction θ. Thus Y = 0 in Oi = [τi, τi+1] × O almost everywhere.
Induction now finishes the proof.

Remark 2.1. The method to prove uniqueness used above fails for fast diffusion equations,
since the difference quotient

at :=







Φ(e−µtY
(1)
t )−Φ(e−µtY

(2)
t )

Y
(1)
t −Y

(2)
t

, for Y
(1)
t 6= Y

(2)
t

0 , otherwise.

it not known to remain bounded.

2.3 Weak solutions and uniform bounds

We will now prove Theorem 1.4. In order to construct weak solutions to (0.3) several steps are
needed. First we will consider approximating equations, where the degenerate nonlinearity
Φ is replaced by non-degenerate functions Φ(δ) and the driving signals z are approximated by
smooth signals z(δ) (Section 2.3.1). Existence of classical solutions to these equations follows
from well-known existence results (cf. e.g. [22]). Then we will prove uniform L∞ bounds for
these approximating solutions (Section 2.3.2) which will be used in Section 2.3.3 to finally
construct weak solutions to (0.3) by monotonicity methods.

2.3.1 Non-degenerate, smooth approximation and classical solutions

For δ > 0 we choose an approximating function Φ(δ) ∈ C∞(R) such that

i. Φ(δ)(0) = 0 and Φ(δ) is anti-symmetric in 0,

ii. Φ(δ)(r) = Φ(r), for all δ ≤ |r| ≤ 1
δ
,

iii. For all r ∈ R:

0 < C1(δ) ≤ Φ̇(δ)(r) ≤ C2(δ) < ∞,

Φ̈(δ)(r) ≤ C2(δ) < ∞.

In particular Φ(δ)(r) =
∫ r

0
Φ̇(δ)(s)ds ≤ C2(δ)r. We further choose smooth approximations

z(δ) ∈ C∞([0, T ];RN) of the driving signal z. Using the homogeneity of Φ we can rewrite
(0.3) as

∂tYt = eµt∆
(

Φ(e−µt)Φ(Yt)
)

, on OT .(2.13)
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One advantage of rewriting (0.3) in this form prior to approximating Φ by Φ(δ) is that the
substitution Z(δ) := Φ(δ)(Y (δ)) can still be used in the approximating equation so that the
continuity results obtained in [14] can be applied. We construct a solution to (2.13) by
considering approximating equations

∂tY
(δ)
t = eµt∆

(

Φ(e−µt)Φ(δ)(Y
(δ)
t )
)

, on OT

Y (δ)(0) = Y0, on O,
(2.14)

with Dirichlet boundary conditions and smooth signals z ∈ C∞([0, T ];RN). (2.14) is a
quasilinear, uniformly parabolic equation with smooth coefficients. From standard results
the unique existence of a classical solution follows (cf. e.g. [22, Theorem 6.2, p. 457]).

2.3.2 Uniform L∞(OT ) bound for classical solutions to (2.14)

Lemma 2.2. Let Y0 ∈ L∞(O), {z(ε) ∈ C∞([0, T ];RN)| ε > 0} be a compact set in C([0, T ];RN)
and Y (δ,ε) be a classical solution to (2.14) driven by z(ε). There are constants σ0 = σ0(‖Y0‖L∞(O)) >
0, M > 0 depending only on ‖Y0‖L∞(O), the uniform bound and uniform modulus of continuity
of {z(ε)}, piecewise smooth functions K(σ0,ε) and a δ0 = δ0(sup

ε>0
‖z(ε)‖L∞(OT ), ‖Y0‖L∞(O)) > 0

such that
Y (δ,ε) ≤ K(σ0,ε) ≤ M , on [0, T ]×O,

for all δ ≤ δ0.

Proof. We will construct a piecewise smooth (thus bounded) supersolution to

∂tY
(δ,ε)
t = eµ

(ε)
t ∆

(

Φ(e−µ
(ε)
t )Φ(δ)(Y

(δ,ε)
t )

)

, on OT ,(2.15)

with initial condition Y0 and Dirichlet boundary conditions. Let R > 0 such that Ō ⊆
BR(0). Since {z(ε)} is a set of equicontinuous functions, there exists a γ > 0 and a partition
0 = τ0 < τ1 < ... < τL = T with 1 > τi − τi−1 > γ (hence L ≤ T

γ
) such that

1

2
≤



 inf
ξ∈Ō

t∈[τi,τi+1)

eµ
(ε)
t −µ

(ε)
τi Φ(eµ

(ε)
τi

−µ
(ε)
t )





(

1− mR

d
sup

t∈[τi,τi+1)

(

2‖∇(µ(ε)
τi

− µ
(ε)
t )‖L∞(O)

+
Rm

2
‖∇(µ(ε)

τi
− µ

(ε)
t )‖2L∞(O) +

R

2
‖∆(µ(ε)

τi
− µ

(ε)
t )‖L∞(O)

)

)

,

(2.16)

and

1

2
≤ inf

ξ∈Ō, t∈[τi,τi+1)
e(m−1)(µ

(ε)
t −µ

(ε)
τi

),(2.17)
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for all i = 0, ..., L− 1, ε > 0. Let A
m−1
m := R

2
m

(m−1)d
, C4 := infξ∈O(R

2 − |ξ|2) and consider the

inverse β := Φ−1. For σ > 0 we define

K
(σ,ε)
0 (t, ξ) := β

(

A(t + σ)−
m

m−1 (R2 − |ξ|2)Φ(eµ(ε)
τi )
)

and choose σ0 = σ0(‖Y0‖L∞(O)) so that ‖Y0‖L∞(O) ≤ K
(σ0,ε)
0 (0). Then inductively define

σi+1 =
1
2
(σi + γ) for i = 0, . . . , L− 1 (we can thus regard σi as a function of σ0) and let

K
(σ0,ε)
i (t, ξ) := β

(

A(t− τi + σi)
− m

m−1 (R2 − |ξ|2)Φ(eµ(ε)
τi )
)

= A
1
m (t− τi + σi)

− 1
m−1 (R2 − |ξ|2) 1

m eµ
(ε)
τi , t ∈ [τi, τi+1], ξ ∈ O.

(2.18)

By the choice of σi, i = 1, . . . , L− 1 we have K
(σ0,ε)
i (τi+1) ≤ K

(σ0,ε)
i+1 (τi+1). We note

A
1
m

(

1 + max
i=0,...,L−1

σi

)− 1
m−1

C
1
m

4 e− supε>0 ‖µ
(ε)‖L∞(OT )

≤ K
(σ0,ε)
i (t) ≤ A

1
m

(

min
i=0,...,L−1

σi

)− 1
m−1

R
2
m esupε>0 ‖µ

(ε)‖L∞(OT ) ,

(2.19)

for all t ∈ [τi, τi+1]. Hence, we can choose δ0 > 0 (depending only on σ0, supε>0 ‖z(ε)‖L∞(OT ))
such that

(2.20) K
(σ0,ε)
i (t) ∈ [δ,

1

δ
],

for all t ∈ [τi, τi+1] and δ ≤ δ0. Then Φ(δ)(Ki(t)) = Φ(Ki(t)) and we compute (for simplicity
we drop the ε dependencies and the σ0 dependency of Ki)

∆
(

Φ(e−µt)Φ(δ)(Ki(t))
)

= ∆
(

A(t− τi + σi)
− m

m−1 (R2 − |ξ|2)Φ(eµτi
−µt)

)

= A(t− τi + σi)
− m

m−1Φ(eµτi
−µt)

(

− 2d− 4mξ · ∇(µτi − µt)

+ (R2 − |ξ|2)(m2|∇(µτi − µt)|2 +m∆(µτi − µt))
)

and

∂tKi(t) = − A
1
m

m− 1
(t− τi + σi)

− m
m−1 (R2 − |ξ|2) 1

m eµτi .

In order to show that Ki(t) is a supersolution to (2.15) on [τi, τi+1] we thus have to show

0 ≤ ∂tKi(t)− eµt∆
(

Φ(e−µt)Φ(δ)(Ki(t))
)

= − A
1
m

m− 1
(t− τi + σi)

− m
m−1 (R2 − |ξ|2) 1

m eµτi − A(t− τi + σi)
− m

m−1 eµtΦ(eµτi
−µt)

(

− 2d− 4mξ · ∇(µτi − µt) + (R2 − |ξ|2)
(

m2|∇(µτi − µt)|2 +m∆(µτi − µt)
)

)

,
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for all t ∈ [τi, τi+1]. Equivalently

(R2 − |ξ|2) 1
m

m− 1
≤ A

m−1
m eµt−µτiΦ(eµτi

−µt)
(

2d+ 4mξ · ∇(µτi − µt)

− (R2 − |ξ|2)
(

m2|∇(µτi − µt)|2 +m∆(µτi − µt)
)

)

.

It is thus sufficient to show

R
2
m

m− 1
≤ A

m−1
m



 inf
ξ∈Ō

t∈[τi,τi+1]

eµt−µτiΦ(eµτi
−µt)





(

2d− 4mR‖∇(µτi − µt)‖L∞(O)

−R2
(

m2‖∇(µτi − µt)‖2L∞(O) +m‖∆(µτi − µt)‖L∞(O)

)

)

,

for all t ∈ [τi, τi+1], which is satisfied by the choice of A and τi in (2.16). In conclusion,

K
(σ0,ε)
i (t) is a supersolution to (2.15) on [τi, τi+1] for each δ ≤ δ0. We define

(2.21) K(σ0,ε)(t) :=
L−1
∑

i=0

1[τi,τi+1)(t)K
(σ0,ε)
i (t).

Since the comparison principle [24, Theorem 9.7] applies on each interval [τi, τi+1], by induc-
tion we have

Y (δ,ε)(t, ξ) ≤ K(σ0,ε)(t, ξ), ∀t ∈ [0, T ], ξ ∈ O, δ ≤ δ0.

The upper bound in (2.19) yields a uniform bound M for K(σ0,ε). M depends on σ0,
supε ‖z(ε)‖L∞(O) and via the bound of the partition size γ and the definition of σi, on the
uniform modulus of continuity of {z(ε)}.

2.3.3 Existence of weak solutions

We will now take the limit δ → 0 in (2.14) in order to obtain weak solutions to (0.3) in the
sense of Definition 1.1.

Lemma 2.3. Let Y0 ∈ L∞(O), {z(ε) ∈ C∞([0, T ];RN)| ε > 0} ⊆ C([0, T ];RN) be compact
and Y (δ,ε) be a classical solution to (2.14) driven by z(ε). Then

(2.22) sup
t∈[0,T ]

(

‖Y (δ,ε)
t ‖m+1

m+1 + ‖Y (δ,ε)
t ‖2H

)

+ C1‖∇
(

Φ(e−µ(ε)

)Φδ(Y (δ,ε))
)

‖L2(OT ) ≤ C2,

for all ε > 0, δ ≤ δ0 (with δ0 from Lemma 2.2) and for some constants 0 < C1, C2 indepen-
dent of δ and ε. C2 may depend on ‖Y0‖L∞(O), the uniform bound and the uniform modulus
of continuity of {z(ε)}.
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Proof. Let Ψ(δ) ∈ C1(R) so that Ψ̇(δ) = Φ(δ). We compute

∂t

∫

O

Ψ(δ)(Y
(δ,ε)
t ) dξ =

∫

O

Φ(e−µ
(ε)
t )

Φ(e−µ
(ε)
t )

Φ(δ)(Y
(δ,ε)
t )∂tY

(δ,ε) dξ

= −
∫

O

eµ
(ε)
t

Φ(e−µ
(ε)
t )

∇
(

Φ(e−µ
(ε)
t )Φ(δ)(Y

(δ,ε)
t )

)

∇
(

Φ(e−µ
(ε)
t )Φ(δ)(Y

(δ,ε)
t )

)

dξ

−
∫

O

Φ(e−µ
(ε)
t )Φ(δ)(Y

(δ,ε)
t )∇

(

eµ
(ε)
t

Φ(e−µ
(ε)
t )

)

∇
(

Φ(e−µ
(ε)
t )Φ(δ)(Y

(δ,ε)
t )

)

dξ(2.23)

≤ sup
(t,ξ)∈ŌT



ε1

∣

∣

∣

∣

∣

∇ eµ
(ε)
t

Φ(e−µ
(ε)
t )

∣

∣

∣

∣

∣

2

− eµ
(ε)
t

Φ(e−µ
(ε)
t )





∫

O

|∇Φ(e−µ
(ε)
t )Φ(δ)(Y

(δ,ε)
t )|2 dξ

+ Cε1

∫

O

(

Φ(e−µ
(ε)
t )Φ(δ)(Y

(δ,ε)
t )

)2

dξ,

for all ε1 > 0 and some Cε1 > 0. Choosing ε1 small enough and using the uniform L∞ bound
derived in Lemma 2.2 we conclude

sup
t∈[0,T ]

∫

O

Ψ(δ)(Y
(δ,ε)
t ) dξ + C1

∫

OT

|∇Φ(e−µ
(ε)
r )Φ(δ)(Y (δ,ε)

r )|2 dξdr ≤
∫

O

Ψ(δ)(Y0) dξ + C2,

for all δ ≤ δ0 and for some constants C1, C2 > 0 independent of δ and ε, where C2 may
depend on ‖Y0‖L∞(O), the uniform bound and the uniform modulus of continuity of {z(ε)}.

It remains to prove the bound of ‖Y (δ)‖2H . By the chain rule we have

d

dt
‖Y (δ,ε)

t ‖2H = 2

∫

O

(−∆)−1
(

Y
(δ,ε)
t

)

eµ
(ε)
t ∆

(

Φ(e−µ
(ε)
t )Φ(δ)(Y

(δ,ε)
t )

)

dξ.

Since for f, g, h sufficiently smooth and h|∂O = 0 we have
∫

O

fg∆h dξ =

∫

O

(f∆(gh) + 2h∇f · ∇g + fh∆(g)) dξ.

We obtain

d

dt
‖Y (δ,ε)

t ‖2H = −2

∫

O

Y
(δ,ε)
t eµ

(ε)
t Φ(e−µ

(ε)
t )Φ(δ)(Y

(δ,ε)
t )dξ

+ 2

∫

O

Φ(e−µ
(ε)
t )Φ(δ)(Y

(δ,ε)
t )

(

2∇
(

(−∆)−1(Y
(δ,ε)
t )

)

· ∇
(

eµ
(ε)
t

))

dξ

+ 2

∫

O

Φ(e−µ
(ε)
t )Φ(δ)(Y

(δ,ε)
t )

(

(−∆)−1(Y
(δ,ε)
t )∆

(

eµ
(ε)
t

))

dξ

≤ C(1 + ‖Y (δ,ε)
t ‖2H), ∀δ ≤ δ0

(2.24)

where 0 < C is a constant independent of δ, ε, possibly depending on ‖Y0‖L∞(O), the uniform
bound and the uniform modulus of continuity of {z(ε)}. Gronwall’s inequality then yields
the bound.
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Proof of Theorem 1.4. We approximate the initial condition Y0 by smooth functions Y
(δ)
0 ∈

C2(Ō) such that Y
(δ)
0 → Y0 almost everywhere and ‖Y (δ)

0 ‖L∞(O) ≤ ‖Y0‖L∞(O). The contin-
uous driving signal z is approximated by smooth signals z(δ) ∈ C∞([0, T ];RN) such that
z(δ) → z in C([0, T ];RN). In particular {z(δ)| δ > 0} is a compact set in C([0, T ];RN). Let

Y (δ) be classical solutions to (2.14) with initial condition Y
(δ)
0 and driving signal z(δ). In the

following let δ ≤ δ0 with δ0 as in Lemma 2.3.

By Lemma 2.3 we know that Y (δ) is uniformly bounded in L∞([0, T ];Lm+1(O)) and in

L∞([0, T ];H). By Sobolev embedding, for k ≥ n
2
(1−m
1+m

) ∨ 1 we have Hk
0 (O) →֒ L

m+1
m (O).

Consequently, Lm+1(O) →֒ H−k := (Hk
0 (O))∗ and H →֒ H−k. Hence, weak∗ limits obtained

in L∞([0, T ];Lm+1(O)) and L∞([0, T ];H) coincide.

We further know that Φ(e−µ
(δ)
t )Φ(δ)(Y (δ)) is uniformly bounded in L2([0, T ];H1

0(O)) and

boundedness of Y (δ) in L∞([0, T ];Lm+1(O)) implies boundedness of Φ(e−µ
(δ)
t )Φ(δ)(Y (δ)) in

L∞([0, T ];L
m+1
m (O)).

Hence, we can choose a subsequence (again denoted by δ) such that

Y (δ) ⇀∗ Y, in L∞([0, T ];Lm+1(O)) and in L∞([0, T ];H),

Z(δ) := Φ(e−µ
(δ)
t )Φ(δ)(Y (δ)) ⇀ Z, in L2([0, T ];H1

0(O)),

Z(δ) ⇀∗ Z, in L∞([0, T ];L
m+1
m (O)).

Since

−
∫

OT

Y (δ)
r ∂rηr dξdr −

∫

O

Y
(δ)
0 η0 dξ = −

∫

OT

∇
(

Φ(e−µ
(δ)
r )Φ(δ)(Y (δ)

r )
)

∇
(

eµ
(δ)
r ηr

)

dξdr,

we obtain

−
∫

OT

Yr∂rη dξdr−
∫

O

Y0η0 dξ = −
∫

OT

∇Zr∇ (eµrηr) dξdr,

for all η ∈ C1(ŌT ) with η = 0 on [0, T ]× ∂O and on {T} × O.

First we will prove that Y
(δ)
t ⇀ Yt in H , for all t ∈ [0, T ]. We consider the set K =

{(Y (δ), h)H | h ∈ H, ‖h‖H ≤ 1, δ > 0} ⊆ C([0, T ]). By Lemma 2.3, K is bounded in
C([0, T ]). Moreover,

(Y
(δ)
t+s − Y

(δ)
t , h)H =

∫ t+s

t

(

dY (δ)

dr
, h

)

H

dr ≤ ‖h‖Hs
1
2

∥

∥

∥

∥

dY (δ)

dr

∥

∥

∥

∥

L2([0,T ];H)

≤ C‖h‖Hs
1
2 .

Hence, K is a set of equibounded, equicontinuous functions and thus is relatively compact in
C([0, T ]). For every h ∈ H, ‖h‖H ≤ 1 there is a subsequence (again denoted by δ) such that
(Y (δ), h)H → g in C([0, T ]). Since also Y (δ) ⇀ Y in L2([0, T ];H) (thus (Y (δ), h)H ⇀ (Y, h)H
in L2([0, T ])) we have g = (Y, h) which implies Y

(δ)
t ⇀ Yt in H for all t ∈ [0, T ].
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We need to prove Z = Φ(e−µtY ) almost everywhere. This will be done by considering the
equation on H = (H1

0(O))∗. Since Y (δ) solves (2.14) we conclude

dY (δ)

dt
⇀

dY

dt
, in L2([0, T ];H),

and

dY

dt
= eµt∆Z, for a.e. t ∈ [0, T ]

Y (0) = Y0.

In particular, since also Y ∈ L∞([0, T ];H) we have Y ∈ C([0, T ];H). By the chain rule we
obtain

‖Yt‖2H = ‖Y0‖2H − 2

∫ t

0

∫

O

eµrZrYrdξ dr

+ 2

∫ t

0

∫

O

Zr

(

2∇(eµr)∇((−∆)−1(Yr)) + ∆(eµr)(−∆)−1(Yr)
)

dξ dr.

(2.25)

Applying the chain rule to (2.14) yields

‖Y (δ)
t ‖2H = ‖Y (δ)

0 ‖2H − 2

∫ t

0

∫

O

eµ
(δ)
r Z(δ)

r Y (δ)
r dξ dr

+ 2

∫ t

0

∫

O

Z(δ)
r

(

2∇(eµ
(δ)
r )∇((−∆)−1(Y (δ)

r )) + ∆(eµ
(δ)
r )(−∆)−1(Y (δ)

r )
)

dξ dr.

(2.26)

Since (−∆)−1(Y (δ)) ∈ L2([0, T ];H1
0(O)) and d(−∆)−1(Y (δ))

dt
∈ L2([0, T ];H1

0(O)) ⊆ L2([0, T ];L2(O))
are uniformly bounded and H1

0 (O) →֒→֒ L2(O) →֒ L2(O), by the Aubin-Lions compactness
Theorem we have (for a subsequence again denoted by δ)

(−∆)−1(Y (δ)) → (−∆)−1(Y ), strongly in L2([0, T ];L2(O)).

Note that also Z(δ) ⇀ Z in L2([0, T ];H1
0(O)). Taking the limit δ → 0 in (2.26) yields

‖Yt‖2H ≤ ‖Y0‖2H − lim sup
δ→0

2

∫ t

0

∫

O

eµ
(δ)
r Z(δ)

r Y (δ)
r dξdr

+ 2

∫ t

0

∫

O

Zr

(

2∇(eµr)∇((−∆)−1(Yr)) + ∆(eµr)(−∆)−1(Yr)
)

dξdr.

Substracting (2.25) we arrive at

(2.27) lim sup
δ→0

∫

OT

eµ
(δ)
r Z(δ)

r Y (δ)
r dξ dr ≤

∫

OT

eµrZrYr dξdr.
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By monotonicity of Φ(δ) we have

∫

OT

eµ
(δ)
r Φ(e−µ

(δ)
r )(Φ(δ)(Y (δ)

r )− Φ(δ)(zr))(Y
(δ)
r − zr) dξdr ≥ 0,

for all z ∈ C1(ŌT ). Using (2.27) we can take δ → 0 to obtain

∫

OT

eµr(Zr − Φ(e−µr)Φ(zr))(Yr − zr) dξdr ≥ 0,

for all z ∈ C1(ŌT ), hence by approximation for all z ∈ Lm+1(OT ). Taking z = Y − εh with
h ∈ C0(ŌT ), dividing by ε and letting ε → 0 yields

∫

OT

eµr(Zr − Φ(e−µr)Φ(Yr))h dξdr ≥ 0,

for all h ∈ C0(OT ). This implies Z = Φ(e−µ)Φ(Y ) almost everywhere.

It remains to prove that the uniform L∞ bound obtained in Lemma 2.2 remains valid for
weak solutions. We first note that by uniform continuity of {z(δ)|δ > 0} the partition τi in

(2.16) can be chosen independent of δ. Thus K
(σ0,δ)
i defined in (2.18) only depends on δ via

the factor eµ
(δ)
τi and converges uniformly to a piecewise smooth function K

(σ0)
i given by (2.18)

with µ(ε) = µ. We define K(σ0) as in (2.21). By Lemma 2.2 we know that Y
(δ)
t ≤ K(δ,σ0)(t)

for all t ∈ [0, T ] and all δ ≤ δ0. Since the cone of nonnegative distributions in H is convex,

closed and Y
(δ)
t ⇀ Yt in H we conclude Yt ≤ K(σ0)(t) a.e. in O for all t ∈ [0, T ]. Note that

K(σ0) is increasing as σ0 decreases. Defining U := K(0) : [0, T ] → R̄ as in (2.18) with σ0 = 0
(with the convention 1

0
= ∞) yields a piecewise smooth function on (0, T ] (taking the value

∞ at t = 0) with Yt ≤ K(σ0)(t) ≤ Ut a.e. in O and for all t ∈ [0, T ].

For later use we prove weak continuity of t 7→ Yt in Lp(O). Let p ∈ (2,∞) and tn → t ∈ [0, T ].
Then Yt is uniformly bounded in Lp(O) and thus there is a weakly convergence subsequence
Ytnk

. Since Y ∈ C([0, T ];H), the weak limit is Yt and by arbitrarity of the sequence tn we
obtain Ytn ⇀ Yt in Lp(O).

Assume that z ∈ C1−var([0, T ];RN), by Theorem 1.2 X = e−µY is a weak solution to (0.1)
and the bounds follow from the corresponding ones for Y .

Proof of Remark 1.5. The proof of existence of weak solutions to (0.1) and (0.3) proceeds
with only minor modifications. The statements of Lemma 2.2 remain true, however, with a
modified upper bound K(σ0,ε).

Proof of Lemma 2.2 for fast diffusion equations: Again we construct a supersolution to (2.15)
which is piecewise smooth (thus bounded) in ŌT . Let R, β, C4 and τi, i = 0, ..., L − 1 as
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before and A
m−1
m = R

2
m

(1−m)d
. We inductively define

K
(σ0,ε)
i (t, ξ) = A

1
m (σi − t)

1
1−m (R2 − |ξ|2) 1

m eµ
(ε)
τi , t ∈ [τi, τi+1], ξ ∈ O,

where σi > τi+1, i = 1, ..., L − 1 are chosen (large enough) such that K
(σ0,ε)
0 (0) ≥ Y0 and

Ki(τi+1) ≤ Ki+1(τi+1), which is satisfied if σi+1 ≥ 2σi+ τi+1. The remaining calculations and
arguments are similar to those of the degenerate case. Note, however, the changing signs
due to the changing sign of 1−m.

Next we prove a-priori estimates for the approximating classical solutions analogous to those
given in Lemma 2.3. Here we can allow Y0 ∈ Lm+1(O) since in (2.23) and (2.24) the term
∫

O

(

Φ(e−µt)Φ(δ)(Y (δ))
)2

dξ can be bounded by C
∫

O
Ψ(δ)(Y (δ)) dξ. Thus, the L∞ bound is

not needed to prove (2.22). The same proof as for Theorem 1.4 can then be used to construct
weak solutions for all initial conditions Y0 ∈ Lm+1(O) (but without L∞(O) bound). This
finishes the proof of existence of weak solutions for the case of fast diffusions. If Y0 ∈ L∞(O)
then Lemma 2.2 yields L∞ boundedness of Y .
In order to obtain a uniform upper bound independent of the initial condition as in the
degenerate case (m > 1) we would have to let σ0 → ∞ in K(σ0) implying U ≡ ∞. Moreover,
we do not have a uniqueness result for essentially bounded weak solutions in the case of fast
diffusion equations. Therefore, it is not known whether each such weak solution is a limit of
solutions to the non-degenerate approximating equations which will be needed for the proof
of uniform continuity in the initial condition with respect to the L1 norm.

2.4 Rough Weak Solutions

We prove Theorem 1.7. Let Y0 ∈ L∞(O) and z(ε) ∈ C1−var([0, T ];RN) such that z(ε) → z in
C([0, T ];RN). In particular {z(ε)| ε > 0} is compact in C([0, T ];RN). We require uniform
bounds for the corresponding weak solutions Y (ε) to (0.3) driven by z(ε).

Lemma 2.4. Let {z(ε)| ε > 0} ⊆ C([0, T ];RN) compact and Y (ε) the weak solutions to (0.3)
driven by z(ε). Then there exists a constant M > 0 (independent of ε) such that

sup
t∈[0,T ]

‖Y (ε)
t ‖L∞(O) + ‖Φ(e−µ(ε)

Y (ε))‖2L2([0,T ];H1
0 (O)) ≤ M.

Proof. For ε > 0 let {z(τ,ε) ∈ C∞([0, T ];RN)| τ > 0} be the sequence of smooth functions
obtained by convolution of z(ε) with a standard Dirac sequence. Since {z(ε)| ε > 0} is a set
of equicontinuous functions there is a uniform modulus of continuity ω : R+ → R+. Uniform
boundedness and the modulus of continuity are preserved under convolution with a Dirac
sequence. Thus, the set {z(τ,ε)| ε > 0, τ > 0} is compact in C([0, T ];RN).
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Let now Y
(δ)
0 be a smooth approximation of Y0 as in the proof of Theorem 1.4 and let

Y (δ,ε) be the corresponding smooth solution to (2.14) driven by z(δ,ε). By Lemma 2.2 and
Lemma 2.3 there is a uniform constant M > 0 (depending only on ‖Y0‖L∞(O)) bounding

‖Y (δ,ε)‖L∞(O) and ‖Φ(e−µ(δ,ε)
)Φ(δ)(Y (δ,ε))‖2

L2([0,T ];H1
0 (O))

. By weak lower semicontinuity of the

L∞ norm on Lm+1, the convergence Y (δ,ε) ⇀∗ Y in L∞([0, T ];Lm+1(O)) and the convergence

Φ(e−µ(δ,ε)
)Φ(δ)(Y (δ,ε)) ⇀ Φ(e−µ(ε)

Y (ε)) in L2([0, T ];H1
0(O)) obtained in the proof of Theorem

1.4 these bounds continue to hold for Y (ε).

By Theorem 1.4 there is a weak solutions Y to (0.3) driven by z. Let X := e−µY and

X(ε) := e−µ(ε)
Y (ε). Then X(ε) solves (0.1) and we need to prove X

(ε)
t → Xt in H for all

t ∈ [0, T ]. For this it is enough to prove Y
(ε)
t → Yt in H for all t ∈ [0, T ].

Lemma 2.4 implies that Y (ε) is uniformly bounded in L∞(OT ), hence also in L∞([0, T ];H).

Moreover, Z(ε) = Φ(e−µ(ε)
Y (ε)) is uniformly bounded in L∞(OT ) and in L2([0, T ];H1

0(O)).

By the same argument as in Theorem 1.4 we obtain the weak convergence Y
(ε)
t ⇀ Yt in H

for all t ∈ [0, T ] and Z(ε) ⇀ Z = Φ(e−µY ) in L2([0, T ];H1
0(O)). Hence X

(ε)
t ⇀ Xt := e−µtYt

in H for all t ∈ [0, T ]. Since Y is the unique weak solution to (0.3) the uniform bounds for
X follow from Theorem 1.4.

It remains to prove that the convergence X
(ε)
t ⇀ Xt is strong in H . As in (2.25) and (2.26)

we have

‖Yt‖2H = ‖Ys‖2H − 2

∫ t

s

∫

O

eµrZrYrdξ dr

+ 2

∫ t

s

∫

O

Zr

(

2∇(eµr)∇((−∆)−1(Yr)) + ∆(eµr)(−∆)−1(Yr)
)

dξ dr.

(2.28)

and

‖Y (ε)
t ‖2H = ‖Y (ε)

s ‖2H − 2

∫ t

s

∫

O

eµ
(ε)
r Z(ε)

r Y (ε)
r dξ dr

+ 2

∫ t

s

∫

O

Z(ε)
r

(

2∇(eµ
(ε)
r )∇((−∆)−1(Y (ε)

r )) + ∆(eµ
(ε)
r )(−∆)−1(Y (ε)

r )
)

dξ dr.

(2.29)

Since Y (ε) ∈ L2([0, T ];L2(O)) and dY (ε)

dt
∈ L2([0, T ];H) bounded and L2(O) →֒→֒ H , by the

Aubin-Lions compactness theorem we have

Y (ε) → Y, strongly in L2([0, T ];H).

Integrating (2.28) and (2.29) over s ∈ [0, t] and subtracting yields

t lim sup
ε→0

(

‖Y (ε)
t ‖2H − ‖Yt‖2H

)

≤ 0,

which implies strong convergence Y
(ε)
t → Yt in H .
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2.5 Limit solutions and dynamics on L1(O)

2.5.1 L1-continuity and a comparison principle

We will now prove uniform L1 continuity in the initial condition for weak solutions to (0.3).
Using this uniform continuity we can then construct limit solutions to (0.3).

Lemma 2.5. Let Y ∈ L∞([0, T ];L1(O)) such that t 7→ Yt(ξ) is continuously differentiable
on [0, T ] for almost all ξ ∈ O and ∂tY ∈ L1(OT ). Then

∫

O

Y +
t dξ −

∫

O

Y +
s dξ =

∫ t

s

∫

O

∂rYr sgn+(Yr) dξdr,

where (·)+ = max(·, 0) and sgn+(·) = max(sgn(·), 0).

Proof. Let t ∈ [0, T ]. Since Y ∈ L∞([0, T ];L1(O)) there is a sequence tn → t and a
constant M > 0 such that ‖Ytn‖L1(O) ≤ M . By continuity of t 7→ Yt(ξ) for almost all
ξ ∈ O we have Ytn(ξ) → Yt(ξ) almost everywhere. Fatou’s Lemma yields ‖Yt‖L1(O) ≤
lim infn→∞ ‖Ytn‖L1(O) ≤ M . Thus, Yt ∈ L1(O) for all t ∈ [0, T ]. Let σ(τ) ∈ C∞(R) be such
that

σ(τ)(r) :=

{

0 , for r ≤ 0

r , for r ≥ τ,

with 0 ≤ σ̇(τ) ≤ 1 and 0 ≤ σ̈(τ) ≤ C
τ
. For 0 ≤ s < t ≤ T we obtain

∫

O

σ(τ)(Yt) dξ −
∫

O

σ(τ)(Ys) dξ =

∫ t

s

∫

O

∂rσ
(τ)(Yr) dξdr =

∫ t

s

∫

O

σ̇(τ)(Yr)∂rYr dξdr.

By dominated convergence this yields the assertion.

Lemma 2.6. Let Y i
0 ∈ L∞(O), i = 1, 2 and Y (i) be the corresponding essentially bounded

weak solution to (0.3). Then there exists a constant C > 0 such that

sup
t∈[0,T ]

‖(Y (1)
t − Y

(2)
t )+‖L1(O) + ‖(Φ(e−µY (1))−Φ(e−µY (2)))+‖L1(OT ) ≤ C‖(Y (1)

0 − Y
(2)
0 )+‖L1(O),

and

sup
t∈[0,T ]

‖Y (1)
t − Y

(2)
t ‖L1(O) + ‖Φ(e−µY (1))− Φ(e−µY (2))‖L1(OT ) ≤ C‖Y (1)

0 − Y
(2)
0 ‖L1(O).

Proof. Let σ(τ) be as in the proof of Lemma 2.5 and let ϕ ∈ C2(Ō) be the unique classical
solution to

∆ϕ = −1, in O
ϕ = 1, on ∂O.
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By the maximum principle we have ϕ ≥ 1. By Theorem 1.3 the weak solutions Y (i) coincide
with the weak solutions constructed in the proof of Theorem 1.4 by approximation with
classical solutions Y (i,δ) to (2.14). Let z(δ) ∈ C∞([0, T ];RN) be the corresponding smooth
approximation of the driving signal z. By equicontinuity of z(δ) we can find a partition
0 = τ0 < τ1 < ... < τN = T of [0, T ] such that


 inf
ξ∈Ō,

t∈[τi,τi+1]

eµ
(δ)
t (ξ)−µ

(δ)
τi

(ξ)





(

− 1 + 2‖ϕ‖C1(O)

(

‖∇(µ
(δ)
t − µ(δ)

τi
)‖C0(O) + ‖∇(µ

(δ)
t − µ(δ)

τi
)‖2C0(O)

+ ‖∆(µ
(δ)
t − µ(δ)

τi
)‖C0(O)

)

)

≤ −1

2
,

for all t ∈ [τi, τi+1], all i = 0, ..., N − 1 and all δ > 0. Let now δ > 0 be arbitrary, fixed. For
simplicity we drop the δ dependency of the signal in the following calculation. Define

ηt(ξ) := ϕ(ξ)

N−1
∑

i=0

1[τi,τi+1)(t)e
−µτi

(ξ).

For τi ≤ s < t < τi+1 by Lemma 2.5 we have
∫

O

(Y
(1,δ)
t − Y

(2,δ)
t )+ηt dξ −

∫

O

(Y (1,δ)
s − Y (2,δ)

s )+ηs dξ

=

∫ t

s

∫

O

∂r(Y
(1,δ) − Y (2,δ))sgn+

(

Y (1,δ)
r − Y (2,δ)

r

)

ηr dξdr.

Let Y (δ) := Y (1,δ) − Y (2,δ) and w(δ) = Φ(e−µr)(Φ(δ)(Y (1,δ))− Φ(δ)(Y (2,δ))). We observe:
∫ t

s

∫

O

∂rY
(δ)sgn+

(

Y (δ)
r

)

ϕe−µτi dξdr =

∫ t

s

∫

O

(∆w(δ)
r )sgn+(w(δ)

r )eµr−µτiϕ dξ dr

= lim
τ→0

(

−
∫ t

s

∫

O

∇w(δ)
r ∇(σ̇(τ)(w(δ)

r ))eµr−µτiϕ dξdr(2.30)

−
∫ t

s

∫

O

∇w(δ)
r ∇(eµr−µτiϕ)σ̇(τ)(w(δ)

r ) dξdr
)

.

Since ∇σ̇(τ)(w
(δ)
r ) = σ̈(τ)(w

(δ)
r )∇w

(δ)
r , the first term has negative sign. Partial integration of

the second term gives

−
∫

O

∇w(δ)∇(eµr−µτiϕ)σ̇(τ)(w(δ)) dξ =

∫

O

w(δ)∆(eµr−µτiϕ)σ̇(τ)(w(δ)) dξ

+

∫

O

w(δ)∇(eµr−µτiϕ)∇σ̇(τ)(w(δ)) dξ.

For the second term on the right hand side we note
∫

O

w(δ)∇(eµr−µτiϕ)∇σ̇(τ)(w(δ)) dξ =

∫

O∩{0<w(δ)<τ}

w(δ)σ̈(τ)(w(δ))∇(eµr−µτiϕ) · ∇w(δ) dξ → 0,
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for τ → 0, by σ̈(τ) ≤ C
τ
and dominated convergence. Using dominated convergence we can

take the limit τ → 0 in (2.30) to get

∫ t

s

∫

O

∂rY
(δ)sgn+(Y (δ)

r )ϕe−µτi dξdr ≤
∫ t

s

∫

O

w(δ)
r ∆(eµr−µτiϕ)sgn+(w(δ)

r ) dξdr.

We note

∆
(

eµr−µτiϕ
)

= eµr−µτi

(

∆ϕ+ 2∇ϕ · ∇(µr − µτi) + ϕ(|∇(µr − µτi)|2 +∆(µr − µτi))
)

≤ −1

2
,

by the choice of ϕ and τi. Thus,

∫ t

s

∫

O

∂rY
(δ)sgn+(Y (δ)

r )ϕe−µτi dξdr +
1

2

∫ t

s

∫

O

(w(δ)
r )+ dξdr ≤ 0.

In conclusion:
∫

O

(Y
(1,δ)
t − Y

(2,δ)
t )+ηt dξ −

∫

O

(Y (1,δ)
s − Y (2,δ)

s )+ηs dξ +
1

2

∫ t

s

∫

O

(w(δ)
r )+ dξdr

=

∫ t

s

∫

O

∂rY
(δ)sgn+(Y (δ)

r )ηr dξdr +
1

2

∫ t

s

∫

O

(w(δ)
r )+ dξdr ≤ 0,

for all τi ≤ s < t < τi+1 and hence for all 0 ≤ s < t ≤ T . We have

‖(Y (1,δ)
t − Y

(2,δ)
t )+‖L1(O) + ‖Φ(e−µ(δ)

)(Φ(δ)(Y (1,δ))− Φ(δ)(Y (2,δ)))+‖L1(OT )

≤ C‖(Y (1,δ)
0 − Y

(2,δ)
0 )+‖L1(O),

for all t ∈ [0, T ], where the constant C does not depend on δ (using uniform bounded-

ness of z(δ)). By the proof of Theorem 1.4 we know that Y
(i,δ)
t ⇀ Y

(i)
t in L1(O) and

Φ(e−µ(δ)
)Φ(δ)(Y (i,δ)) ⇀ Φ(e−µY (i)) in L2([0, T ];H1

0(O)). By weak lower semicontinuity of
‖(·)+‖L1(O) and ‖(·)+‖L1(OT ), taking the limit δ → 0 we obtain

‖(Y (1)
t − Y

(2)
t )+‖L1(O) + ‖(Φ(e−µY (1))− Φ(e−µY (2)))+‖L1(OT ) ≤ C‖(Y (1)

0 − Y
(2)
0 )+‖L1(O).

Since Z(i) := −Y (i) again is an essentially bounded weak solution of (0.3), the same assertion

follows for ‖(Y (1)
t − Y

(2)
t )−‖L1(O). Adding both inequalities yields

‖Y (1)
t − Y

(2)
t ‖L1(O) + ‖Φ(e−µY (1))− Φ(e−µY (2))‖L1(OT ) ≤ C‖Y (1)

0 − Y
(2)
0 ‖L1(O).

Remark 2.7. Following the same argument, but with ∆ϕ = −1 with Dirichlet boundary
conditions, the same result can be established in the weighted L1-space L1

ϕ. This then allows
to construct limit solutions even for initial conditions in L1

ϕ.
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Using this uniform L1 continuity in the initial condition we can now construct limit solutions
for all initial conditions in L1.

Proof of Theorem 1.9. Let Y0 := eµ0X0 ∈ L1(O) and Y
(δ)
0 → Y0 in L1(O) with Y

(δ)
0 ∈

L∞(O). Let Y (δ) be the essentially bounded weak solution corresponding to Y
(δ)
0 . By Lemma

2.6 we have

sup
t∈[0,T ]

‖Y (δ1)
t − Y

(δ2)
t ‖L1(O) + ‖Φ(e−µY (δ1))− Φ(e−µY (δ2))‖L1(OT ) ≤ C‖Y (δ1)

0 − Y
(δ2)
0 ‖L1(O),

for all δ1, δ2 > 0. Hence, Y
(δ)
t is a Cauchy sequence in L1(O) and thus uniformly convergent

to some limit Yt ∈ L1(O). Since Φ(e−µY (δ1)) is a Cauchy sequence in L1(OT ) and Φ is
continuous we obtain Φ(e−µY (δ1)) → Φ(e−µY ) in L1(OT ).

By Theorem 1.7, X(δ) = e−µY (δ) are rough weak solutions and we conclude X
(δ)
t → Xt :=

e−µtYt uniformly in L1(O) and Φ(X(δ)) → Φ(X) in L1(OT ). In the proof of Theorem 1.4 we

have proven weak continuity of t 7→ Y
(δ)
t in Lp(O). Hence t 7→ X

(δ)
t is weakly continuous in

L1(O) and thus is t 7→ Xt. The bound Xt ≤ Ut follows immediately.

2.6 (Equi-)continuity of solutions

Proof of Theorem 1.12. We only prove (i). The proofs of (ii), (iii) are analogous. Let X0 ∈
L1(O) and X be the corresponding limit solution. Since K ⊆ (0, T ]×O is compact, there is
a τ > 0 such that K ⊆ [τ, T ]×O. By Theorem 1.9 we know that Y = eµX ∈ L∞([τ, T ]×O)
and by Remark 1.11 Y is a very weak solution of (0.3). By Theorem 1.3 and Theorem 1.4
this implies that Y is an essentially bounded weak solution to (0.3) on [τ, T ]×O with initial
condition Yτ . Due to the uniform L∞ bound U established in Theorem 1.9, ‖Yτ‖L∞(O) is
bounded independent of the initial condition Y0. It is thus sufficient to prove the claimed
regularity for weak solutions Y of (0.3) with a modulus of continuity depending only on the
data and ‖Y0‖L∞(O).

Let Y (δ) the sequence of approximating solutions with initial condition Y
(δ)
0 and driving

signal z(δ) used in Theorem 1.4. By Theorem 1.4 and Lemma 2.2, Y and Y (δ) are uniformly
bounded, i.e.

‖Y ‖L∞(OT ), ‖Y (δ)‖L∞(OT ) ≤ M, for all δ ≤ δ0,

for some constant M > 0 depending on ‖Y0‖L∞(O). We aim to apply the continuity results
for porous media type PDE given in [14] to the approximating equation (2.14). In [14]
equations of the form

d

dt
β(v) = div a(t, ξ, v,∇v) + b(t, ξ, v,∇v), on OT(2.31)
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with Dirichlet boundary conditions and initial value v0 are considered. We first rewrite the
approximating equations in the form of (2.31). The approximating equation (2.14) (driven
by z(δ)) is equivalent to

∂tY
(δ)
t = div a(δ)(t, ξ,Φ(δ)(Y

(δ)
t ),∇Φ(δ)(Y

(δ)
t )) + b(δ)(t, ξ,Φ(δ)(Y

(δ)
t ),∇Φ(δ)(Y

(δ)
t ))

with

a(δ)(t, ξ, z, p) = e(1−m)µ
(δ)
t (ξ)p,

b(δ)(t, ξ, z, p) = eµ
(δ)
t (ξ)∆(Φ(e−µ

(δ)
t (ξ)))z − (m+ 1)e(1−m)µ

(δ)
t (ξ)∇µ

(δ)
t (ξ) · p.

Let β(δ) :=
(

Φδ
)−1

. For the approximating solutions Y (δ) we define Z(δ) := Φδ(Y (δ)). Then

Z(δ) satisfies

∂tβ
(δ)(Z

(δ)
t ) = div a(δ)(t, ξ, Z

(δ)
t ,∇Z

(δ)
t ) + b(δ)(t, ξ, Z

(δ)
t ,∇Z

(δ)
t ).(2.32)

The continuity of solutions to equations of such type has been shown in [14] under the
assumption of an a-priori L∞([0, T ] × O)-bound and a growth bound for b (among other
assumptions). The growth bound on b used in [14] is not satisfied by (2.32). However, using
the a-priori L∞ bound on Y (δ) we can cut-off b in the z variable without changing the solution
property of Y (δ), thus guaranteeing that the growth condition is satisfied. We modify Φ(δ)

on R\ [−M,M ] to obtain Φ̇(δ,M) ≤ C2 uniformly in δ (while preserving the properties (i)-(iii)
in (2.3.1)) and we modify b by

b(M,δ)(t, ξ, z, p) = eµ
(δ)
t (ξ)∆(Φ(e−µ

(δ)
t (ξ)))z1|z|≤M − (m+ 1)e(1−m)µ

(δ)
t (ξ)∇µ

(δ)
t (ξ) · p.

Let β(δ,M) :=
(

Φ(δ,M)
)−1

. Using the L∞ bound we realize that Z(δ) is a solution of

∂tβ
(δ,M)(Z

(δ)
t ) = div a(δ)(t, ξ, Z

(δ)
t ,∇Z

(δ)
t ) + b(M,δ)(t, ξ, Z

(δ)
t ,∇Z

(δ)
t )

Z(δ)(0) = Z
(δ)
0 := Φ(δ)(Y

(δ)
0 ), on O,

(2.33)

for M large enough. By [14], we obtain that Z(δ) and thus Y (δ) are equicontinuous on
K with modulus of continuity depending only on the data, ‖Y0‖L∞(O) and dist(K, ∂OT ).
Hence, the set {Y (δ)| δ > 0} is a compact subset of C(K) and we can choose a uniformly
convergent subsequence. By the proof of existence of weak solutions we know that Y (δ) ⇀ Y
in Lm+1(OT ). Consequently Y (δ) → Y uniformly on K. This implies Y ∈ C(K) with the
same modulus of continuity.

Proof of Corollary 1.13. Let X0 ∈ L1(O) and X be the corresponding limit solution. By
Theorem 1.12, t 7→ Xt(ξ) is continuous on (0, T ] for each ξ ∈ O. By Theorem 1.9 X
is uniformly bounded on [τ, T ] × O for all τ > 0. Dominated convergence implies X ∈
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C((0, T ];Lp(O)). We can approximate X0 by X
(δ)
0 ∈ C(Ō) such that X

(δ)
0 → X0 in L1(O).

Let X(δ) be the weak solution corresponding to X
(δ)
0 . By Theorem 1.12 (ii), t 7→ X

(δ)
t (ξ)

is continuous on [0, T ] for each ξ ∈ O and by Theorem 1.4 X(δ) is uniformly bounded in
[0, T ] × O. Dominated convergence implies X(δ) ∈ C([0, T ];L1(O)). By Theorem 1.9 we

have supt∈[0,T ] ‖X(δ)
t − Xt‖L1(O) → 0, hence also X ∈ C([0, T ];L1(O)). If X0 ∈ L∞(O),

then by uniqueness of essentially bounded weak solutions and Theorem 1.4 X is uniformly
bounded in [0, T ]×O. Since also X ∈ C([0, T ];L1(O)) this implies X ∈ C([0, T ];Lp(O)) by
dominated convergence.

3 Generation of an RDS and random attractors

3.1 Transformation in the semimartingale case

Proof of Theorem 1.18. Let z be a continuous semimartingale in R
N , X be the limit solution

to (0.1) and Y := eµX . By Remark 1.11, Y is a very weak solution to (0.3). We will now
prove that X satisfies (1.7).

We consider the Sobolev spaces H2k
0 (O) with the norm ‖·‖H2k

0 (O) := ‖(−∆)k ·‖2. By Sobolev

embeddings there is a k ∈ N (w.l.o.g. k odd) such that H2k
0 (O) →֒ C0(O) continuously.

Hence L1(O) →֒ (H2k
0 (O))∗ =: H−2k and Y ∈ C([0, T ];L1(O)) ⊆ C([0, T ];H−2k). Let

ϕ ∈ H
2(k+1)
0 (O) and ẽj be an orthonormal basis of H2k

0 given by ẽj =
ej

λk
j

= (−∆)−kej , where

ej is an orthonormal basis of eigenvectors of−∆ on L2(O) with Dirichlet boundary conditions
and λk are the corresponding eigenvalues. Further, let PM : H−2k → span{e1, ..., eM} be
the orthogonal projection. Then PM |L2(O), PM |H2k

0 (O) are the orthogonal projections onto

span{e1, ..., eM} in L2(O), H2k
0 (O) respectively. We have

∫

O

Xtϕ dξ = H−2k〈Yt, e
−µtϕ〉H2k

0
=

∞
∑

j=1

(
∫

O

Ytej dξ

)

(ej, e
−µtϕ)2.

By the very weak solution property and continuity in L1(O)

∫

O

Ytej dξ =

∫

O

Ysej dξ +

∫ t

s

∫

O

Φ(e−µrYr)∆(eµrej) dξdr, ∀s ≤ t

hence t 7→
∫

O
Ytej dξ is an absolutely continuous map with derivative

∫

O
Φ(e−µtYt)∆(eµtej) dξ

for a.e. t ∈ [0, T ]. By Theorem 1.7 Yt is adapted. As in [6, p. 22], by use of the stochastic
Fubini Theorem (cf. e.g. [33]) we prove

(ej, e
−µtϕ)2 = (ej , e

−µ0ϕ)2 +
N
∑

k=1

∫ t

0

(ej , fke
−µrϕ)2 ◦ dz(k)r .
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In particular (ej, e
−µtϕ)2 is a real-valued continuous semimartingale. Hence, we can apply

the Itô product rule (cf. [29, p. 83]) to get
(
∫

O

Ytej dξ

)

(ej, e
−µtϕ)2 =

(
∫

O

Ysej dξ

)

(ej, e
−µsϕ)2

+

∫ t

s

(ej, e
−µrϕ)2

(
∫

O

Φ(Xr)∆(eµr ẽj) dξ

)

dr

+

N
∑

k=1

∫ t

s

(
∫

O

Yrej dξ

)

(ej , fke
−µrϕ)2 ◦ dz(k)r

(3.34)

for all 0 ≤ s ≤ t ≤ T , P-almost surely. Note
∫

O

Φ(Xr)∆(eµr ẽj) dξ =

∫

O

Φ(Xr)(ẽj∆eµr + 2∇eµr · ∇ẽj + eµr∆ẽj) dξ.

We aim to sum over j in (3.34). For this we have to rewrite the second summand on the
right hand side of the equation above. Due to the lack of regularity of Φ(X) this requires
an additional approximation:

∫

O

Φ(Xr)∇eµr · ∇ẽj dξ = − lim
M→∞

∫

O

(

∇PMΦ(Xr) · ∇eµr + PMΦ(Xr)∆(eµr)
)

ẽj dξ.

Hence

K
∑

j=1

(ẽj , e
−µrϕ)H2k

0

∫

O

Φ(Xr)2∇eµr · ∇ẽj dξ

= −2 lim
M→∞

(

∫

O

(

∇PMΦ(Xr) · ∇eµr
)

PK(e
−µrϕ) dξ +

∫

O

(

PMΦ(Xr)∆(eµr)
)

PK(e
−µrϕ) dξ

)

.

We obtain:
∞
∑

j=1

(ẽj , e
−µrϕ)H2k

0

∫

O

Φ(Xr)∆(eµr ẽj) dξ

= H−2k〈Φ(Xr)∆eµr , e−µrϕ〉H2k
0

+ H−2k〈Φ(Xr)e
µr ,∆(e−µrϕ)〉H2k

0

+ 2 H−2k〈Φ(Xr),∇eµr · ∇(e−µrϕ)〉H2k
0

= H−2k〈Φ(Xr),∆ϕ〉H2k
0
.

Summing up j = 1, ...,∞ in (3.34) yields

∫

O

Xtϕ dξ =

∫

O

Xsϕ dξ +

∫ t

s

∫

O

Φ(Xr)∆ϕ dξdr +

∫ t

s

(
∫

O

B(Xr)ϕ dξ

)

◦ dzr,

for all 0 ≤ s ≤ t ≤ T and all ϕ ∈ H
2(k+1)
0 (O) (thus by approximation for all ϕ ∈ C2

0 (Ō))
P-almost surely.
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3.2 Quasi-continuous random dynamical systems

Proof of Lemma 1.27. Since τ is weaker than the norm topology Ω(B, ω) ⊆ Ωτ (B, ω). Let
now y ∈ Ωτ (B, ω). Then there are tn → ∞ and xn ∈ B(θ−tnω) such that ϕ(tn, θ−tnω)xn →τ

y. By D asymptotic compactness there is a convergent subsequence ϕ(tnk
, θ−tnk

ω)xnk
. Since

τ is weaker than norm topology and Hausdorff we conclude ϕ(tnk
, θ−tnk

ω)xnk
→ y ∋ Ω(B, ω).

Proof of Lemma 1.28: Let tn → ∞ and xn ∈ B(θ−tnω). Then there is a convergent subse-
quence ϕ(tnl

, θtnl
ω)xtnl

→ x ∈ Ω(B, ω). Hence, Ω(B, ω) is nonempty.

Compactness: Let xn ∈ Ω(B, ω). For every n ∈ N there are sequences tk(n) → ∞ and
yk(n) ∈ B(θ−tk(n)

ω) such that ϕ(tk(n), θ−tk(n)
ω)yk(n) → xn for k(n) → ∞. Therefore, we can

find sequences tn → ∞, yn ∈ B(θ−tnω) such that ‖ϕ(tn, θ−tnω)yn − xn‖X < 1
n
. By D-

asymptotic compactness there is a convergent subsequence ϕ(tnl
, θ−tnl

ω)ynl
→ x ∋ Ω(B, ω).

Hence, xnl
→ x ∋ Ω(B, ω).

Invariance: First let x ∈ Ω(B, ω). We need to prove ϕ(t, ω)x ∈ Ω(B, θtω). Since x ∈
Ω(B, ω) there are sequences tn → ∞, xn ∈ B(θ−tnω) such that ϕ(tn, θ−tnω)xn → x. By
the cocycle property ϕ(t + tn, θ−tnω)xn = ϕ(t, ω)ϕ(tn, θ−tnω)xn and by bounded absorption
ϕ(t + tn, θ−tnω)xn = ϕ(t + tn, θ−(t+tn)θtω)xn ∈ F (θtω) for n large enough. By quasi-τ -
continuity we conclude ϕ(t + tn, θ−tnω)xn →τ ϕ(t, ω)x. Hence ϕ(t, ω)x ∈ Ωτ (B, θtω) =
Ω(B, θtω).

Let now z ∈ Ω(B, θtω), i.e.

(3.35) ϕ(tn, θ−tnθtω)xn → z

for some tn → ∞ and xn ∈ B(θ−tnθtω). By D-asymptotic compactness of ϕ there is a
subsequence ϕ(tnl

− t, θ−(tnl
−t)ω)xnl

→ x ∋ Ω(B, ω). By (3.35), quasi-τ -continuity and the
cocycle property we have ϕ(tnl

, θ−tnl
θtω)xnl

= ϕ(t, ω)ϕ(tnl
− t, θ−(tnl

−t)ω)xnl
→τ ϕ(t, ω)x.

Since τ is weaker than norm topology and Hausdorff, we conclude z = ϕ(t, ω)x with x ∈
Ω(B, ω).

Proof of Theorem 1.29: Necessity of the conditions follows from compactness of A and its
attraction property. To prove sufficiency we first observe that by Lemma 1.28,

A(ω) := Ω(F, ω)

is compact and invariant. Since F ∈ D and F is D-absorbing we have A(ω) ⊆ F (ω) for all
ω ∈ Ω and thus A ∈ D. We only need to prove attraction. We first observe that

Ω(D,ω) ⊆ Ω(F, ω) = A(ω), ∀D ∈ D, ω ∈ Ω.
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Indeed: By absorption we have Ω(B, ω) ⊆ F (ω). By Lemma 1.28 we know that Ω(B, ω) =
ϕ(t, θ−tω)Ω(B, θ−tω) ⊆ ϕ(t, θ−tω)F (θ−tω). Hence

Ω(B, ω) ⊆
⋂

t≥0

ϕ(t, θ−tω)F (θ−tω) ⊆ Ω(F, ω) = A(ω).

Assume that A is not attracting. Then there is a set B ∈ D, an ω ∈ Ω, sequences tn → ∞,
xn ∈ B(θ−tnω) and a δ > 0 such that

d(ϕ(tn, θ−tnω)xn, A(ω)) ≥ δ

for all n ∈ N. By asymptotic compactness there is a convergent subsequence ϕ(tnl
, θ−tnl

ω)xnl
→

x ∈ Ω(B, ω) ⊆ A(ω), which implies a contradiction.

3.3 RDS and random attractors for (0.1)

Proof of Theorem 1.31. By Theorem 1.9 the map x 7→ X(t, s;ω)x is Lipschitz continuous in
X = L1(O), locally uniformly in s, t. Uniqueness of essentially bounded very weak solutions
implies the flow property

X(t, s;ω)x = X(t, r;ω)X(r, s;ω)x, ∀ω ∈ Ω, s ≤ r ≤ t

and cocycle property

X(t, s; θrω)x = X(t+ r, s+ r;ω)x, ∀ω ∈ Ω, s ≤ t, r ∈ R

for all x ∈ L∞(O). By Lipschitz continuity in the initial condition these properties remain
true for all x ∈ X = L1(O).
Next, we prove measurability of the map (t, s, ω, x) 7→ X(t, s;ω)x. First let t ≥ s and
x ∈ L∞(O). By Theorem 1.7 the map µ → Xt(µ) from C(R;RN) to H is continuous. Since
also ω 7→ µ(ω) is a measurable map this implies measurability of ω 7→ X(t, s;ω)x in H .
Hence

ω 7→
∫

O

(X(t, s;ω)x)h dξ

is measurable for all h ∈ H1
0(O). Since X = L1(O) is separable, by Pettis measurability

theorem this implies measurability of X(t, s; ·)x. By approximation, this remains true for
all x ∈ X . Since X(·, s;ω)x ∈ C([0, T ];X), for all ω ∈ Ω we deduce joint measurability of
(t, ω) 7→ X(t, s;ω)x in X . Using X(t, s;ω)x = X(t − s, 0; θsω)x and joint measurability of
(s, ω) 7→ (t− s, θsω) this implies measurability of (s, ω) 7→ X(t, s;ω)x. Hence, measurability
of (t, s, ω, x) 7→ X(t, s;ω)x follows and ϕ defines a continuous RDS on L1(O).

By Theorem 1.9, ϕ(t, ω)x ∈ Lp(O) for all t ∈ R+ if x ∈ Lp(O), p ∈ [1,∞]. Since Lp(O) is
reflexive for p ∈ (1,∞) this implies quasi-weak-continuity of ϕ on Lp(O) for all p ∈ (1,∞)
by Proposition 1.26. For p = ∞ we note that σ(L∞, i∗(L∞)) is the weak∗ topology. By
Proposition 1.26 quasi-weak∗-continuity of ϕ on L∞(O) follows.
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3.4 Bounded Absorption, Asymptotic Compactness and Random
Attractors for ϕ

In the following let D be the universe of all random closed sets.

Proposition 3.1 (Bounded absorption). There is an L∞(O)-bounded (i.e. ‖F (ω)‖L∞(O) <
∞) D-absorbing random set F ∈ D. The absorption time for D ∈ D, ω ∈ Ω can be chosen
independent of ω and D.

Proof. Recall that by Theorem 1.31 we have ϕ(t, ω)x ≤ Ut(ω) a.e. in O for all t ≥ 0 and all
x ∈ X . For D ∈ D:

ϕ(t, θ−tω)D(θ−tω) = ϕ(1, θ−1ω)ϕ(t− 1, θ−tω)D(θ−tω) ≤ U1(θ−1ω),

a.e. in O for all t ≥ 1. Hence F (ω) = {x ∈ L∞(O)| ‖x‖L∞(O) ≤ ‖U1(θ−1ω)‖L∞(O)} is a
D-absorbing set with absorption time t ≡ 1.

Lemma 3.2 (Asymptotic compactness). i. The RDS ϕ is D-asymptotically compact on
each Lp(O), p ∈ [1,∞).

ii. If (O1) is satisfied, then there exists a compact D-absorbing set K with K(ω) ⊆ C0(Ō)
compact for each ω ∈ Ω. In particular, ϕ is D-asymptotically compact on L∞(O).

Proof. (i): Let tn → ∞, D ∈ D and xn ∈ D(θ−tnω). In Proposition 3.1 we have proved the
existence of a D-absorbing random set F . Note

ϕ(tn, θ−tnω)xn = ϕ(1, θ−1ω)ϕ(tn − 1, θ−(tn−1)θ−1ω)xn

⊆ ϕ(1, θ−1ω)F (ω),

for all tn ≥ 2. Since F (ω) is bounded in L∞(O), by Theorem 1.31 ϕ(1, θ−1ω)F (ω) is a set
of uniformly continuous functions on each compact set K ⊆ O with modulus of continuity
depending only on m, dist(K, ∂O) and ‖F (ω)‖L∞(O). Let {Kk|k ∈ N} be a sequence of
compact sets in O, such that O =

⋃

k∈NKk. For each k ∈ N we can choose a convergent
subsequence of ϕ(tn, θ−tnω)xn ∈ C0(Kk). Passing to a diagonal sequence, we can thus choose
a subsequence (again denoted by n) such that ϕ(tn, θ−tnω)xn is convergent in each C0(Kk)
and in particular pointwisely convergent in all of O. By the uniform L∞(O) bound on
ϕ(tn; θ−tnω)xn this implies convergence of ϕ(tn; θ−tnω)xn in Lp(O), for each p ∈ [1,∞).

(ii): By Theorem 1.31, (iii) the set K(ω) := ϕ(1, θ−1ω)F (ω) is uniformly bounded and
equicontinuous in C0(Ō). Since F (ω) is absorbing, so is ϕ(1, θ−1ω)F (ω).

Proof of Theorem 1.32. Let Dp be the universe of all random sets in Lp(O), p ∈ [1,∞].

The (unique) existence of a Dp-random attractor Ap in Lp(O) follows from Dp-absorption,
Dp-asymptotic compactness, quasi-weak-continuity of ϕ on Lp(O) and Theorem 1.29 for each
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p ∈ [1,∞). Since F in Proposition 3.1 is an L∞ bounded set absorbing all sets in D1, all
these attractors coincide.

By the invariance property of the random attractor and Proposition 3.1 we have A(ω) =
ϕ(t, θ−tω)A(θ−tω) ⊆ F (ω), for all t ≥ 1 and thus L∞ boundedness of A. Again by invari-
ance of A, A(ω) = ϕ(1, θ−1ω)A(θ−1ω) ⊆ ϕ(1, θ−1ω)F (θ−1ω). Invoking Theorem 1.31 yields
equicontinuity on each compact set K ⊆ O.

If (O1) is satisfied, then we can argue as above for p = ∞.
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[13] Giuseppe Da Prato, Michael Röckner, Boris L. Rozovskii, and Feng-Yu Wang, Strong
solutions of stochastic generalized porous media equations: existence, uniqueness, and
ergodicity, Comm. Partial Differential Equations 31 (2006), no. 1-3, 277–291.

[14] Emmanuele DiBenedetto, Continuity of weak solutions to a general porous medium
equation, Indiana Univ. Math. J. 32 (1983), no. 1, 83–118.

[15] Franco Flandoli and Hannelore Lisei, Stationary conjugation of flows for parabolic
SPDEs with multiplicative noise and some applications, Stochastic Anal. Appl. 22
(2004), no. 6, 1385–1420.

[16] Peter K. Friz and Nicolas B. Victoir, Multidimensional stochastic processes as rough
paths, Cambridge Studies in Advanced Mathematics, vol. 120, Cambridge University
Press, Cambridge, 2010, Theory and applications.

[17] Benjamin Gess, Strong solutions for stochastic partial differential equations of gradient
type, preprint (2011).

[18] Benjamin Gess, Wei Liu, and Michael Röckner, Random attractors for a class of
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