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Abstract

The existence of random attractors for singular stochastic partial differential equa-
tions (SPDE) perturbed by general additive noise is proven. The drift is assumed only
to satisfy the standard assumptions of the variational approach to SPDE with com-
pact embeddings in the Gelfand triple and singular coercivity. For ergodic, monotone,
contractive random dynamical systems it is proven that the attractor consists of a
single random point. In case of real, linear multiplicative noise finite time extinction
is obtained. Applications include stochastic generalized fast diffusion equations and
stochastic generalized singular p-Laplace equations perturbed by Lévy noise with jump
measure having finite first and second moments.
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0 Introduction

The dynamical behaviour of random systems induced by stochastic (partial) differential
equations has attained much interest in recent years. Especially the analysis of the long-time
behaviour of such systems by means of the existence of random attractors has been intensively
discussed since the foundational work in [24, 25, 43]. However, for quasilinear SPDE the
existence of random attractors could so far only be proven for degenerate drifts occurring for
example in porous media and degenerate p-Laplace equations. The case of singular equations
requires different techniques and is solved in this paper for the first time. The existence of
attractors to certain singular PDE such as singular reaction-diffusion equations has been an
open problem even in the deterministic case. For related results on deterministic, degenerate
PDE which are partially complemented by this paper we refer to [15, 16, 17, 18, 19, 36, 45,
49, 50] and references therein.

Until recently the existence of random attractors could only be shown for concrete examples
of SPDE of semilinear type, i.e. of the form

dXt = (AXt + F (Xt))dt + B(Xt)dWt,

with linear main part A. The first approach to a truly quasilinear stochastic equation has
been presented in [11] by proving the existence of random attractors for generalized stochastic
porous media equations. This specific example has then been recovered in [30] (at least for
more regular noise) as an application of a first general result providing the existence of
random attractors for a class of SPDE perturbed by general noise, i.e. for equations of the
form

dXt = A(Xt)dt + dNt.

In that paper superlinear/degenerate drifts, i.e. satisfying V ∗〈A(v), v〉V ≥ c‖v‖αV with α ≥ 2
as well as an additional approximative coercivity condition have been considered. Regarding
applications, the superlinear case corresponds to degenerate parabolicity as occurring for
example in porous media equations and degenerate p-Laplace equations.

The results mentioned above are complemented in several ways by the present paper. First,
we consider SPDE with singular drift (i.e. satisfying V ∗〈A(v), v〉V ≥ c‖v‖αV = c

‖v‖2−α
V

‖v‖2
with 1 < α < 2) of the form

(0.0) dXt = A(t, Xt)dt + dNt.

Such equations are called singular since the coercivity coefficient c

‖v‖2−α
V

is singular when

‖v‖V approaches 0. Second, we will not require the additional approximative coercivity
condition used in [30] and thereby we are able to allow much rougher noise Nt. Third, we
present an approach that allows to combine the knowledge about the existence of a random
pullback attractor and the ergodicity of the associated Markovian semigroup to prove that
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the random attractor consists of a single random point, which in turn is a globally stable
equilibrium of the RDS.

For deterministic equations it is well known that the dynamical behaviour of systems induced
by singular equations differs strongly from the one produced by superlinear/degenerate drifts.
For example, while solutions to porous media equations (PME) decay to 0 at a polynomial
rate (cf. [4]), finite time extinction occurs for solutions to fast diffusion equations (cf. [48]
and references therein). Concerning the existence of attractors two main obstacles occur in
case of singular drifts. First, it is more difficult to obtain a global control for the solutions
or in other words to prove bounded absorption for the associated RDS, since the coercivity
coefficient in

V ∗〈A(v), v〉V ≥ c

‖v‖2−α
V

‖v‖2V

degenerates for large values of v. This problem is solved by the present paper by proving
new a priori estimates for singular ODE. Second, the regularizing properties of singular
equations are weaker than in the degenerate case. For example, consider the stochastic
singular p-Laplace equation (SpLE) with reaction term G

dXt =
(

div(|∇Xt|α−2∇Xt) + G(Xt)
)

dt + dNt, 1 < α < 2.

In the degenerate (α > 2) and in the singular case (1 < α < 2) solutions take values in
W

1,α
0 ⊆ L2. While for degenerate equations this implies regularization into the invariant

subspace W
1,2
0 , this fails in the singular case. Therefore, a different technique to obtain

attraction by a compact set is needed. Even in the deterministic case the existence of
attractors to such singular equations has been an open problem.

Another prominent example of a singular SPDE is the stochastic fast diffusion equation

(SFDE) dXt =
(

∆(|Xt|α−1sgn(Xt)) + g(t)
)

dt + dNt, 1 < α < 2.

Among other applications, SFDE are used as models for heat diffusion in plasma and for
self-organized criticality [8]. Concerning the theory of self-organized criticality, in particular
the convergence of arbitrary initial states to the critical state (which is a key property of
systems exhibiting self-organized criticality) and therefore the long-time behaviour of the
solutions is of importance. Some results for SFDE perturbed by linear multiplicative space-
time noise have been given in [8, 9]. The physically relevant case of additive noise has not yet
been considered. Application of our general result to SFDE with additive noise proves the
existence of a pullback random attractor consisting of a single random point, or equivalently
the existence of a globally stable random equilibrium. Stochastic porous media equations and
SFDE have been intensively investigated in recent years (cf. e.g. [5, 6, 7, 26, 27, 28, 31, 39, 40]
and references therein).

In the applications it is important to consider noise with only small spatial correlations,
which corresponds to noise satisfying only low spatial regularity. While in [30] it essentially
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had to be assumed ∆Nt ∈ V we only require Nt ∈ V (where V is the Banach space of the
Gelfand triple associated to the variational formulation of an SPDE, c.f. (A1)-(A4) below)
by adopting a technique from [15]. In addition, in [30] the drift A was assumed to be
weakly coercive in some additional, compactly embedded space S ⊆ H (cf. [30, (H5)]). This
assumption will not be needed here and thus our results apply to any singular equation of
the form (0.0) fitting into the variational framework (i.e. satisfying (A1)-(A4) below) as
long as the embedding V ⊆ H is compact. This enables us to cover stochastic generalized
singular p-Laplace equations and stochastic generalized fast diffusion equations.
The main idea is that the variational approach to SPDE is based on a regularizing property
of the drift, meaning that solutions take values in the smaller space V ⊆ H for almost all
times. We use this property to deduce the compactness of the stochastic flow (i.e. S(t, s;ω)B
is a compact set for all B ⊆ H bounded), which in turn yields attraction by a compact set
as soon as bounded absorption has been shown.

For deterministic dynamical systems ϕ on partially ordered spaces H it is well known that a
monotonicity (or order-preserving) property of ϕ (i.e. ϕ(t)x ≥ ϕ(t)y, for x ≥ y) significantly
simplifies the dynamics. In some recent work (cf. [3, 12, 20, 21, 42] and the references
therein) such monotonicity properties have been used to study dynamical properties of RDS.
In particular, in [21] it has been shown that a monotone, ergodic RDS has a weak pullback
attractor consisting of a single random point. However, it had to be assumed that the cone
H+ ⊆ H of nonnegative elements of H has nonempty interior, which is not satisfied by
many commonly used state spaces, as for example Lp spaces. We prove that for an ergodic,
monotone, contractive RDS on a partially ordered space satisfying the existence of upper
bounds (i.e. for x, y ∈ H there exists z ∈ H with x, y ≤ z) the random attractor consists of
a single point. In contrast to the assumptions in [21], upper bounds do exist in Lp spaces as
well as in H = (H1

0 (O))∗ and thus our results can be applied to SFDE as well as to SpLE. We
emphasize that the standard approach to prove single-valuedness of the random attractor
for degenerate equations (cf. e.g. [11, 30]) does not apply to singular equations since singular
drifts do not satisfy the required strong monotonicity conditions.

As concrete examples we consider stochastic generalized fast diffusion equations and stochas-
tic generalized singular p-Laplace equations perturbed by additive noise Nt with Nt having
stationary increments, càdlàg paths and sufficiently slow growth. In particular, this includes
all Lévy processes with jump measure having finite first and second moments. The general
results will then prove existence and compactness of an associated RDS and the existence of
a random pullback attractor. In the case that Nt is an infinite dimensional Brownian Motion,
we will further prove that the associated Markovian semigroup is strongly mixing and that
the random attractor consists of a single point, hence is a globally stable equilibrium point.

For singular SPDE perturbed by real linear multiplicative noise, i.e. of equations of the form

(0.1) dXt = A(t, Xt)dt + µXt ◦ dβt,

we show that the long-time behaviour can be described by forward random attractors (and
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hence weak random attractors), where βt is a real-valued Brownian motion and ◦ is the
Stratonovich stochastic integral. For the notions of forward and weak random attractors
see [41]. In fact, we will show a lot more, namely finite time extinction, i.e. A(ω) = {0}
is forward-absorbing. This result is related to the model of self-organized criticality as
presented in [8]. With our simplified structure of the noise, i.e. space-independent noise,
we can strengthen the assertion of finite time extinction with non-zero probability proven
in [8] to almost sure finite time extinction. We consider a stochastic perturbation in the
Stratonovich sense, since the corresponding Itô noise causes an artificial stabilization of the
random dynamics as it has been observed in [13].

In Section 1 we recall some basics on stochastic flows, RDS and random attractors. The
precise assumptions and main results will be given in Section 2, while their proofs are post-
poned to Section 4. In Section 3 we present the application of our general results to SFDE
and SpLE.

1 Basics on stochastic flows and RDS

We now recall the basic framework of stochastic flows, RDS and random attractors. Let
(H, d) be a complete separable metric space and ((Ω,F ,P), {θt}t∈R) be a metric dynamical
system, i.e. (t, ω) 7→ θt(ω) is (B(R) ⊗ F ,F)-measurable, θ0 = id, θt+s = θt ◦ θs and θt is
P-preserving, for all s, t ∈ R.

Definition 1.1 (Stochastic Flow). A family of maps S(t, s;ω) : H → H, s ≤ t is said to be
a stochastic flow, if for all ω ∈ Ω

(i) S(s, s;ω) = idH , for all s ∈ R.

(ii) S(t, s;ω)x = S(t, r;ω)S(r, s;ω)x, for all t ≥ r ≥ s, x ∈ H.

A stochastic flow S(t, s;ω)x is called

(iii) measurable if the map ω → S(t, s;ω)x is measurable for all s ≤ t, x ∈ H

(iv) continuous if the map x → S(t, s;ω)x is continuous for all s ≤ t, ω ∈ Ω

(v) a cocycle if
S(t, s;ω)x = S(t− s, 0; θsω)x,

for all x ∈ H, ω ∈ Ω and all t ≥ s.

Definition 1.2 (Random Dynamical System). A measurable map ϕ : R+ × Ω × H → H

satisfying
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i. ϕ(0, ω) = 0

ii. ϕ(t + s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω), ∀ω ∈ Ω, s, t ≥ 0

is called an RDS. If x 7→ ϕ(t, ω)x is continuous for all t ∈ R, ω ∈ Ω then ϕ is a continuous
RDS.

There is a close connection between RDS and cocycle stochastic flows. Let S(t, s;ω) be
a cocycle stochastic flow such that (t, ω, x) 7→ S(t, 0;ω)x is measurable. Then ϕ(t, ω) :=
S(t, 0;ω) defines an RDS. Vice versa, let ϕ(t, ω) be an RDS and define S(t, s;ω) := ϕ(t −
s, θsω). Then S(t, s;ω) is a measurable cocycle stochastic flow.
Having the notions of a stochastic flow and RDS at our disposal we can now consider their
long time behaviour. In the following let S(t, s;ω)x be a stochastic flow.

Definition 1.3. A family {D(t, ω)}t∈R, ω∈Ω of subsets of H is said to be

i. a random closed set if it is P-a.s. closed and ω → d(x,D(t, ω)) is measurable for each
x ∈ H, t ∈ R. In this case we also call D measurable.

ii. right lower-semicontinuous if for each t ∈ R, ω ∈ Ω, y ∈ D(t, ω) and tn ↓ t there is a
sequence yn ∈ D(tn, ω) such that yn → y or equivalently d(y,D(tn, ω)) → 0.

For normed spaces H we define ‖B‖H := supb∈B ‖b‖H . The a priori bound for solutions to
singular SPDE given in the proof of Theorem 2.6 will lead to collections of ω-dependent sets
satisfying the following growth property:

Definition 1.4. Let H be a normed space. A family of sets {D(t, ω)}t∈R, ω∈Ω is said to be
of subpolynomial growth of order β > 0 if

lim
t→−∞

‖D(t, ω)‖H
|t|β = 0, ∀ω ∈ Ω.

In the following let D be a system of families {D(t, ω)}t∈R,ω∈Ω of subsets of H .

Definition 1.5 (Absorption & Attraction). A family of sets {F (t, ω)}t∈R,ω∈Ω is said to be

i. D-absorbing, if there is a set Ω0 ⊆ Ω of full P-measure such that for all D ∈ D, t ∈ R

and ω ∈ Ω0 there exists an absorption time s0 = s0(ω,D, t) such that

S(t, s;ω)D(s, ω) ⊆ F (t, ω), for all s ≤ s0.

ii. D-attracting, if there is a set Ω0 ⊆ Ω of full P-measure such that for all D ∈ D, t ∈ R

and ω ∈ Ω0

d(S(t, s;ω)D(s, ω), F (t, ω)) → 0, for s → −∞.
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Definition 1.6 (Compactness & Asymptotic Compactness). A stochastic flow S(t, s;ω) is
called

i. D-asymptotically compact if there is a D-attracting family {K(t, ω)}t∈R,ω∈Ω of compact
subsets of H.

ii. compact if S(t, s;ω)B is a precompact subset of H for all t > s, ω ∈ Ω and each
bounded set B ⊆ H.

By [24, Lemma 2.1] we know that a continuous stochastic flow S(t, s;ω) is asymptotically
compact iff it is compactly attracted by a compact set for each time t ∈ R (where the P-zero
set on which attraction occurs may depend on t). Let {D(t, ω)}t∈R, ω∈Ω be a family of subsets
of H . We define the Ω-limit set by

Ω(D, t;ω) :=
⋂

r<t

⋃

τ<r

S(t, τ ;ω)D(τ, ω).

There are several stochastic generalizations of the deterministic notion of an attractor. For
example, pullback attractors, forward attractors, weak attractors and measure attractors.
For a comparison of some of these we refer to [41]. All of these notions coincide with the
usual notion of an attractor in the deterministic case. In the sequel we will mainly work
with pullback attractors and simply call them random attractors.

Definition 1.7 (Random Attractor). A family of sets {A(t, ω)}t∈R, ω∈Ω is called a D-random
attractor for S(t, s;ω) if it satisfies P-a.s.

i. A(t, ω) is nonempty and compact, for each t ∈ R.

ii. A is D-attracting.

iii. A is invariant under S(t, s;ω), i.e.

S(t, s;ω)A(s, ω) = A(t, ω), ∀s ≤ t.

With this definition we can give a sufficient condition for the existence of a random attractor
(cf. [24, Theorem 2.1.]). Let o ∈ H be some arbitrary point in H .

Theorem 1.8 (Existence of Random Attractors). Let S(t, s;ω) be a continuous, D-asymptotically
compact stochastic flow and let K be the corresponding D-attracting family of compact subsets
of H. Then

A(t, ω) :=

{

⋃

D∈D Ω(D, t;ω) , if ω ∈ Ω0

{o} , otherwise.
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defines a random D-attractor for S(t, s;ω) and A(t, ω) ⊆ K(t, ω)∩Ω(K, t;ω) for all ω ∈ Ω0

(where Ω0 is as in Definition 1.5).

Let now s 7→ S(t, s;ω)x be right-continuous locally uniformly in x and S(t, s;ω)x be mea-
surable. If either

(i) there is a countable family D0 ⊆ D consisting of right lower-semicontinuous random
closed sets such that for each D ∈ D, ω ∈ Ω there is a D0 ∈ D0 satisfying D(t, ω) ⊆
D0(t, ω) for all t ∈ R small enough.

(ii) K ∈ D and K is a right lower-semicontinuous random closed set,

then A is a random closed set. In case of (ii), A(t, ω) = Ω(K, t;ω) for all ω ∈ Ω0.

If S(t, s;ω)x is a cocycle and either (i) holds with D0 consisting of strictly stationary sets or
(ii) is satisfied with K being strictly stationary, then A is strictly stationary.

If the D-random attractor A is contained in D or A is measurable and strictly stationary with
{C ⊆ H| C compact} ⊆ D, then A is unique (cf. [22]). Moreover, the random D-attractor
A constructed in Theorem 1.8 is uniquely determined as the minimal random D-attractor.

The dynamical behavior of RDS can be significantly simpler if the RDS preserves a partial
order structure on the state space H . For example this idea has been used in [3, 12, 20, 21, 42].
A closed, convex cone H+ ⊆ H satisfying H+ ∩ (−H+) = {0} defines a partial order relation
on H which is compatible with the vector structure on H by defining x ≤ y iff y − x ∈ H+.
A cone H+ is said to be solid if it has nonempty interior.

Definition 1.9 (Monotone RDS). Let S ⊆ H. An RDS ϕ is said to be

i. monotone on S iff for all x ≤ y, x, y ∈ S, t ≥ 0, ω ∈ Ω

ϕ(t, ω)x ≤ ϕ(t, ω)y.

If S = H then ϕ is simply called monotone.

ii. contractive iff t 7→ ‖ϕ(t, ω)x− ϕ(t, ω)y‖H is non-increasing for all x, y ∈ H, ω ∈ Ω.

2 Setup and Main Results

Let
V ⊆ H ≡ H∗ ⊆ V ∗
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be a Gelfand triple, i.e. H is a separable Hilbert space and is identified with its dual space
H∗ by the Riesz isomorphism i : H → H∗, V is a reflexive Banach space such that it is
continuously and densely embedded into H . V ∗〈·, ·〉V denotes the dualization between V and
its dual space V ∗. Let A : R×V ×Ω → V ∗ be such that for each ω ∈ Ω, A(·, ·, ω) : R×V → V ∗

is (B(R)⊗B(V ),B(V ∗))-measurable. We extend the mapping A by 0 to all of H and assume
that there are pathwise right-continuous mappings C1, C2 : R×Ω → R, c : R×Ω → R+\{0}
and an α ∈ (1, 2) (corresponding to the case of singular equations) such that

(A1) (Hemicontinuity) For all v, v1, v2 ∈ V , t ∈ R and ω ∈ Ω, the map

s 7→ V ∗〈A(t, v1 + sv2;ω), v〉V
is continuous on R.

(A2) (Monotonicity) For all v1, v2 ∈ V, t ∈ R, ω ∈ Ω

2V ∗〈A(t, v1;ω) − A(t, v2;ω), v1 − v2〉V ≤ C2(t, ω)‖v1 − v2‖2H .

(A3) (Coercivity) There is a function f : R× Ω → R such that f(·, ω) ∈ L1
loc(R) and

2V ∗〈A(t, v;ω), v〉V ≤ C1(t, ω)‖v‖2H − c(t, ω)‖v‖αV + f(t, ω),

for each ω ∈ Ω, t ∈ R and v ∈ V .

(A4) (Growth) For each v ∈ V, ω ∈ Ω and t ∈ R

‖A(t, v;ω)‖
α

α−1

V ∗ ≤ C1(t, ω)‖v‖2H + C2(t, ω)‖v‖αV + f(t, ω).

Remark 2.1. The assumptions needed in [38] for the unique existence of a probabilistic solu-
tion to an SPDE of the form (0.0) perturbed by Wiener noise are slightly more restrictive (at
least in case of additive noise). If we require in addition that A is progressively measurable,
c, C1, C2 are non-random, f is adapted and f ∈ L1

loc(R;L1(Ω)) then there exists a unique
variational solution to such an SPDE (cf. [38, Theorem 4.2.4]).

2.1 Additive noise

Let (Ω,F , {F}t∈R,P) be a filtered probability space. We consider singular SPDE perturbed
by general additive noise, i.e. equations of the form

dXt = A(t, Xt)dt + dNt,(2.2)

where Nt is an Ft-adapted V -valued stochastic process with stationary increments and càdlàg
paths. More precisely, we assume that (Ω,F ,P, {θt}t∈R) is a metric dynamical system, i.e.
(t, ω) 7→ θt(ω) is (B(R)⊗F ,F)-measurable, θ0 = id, θt+s = θt ◦ θs and θt is P-preserving, for
all s, t ∈ R and
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(S1) (Strictly stationary increments) For all t, s ∈ R, ω ∈ Ω:

Nt(ω) −Ns(ω) = Nt−s(θsω) −N0(θsω).

(S2) (Regularity) Nt has càdlàg paths.

If A satisfies (A1) − (A4) we will prove the existence and uniqueness of solutions to (2.2) in
the following sense

Definition 2.2. An H-valued {Ft}t∈[s,∞)-adapted process {Xt}t∈[s,∞) with càdlàg paths in
H is called a solution of (2.2) if X·(ω) ∈ Lα

loc([s,∞);V ) ∩ L2
loc([s,∞);H) and

Xt(ω) = x +

∫ t

s

A(τ,Xτ (ω)) dτ + Nt(ω) −Ns(ω)

holds for all t ∈ [s,∞), ω ∈ Ω.

We will prove that (2.2) generates a stochastic flow by first transforming the SPDE into
a random PDE and then solving this random PDE for each fixed ω ∈ Ω. Let X(t, s;ω)x
denote a solution to (2.2) starting in x at time s. Define X̃(t, s;ω)x := X(t, s;ω)x−Nt(ω).
Then

X̃(t, s;ω)x = x−Ns(ω) +

∫ t

s

A
(

r, X̃(r, s;ω)x + Nr(ω)
)

dr.

Thus, we have to solve the following random PDE

Z(t, s;ω)x = x +

∫ t

s

Aω(r, Z(r, s;ω)x)dr,(2.3)

with Aω(r, v) := A(r, v + Nr(ω);ω). We then define the stochastic flow associated to (2.2)
by

S(t, s;ω)x := Z(t, s;ω)(x−Ns(ω)) + Nt(ω),

so that S(·, s;ω) satisfies

S(t, s;ω)x = x +

∫ t

s

A(S(r, s;ω)x)dr + Nt(ω) −Ns(ω),

for each fixed ω ∈ Ω and all t ≥ s. Hence S(t, s;ω)x solves (2.2) in the sense of Definition
2.2.

Due to the time-inhomogeneity of the drift A we cannot expect the stochastic flow to be a
cocycle in general. If, however, the drift is strictly stationary, i.e. if the time-inhomogeneity
is only due to the randomness of the drift the cocycle property will be obtained. In this case
the stochastic flow induces an RDS associated to (2.2).
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Theorem 2.3 (Generation). Assume (A1)-(A4) and (S1)-(S2). Then, the family of map-
pings S(t, s;ω)x is a continuous stochastic flow in H. In addition, S(t, s;ω)x is càdlàg
in t and right-continuous in s locally uniformly in x. If A is (B(R) ⊗ B(V ) ⊗ F ,B(V ∗))-
measurable then S(t, s;ω)x is a measurable stochastic flow. If A(t, v;ω) is strictly stationary,
i.e. A(t, v;ω) = A(0, v; θtω) then S(t, s;ω)x is a cocycle and hence ϕ(t, ω) := S(t, 0;ω) is a
continuous RDS.

As pointed out in the introduction, the variational approach to (S)PDE is based on a reg-
ularizing property of the drift A. This property is expressed via the coercivity assumption
(A3), namely

(2.4) 2V ∗〈A(t, v), v〉V ≤ C1(t)‖v‖2H − c(t)‖v‖αV + f(t).

Starting with an initial condition x ∈ H the second term on the right hand side of (2.4) yields
a control of the solution X(t, s;ω)x in Lα

loc(R;Lα(Ω;V )). In particular X(t, s;ω)x ∈ V , dt⊗P

almost surely. If V ⊆ H is compact, we can use this regularizing effect to prove compactness
of the stochastic flow S(t, s;ω)x. Since our argument will be purely based on the regularizing
effect due to the coercivity assumption, no further restrictions on the drift term have to be
required.

(A5) Assume that the embedding V ⊆ H is compact.

Theorem 2.4 (Compactness). Assume (A1)-(A5) and (S1)-(S2). Then S(t, s;ω)x is a
compact stochastic flow.

In order to prove the existence of a random attractor we need to assume a growth condition
on the paths of the noise.

(S3) (Growth) There is a subset Ω0 ⊆ Ω of full P-measure such that ‖Nt(ω)‖V = o(|t| 1
2−α )

for t → −∞ and all ω ∈ Ω0.

Let Dα denote the system of all families {D(t, ω)}t∈R, ω∈Ω of sets of subpolynomial growth
of order 1

2−α
(cf. Definition 1.4) and let Db be the system of all deterministic bounded sets.

Using comparison Lemmata proven in Section 4.4 we obtain

Proposition 2.5 (Bounded Absorption). Assume that (A1)-(A4) with C1 ≡ 0 and c, C2

independent of time t, f(·, ω) = o(| · | α
2−α ) càdlàg in t and that (S1)-(S3) are satisfied. Then

there is a right lower-semicontinuous family of sets {F (t, ω)}t∈R,ω∈Ω ∈ Dα that Dα-absorbs
the stochastic flow S(t, s;ω)x. If f is measurable in ω then F is a random closed set.

Combining bounded absorption and compactness of the stochastic flow we conclude
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Theorem 2.6 (Existence of Random Attractors). Assume that (A1)-(A5) with C1 ≡ 0 and
c, C2 independent of time t, f(·, ω) = o(| · | α

2−α ) càdlàg in t and that (S1)-(S3) are satisfied.
Then S(t, s;ω)x admits a random Dα-attractor Aα ∈ Dα. If A and f are measurable then
so is Aα.

If A is strictly stationary then there is a strictly stationary Db-random attractor Ab that is
measurable if A is.

We will now introduce a method that allows to prove that the random attractor consists of a
single point if the RDS is monotone, contractive and has an associated weak-∗ mean ergodic
Markov semigroup (cf. Definition 2.7 below).

We denote by B(H) the set of all Borel measurable subsets of H , by Bb(H) (resp. Cb(H))
the Banach space of all bounded, measurable (resp. continuous) functions on H equipped
with the supremum norm and by Lipb(H) the space of all bounded Lipschitz continuous
functions on H . By M1 we denote the set of all Borel probability measures on H . For a
semigroup Pt on Bb(H) we define the dual semigroup P ∗

t on M1 by P ∗
t µ(B) :=

∫

H
Pt1Bdµ,

for B ∈ B(H). A measure µ ∈ M1 is said to be invariant for the semigroup Pt if P ∗
t µ = µ,

for all t ≥ 0. For T > 0 and µ ∈ M1 we define

QTµ :=
1

T

∫ T

0

P ∗
r µdr

and we write QT (x, ·) for µ = δx. Recall

Definition 2.7. A semigroup Pt is called weak-∗ mean ergodic if there exists a measure
µ ∈ M1 such that

w-limT→∞QTν = µ,

for all ν ∈ M1 where w-lim is the limit with respect to weak convergence on M1.

If an RDS preserves a solid partial order structure on the state space H the strong mixing
property of the associated Markov semigroup Ptf(x) = E[f(ϕ(t, ·)x)] implies the existence
of a weak random attractor consisting of a single random point (cf. [21]). This result is
based on the assumption that the cone of nonnegative elements H+ is solid, which is not
satisfied by the cone of nonnegative functions Lp

+ in Lp spaces. Assuming only the existence
of upper bounds with respect to H+ we prove that the pullback random attractor consists
of a single random fixed point if the RDS is contractive and monotone. Moreover, we only
assume weak-∗ mean ergodicity of the Markovian semigroup not the strong mixing property.
We will require

(H ′) Assume that there is a cone H+ ⊆ H with induced partial order structure ”≤“ and
that there is a dense subset S ⊆ H such that ϕ is monotone with respect to ”≤“ on
S. Further assume the existence of upper bounds with respect to ”≤“ on S, i.e. that
for all x, y ∈ S there is an upper bound z ∈ S satisfying x, y ≤ z.

12



While the cone of nonnegative functions L
p
+ in Lp spaces is not solid, the existence of upper

bounds as required in (H ′) is satisfied by L
p
+. Moreover, for H = (H1

0(O))∗ the existence
of an upper bound z ∈ H for any two x, y ∈ H is not clear, while it is obvious as soon as
x, y ∈ H ∩ L1(O).

Theorem 2.8. Assume (H ′) and let ϕ be a contractive RDS on H such that Ptf(x) :=
Ef(ϕ(t, ·)x) is a weak-∗ mean ergodic Markovian semigroup on Bb(H). Then for any random
compact set K(ω) ⊆ H

diam(ϕ(t, ω)K(ω)) → 0, P− a.s.

for t → ∞. In particular, each invariant random compact set K (i.e. ϕ(t, ω)K(ω) = K(θtω))
consists of a single random point.

Corollary 2.9. Under the assumption of Theorem 2.8 the semigroup Pt is strongly mixing
in the sense that for each ν ∈ M1 we have P ∗

t ν → µ weakly for t → ∞.

In order to apply Theorem 2.8 to concrete applications we need a criterion for weak-∗ mean
ergodicity for singular SPDE. We will use the following assumptions in order to apply a
result given in [35]:

(A′) Assume that A is independent of (t, ω), (A1)-(A5) are satisfied with C1 ≡ 0 and f , c,
C2 being positive constants and that there exist c > 0, δ ∈ (0, α) such that

2 V ∗〈A(v1) − A(v2), v1 − v2〉V ≤ −c
‖v1 − v2‖2H

‖v1‖δV + ‖v2‖δV
,

for all v1, v2 ∈ V .

(S ′) Let Wt = Nt be a V -valued Wiener process.

Corollary 2.10 (Singleton Random Attractors). Assume (A′), (S ′), (H ′). Then the random
Db-attractor Ab obtained in Theorem 2.6 consists of a single random, fixed point, i.e.

A(ω) = {η(ω)}

and ϕt(ω)η(ω) = η(θtω).

2.2 Real linear multiplicative noise

First we need to construct the associated RDS, which again will be defined by first trans-
forming the SPDE into a random PDE and then solving this random PDE for each fixed
ω ∈ Ω. Let X(t, s;ω)x denote a variational solution to (0.1) starting in x at time s. Define
µt := e−µβt and note that µt satisfies

dµt = −µµt ◦ dβt,
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where ◦ is the Stratonovich stochastic integral. For X̃(t, s;ω)x := µtX(t, s;ω)x we obtain

X̃(t, s;ω)x = µsx +

∫ t

s

µrA(r, µ−1
r X̃(r, s;ω)x)dr.

Thus, we have to solve the following random PDE

Z(t, s;ω)x = x +

∫ t

s

Aω(r, Z(r, s;ω)x)dr,(2.5)

with Aω(r, v) := µr(ω)A(r, µ−1
r (ω)v). We then define the RDS associated to (0.1) by

S(t, s;ω)x := µ−1
t (ω)Z(t, s;ω)(µs(ω)x).

In the following let (Ω,F ,P, θt) be the metric dynamical system associated to two-sided real
valued Brownian motion (cf. [2]). As in the case of additive noise we obtain

Theorem 2.11 (Generation). Assume (A1)-(A4). Then, the family of mappings S(t, s;ω)x
is a continuous stochastic flow in H. In addition, S(t, s;ω)x is continuous in t and right-
continuous in s. If A is (B(R)⊗B(V )⊗F ,B(V ∗))-measurable then S(t, s;ω)x is a measurable
stochastic flow. If A(t, v;ω) is strictly stationary then S(t, s;ω)x is a cocycle and hence
ϕ(t, ω) := S(t, 0;ω) is a continuous RDS.

Theorem 2.12. Assume that A is (B(R)⊗B(V )⊗F ,B(V ∗))-measurable, strictly stationary
and satisfies (A1)-(A4). Moreover, assume that there is a function λ : Ω → R+ \ {0} and a
0 < p < 2 such that

V ∗〈A(t, v;ω), v〉V ≤ −λ(ω)‖v‖pH.
Then

A(ω) := {0}
is forward-absorbing in the sense that for every bounded set B ⊆ H, s ∈ R and ω ∈ Ω there
is an absorption time t0 = t0(‖B‖H , s, ω) such that ϕ(t, ω)B ⊆ {0} for all t ≥ t0.

If A(t, 0;ω) = 0 for all t ∈ R, ω ∈ Ω then A is invariant under ϕ and thus A is a forward
attractor for ϕ.

3 Applications

In [30, Lemma 3.1] it has been shown that for each V -valued process Nt with stationary
increments and a.s. càdlàg paths there is a metric dynamical system (Ω,F ,P, {θt}t∈R) and
a version Ñt on (Ω,F ,P, {θt}t∈R) such that Ñt satisfies (S1)-(S2).
Moreover, for any Lévy process Nt with Lévy characteristics (m,R, ν) (e.g. cf. [37, Corollary
4.59]) and

∫

V
(‖x‖V + ‖x‖2V ) dν(x) < ∞, we have Nt

|t| → ±EN1 P-almost surely for |t| → ∞
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(cf. [30, Lemma 3.2]). In particular ‖Nt‖V = O(|t|) for |t| → ∞ and thus (S3) is satisfied
for every α ∈ (1, 2). By splitting the Lévy process Nt into a Lévy process with jump
measure of bounded support and a compound Poisson process as suggested in [10], the
moment assumptions can be relaxed to

∫

V

(

‖x‖V + 1B1(0)(x)‖x‖2V
)

dν(x) < ∞. In case of
Lévy processes on a Hilbert space

∫

V
1B1(0)(x)‖x‖2V dν(x) < ∞ is always satisfied and thus

only finite first moment has to be assumed.

We now proceed to concrete examples of SPDE satisfying the assumptions (A1)-(A5) and
(A′).

3.1 Generalized Stochastic Singular p-Laplace Equation

Let (M, g, ν) be a d-dimensional weighted compact smooth Riemannian manifold equipped
with Riemannian metric g, associated measure µ and dν(x) := σ(x)dµ(x) with σ being a
smooth, positive function on M . Further, let α ∈ (1 ∨ 2d

2+d
, 2) and V := W

1,α
0 (M, ν) ⊆ H :=

L2(M, ν). By the assumption on α, the embedding V ⊆ H is well-defined and compact.
We denote the inner product on TxM given by the Riemannian metric g by (·, ·)x and the
associated norm by | · |x. Let Nt be a V -valued process satisfying (S1)-(S3) on the metric
dynamical system (Ω, {Ft}t∈R, {θt}t∈R,P). Consider the singular p-Laplace equation

(3.6) dXt = (divν(Φ(x,∇Xt, ω)) + G(Xt, ω) + g(t, ω))dt + dNt(ω),

where Φ : M × TM × Ω → TM is measurable, Φ(x, ·, ω) : TxM → TxM is continuous and

(Φ(x, ξ, ω) − Φ(x, ξ̃, ω), ξ − ξ̃)x ≤ 0

(Φ(x, ξ, ω), ξ)x ≤ c(ω)|ξ|αx + f(ω)

|Φ(x, ξ, ω)|
α

α−1
x ≤ C2(ω)|ξ|αx + f(ω), ∀x ∈ M, ξ, ξ̃ ∈ TxM, ω ∈ Ω,

with f : Ω → R being measurable, G : R× Ω → R is measurable with

|G(t, ω) −G(s, ω)| ≤ C2(ω)|t− s|
|G(t, ω)|

q
q−1 ≤ C2(ω)(1 + |t|q), ∀t, s ∈ R, ω ∈ Ω,

for some q ∈ (1, α) and g : R × Ω → H is measurable, càdlàg in t. As an explicit example
for an admissible reaction term one may consider G(r) = r√

r2+ε
.

The singular p-Laplace operator then maps V × Ω → V ∗ by

A(v, ω)(w) = −
∫

M

(Φ(x,∇v, ω),∇w)xdν(x), v, w ∈ V, ω ∈ Ω.

We obtain

15



Example 3.1 (Generalized Stochastic Singular p-Laplace Equation). There is an associated
compact stochastic flow S(t, s;ω)x to (3.6). If g(·, ω) = o(| · | α

2−α ) then there is a measurable,
random Dα-attractor Aα ∈ Dα.

If g ≡ 0 then S(t, s;ω)x is a cocycle and there is a measurable, strictly stationary random
Db-attractor Ab.

If M ⊆ Rd is an open, bounded set, ν = dx, Φ(ξ) = |ξ|α−2ξ, Nt is a V -valued Wiener
process and G, g ≡ 0, then the random attractor Ab consists of a single random fixed point,
i.e. Ab(ω) = {η(ω)}.

In case of real linear multiplicative noise

dXt = divν(Φ(x,∇Xt))dt + µXt ◦ dβt,

the deterministic set A(ω) = {0} forward absorbs all bounded deterministic sets and is
invariant.

Proof. The proof of the properties (A1)-(A4) proceeds as in [38]. (A5) is satisfied by Sobolev
embeddings and the assumption on α.

In case of the standard nonlinearity Φ(x, ξ) = |ξ|α−2
x ξ and G ≡ 0 we can check (A′) as in [35,

Proposition 3.2] with δ = 2 − α < α. By monotonicity of A, ϕ is contractive on H .

For simplicity we now restrict to the case of open, bounded domains M ⊆ Rd, Φ(ξ) = |ξ|α−2ξ,
Nt being a Wiener process in V and G, g ≡ 0. In order to verify (H ′) we set S = H = L2(M)
and x ≤ y for x, y ∈ H iff x(ξ) ≤ y(ξ) for almost all ξ ∈ M . Existence of upper bounds is
obvious. It remains to prove monotonicity of ϕ. We consider a non-singular approximation

of the nonlinearity Φ(ξ) := |ξ|α−2ξ given by Φε(ξ) = (|ξ|2 + ε)
−(2−α)

2 ξ. Then

|Φ(ξ) − Φε(ξ)| ≤ 2ε
α−1
2

and as a composition of smooth functions, Φε is a smooth function. Let {en}n∈N ⊆ C∞(M)∩
H1

0 (M) be an orthonormal basis of H , Hn := span{e1, ..., en} and Pn be the best-approximation
by elements in Hn weighted by ‖ · ‖V , i.e.

‖Pnx− x‖V = inf
v∈Hn

‖v − x‖V , ∀x ∈ V.

Then ‖Pnx‖V ≤ C‖x‖V and Pnx → x in V for n → ∞ and x ∈ V (cf. [29]). Define
Nn

t := PnNt. For initial conditions x ∈ C2(M) classical results (cf. e.g. [32]) imply the
existence of a classical solution Zε,n to

dZ
ε,n
t = div (Φε(∇(Zε,n

t + Nn
t ))) dt.
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Since Φε is differentiable we can apply the comparison result given in [33, Theorem 9.7] to
obtain Z

ε,n,x
t ≤ Z

ε,n,y
t on [0, T ] ×M for any two initial conditions x ≤ y with x, y ∈ C2(M).

Note

‖A(x) −Aε(x)‖V ∗ = sup
‖v‖V =1

∫

O
(Φ(∇x) − Φε(∇x)) · ∇vdξ ≤ Cε

p−1
2 .

Since the operators Aε satisfy uniform coercivity and growth conditions an application of
Proposition 5.1 yields Zε,n → Zn in C([0, T ];H) for ε → 0. By dominated convergence we
have Nn

· (ω) → N·(ω) in Lα([0, T ];V ) for each ω ∈ Ω. This implies Zn → Z in C([0, T ];H).
Since ”≤“ is closed with respect to the H-norm, we obtain

Zx
t ≤ Z

y
t , for all t ∈ [0, T ] and a.e. in M,

for initial conditions x ≤ y, x, y ∈ C2(M). By continuity in the initial condition this extends
to all x ≤ y, x, y ∈ H .

3.2 Generalized Stochastic Fast Diffusion Equation

Let (E,B, m) be a finite measure space with countably generated σ-algebra B and let
(L,D(L)) be a negative-definite, self-adjoint, strictly coercive (i.e. (−Lv, v)L2(m) ≥ c‖v‖2

L2(m))

operator on L2(m). Define D(E) := D(
√
−L) and E(u, v) := (

√
−Lu,

√
−Lv), for u, v ∈

D(E), where we have set m(fg) :=
∫

E
fg dm, for fg ∈ L1(m), (f, g) := (f, g)L2(m) and

‖f‖ := ‖f‖L2(m). Then (D(E), E) is a Hilbert space.

Let Φ : R× Ω → R be measurable such that Φ(0, ω) = 0, Φ(·, ω) ∈ C(R) and

(Φ(r, ω) − Φ(s, ω))(r − s) ≥ 0

Φ(r, ω)r ≥ c(ω)|r|α − f(ω)

|Φ(r, ω)| α
α−1 ≤ C2(ω)|r|α + f(ω), ∀ω ∈ Ω, s ≤ r,

(3.7)

for some α ∈ (1, 2), c : Ω → R \ {0}, C2 : Ω → R and f : Ω → R measurable. In particular,
the standard nonlinearity Φ(r) := |r|α−2r is included in our general framework. We assume

(L) The embedding D(E) ⊆ L
α

α−1 (m) is compact and dense.

This yields the Gelfand triple

V := Lα(m) ⊆ H := D(E)∗ ⊆ V ∗.

Example 3.2. Let
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i. E be a smooth, compact Riemannian d-dimensional manifold, α ∈ (1 ∨ 2d
d+2

, 2) and L

be the Friedrichs extension of a symmetric, uniformly elliptic operator of second order
on L2(m) with Dirichlet boundary conditions. For example, let L be the Dirichlet
Laplacian on E.

ii. E ⊆ Rd be an open, bounded domain, L := (−∆)β with its standard domain and
β ∈ d

2

(

2−α
α

, 1
)

∩ (0, 1].

Then (L) is satisfied.

Let g : R× Ω → H be measurable with cádlág paths and g(t, ω) = o(|t| α
2−α ) for t → −∞.

Example 3.3 (Generalized Stochastic Fast Diffusion Equation). The compact stochastic
flow S(t, s;ω)x associated to the stochastic fast diffusion equation

(3.8) dXt = (LΦ(Xt) + g(t)) dt + dNt,

with N satisfying (S1)-(S3) has a measurable random Dα-attractor Aα ∈ Dα.

If g ≡ 0 then S(t, s;ω)x is a cocycle and there is a measurable, strictly stationary random
Db-attractor Ab.

If E ⊆ Rd is an open, bounded set, L = ∆, Φ(r) = |r|α−2r, g ≡ 0 and N is a Wiener process
in V then Ab is a single random point.

For real linear multiplicative noise

dXt = LΦ(Xt)dt + µXt ◦ dβt,

and nonlinearites Φ satisfying (3.7) with f ≡ 0, A := {0} is invariant and forward absorbs
all bounded sets B ⊆ H.

Proof. The properties (A1)-(A4) can be proven as in [38], (A′) with δ = 2 − α as in [35].
(A5) is satisfied by assumption and monotonicity of A implies contractivity of S(t, s;ω)x.

For simplicity we now restrict to the case of E ⊆ Rd being an open, bounded set. Let
L = ∆, Φ(r) = |r|α−2r and N be a Wiener process in V . Set S = V and define H+ ⊆ H to
be the closed, convex cone of all nonnegative distributions in H with induced partial order
structure ”≤” on H . For elements x, y ∈ V ⊆ H we have x ≤ y iff x(ξ) ≤ y(ξ) for almost
all ξ ∈ O. Existence of upper bounds in S is obvious. It remains to prove monotonicity of
ϕ. For this we consider a smooth approximation of the nonlinearity Φ(r) = |r|α−2r given by

Φε(r) = (|r|2 + ε)
α−2
2 r. Then |Φ(r)−Φε(r)| ≤ 2ε

α−1
2 . Let {en}n∈N ⊆ C∞(M)∩H1

0 (M) be an
orthonormal basis of H , Hn := span{e1, ..., en}, Pn be the best-approximation by elements
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in Hn weighted by ‖ · ‖V (cf. Example 3.1) and Nn
t := PnNt. By classical existence results

for uniformly parabolic quasilinear PDE (cf. [32]), the approximating equation

d

dt
Z

ε,n
t = ∆Φε(Zε,n

t + Nn
t )

has a unique classical solution for initial conditions in C2(E). By classical comparison results
[33, Theorem 9.7] for two such initial conditions x ≤ y, x, y ∈ C2(E) we obtain

Z
ε,n,x
t ≤ Z

ε,n,y
t , on [0, T ] ×E.

We conclude the proof as in Example 3.1.

4 Proofs

4.1 Stochastic flows and RDS

First, we prove some properties of Ω-limit sets of asymptotically compact stochastic flows.
Similar results have been obtained in [14].

Lemma 4.1. Let S(t, s;ω) be a continuous stochastic flow.

(i) Assume that S(t, s;ω) is D-asymptotically compact. Then

Ω(D, t;ω) ⊆ K(t, ω) ∩ Ω(K, t;ω)

is a compact, invariant set for all D ∈ D, t ∈ R, ω ∈ Ω0, where Ω0 is as in Definition
1.5 and Ω(D, t;ω) attracts D.

(ii) If S(t, s;ω)x is a cocycle and D is strictly stationary, then Ω(D, t;ω) is strictly sta-
tionary.

(iii) If {D(t, ω)}t∈R, ω∈Ω is a right lower-semicontinuous random closed set, s 7→ S(t, s;ω)x
is right-continuous locally uniformly in x and S(t, s;ω)x is measurable, then Ω(D, t;ω)
is a random closed set.

Proof. (i): Since S(t, s;ω)x is D-asymptotically compact, there is a D-attracting com-
pact set K on some subset Ω0 ⊆ Ω of full P-measure. Since K is D-attracting we know
d(S(t, s;ω)D(s, ω), K(t, ω)) → 0 for s → −∞ for all ω ∈ Ω0, t ∈ R. Hence,

d

(

⋃

τ≤r

S(t, τ ;ω)D(τ, ω), K(t, ω)

)

→ 0
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for r → −∞ and thus d(Ω(D, t;ω), K(t, ω)) = 0, i.e. Ω(D, t;ω) ⊆ K(t, ω).

Next, we prove invariance of Ω(D, t;ω). Let x ∈ Ω(D, s;ω). There are sequences sn →
−∞, xn ∈ D(sn, ω) such that S(s, sn;ω)xn → x. By the flow property S(t, sn;ω)xn =
S(t, s;ω)S(s, sn;ω)xn → S(t, s;ω)x ∈ Ω(D, t;ω).
Let now z ∈ Ω(D, t;ω), i.e. S(t, sn;ω)xn → z for some sn → −∞ and xn ∈ D(sn, ω).
By D-asymptotic compactness of S(t, s;ω)x there is a subsequence S(s, snl

;ω)xnl
→ x ∋

Ω(D, s;ω). Hence, S(t, s;ω)x = liml→∞ S(t, s;ω)S(s, snl
;ω)xnl

= z.

Invariance of Ω(D, t;ω) together with Ω(D, t;ω) ⊆ K(t, ω) then yields

Ω(D, t;ω) ⊆ Ω(K, t;ω) ∩K(t, ω).

Assume Ω(D, t;ω) does not attract D. Then there are t ∈ R, ε > 0, ω ∈ Ω0 and sequences
sn → −∞, xn ∈ D(sn, ω) such that d(S(t, sn;ω)xn,Ω(D, t;ω)) ≥ ε. By asymptotic compact-
ness we can choose a convergent subsequence S(t, snl

;ω)xnl
→ x ∋ Ω(D, t;ω) which leads to

a contradiction.

(ii): To prove strict stationarity of Ω(D, t;ω) we note

Ω(D, t;ω) =
⋂

r≤t

⋃

τ≤r

S(t, τ ;ω)D(τ, ω) =
⋂

r≤t

⋃

τ≤r

S(0, τ − t; θtω)D(τ − t, θtω) = Ω(D, 0; θtω)

(iii): Ω(D, t;ω) is a countable intersection of sets of the form
⋃

τ<r S(t, τ ;ω)D(τ, ω). Hence,
it is enough to prove measurability of ω 7→ d

(

x,
⋃

τ<r S(t, τ ;ω)D(τ, ω)
)

for all r ≤ t, x ∈ H .
Let τn ↓ τ . By right lower-semicontinuity of D(·, ω) for each y ∈ D(τ, ω) there is a sequence
yn ∈ D(τn, ω) such that yn → y. Local uniform continuity of τ 7→ S(t, τ ;ω)x thus yields
S(t, τn;ω)yn → S(t, τ ;ω)y. Hence

lim sup
n→∞

d (x, S(t, τn;ω)D(τn, ω)) ≤ d (x, S(t, τ ;ω)D(τ, ω))

and thus

ω 7→ d

(

x,
⋃

τ<r

S(t, τ ;ω)D(τ, ω)

)

= inf
τ<r

d (x, S(t, τ ;ω)D(τ, ω))

= inf
τ<r, τ∈Q

d (x, S(t, τ ;ω)D(τ, ω)) .

Therefore it is enough to prove measurability of ω 7→ d (x, S(t, τ ;ω)D(τ, ω)) for all τ ≤ t

which is satisfied by measurability of S(t, τ ; ·)x and D(τ, ·) and by separability of H .

Proof of Theorem 1.8: By Lemma 4.1 we know A(t, ω) ⊆ K(t, ω) ∩ Ω(K, t;ω) for all ω ∈
Ω0, t ∈ R. In particular, A is compact. Since Ω(D, t;ω) ⊆ A(t, ω) for all ω ∈ Ω0 and
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Ω(D, t;ω) is D attracting, A is D-attracting. Compactness of
⋃

D∈D Ω(D, t;ω) and invariance
of Ω(D, t;ω)x yield invariance of A.

Let now s 7→ S(t, s;ω)x be right-continuous locally uniformly in x, S(t, s;ω)x be measurable
and (i) be satisfied. Then, by Lemma 4.1

A(t, ω) =
⋃

D0∈D0

Ω(D0, t;ω)

is the closure of a countable union of random closed sets. Hence, A is a random closed set.
If (ii) holds, then Ω(K, t;ω) ⊆ A(t, ω) and thus

A(t, ω) = Ω(K, t;ω),

for all ω ∈ Ω0, which is a closed random set by Lemma 4.1.

4.2 Generation of an RDS (Theorem 2.3)

As outlined in Section 2 we construct the stochastic flow associated to (2.2) by proving the
unique existence of a solution to the transformed equation (2.3) via the variational approach
to (S)PDE as given in [38]. To do so we check the assumptions (H1)-(H4) in [38] for Aω(t, v).
For the ease of notation we suppress the ω-dependency of the coefficients occurring in the
following calculations. (H1), (H2) immediately follow from (A1), (A2).

(H3): For v ∈ V , ω ∈ Ω and t ∈ R:

2V ∗〈Aω(t, v), v〉V = 2V ∗〈A (t, v + Nt) , v + Nt〉V − 2V ∗〈A (t, v + Nt) , Nt〉V
≤ C1(t)‖v + Nt‖2H − c(t)‖v + Nt‖αV + f(t)(4.9)

+ 2‖A (t, v + Nt) ‖V ∗‖Nt‖V .

Using Young’s inequality for all ε1 > 0 and some Cε1 we obtain

2‖A (t, v + Nt) ‖V ∗‖Nt‖V ≤ ε1‖A (t, v + Nt) ‖
α

α−1

V ∗ + Cε1‖Nt‖αV
≤ ε1C1(t)‖v + Nt‖2H + ε1C2(t)‖v + Nt‖αV + ε1f(t) + Cε1‖Nt‖αV ,

Using this in (4.9) yields

2V ∗〈Aω(t, v), v〉V ≤ C1(t)(1 + ε1)‖v + Nt‖2H − (c(t) − ε1C2(t))‖v + Nt‖αV + (1 + ε1)f(t)

+ Cε1‖Nt‖αV .

Using
‖v + Nt(ω)‖αV ≥ 21−α‖v‖αV − ‖Nt(ω)‖αV
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we obtain (for ε1 small enough):

2V ∗〈Aω(t, v), v〉V ≤ 2C1(t)(1 + ε1)‖v‖2H − (21−αc(t) − ε12
1−αC2(t))‖v‖αV + (1 + ε1)f(t)

+ (Cε1 + c(t) − ε1C2(t))‖Nt‖αV + 2C1(t)(1 + ε1)‖Nt‖2H .

which yields

2 V ∗〈Aω(t, v), v〉V ≤ C̃1(t)‖v‖2H − c̃(t)‖v‖αV + f̃(t),(4.10)

with

f̃(t) := (1 + ε1)f(t) + (Cε1 + c(t) − ε1C2(t))‖Nt‖αV + 2C1(t)(1 + ε1)‖Nt‖2H .

By right-continuity of N·(ω) and by choosing ε1 small enough we obtain (H3) for each
compact interval [S, T ] ⊆ R.

(H4): For v ∈ V , ω ∈ Ω and t ∈ R:

‖Aω(t, v)‖
α

α−1

V ∗ g = ‖A (t, v + Nt) ‖
α

α−1

V ∗

≤ C1(t)‖v + Nt‖2H + C2(t)‖v + Nt‖αV + f(t)(4.11)

≤ C̃1(t)‖v‖2H + C̃2(t)‖v‖αV + f̃(t),

with C̃1(t) := 2C1(t), C̃2(t) = 2α−1C2(t) and

f̃(t) := f(t) + 2C1(t)‖Nt‖2H + 2α−1C2(t)‖Nt‖αV .

Hence (H1) − (H4) are satisfied for Aω and by [38, Theorem 4.2.4] we obtain the unique
existence of a solution

Z(·, s;ω)x ∈ Lα
loc([s,∞);V ) ∩ C([s,∞);H)

to (2.3) for all s ∈ R, ω ∈ Ω, x ∈ H . By uniqueness for (2.3) we have the flow property

Z(t, s;ω)x = Z(t, r;ω)Z(r, s;ω)x.

which implies that
S(t, s;ω)x := Z(t, s;ω)(x−Ns(ω)) + Nt(ω)

defines a stochastic flow.

The continuity of t 7→ Z(t, s;ω)x is contained in [38, Theorem 4.2.4]. Since Nt(ω) is càdlàg
in t this implies that t 7→ S(t, s;ω)x is càdlàg. Monotonicity of Aω implies

‖Z(t, s;ω)x− Z(t, s;ω)y‖2H ≤ e
∫ t

s
C2(r)dr‖x− y‖2H.
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Thus x 7→ Z(t, s;ω)x is continuous, uniformly in t, s on bounded sets. Moreover,

‖Z(t, s1;ω)x− Z(t, s2;ω)x‖2H = ‖Z(t, s2;ω)Z(s2, s1;ω)x− Z(t, s2;ω)x‖2H
≤ e

∫ t
s2

C2(r)dr‖Z(s2, s1;ω)x− x‖2H , ∀s1 < s2,

which implies right-continuity of s 7→ Z(t, s;ω)x and thus of s 7→ S(t, s;ω)x locally uniformly
in t and x.

Let now A be (B(R)⊗B(V )⊗F ,B(V ∗))-measurable. Then measurability of Z(t, s;ω)x and
S(t, s;ω)x follows as in [30, Theorem 1.1].

Assume that A(t, v;ω) is strictly stationary. We note

Z(t, s;ω)x = x +

∫ t

s

A(r, Z(r, s;ω)x + Nr(ω), ω)dr

= x +

∫ t−s

0

A(r, Z(r + s, s;ω)x + Ns(ω) −N0(θsω) + Nr(θsω), θsω)dr.

By uniqueness for (2.3) we have

Z(t, s;ω)x + Ns(ω) −N0(θsω) = Z(t− s, 0; θsω)(x + Ns(ω) −N0(θsω)).

Hence

S(t, s;ω)x = Z(t, s;ω)(x−Ns(ω)) + Nt(ω)

= Z(t− s, 0; θsω)(x−N0(θsω)) + Nt(ω) −Ns(ω) + N0(θsω)

= Z(t− s, 0; θsω)(x−N0(θsω)) + Nt−s(θsω)

= S(t− s, 0; θsω)x,

i.e. S(t, s;ω)x is a cocycle.

4.3 Compactness of the stochastic flow (Theorem 2.4)

Proof. We will first show compactness of Z(t, s;ω)x. Let ω ∈ Ω, B ⊆ H bounded, s < t

and zn ∈ Z(t, s;ω)B, i.e. zn = Z(t, s;ω)bn for some sequence bn ∈ B. We need to prove the
existence of a convergent subsequence of zn. First note that by (4.10)

‖Z(t, s;ω)bn‖2H ≤ ‖bn‖2H +

∫ t

s

C̃1(r)‖Z(r, s;ω)bn‖2Hdr

−
∫ t

s

c̃(r)‖Z(r, s;ω)bn‖αV dr +

∫ t

s

f̃(r)dr,
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where for notational convenience we do not explicitly write the ω-dependency of the coeffi-
cients. Since c̃(r) > 0 is right-continuous there is a C > 0 such that

∫ t

s

‖Z(r, s;ω)bn‖αV dr ≤ C.

By definition Z(·, s;ω)bn satisfies

Z(r, s;ω)bn = bn +

∫ r

s

Aω(τ, Z(τ, s;ω)bn)dτ,

as an equation in V ∗ for all r ≥ s. Thus d
dr
Z(r, s;ω)bn exists in V ∗ (cf. [44, Theorem 1.6.,

p.104]) and satisfies
d

dr
Z(r, s;ω)bn = Aω(r, Z(r, s;ω)bn),

for almost all r ∈ [s,∞). For some constant C > 0 we obtain

∫ t

s

∥

∥

∥

∥

d

dr
Z(r, s;ω)bn

∥

∥

∥

∥

α
α−1

V ∗

dr =

∫ t

s

‖Aω(r, Z(r, s;ω)bn)‖
α

α−1

V ∗ dr

≤
∫ t

s

C̃1(r)‖Z(r, s;ω)bn‖2H + C̃2(r)‖Z(r, s;ω)bn‖αV + f̃(r) dr

≤
∫ t

s

f̃(r)dr + C < ∞,

where the right hand side is independent of n. Thus {Z(·, s;ω)bn} is bounded in the space

W =

{

v ∈ Lα([s, t];V ),
d

dr
v ∈ L

α
α−1 ([s, t];V ∗)

}

‖v‖W = ‖v‖Lα([s,t];V ) +

∥

∥

∥

∥

d

dr
v

∥

∥

∥

∥

L
α

α−1 ([s,t];V ∗)

.

By [47, Theorem 2.1] W ⊆ Lα([s, t];H) is compact. Hence {Z(·, s;ω)bn} is precompact
in Lα([s, t];H) and we can choose a subsequence of bn (again denoted by bn) and a Z0 ∈
Lα([s, t];H) such that

Z(·, s;ω)bn → Z0,

in Lα([s, t];H). Hence, by choosing a further subsequence of bn (denoting it by bn again) we
obtain

Z(r, s;ω)bn → Z0(r),

in H , for almost every r ∈ [s, t]. Choose one such r ∈ [s, t]. Then

Z(t, s;ω)bn = Z(t, r;ω)Z(r, s;ω)bn → Z(t, r;ω)Z0(r).

We have found the required convergent subsequence of Z(t, s;ω)bn. Compactness of Z(t, s;ω)x
implies compactness of S(t, s;ω)x.
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4.4 Comparison and a priori bounds

We present a comparison result and a priori bounds for certain ordinary differential equations
that are the foundation of the proof of bounded absorption (Proposition 2.5).

Lemma 4.2 (Comparison Lemma). Let 0 < β < 1, s ≤ t, q ≥ 0, h ∈ L1([s, t]) nonnegative
and v : [s, t] → R+ be an absolutely continuous subsolution of

y′(r) = −h(r)y(r)β, r ∈ [s, t],(4.12)

with y(s) = q, i.e. for almost every r ∈ [s, t]

v′(r) ≤ −h(r)v(r)β(4.13)

and v(s) ≤ q. Then

v(r) ≤
(

q1−β − (1 − β)

∫ r

s

h(τ)dτ ∨ 0

)
1

1−β

,

for all r ∈ [s, t].

Proof. First note that since h(r) ≥ 0, (4.12) is a monotone equation for y(r) ≥ 0 and thus

y(r) :=

(

q1−β − (1 − β)

∫ r

s

h(τ)dτ ∨ 0

)
1

1−β

is the unique absolutely continuous nonnegative solution of (4.12). Let ε > 0 and yε(r) be
the unique nonnegative solution to (4.12) with yε(s) = q+ε > 0. Define wε(t) := yε(t)−v(t)
and

τ ε := inf{r ∈ [s, t] | wε(r) ≤ 0} ∧ t = inf{r ∈ [s, t] | yε(r) ≤ v(r)} ∧ t.

Since yε(s) = q + ε > q ≥ v(s) and yε, v are continuous, we have τ ε > s. If τ ε = t then
nothing has to be shown. Thus suppose τ ε < t.
Case 1: v(τ ε) = 0
By (4.13) v(·) is decreasing, hence v(r) = 0 ≤ yε(r) for all r ∈ [τ ε, t]. Since also v(r) ≤ yε(r)
for r ∈ [s, τ ε) this implies

v(r) ≤ yε(r), ∀r ∈ [s, t].

Case 2: v(τ ε) > 0
Since v(·) is decreasing this implies the existence of a δ > 0 such that v(r) ≥ δ > 0 for
r ∈ [s, τ ε]. By definition of τ ε, v(r) ≤ yε(r) on [s, τ ε). By the mean value theorem we
further have

(wε)′ (r) ≥ h(r)
(

−yε(r)β + v(r)β
)

= −h(r)βξβ−1
r wε(r),
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for almost every r ∈ [s, t]. We observe ξβ−1
r ≤ δβ−1 for all r ∈ [s, τ ε]. Using Gronwall’s

inequality for absolutely continuous functions (cf. [46, p.90])

wε(r) ≥ εe−βδβ−1
∫ r

s
h(τ)dτ , for all r ∈ [s, τ ε].

Hence
wε(τ ε) ≥ εe−βδβ−1

∫ τε

s
h(τ)dτ > 0,

in contradiction to wε(τ ε) ≤ 0, by continuity and definition of τ ε.

Hence, the second case does not occur and we conclude v(r) ≤ yε(r), ∀r ∈ [s, t]. Since this
is true for all ε > 0 we obtain v(r) ≤ y(r), ∀r ∈ [s, t].

Lemma 4.3 (A-priori bound). Let 0 < β < 1, 0 < h, p : R → R càdlàg, q : R → R+ and
for each s ∈ R let v(·, s) : [s,∞) → R+ be an absolutely continuous subsolution of

y′(r, s) = −h y(r, s)β + p(r), r ≥ s(4.14)

with y(s, s) = q(s). We assume that p(s) = o(|s|
β

1−β ) and q(s) = o(|s| 1
1−β ) for s → −∞, i.e.

for each ε > 0 there are sp(ε), sq(ε) such that

|p(s)| ≤ ε|s|
β

1−β , for all s ≤ sp(ε),

q(s) ≤ ε|s| 1
1−β , for all s ≤ sq(ε).

Then for each t ∈ R, there is an s0 = s0(t, sq, h) ∈ R and R = R(t, p, sp, h) > 0 such that
for all s ≤ s0

v(t, s) ≤ R(t, p, sp, h)

and R(t, p, sp, h) = o(|t| 1
1−β ) for t → −∞.

Proof. Without loss of generality we assume p(r) ≥ δ > 0 (otherwise redefine p(r) :=
p(r) ∨ δ). By scaling time by 1

h
we can assume h = 1.

Let t ∈ R, A(s) := {r ∈ [s, t] | 1
2
v(r, s)β ≤ p(r)} and a(s) = supA(s)∨ s. We first show that

there exists an s0 = s0(t, p, h) ≤ t such that A(s) 6= ∅ for all s ≤ s0. Let s ≤ t such that
A(s) = ∅, i.e. 1

2
v(r, s)β > p(r), for all r ∈ [s, t]. Hence, for almost every r ∈ [s, t]

v′(r, s) ≤ −v(r, s)β + p(r) ≤ −1

2
v(r, s)β.

By Lemma 4.2

0 <
(

2p(t)
)

1
β < v(t, s) ≤

(

q(s)1−β − 1 − β

2
(t− s) ∨ 0

)
1

1−β

.(4.15)
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For ε := (1−β)
4

by assumption there exists an sq = sq(ε) ≤ 0 such that q(s)1−β ≤ −
(

1−β

4

)

s,

for all s ≤ sq. Hence

(

q(s)1−β − 1 − β

2
(t− s) ∨ 0

)
1

1−β

≤
(

1 − β

2

)
1

1−β (s

2
− t ∨ 0

)
1

1−β

= 0,

for s ≤ sq ∧ 2t. Since also (4.15) holds, we conclude s ≥ s0 := sq ∧ 2t. Hence, for s ≤ s0 we
have A(s) 6= ∅.

Next we prove that there exists an a1 = a1(t, sp, h) ≤ t such that a1 ≤ a(s) for all s ≤ s0.
Let s ≤ s0, thus A(s) 6= ∅. If a(s) = t then nothing is to show, thus suppose a(s) < t. By
definition of a(s) and right-continuity of v, p we have

p(r) ≤ 1

2
v(r, s)β, for all r ∈ [a(s), t].

Arguing as above we obtain

0 < (2p(t))
1
β ≤ v(t, s) ≤

(

v((a(s), s)1−β − 1 − β

2
(t− a(s)) ∨ 0

)
1

1−β

Since v is continuous and p càdlàg we have v(a(s), s) ≤
(

2p(a(s)−)
)

1
β . For ε :=

(

1
2

)
1−β
β
(

1−β

4

)

by assumption there exists an sp = sp(ε) ≤ 0 such that p(s)
1−β
β ≤ −

(

1
2

)
1−β
β
(

1−β

4

)

s, for all
s ≤ sp. Hence

(

v((a(s), s)1−β − 1 − β

2
(t− a(s)) ∨ 0

)
1

1−β

≤
(

1 − β

2

)
1

1−β
(

a(s)

2
− t ∨ 0

)
1

1−β

= 0,

if a(s) ≤ sp ∧ 2t. Thus, we conclude a1 := sp ∧ t ∧ 2t ≤ a(s) for all s ≤ s0.

Since on [a(s), t] we have 1
2
v(r, s)β ≥ p(r), we conclude for almost every r ∈ [a(s), t]

v′(t, s) ≤ −v(r, s)β + p(r) ≤ 0.

Hence

v(t, s) ≤ v(a(s), s) ≤
(

2p(a(s)−)
)

1
β ≤ sup

r∈[a1−1,t]

(

2p(r)
)

1
β =: R(t, p, h),

for all s ≤ s0.

4.5 Bounded absorption (Proposition 2.5)

Proof. We prove Dα-bounded absorption for Z(t, s;ω)x. By (4.10) we obtain

2 V ∗〈Aω(t, v), v〉V ≤ −c̃‖v‖αV + f̃(t),
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with c̃ > 0 and for some C > 0

f̃(t) := C (f(t) + ‖Nt‖αV ) .

By the chain-rule

d

dt
‖Z(t, s;ω)x‖2H = 2 V ∗〈Aω(t, Z(t, s;ω)x), Z(t, s;ω)x〉V dr

≤ −c̃(‖Z(t, s;ω)x‖2H)
α
2 + f̃(t),

for almost all t ∈ [s,∞). Since ‖Nr‖V = o(|r| 1
2−α ) we know f̃(r) = o(|r| α

2−α ) = o(|r|
β

1−β ) for
r → −∞ and β := α

2
for all ω ∈ Ω0. Let D ∈ Dα and xs(ω) ∈ Ds(ω). We apply Lemma

4.3 with v(t, s) := ‖Z(t, s;ω)xs(ω)‖2H, p(r) := f̃(r), q(s) := |Ds(ω)|2, which is possible since

q(s) = o(|s| 1
1−β ). Hence, for all t ∈ R, ω ∈ Ω0 there is an absorption time s0 = s0(t, D, ω)

and an R = R(t, ω) such that

‖Z(t, s;ω)xs(ω)‖2H ≤ R(t, ω),

for all s ≤ s0. Since s0 only depends on q(s) := |Ds(ω)|2 this implies

‖Z(t, s;ω)Ds(ω)‖2H ≤ R(t, ω),

for all s ≤ s0, i.e. Dα-absorption for Z(t, s;ω). This implies

‖S(t, s;ω)Ds(ω)‖H = ‖Z(t, s;ω) (Ds(ω) −Ns(ω)) + Nt(ω)‖H
≤ ‖Z(t, s;ω) (Ds(ω) −Ns(ω)) ‖H + ‖Nt(ω)‖H
≤
√

R(t, ω) + ‖Nt(ω)‖H =: R̃(t, ω),

for all s ≤ s̃0, i.e. Dα-absorption for S(t, s;ω) by the family of bounded sets

F (t, ω) :=

{

B(0, R̃(t, ω)) , ω ∈ Ω0

{0} , otherwise.

The set F is measurable iff ω 7→ R(t, ω) is measurable for each t ∈ R. By the proof of
Lemma 4.3 we have

R(t, ω) = sup
r∈[a1(t,ω)−1,t]

(

2f̃(r, ω)
)

1
β

with a1(t, ω) = sp ∧ t ∧ 2t and sp = sp

(

(

1
2

)
1−β
β 1−β

4

)

. Note

sp(ε) = inf{s ∈ R+| sup
|r|≥s

|p(r)|
1−β
β

|r| ≤ ε}.
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To prove measurability of sp(ε) for p = f̃ we note

{sp(ε) < c} =
⋃

n∈N

{

sup
|r|≥c− 1

n

|f̃(r, ·)|
1−β
β

|r| ≤ ε

}

=
⋃

n∈N

{

sup
|r|≥c− 1

n
, r∈Q

|f̃(r, ·)|
1−β
β

|r| ≤ ε

}

.

Measurability of f̃ thus implies measurability of sp(ε). By right-continuity and measurability
of f̃ the map

(s, ω) 7→ sup
r∈[s,t]

(

2f̃(r, ω)
)

1
β

is measurable in ω and right-continuous in s. Hence, R(t, ω) is measurable.

Right lower-semicontinuity of F is equivalent to lim supn→∞R(tn, ω) ≥ R(t, ω) for each
sequence tn ↓ t which follows from right-continuity of f̃(·, ω) and a1 = sp ∧ t ∧ 2t.

By Lemma 4.3 R(t, ω) = o(|t| 1
1−β ) and thus R̃(t, ω) = o(|t| 1

2−α ) for t → −∞ and ω ∈ Ω0.
This implies F ∈ Dα.

4.6 Existence of random attractors (Theorem 2.6)

Proof of Theorem 2.6: We prove compact absorption for S(t, s;ω). Let t ∈ R and ω ∈ Ω.
By Proposition 2.5 we know that there is a Dα absorbing set {F (t, ω)}t∈R, ω∈Ω ∈ Dα. Let

K(t, ω) := S(t, t− 1;ω)F (t− 1, ω).

Since S(t, s;ω) is a compact flow, K(t, ω) is compact. Using (4.10), f(t) = o(|t| α
2−α ) and

(S3) we observe K ∈ Dα. Furthermore K(t, ω) is Dα-absorbing:

S(t, s;ω)D(s, ω) = S(t, t− 1;ω)S(t− 1, s;ω)D(s, ω)

⊆ S(t, t− 1;ω)F (t− 1, ω) ⊆ K(t, ω),

for s ≤ s0 and ω ∈ Ω0. By Theorem 1.8 this yields the existence of a random Dα-attractor
Aα for S(t, s;ω)x with Aα(t, ω) ⊆ K(t, ω) for all t ∈ R, ω ∈ Ω0. In particular, Aα ∈ Dα.

If A is measurable then S(t, s;ω)x is a measurable stochastic flow. Since s 7→ S(t, s;ω)x
is continuous locally uniformly in t and x, right lower-semicontinuity of F implies right
lower-semicontinuity for K. Hence, by Theorem 1.8 Aα is a random closed set.

Now assume A to be strictly stationary. Then S(t, s;ω)x is a cocycle. The system of all
bounded deterministic sets Db satisfies condition (i) in Theorem 1.8. Hence, there is a
measurable, strictly stationary random Db-attractor Ab.
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4.7 Singleton Random Attractors (Theorem 2.8)

The following Lemma is closely related to [21, Proposition 1]

Lemma 4.4. Let V be a Banach space with cone V+ and B ∈ B(V ). Let X, Y be (B(R+)⊗
F ,B(B))-measurable B-valued processes such that Xt ≥ Yt P-almost surely. Assume that
1
T

∫ T

0
L(Xt)dt ⇀ µ and 1

T

∫ T

0
L(Yt)dt ⇀ µ weakly in M1(B) where µ is a probability measure

on B. Then
1

T

∫ T

0

P[‖Xt − Yt‖V ≥ δ]dt → 0

for T → ∞ and all δ > 0. If in addition ‖Xt − Yt‖V is non-increasing then Xt − Yt → 0
P-almost surely.

Proof. We can assume B = V by extending µ by 0 to all of V . Let l ∈ V ∗
+ be a strictly

positive linear functional, i.e. l(v) > 0 for v ∈ V+ \ {0}. We first prove

1

T

∫ T

0

P[l(Xt − Yt) ≥ δ]dt → 0

for T → ∞ and for all δ > 0. It is sufficient to prove this in the case ‖l‖V ∗ = 1. Since
1
T

∫ T

0
L(Xt)dt,

1
T

∫ T

0
L(Yt)dt are weakly convergent, by Prokhorov’s Theorem for each ε > 0

there is an Nε > 0 such that

1

T

∫ T

0

P[‖Xt‖V ≤ N ]dt ∧ 1

T

∫ T

0

P[‖Yt‖V ≤ N ]dt ≥ 1 − ε

for all N ≥ Nε and all T ≥ 0. Since l(Xt) ≤ ‖Xt‖V we have P[l(Xt) ≤ N ] ≥ P[‖Xt‖V ≤ N ].
Let

FN(r) :=

{

r , for |r| ≤ N

sgn(r)N , for |r| > N.
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We observe

1

T

∫ T

0

P[l(Xt − Yt) ≥ δ]dt =
1

T

∫ T

0

P[l(Xt) − l(Yt) ≥ δ]dt

=
1

T

∫ T

0

P[l(Xt) − l(Yt) ≥ δ, l(Xt) ∨ l(Yt) ≤ N ]dt

+
1

T

∫ T

0

P[l(Xt) − l(Yt) ≥ δ, l(Xt) ∨ l(Yt) > N ]dt

≤ 1

T

∫ T

0

P[FN ◦ l(Xt) − FN ◦ l(Yt) ≥ δ, l(Xt) ∨ l(Yt) ≤ N ]dt

+
1

T

∫ T

0

P[l(Xt) > N ]dt +
1

T

∫ T

0

P[l(Yt) > N ]dt

=
1

T

∫ T

0

1

δ
E[FN ◦ l(Xt)]dt−

1

T

∫ T

0

1

δ
E[FN ◦ l(Yt)]dt + 2ε ≤ 3ε,

for N ≥ Nε and all T ≥ Tε. By Prokhorov’s Theorem for any ε > 0 we can choose a compact
set K̃ε ⊆ V such that

1

T

∫ T

0

P[Xt ∈ K̃ε and Yt ∈ K̃ε]dt ≥ 1 − ε,

for all T ≥ 0. Let Kε =
(

K̃ε − K̃ε

)

∩ V+. Then

1

T

∫ T

0

P[Xt − Yt ∈ Kε]dt ≥ 1 − ε,

for all T ≥ 0. Hence, (cf. [21, Lemma 1]) there exists a strictly positive linear functional
l ∈ V ∗ such that

1

T

∫ T

0

P[‖Xt − Yt‖V ≥ δ]dt ≤ 1

T

∫ T

0

P

[

δ

2
+ CKε,

δ
2
l(Xt − Yt) ≥ δ

]

dt + ε ≤ 2ε,

for all T ≥ Tε.

Let now ‖Xt − Yt‖V be non-increasing. We have

1

T

∫ T

0

P[‖Xt − Yt‖V ≥ δ]dt → 0

for T → ∞ and all δ > 0. Let δ > 0. Then there is a sequence Tn → ∞ such that
P[‖XTn

− YTn
‖V ≥ δ] → 0. Since ‖Xt − Yt‖V is non-increasing this implies Xt − Yt → 0 in

probability and for the same reason P-almost surely.
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Proof of Theorem 2.8: Let ε > 0. Since K(ω) is a random compact set, we can find a
deterministic compact set Kε such that

P[Kε ⊇ K] ≥ 1 − ε,

by [23, Proposition 2.15]. By compactness of Kε and density of S ⊆ H there is a finite ε-net
K1, ..., KN ∈ S for Kε (not necessarily Ki ∈ Kε). Since ϕ is contractive we have

‖ϕ(t, ω)x− ϕ(t, ω)y‖H ≤ ‖x− y‖H,

for all t ∈ R+, ω ∈ Ω and x, y ∈ H . This implies that ϕ(t, ω)K1, ..., ϕ(t, ω)KN is an ε-net for
ϕ(t, ω)Kε. By the existence of upper bounds in S, there is an upper bound K̄ ∈ S satisfying
K̄ ≥ Ki for all i = 1, ..., N . Monotonicity of the RDS ϕ on S yields ϕ(t, ω)K̄ ≥ ϕ(t, ω)Ki. By
weak-∗ mean ergodicity of the associated Markovian semigroup and Lemma 4.4 this implies
ϕ(t, ω)K̄ − ϕ(t, ω)Ki → 0 P-almost surely. Hence, for a.a. ω ∈ Ω there is a tε,ω such that
‖ϕ(t, ω)K̄(ω) − ϕ(t, ω)Ki(ω)‖ ≤ ε for all t ≥ tε,ω, i = 1, ..., N . We conclude

diam(ϕ(t, ω)Kε) = sup{‖ϕ(t, ω)a− ϕ(t, ω)b‖H| a, b ∈ Kε}
≤ sup{‖ϕ(t, ω)Ki − ϕ(t, ω)Kj‖H | i, j = 1, ..., N} + 2ε

≤ 4ε,

for all t ≥ tε,ω, i.e. diam(ϕ(t, ω)Kε) → 0 almost surely. For any δ > 0 we conclude

P[diam(ϕ(t, ω)K(ω)) ≥ δ] ≤ ε + P[diam(ϕ(t, ω)Kε) ≥ δ] ≤ 2ε,

for all t ≥ tε, i.e. diam(ϕ(t, ω)K(ω)) → 0 in probability. By contractivity of ϕ, diam(ϕ(t, ω)K(ω))
is non-increasing. This implies diam(ϕ(t, ω)K(ω)) → 0 P-almost surely.

Proof of Corollary 2.9. It is sufficient to consider ν = δx for x ∈ H . Let x ∈ H , f : H → R

Lipschitz. Then

|Ptf(x) − µ(f)| =

∣

∣

∣

∣

∫

H

Ef(ϕ(t, ·)x) − f(ϕ(t, ·)y)dµ(y)

∣

∣

∣

∣

≤
∫

H

E|f(ϕ(t, ·)x) − f(ϕ(t, ·)y)|dµ(y)

≤ Lip(f)

∫

H

E‖ϕ(t, ·)x− ϕ(t, ·)y‖Hdµ(y).

By Theorem 2.8 we have ‖ϕ(t, ω)x − ϕ(t, ω)y‖ → 0 P-almost surely for t → ∞ and by
contractivity ‖ϕ(t, ·)x− ϕ(t, ·)y‖H ≤ ‖x − y‖H. Since µ ∈ M1(H), dominated convergence
yields

|Ptf(x) − µ(f)| → 0,

for t → ∞.
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Proof of Corollary 2.10. Let

Ptf(x) = Ef(S(t, 0; ·)x) = Ef(ϕ(t, ·)x),

for f ∈ Bb(H) and x ∈ H . The unique existence of variational solutions X(t, 0;ω)x is well
known (cf. [38, Theorem 4.2.4]). By pathwise uniqueness of the solution, S(t, 0;ω)x and
X(t, 0;ω)x are indistinguishable and thus the associated Markovian semigroups on Bb(H)
coincide and are Feller (cf. [38, Proposition 4.3.5]). Monotonicity of the drift implies con-
tractivity of ϕ. By [35, Theorem 1.3] there is a unique invariant measure µ ∈ M1 with
∫

H
‖x‖αV dµ(x) < ∞ and for all Lipschitz functions F : H → R

|PtF (x) − PtF (y)| ≤ CLip(F )‖x− y‖H√
t

(

1 +
‖x‖H√

t
+

‖y‖H√
t

)
δ
α

,

where Lip(F ) is the Lipschitz constant of F . In order to obtain bounds on higher moments
of µ we note (as in [34, Lemma 2.2])

1

t
E

∫ t

0

‖X(r, 0; ·)0‖kH‖X(r, 0; ·)0‖αV dr ≤ C,

for all k ≥ 4, t ≥ 0. Since µ is obtained as the weak limit of µn := 1
n

∫ n

0
L(X(r, 0; ·)0)dr this

implies
∫

H

‖x‖kH‖x‖αV dµ(x) < ∞.

In particular µ(‖ · ‖kH) < ∞ for all k ≥ 1. We obtain

|PtF (x) − µ(F )| ≤ CLip(F )(‖x‖H + 1)√
t

(

1 +
‖x‖

δ
α

H

t
δ
2α

+
1

t
δ
2α

)

→ 0,

for t → ∞ which implies weak∗-mean ergodicity. By Theorem 2.6 there is a measurable
compact random attractor A and Theorem 2.8 yields diam(A(θtω)) = diam(ϕ(t, ω)A(ω)) →
0. Since θt is P preserving this implies diam(A(ω)) = 0 almost surely, i.e. A(ω) is a single
point.

4.8 Finite time extinction (Theorem 2.12)

We will need the following

Lemma 4.5. Let β be a real-valued Brownian motion and q, s ∈ R. Then
∫ t

s

eq(βr−βs)dr
t→∞−−−→ ∞,

almost surely.
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Proof. We first prove convergence in probability. By the scaling property of Brownian motion
we have q(βr+s − βs) = qβr = 2β q2

4
r

in law. Hence,

∫ t

s

eq(βr−βs)dr =

∫ t−s

0

eq(βr+s−βs)dr =

∫ t−s

0

e
2β

q2

4 rdr =
4

q2

∫
q2

4
(t−s)

0

e2βr ,

in law. Therefore, it is sufficient to prove divergence of

At :=

∫ t

0

e2βr ,

in probability. By [1] we know that At has the density function

P[At ∈ du] =
du√
2πu3

1√
2πt

∫

R

cosh(ξ)e−
cosh(ξ)2

2u
− (ξ+ iπ

2 )2

2t dξ.

Let K > 0. Then

P[At ≤ K] =

∫

R

∫ K

0

1√
2πu3

1√
2πt

cosh(ξ)e−
cosh(ξ)2

2u
− (ξ+ iπ

2 )2

2t dudξ.

Taking the absolute value and substituting u 
cosh(ξ)√

u
in the inner integral yields

P[At ≤ K] ≤ 2e
π2

8t

∫

R

∫ ∞

cosh(ξ)
√

K

e
−u2

2√
2π

e−
ξ2

2t√
2πt

dudξ.

Let now ε > 0 and choose R > 0 such that
∫∞

cosh(R)
√
K

e
−u2

2√
2π

du ≤ ε
8
. Then choose t so large that

supξ∈[−R,R]
e
−

ξ2

2t√
2πt

≤ ε
16R

and 2e
π2

8t ≤ 4. We obtain

P[At ≤ K] = 2e
π2

8t

(

∫ R

−R

∫ ∞

cosh(ξ)
√

K

e
−u2

2√
2π

e−
ξ2

2t√
2πt

dudξ +

∫

[−R,R]c

∫ ∞

cosh(ξ)
√

K

e
−u2

2√
2π

e−
ξ2

2t√
2πt

dudξ

)

≤ 4

(

ε

8

∫ ∞

cosh(1)
√
K

e
−u2

2√
2π

du +
ε

8

∫

[−R,R]c

e−
ξ2

2t√
2πt

dξ

)

≤ ε,

for all t sufficiently large, i.e. P[At ≤ K] → 0, for t → ∞. Hence, the same holds for
∫ t

s
eq(βr−βs)dr. We conclude that for almost all ω ∈ Ω there exists a t0 (depending on ω) such

that
∫ t0

s
eq(βr−βs)dr > K. Since

∫ t

s
eq(βr−βs)dr is increasing in t, this implies

∫ t

s
eq(βr−βs)dr > K

for all t ≥ t0, i.e.
∫ t

s

eq(βr−βs)dr → ∞,

almost surely.
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Proof of Theorem 2.12. : Let B ⊆ H bounded and x ∈ B. Recall that Z(t, s;ω)x satisfies

Z(t, s;ω)x = x +

∫ t

s

µr(ω)A
(

r, µ−1
r (ω)Z(r, s;ω)x

)

dr.

In particular Z(t, s;ω)x is absolutely continuous. By the chain-rule

d

dt
‖Z(t, s;ω)x‖2H = µt(ω)2 V ∗〈A

(

t, µ−1
t (ω)Z(t, s;ω)x

)

, µ−1
t (ω)Z(r, s;ω)x〉V

≤ λ(ω)µt(ω)2−p‖Z(t, s;ω)x‖pHdr,

for almost every t ∈ [s,∞). Lemma 4.2 yields

‖Z(t, s;ω)x‖2H ≤
(

‖x‖2−p
H − (1 − p

2
)λ(ω)

∫ t

s

µτ(ω)2−pdτ ∨ 0

)

2
2−p

,

for all t ≥ s. Since S(t, s;ω)x = µt(ω)Z(t, s;ω)(µs(ω)−1x), we obtain

‖S(t, s;ω)x‖2H ≤ µt(ω)2
((

‖µs(ω)−1x‖2−p
H − (1 − p

2
)λ(ω)

∫ t

s

µτ (ω)2−pdτ

)

∨ 0

)

2
2−p

≤ µt(ω)2µs(ω)−2

((

‖B‖2−p
H − (1 − p

2
)λ(ω)

∫ t

s

e−µ(2−p)(βτ (ω)−βs(ω))dτ

)

∨ 0

)

2
2−p

.

Now we can apply Lemma 4.5 to obtain ‖S(t, s;ω)x‖2H = 0, for t ≥ t0 and t0 = t0(‖B‖H , ω, s)
large enough.

5 Appendix

Proposition 5.1. Let Aε : [0, T ] × V → V ∗, ε ≥ 0 be a family of monotone operators
converging pointwisely in V ∗, i.e. for every t ∈ [0, T ] and x ∈ V we have

‖Aε(t, x) −A0(t, x)‖V ∗ → 0,

for ε → 0. Assume that there exists an α > 1 such that ‖Aε(t, x)‖
α

α−1

V ∗ ≤ C(‖x‖αV + 1) and
that Y ε are variational solutions to the corresponding equations

d

dt
Y ε
t + Aε(t, Y ε

t ) = 0, (ε ≥ 0)

satisfying the uniform bound ‖Y ε
r ‖Lα([0,T ];V ) ≤ C. Then

sup
t∈[0,T ]

‖Y ε
t − Y 0

t ‖2H → 0,

for ε → 0.
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Proof. By the chain-rule

‖Y ε
t − Y 0

t ‖2H =

∫ t

0
V ∗

〈

−Aε(r, Y ε
r ) + A0(r, Y 0

r ), Y ε
r − Y 0

r

〉

V
dr

=

∫ t

0
V ∗

〈

−Aε(r, Y ε
r ) + Aε(r, Y 0

r ), Y ε
r − Y 0

r

〉

V
dr +

∫ t

0
V ∗

〈

A0(r, Y 0
r ) − Aε(r, Y 0

r ), Y ε
r − Y 0

r

〉

V
dr

≤
∫ t

0
V ∗

〈

A0(r, Y 0
r ) − Aε(r, Y 0

r ), Y ε
r − Y 0

r

〉

V
dr

≤ ‖A0(r, Y 0
r ) − Aε(r, Y 0

r )‖
L

α
α−1 ([0,T ];V ∗)

‖Y ε − Y 0‖Lα([0,T ];V )

≤ 2C‖A0(·, Y 0
· ) − Aε(·, Y 0

· )‖
L

α
α−1 ([0,T ];V ∗)

.

By dominated convergence the claim follows.
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[17] Alexandre N. Carvalho and Cláudia B. Gentile. Asymptotic behaviour of non-linear
parabolic equations with monotone principal part. J. Math. Anal. Appl., 280(2):252–
272, 2003.

[18] Jan W. Cholewa and Tomasz Dlotko. Global attractors in abstract parabolic problems,
volume 278 of London Mathematical Society Lecture Note Series. Cambridge University
Press, Cambridge, 2000.

[19] Jan W. Cholewa and Anibal Rodriguez-Bernal. Extremal equilibria for monotone semi-
groups in ordered spaces with application to evolutionary equations. J. Differential
Equations, 249(3):485–525, 2010.

[20] Igor Chueshov. Monotone random systems theory and applications, volume 1779 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.

37



[21] Igor Chueshov and Michael Scheutzow. On the structure of attractors and invariant
measures for a class of monotone random systems. Dyn. Syst., 19(2):127–144, 2004.

[22] Hans Crauel. Global random attractors are uniquely determined by attracting deter-
ministic compact sets. Ann. Mat. Pura Appl. (4), 176:57–72, 1999.

[23] Hans Crauel. Random probability measures on Polish spaces, volume 11 of Stochastics
Monographs. Taylor & Francis, London, 2002.

[24] Hans Crauel, Arnaud Debussche, and Franco Flandoli. Random attractors. J. Dynam.
Differential Equations, 9(2):307–341, 1997.

[25] Hans Crauel and Franco Flandoli. Attractors for random dynamical systems. Probab.
Theory Related Fields, 100(3):365–393, 1994.
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[40] Michael Röckner and Feng-Yu Wang. Non-monotone stochastic generalized porous me-
dia equations. J. Differential Equations, 245(12):3898–3935, 2008.

[41] Michael Scheutzow. Comparison of various concepts of a random attractor: a case
study. Arch. Math. (Basel), 78(3):233–240, 2002.

[42] Michael Scheutzow. Attractors for ergodic and monotone random dynamical systems.
In Seminar on Stochastic Analysis, Random Fields and Applications V, volume 59 of
Progr. Probab., pages 331–344. Birkhäuser, Basel, 2008.
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