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Abstract. We provide an abstract variational existence and uniqueness re-
sult for multi-valued, monotone, non-coercive stochastic evolution inclusions
in Hilbert spaces with general additive and Wiener multiplicative noise. As
examples we discuss certain singular diffusion equations such as the stochastic
1-Laplacian evolution (total variation flow) in all space dimensions and the
stochastic singular fast diffusion equation. In case of additive Wiener noise we
prove the existence of a unique weak-∗ mean ergodic invariant measure.

1. Introduction

We consider the following evolution inclusion in a separable Hilbert space H

dXt +A(t,Xt) dt ∋ dgt, t > 0,

X0 = x.
(1.1)

Here A is a possibly multi-valued, singular, maximal monotone operator and g is a
càdlàg path in H . The meaning of the expression dgt will be specified below.

In particular, we are interested in stochastic evolution inclusions of the type

dXt +A(t,Xt) dt ∋ dNt, t > 0,

X0 = x,
(1.2)

where {Nt}t≥0 is a càdlàg, adapted H-valued stochastic process on a filtered prob-
ability space (Ω,F , {Ft}t≥0,P) and in inclusions of the form

dXt +A(t,Xt) dt ∋ Bt(Xt) dWt, t > 0,

X0 = x,
(1.3)
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where for some separable Hilbert space U , B : [0, T ]×Ω×S → L2(U ;H) takes values
in the space of Hilbert-Schmidt operators from U to H and {Wt} is a cylindrical
Wiener process.

We prove the unique existence of solutions to (1.1)–(1.3) and the unique existence
of a weak-∗ mean ergodic invariant measure for (1.3) with Bt being constant.

The standard variational approach to (S)PDE of type (1.3) requires the drift
operator A to be single-valued an to extend to a hemicontinuous, coercive operator
A : V → V ∗ for some Gelfand triple V ⊆ H ⊆ V ∗ (cf. [Par75,KR79,PR07,RRW07]).
The reflexivity of V and V ∗ is crucial for the construction of solutions. Therefore,
the standard approach cannot be applied to many highly singular (S)PDE such as
the total variation flow, the two phase Stefan problem, plasma diffusion and the
curve shortening flow. In all of these examples the the space V degenerates in the
sense that V or V ∗ fail to be reflexive. While recently increasing interest has been
paid to this kind of singular, possibly multi-valued SPDE (cf. e.g. [Răş81, Răş82,
Răş96, BR97, BDP05, BDPR09a, Cio11, Ste11]), the unique existence of solutions
could only be shown for additive noise and under strong dimensional restrictions.
The principal idea of most of these works is the concept of (stochastic) evolution
variational inequalities (EVI), thus weakening the notion of solutions to (1.3). The
approach via EVI has multiple drawbacks. First, it relies on the transformation
of (1.3) to a random PDE and hence is restricted to simple structures of noise,
such as additive or linear multiplicative noise. Second, due to the weaker notion
of solutions it is hard to prove uniqueness. In fact, so far uniqueness of EVI could
only be proven in case of sufficiently regular additive noise. Third, the construction
of solutions to EVI still requires a coercivity condition of the type

(1.4) V ∗〈A(u), u〉V ≥ c ‖u‖αV .

for some α ≥ 1, c > 0, which leads to restrictions on the dimension or the coercivity
exponent α.

In order to remedy these obstacles, we introduce another Hilbert space S, em-
bedded compactly and densely into H , such that

S ⊆ V ⊆ H ≡ H∗ ⊆ V ∗ ⊆ S∗.

Subsequently, we will drop the intermediate space V and formulate the conditions
of our hypotheses solely with respect to S. We assume that the drift A is maximal
monotone and of at most linear growth in S∗. We are able to replace the strong co-
ercivity assumption (1.4) by weak dissipativity in S formulated in an approximative
sense (cf. (A4) below). A similar condition has been used in [RW08,Liu10]. The
main idea in the construction of solutions is to use a vanishing viscosity approxima-
tion and to apply standard results from the theory of multi-valued time-dependent
evolution inclusions (cf. [HP97,HP00]) for the approximating viscous equations.

For additive noise, we choose a pathwise approach to construct the solutions,
which encompasses general noise, as Lévy noise and noise driven by fractional
Brownian motion with arbitrary Hurst parameter, since no Itō formula is needed.
Another advantage of a pathwise construction is that the existence of a stochastic
flow and a random dynamical system (RDS) are immediate consequences. Thus,
assuming that the noise {Nt} in (1.2) has càdlàg paths in S, satisfies some spatial
regularity and has strictly stationary increments we prove that there is an RDS as-
sociated to (1.2). In case of additive Wiener noise this yields the Markov property
for the associated semigroups {Pt}. Using stochastic calculus we prove that in case
of multiplicative Wiener noise we can relax the spatial regularity assumptions on the
noise while preserving the regularity of the solutions. For additive Wiener noise, we
prove the existence and uniqueness of a weak-∗ mean ergodic measure using recent
methods by Komorowski, Peszat and Szarek [KPS10]. See also [ESvR10].
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As examples we include certain singular diffusion equations such as the stochastic
p-Laplacian evolution, p ∈ [1, 2) (including the total variation flow, i.e. p = 1, where
the equation becomes a multi-valued inclusion) in all space dimensions

dXt = div
[
|∇Xt|

p−2∇Xt

]
dt+

{
dNt,

Bt(Xt) dWt,
t > 0,

X0 = x,

(1.5)

generalizing the results of Barbu, Da Prato and Röckner [BDPR09a], known to hold
only in space dimensions d = 1, 2 and for Wiener additive noise. In addition, we
solve the open problem posed in [BDPR09a] of uniqueness of the invariant measure
for (1.5). See [Liu09] for other results on equation (1.5). The p-Laplace equation
appears in geometry, quasi-regular mappings, fluid dynamics and plasma physics,
see [DB93,Dı́a85]. In [Lad67], Ladyženskaja suggests the p-Laplace evolution as a
model of motion for non-Newtonian fluids. A typical 2-dimensional application can
be found in image restoration (see [AVCM03,AK06]).

We also consider the stochastic singular fast diffusion equation for r ∈ [0, 1)
(again including the critical, multi-valued case r = 0):

dXt = ∆
[
|Xt|

r−1Xt

]
dt+

{
dNt,

Bt(Xt) dWt,
t > 0,

X0 = x.

(1.6)

This generalizes results given in [BDP10] where only additive case has been con-
sidered. Moreover, we solve the open problem posed in [BDP10] of uniqueness
of the invariant measure for (1.6). All equations are treated with general addi-
tive càdlàg-noise and multiplicative Wiener noise in all space dimensions. The
fast diffusion equation is, for example, used as a model in plasma physics (usu-
ally with more general nonlinearities) and self-organized criticality [BDPR09b].
See [BH80, Ros95, Váz06] and the references therein for further physical applica-
tions. Under dimensional restrictions, Liu and the second named author proved
ergodicity and polynomial decay for equations (1.5), (1.6), excluding the limit cases
p = 1, r = 0, see [LT11]. See also [Liu11,ESvRS10].

A further application of our general existence and uniqueness results, is the
(1+1)-dim. stochastic curve shortening flow:

dXt(ξ) =
∂2ξXt(ξ)

1 + (∂ξXt(ξ))2
dt+

{
dNt,

Bt(Xt) dWt,
ξ ∈ [0, 1], t > 0,

X0(ξ) = x(ξ),

(1.7)

which has been studied by Es-Sarhir and von Renesse [ESvR10] (see also [ESvRS10]).
We are able to generalize their result about unique existence to the case of general
additive noise.

We are also able to treat the so called stochastic diffusion equation of plasma for
any space dimension:

dXt = ∆ [ln (|Xt|+ 1) sgn(Xt)] dt+

{
dNt,

Bt(Xt) dWt,
t > 0,

X0 = x,

(1.8)

previously studied in an EVI setting in (1+1)-dimensions by Ciotir [Cio11]. See
the references therein for the physical meaning of (1.8).

More generally, we are studying existence and uniqueness, as well as ergodicity
(for additive Wiener noise), for generalized Φ-Laplacian equations with Neumann
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boundary conditions in a Riemannian manifold M of the type:

dXt = div[eV ϕ(|∇Xt|) sgn(∇Xt)] dt+

{
dNt,

Bt(Xt) dWt,
t > 0,

X0 = x,

(1.9)

where ϕ : R → R is a monotone function (ϕ(0) = 0) with sublinear growth and
V ∈ C2(M) is a scalar potential. Dirichlet boundary conditions on a bounded
domain Λ ⊆ Rd, d ∈ N, are also treated.

For general symmetric negative-definite Dirichlet operators L on abstract sepa-
rable measure spaces (E,B, µ) that satisfy a spectral gap condition, we consider
the so called generalized fast-diffusion equation

dXt ∈ L [ϕ(Xt)] dt+

{
dNt,

Bt(Xt) dWt,
t > 0,

X0 = x,

(1.10)

where ϕ : R→ 2R is a monotone graph (0 ∈ ϕ(0)) with sublinear growth.
Future applications to RDS and random attractors similar to [GLR11,BGLR11,

Ges11] as well as continuity results in the parameter p in (1.5) (r in (1.6) resp.),
similar to [CT11], are in preparation.

2. Deterministic case

Let H be a separable Hilbert space with dual H∗. Suppose that there is another
Hilbert space S embedded densely and compactly into H . We thus have a Gelfand
triple

S ⊆ H ⊆ S∗

and it holds that

S∗〈v, u〉S = (v, u)H , whenever u ∈ S, v ∈ H.

Let iS : S → S∗ denote the Riesz map of S. We note that the scalar product (·, ·)S
defines a bilinear, S-bounded, S-coercive form on H . By the Lax-Milgram Theorem
there is a linear, positive definite, self-adjoint operator T : D(T ) ⊆ H → H with
D(T 1/2) = S and (T 1/2u, T 1/2v)H = (u, v)S . We define Jn = (1 + T

n )
−1, n ∈ N,

to be the resolvent associated to T and Tn = TJn = n(1 − Jn) to be the Yosida
approximation of T . Then

(x, y)n := (x, Tny)H , x, y ∈ H,

form a sequence of new inner products on H , the induced norms ‖·‖n are all equiv-
alent to ‖·‖H and

∀x ∈ S : ‖x‖n ↑ ‖x‖S as n→ ∞.

Let Hn := (H, (·, ·)n). We get a sequence of new Gelfand triples

S ⊆ Hn ⊆ S∗.

Moreover,
Tn↾S : S → S

is continuous, the Riesz-map iS : S → S∗ is given by the extension of T to T : S →
S∗ and thus

2 S∗〈iS(x), Tn(x)〉S = 2(x, Tnx)S = (T 1/2x, TnT
1/2x)H ≥ 0, ∀x ∈ S.

Let g : [0, T ] → S be a càdlàg function (for simplicity g(0) = 0). We consider the
integral evolution inclusion

(2.1) Xt ∈ x−

∫ t

0

A(s,Xs) ds+ gt,
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where A : [0, T ]× S → 2S
∗

is a multi-valued operator. We will construct solutions
to this equation by first using the transformation Yt = Xt − gt which leads to the
evolution inclusion

(2.2)

{
dYt +A(t, Yt + gt) dt ∋ 0, t > 0,

Y0 = x.

We will prove unique existence for (2.2) which leads to unique existence for (2.1)
by transforming back, i.e. by defining Xt := Yt + gt.

LetW 1,2(0, T ) be the Bochner-Sobolev space associated to the embedding S ⊆ H
(cf. e.g. [Sho97, §III.1]) and let D([0, T ];H) be the space of all càdlàg functions in
H endowed topology of uniform convergence. A solution of (2.2) is a function
Y ∈W 1,2(0, T ) such that

d

dt
Yt = −ζt, for a.e. t ∈ [0, T ],

Y0 = x and ζ ∈ L2([0, T ];S∗) such that ζt ∈ A(t, Yt + gt) for a.e. t ∈ [0, T ].

Definition 2.1. A solution of (2.1) is a càdlàg function X ∈ D([0, T ];H) such
that

Xt = x−

∫ t

0

ηs ds+ gt,

for all t ∈ [0, T ] as an equation in S∗, where η ∈ L2([0, T ];S∗) such that ηt ∈
A(t,Xt) for a.e. t ∈ [0, T ].

Definition 2.2. Let (E,B, µ) be a σ-finite complete measure space and Y be a
Polish space. A map F : E → 2Y with non-empty, closed values is called measurable
if {F (·) ∩O 6= ∅} ∈ B for each open set O ⊆ Y .

Hypothesis 1. Suppose that A : [0, T ]×S → 2S
∗

satisfies the following conditions:
There is a constant C > 0 such that

(A1) For all t ∈ [0, T ], the map x 7→ A(t, x) is maximal monotone with nonempty
values.

(A2) Linear growth: For all x ∈ S, for Lebesgue a.a. t ∈ [0, T ], for all y ∈ A(t, x):

‖y‖S∗ ≤ f(t) + C ‖x‖S ,

with some f ∈ L2([0, T ]).
(A3) Weak dissipativity in S: For all x ∈ S, for Lebesgue a.a. t ∈ [0, T ], for all

y ∈ A(t, x), and for all n ∈ N:

2 S∗〈y, Tn(x)〉S ≥ −γ(t)− C ‖x‖
2
S ,

with some γ ∈ L1([0, T ]).
(A4) Measurability: The map t 7→ A(t, x) is measurable w.r.t. the Lebesgue σ-

algebra for all x ∈ S.

Note that (A4) can be dropped if A is independent of time.

Hypothesis 2. g ∈ L2([0, T ];D(T 3/2)).

Here, the operator (T 3/2, D(T 3/2)) is defined in terms of the spectral theorem
and the Hilbert space D(T 3/2) is equipped with the graph norm.

In order to construct solutions to (2.2) we will consider a viscosity approximation.
Let ε > 0 and consider the perturbed problem

(2.3)





d

dt
Y ε
t + εiS(Y

ε
t ) ∈ −A(t, Y ε

t + gt), t > 0,

Y ε
0 = x,
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The unique existence of variational solutions to these approximating problems is
proved in Proposition 6.1 below. Application of the back transformation for the
approximating equation yields

(2.4) Xε
t ∈ x−

∫ t

0

A(s,Xε
s )− εiS(X

ε
s − gs) ds+ gt, t > 0.

Letting ε → 0 we will prove the existence of solutions to (2.2). Transforming back
we obtain

Theorem 2.3. Assume Hypotheses 1 and 2 and let x ∈ S. Then (2.1) has a unique
solution in the sense of Definition 2.1 satisfying X ∈ L∞([0, T ];S) with

sup
t∈[0,T ]

‖Xε
t −Xt‖

2
H +

∫ T

0

‖Xε
t −Xt‖

2
S dt → 0

and X is right continuous in S.

Proof. See section 6.1.1. �

By monotonicity of the drift we can extend the unique existence of solutions to
all initial conditions x ∈ H at the dispense of allowing for limiting solutions in the
sense

Definition 2.4 (Limit solution). We say that a function X ∈ D([0, T ];H) is a limit
solution to (2.1) with starting point x ∈ H, if X0 = x and for each approximation
xδ ∈ S with xδ → x in H the associated solution Xδ converges to X in D([0, T ];H).

We obtain

Theorem 2.5 (Extension to all initial conditions x ∈ H). Suppose that Hypotheses
1 and 2 hold and let x ∈ H. Then there is a unique limit solution X.

3. Stochastic evolution inclusions with additive noise

Let (Ω,F , {Ft}t≥0,P) be a filtered probability space (not necessarily complete,
nor right-continuous), N : [0, T ]×Ω → S be an {Ft}t≥0-adapted stochastic process
with càdlàg paths in S and N0 = 0. We define L0(Ω,F0;H) to be the space of
all F0-measurable, H-valued random variables and let x ∈ L0(Ω,F0;H). For each
ω ∈ Ω we consider the following integral equation in S∗

(3.1) Xt(ω) ∈ x(ω)−

∫ t

0

A(s,Xs(ω)) ds+Nt(ω).

Definition 3.1. An {Ft}t∈[0,T ]-adapted stochastic process X : [0, T ]× Ω → H is

a pathwise (limit) solution to (3.1) with starting point x ∈ L0(Ω,F0;H) if for all
ω ∈ Ω: X(ω) is a (limit) solution for (3.1) with g· = N·(ω).

Setting gt := Nt(ω) for fix ω ∈ Ω, Theorem 2.3 and Theorem 2.5 yield the
existence of a pathwise (limit) solution X as long as A satisfies Hypothesis 1 and
N·(ω) satisfies Hypothesis 2 for each ω ∈ Ω. The {Ft}t∈[0,T ]-adaptedness of X is
proved in Section 6.2 below. We obtain

Theorem 3.2. Assume that A satisfies Hypothesis 1 and N satisfies Hypothesis 2
pathwisely. For x ∈ L0(Ω,F0;S) there is a unique pathwise solution to (3.1) in the
sense of Definition 3.1 satisfying X(ω) ∈ L∞([0, T ];S) and

sup
t∈[0,T ]

‖Xε
t (ω)−Xt(ω)‖

2
H +

∫ T

0

‖Xε
t (ω)−Xt(ω)‖

2
S dt → 0, ∀ω ∈ Ω.

Moreover, X(ω) is right continuous in S. For x ∈ L0(Ω,F0;H) there is a unique
pathwise limit solution to (3.1).
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If the noise is two-sided and strictly stationary then the solutions generate a
random dynamical system (RDS). Let ((Ω,F ,P), (θt)t∈R) be a metric dynamical
system, i.e. (t, ω) 7→ θt(ω) is (B(R) ⊗ F ,F ) measurable, θ0 = id, θt+s = θt ◦ θs
and θt is P-preserving, for all s, t ∈ R. We assume that N : R× Ω → S satisfies

Hypothesis 3.

(N) For all t ≥ s and ω ∈ Ω

Nt(ω)−Ns(ω) = Nt−s(θsω).

By [GLR11, Lemma 3.1] for each S valued process Ñt with Ñ0 = 0 a.s., sta-
tionary increments and a.s. càdlàg paths there exists a metric dynamical system

((Ω,F ,P), (θt)t∈R) and a version Nt of Ñt on ((Ω,F ,P), (θt)t∈R) such that Nt

satisfies (N). In particular, applications include all Lévy processes and fractional
Brownian motion with arbitrary Hurst parameter.

Since we constructed the solution pathwisely we obtain

Corollary 3.3. Assume that A satisfies Hypothesis 1, is independent of time t and
N satisfies Hypothesis 2 and 3 for all ω ∈ Ω. Then

ϕ(t, ω)x := Xx
t (ω), x ∈ H, t ∈ R+, ω ∈ Ω

defines a continuous RDS associated to (1.2), where Xx
t (ω) is the pathwise limit

solution starting at x obtained in Theorem 3.2.

4. Stochastic evolution inclusions with multiplicative noise

If the random perturbation is given by a stochastic integral with respect to a
Wiener process we can use Itō’s formula to derive solutions to the corresponding
stochastic partial differential equation even if the diffusion coefficients only take
values in L2(U,H) (i.e. Hypothesis 2 is not satisfied). In case of L2(U, S) valued
noise the S regularity of the solution is preserved. This allows much rougher noise,
since Hypothesis 2 is not required anymore.

Using a fixed point argument we can then extend the existence of solutions to
the case of multiplicative noise. For noise taking values in L2(U, S) and initial data

x ∈ L2(Ω, F̂0;S) we will obtain variational solutions, while for less regular initial
data and noise these will be extended to limit solutions.

In order to be able to use stochastic calculus we require a normal filtered prob-

ability space (Ω, F̂ , {F̂t}t≥0,P) with a cylindrical Wiener process {Wt}t≥0 in U ,
where U is some separable Hilbert space. We further require the diffusion coeffi-
cients B : [0, T ]× Ω× S → L2(U,H) to be progressively measurable (i.e. for every

t ∈ [0, T ] the map B : [0, t]×Ω×S → L2(U ;H) is B([0, t])⊗F̂t⊗B(S)-measurable)
and the following random version of Hypothesis 2:

Hypothesis 4. (B1) There is an h ∈ L1([0, T ]× Ω) such that

‖Bt(x)‖
2
L2(U,H) ≤ C‖x‖2S + ht, (Growth),

for all t ∈ [0, T ], x ∈ S and ω ∈ Ω.
(B2) There is a C > 0 such that

‖Bt(x) −Bt(y)‖
2
L2(U,H) ≤ C‖x− y‖2H , (Lipschitz continuity),

for all t ∈ [0, T ], x, y ∈ S and ω ∈ Ω.

For the existence of variational solutions we further require

Hypothesis 5. (B3) There is an h ∈ L1([0, T ]× Ω) such that

‖Bt(x)‖
2
L2(U,S) ≤ C‖x‖2S + ht, (S-Growth),

for all t ∈ [0, T ], x ∈ S and ω ∈ Ω.
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Definition 4.1. We say that a continuous {F̂t}t≥0-adapted stochastic process X :
[0, T ]× Ω → H is a solution to

dXt +A(t,Xt) dt ∋ Bt(Xt) dWt

X(0) = x
(4.1)

if X ∈ L2(Ω;C([0, T ];H)) ∩ L2([0, T ] × Ω;S) and X solves the following integral
equation in S∗

Xt = X0 −

∫ t

0

ηs ds+

∫ t

0

Bs(Xs) dWs,

P-a.s. for all t ∈ [0, T ], where η ∈ A(·, X), dt⊗P-a.e.

Theorem 4.2 (Multiplicative noise). Let x ∈ L2(Ω, F̂0;S). Assume that A satis-
fies Hypothesis 1 and B satisfies Hypothesis 4 and 5. Then there exists a unique
solution X to (4.1) in the sense of Definition 4.1 satisfying

E sup
t∈[0,T ]

‖Xt‖
2
S <∞

and X is P-a.s. right-continuous in S.

Proof. See section 6.3.2. �

Using monotonicity of the drift and Lipschitz continuity of the noise, we can

extend the existence result to every initial condition x ∈ L2(Ω, F̂0;H) and driving
noise taking values in L2(U,H) in a limiting sense.

Definition 4.3. An {F̂t}t∈[0,T ]-adapted stochastic process X ∈ L2(Ω;C([0, T ];H))

is a limit solution to (4.1) with starting point x ∈ L2(Ω, F̂0;H) if for all approxima-

tions xδ ∈ L2(Ω, F̂0;S) with x
δ → x in L2(Ω, F̂0;H) and Bδ satisfying Hypothesis

4 and 5 with Bδ(u) → B(u) in L2([0, T ]× Ω;L2(U,H)) for all u ∈ S we have

Xδ → X, in L2(Ω;C([0, T ];H)).

Theorem 4.4 (Multiplicative noise for all initial conditions). Let x ∈ L2(Ω, F̂0;H).
Assume that A satisfies Hypothesis 1 and B satisfies Hypothesis 4. Then there exists
a unique limit solution X to (4.1) in the sense of Definition 4.3.

Proof. See section 6.3.3. �

5. Ergodicity

In the following assume A, B to be independent of (t, ω) ∈ [0, T ] × Ω and to
satisfy Hypotheses 1 and 5 with f , γ and h being constant. We further restrict
to the case of additive Wiener noise. Since B satisfies Hypothesis 5 the process
BWt is a trace class Wiener process in S in the following denoted by WB

t . We
consider the canonical realization of its two-sided extension: Ω := C(R;S), Ft :=
σ{πs| s ∈ (−∞, t]}, F := σ

{⋃
t∈RFt

}
and let P be the law of WB on Ω. Define

the Wiener shift to be θt(ω) := ω(t+ ·)− ω(t). Then (Ω, {Ft}t∈R, {θt}t∈R,P) is a
metric dynamical system, the evaluation process πt is a trace-class Wiener process,
which by abuse of notation is again denoted by WB

t and WB
t satisfies Hypothesis

3. Let {F̂t} be the right-continuous completion of {Ft}. We consider evolution
inclusions of the form

dXt +A(Xt) dt ∋ dWB
t , t > 0

X0 = x.
(5.1)

We denote by B(H) the set of all Borel measurable subsets of H , by Bb(H) (resp.
Cb(H)) the Banach space of all bounded, measurable (resp. continuous) functions
on H equipped with the supremum norm and by Lipb(H) the space of all bounded
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Lipschitz continuous functions on H . By M1 we denote the set of all Borel probabil-
ity measures on H . For a semigroup {Pt} on Bb(H) we define the dual semigroup
{P ∗

t } on M1 by P ∗
t µ(B) :=

∫
H Pt1Bdµ, for B ∈ B(H). A measure µ ∈ M1 is

said to be invariant for the semigroup Pt if P
∗
t µ = µ, for all t ≥ 0. For T > 0 and

µ ∈ M1 we define

QTµ :=
1

T

∫ T

0

P ∗
r µ dr

and we write QT (x, ·) for µ = δx. We recall:

Definition 5.1. A semigroup {Pt} is called weak-∗ mean ergodic if there exists a
measure µ∗ ∈ M1 such that

w- lim
T→∞

QT ν = µ∗,

for all ν ∈ M1.

Let X(t, s;ω)x be the solution to (5.1) starting at time s ∈ R in x ∈ H , with

respect to the Wiener process W̃B
t =WB

t+s −WB
s (cf. [PR07, p. 105]). We define

Px := (X(·, 0, ·)x)∗P,

to be the law on C([0,∞), H) of the solution X(·, 0, ·)x viewed as a random variable
taking values in C([0,∞), H). By Itō’s formula

(5.2) E sup
t∈[0,T ]

‖X(t, 0, ·)x−X(t, 0, ·)y‖2H ≤ ‖x− y‖2H .

Proposition 5.2. The family {Px}x∈H defines a time-homogeneous Markov pro-

cess on C([0,∞), H) with respect to the filtration {F̂t}t∈R+
, i.e.

Ex[F (πt+s)|F̂s] = Eπs [F (πt)], ∀F ∈ Bb(H), Px-a.s.,

where Ex, Ex[·|F̂s] denote (conditional) expectation with respect to Px.

Proof. See section 6.4. �

We define

PtF (x) := E [F (X(t, 0, ·)x)] , F ∈ Cb(H), x ∈ H

to be the Feller semigroup associated to the stochastic flow X(t, s, ω)x. By Propo-
sition 5.2 the semigroup property is satisfied. The so-called e-property

(5.3) |PtF (x)− PtF (y)| ≤ Lip(F ) ‖x− y‖H , x, y ∈ H,

for all F ∈ Lipb(H) follows from (5.2). Consider the assumption

Hypothesis 6. (A5) There are constants C, c > 0 such that

2 S∗〈y, x〉S ≥ c‖y‖S∗ − C,

for all [x, y] ∈ A.

Let u(·, 0)x ∈ C([0, T ];H) denote the unique solution to

dut +A(ut)dt ∋ 0,

u0 = x ∈ H.
(5.4)

The unique existence of such a solution u follows from Theorem 2.3 and Theorem
2.5 with g ≡ 0.

Definition 5.3. We say that finite time extinction holds for equation (5.4), if for
all bounded sets B ⊆ H there exists an extinction time TB ≥ 0 for the solution
{u(·, 0)x} to (5.4) such that u(t, 0)x ≡ 0 for all t ≥ TB and for all x ∈ B.
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Hypothesis 7. Suppose that there exists a measurable Lyapunov function Θ : H →
[0,+∞] satisfying

S∗〈y, x〉S ≥ Θ(x), ∀x ∈ S, ∀y ∈ A(x).

and consider the following conditions

(L1) Finite time extinction holds for (5.4) and Θ has bounded sublevel sets.
(L2) The solutions {u(·, 0)x} to (5.4) satisfy u(t, 0)x → 0 for x ∈ H as t → ∞

and Θ has compact sublevel sets.

A simple sufficient condition for Hypothesis 7, (L1) is given by

Remark 5.4. Suppose that there is a constant c > 0 such that

(5.5) 2 S∗〈y, x〉S ≥ c‖x‖αH ,

for some 1 ≤ α < 2 and all [x, y] ∈ A. Then Hypothesis 7, (L1) holds.

Proof. See section 6.4. �

Then, using Theorem [KPS10, Theorem 2], we prove

Theorem 5.5. Assume Hypotheses 1, 5, 6 and (L1) or (L2) in Hypothesis 7.
Then, there exists a unique invariant measure µ∗ for {Pt} and

(1) The semigroup {Pt} is weak-∗ mean ergodic.
(2) For any ψ ∈ Lipb(H) and µ ∈ M1 the weak law of large number holds, i.e.

lim
T→∞

1

T

∫ T

0

ψ(πs) ds =

∫

H

ψ dµ∗,

in Pµ-probability, where Pµ is the law of the Markov process π started with
initial distribution µ.

Proof. See section 6.4. �

6. Proofs

6.1. Deterministic case.

6.1.1. Deterministic case with initial data x ∈ S (Theorem 2.3).

We first prove that the approximating equation (2.3) has a unique solution:

Proposition 6.1. Assume Hypothesis 1: (A1), (A2), (A4), Hypothesis 2 and let
x ∈ H. Then equation (2.3) has a unique solution Y ε ∈ C([0, T ];H) in the sense
that

Y ε
t = x+

∫ t

0

ζεs ds+ gt,

for all t ∈ [0, T ] as an equation in S∗, where ζε ∈ L2([0, T ];S∗) such that ζεt ∈
−εiS(Y

ε
t )−A(t, Y ε

t + gt) for a.e. t ∈ [0, T ].

Proof. We aim to apply Theorem A.3 with

F (t, x) = −A(t, x+ gt)−
ε

2
iS(x),

J(t, x) =
ε

2
iS(x),

and u0 = x. Obviously (J1)–(J4) are satisfied. We check the conditions on F :
(F1): A consequence of maximal monotonicity (A1), see [Bar93, Ch. 2, Proposi-

tion 1.1].
(F2): Let x ∈ S. By [HP97, Ch. 3, Theorem 1.28] and maximal monotonic-

ity of x 7→ A(t, x) for all t ∈ [0, T ], x 7→ A(t, x) is strongly-to-weakly upper-
semicontinuous. (A4) and [Zyg92, Theorem 1, Theorem 2] imply that (t, x) 7→
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A(t, x) is product measurable and hence superpositionally measurable. F +(ε/2)iS
is the composition of the càdlàg function t 7→ (t, x+ gt) and A, thus t 7→ F (t, x) is
measurable.

(F3): Since A(t, ·) is maximal monotone so is F (t, ·) for each t ∈ [0, T ], which
implies sequential closedness in S × S∗

w, see [Bar93, Ch. 2, Proposition 1.1].
(F4): Obvious by (A2) and Hypothesis 2.
(F5): We first note that (A1) combined with (A2) implies a weak coercivity

property for A:

S∗〈y, x〉S = S∗〈y − z, x− 0〉S + S∗〈z, x〉S(6.1)

≥ −‖z‖S∗‖x‖S ≥ −f(t)‖x‖S,

for all t ∈ [0, T ] and [x, y] ∈ A(t) and z ∈ A(t, 0). For t ∈ [0, T ], [x, y] ∈ F (t),
z ∈ A(t, x+ gt):

S∗〈y, x〉S = − S∗〈z, x〉S −
ε

2
‖x‖2S = − S∗〈z, x+ gt〉S − S∗〈z, gt〉S −

ε

2
‖x‖2S

≤ f(t)‖x+ gt‖S + ‖z‖S∗‖gt‖S −
ε

2
‖x‖2S

≤ C(ε)(f(t)2 + f(t)‖gt‖S + ‖gt‖
2
S)

and the last term is in L1([0, T ])+ by (A2) and Hypothesis 2.
Application of Theorem A.3 thus yields the existence of a solution and mono-

tonicity of F, J implies uniqueness. �

Lemma 6.2. Under Hypothesis 1 and 2 for starting points x ∈ S, we have that

‖Y ε
t ‖

2
S ≤ C ‖x‖

2
S + C

∫ t

0

e−Cs
(
γ(s) + f2

s + ‖T 3/2gs‖
2
H

)
ds <∞.

Proof. By Proposition 6.1 we know that Y ε ∈ L2([0, T ];S). Apply the chain-

rule [Sho97, §III.4] to ‖·‖
2
n to obtain that

‖Y ε
t ‖

2
n e

−Kt ≤ ‖x‖
2
n − 2

∫ t

0

e−Ks
S∗〈η

ε
s + εiS(Y

ε
s ), Tn(Y

ε
s )〉S ds−K

∫ t

0

e−Ks ‖Y ε
s ‖

2
n ds

= ‖x‖
2
n − 2

∫ t

0

e−Ks
S∗〈η

ε
s , Tn(Y

ε
s + gs)〉S ds+ 2

∫ t

0

e−Ks
S∗〈η

ε
s , Tn(gs)〉S ds

− 2ε

∫ t

0

e−Ks(Y ε
s , Tn(Y

ε
s ))S ds−K

∫ t

0

e−Ks ‖Y ε
s ‖

2
n ds

≤ ‖x‖
2
n +

∫ t

0

e−Ks
(
γ(s) + C‖Y ε

s + gs‖
2
S

)
ds+

∫ t

0

e−Ks‖ηεs‖
2
S∗ ds

+

∫ t

0

e−Ks‖Tngs‖
2
S ds−K

∫ t

0

e−Ks ‖Y ε
s ‖

2
n ds

≤ ‖x‖
2
n + C

∫ t

0

e−Ks‖Y ε
s ‖

2
S ds−K

∫ t

0

e−Ks ‖Y ε
s ‖

2
n ds

+ C

∫ t

0

e−Ks
(
γ(s) + f2

s + ‖Tgs‖
2
S

)
ds,

where ηεs ∈ A(Y ε
s + gs) ds-a.e. Taking K = C and n→ ∞ yields

‖Y ε
t ‖

2
S e

−Ct ≤ ‖x‖
2
S + C

∫ t

0

e−Cs
(
γ(s) + f2

s + ‖T 3/2gs‖
2
H

)
ds.(6.2)

�

We are now ready to prove unique existence of solutions for initial data x ∈ S,
i.e.
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Proof of Theorem 2.3. For ε > 0 let Y ε denote the solution to (2.3) with corre-
sponding selection ηε ∈ A(·, Y ε + g). By Lemma 6.2 ‖Y ε‖L∞([0,T ];S) ≤ C. Hence,

there is a sequence {εn}, εn → 0 such that

Y εn ⇀∗ Y

weakly-∗ in L∞([0, T ];S). By the chain-rule (cf. [Sho97, §III.4])

∥∥Y ε
t − Y δ

t

∥∥2
H

≤ −2

∫ t

0
S∗

〈
ηεs − ηδs , Y

ε
s − Y δ

s

〉
S
ds(6.3)

− 2

∫ t

0
S∗

〈
εiS(Y

ε
s )− δiS(Y

δ
s ), Y

ε
s − Y δ

s

〉
S
ds, t ∈ [0, T ],

for all 0 < δ < ε. Hence,

∫ T

0
S∗

〈
εiS(Y

ε
s )− δiS(Y

δ
s ), Y

ε
s − Y δ

s

〉
S
ds ≤ 0.

By [BCP70, Lemma 1.4], Y εn ⇀ Y weakly in L2([0, T ];S) and

(6.4)

∫ T

0

‖Y εn
t ‖

2
S dt→

∫ T

0

‖Yt‖
2
S dt.

Hence Y εn → Y strongly in L2([0, T ];S). Then (6.3) implies Y εn → Y in C([0, T ];H).
By (A2) and Lemma 6.2 we can choose a further subsequence (again denoted by
εn) such that

ηεn ⇀ η, in L2([0, T ];S∗).

By Proposition B.2 the operator A : L2([0, T ];S) → 2L
2([0,T ];S∗) is strongly-weakly

closed and thus [Yt + gt, ηt] ∈ A(t) for a.e. t ∈ [0, T ]. By monotonicity the solu-
tion is unique and thus the whole sequence (net) {Y ε} converges strongly to Y in
L2([0, T ];S). Since Y is a unique solution to (2.2) Xt := Yt+gt is a unique solution
to (2.1).

We now prove X ∈ L∞([0, T ];S) and X is right-continuous in S. By the same
calculation as for (6.2) we obtain

(6.5) ‖Yt‖
2
S e

−Ct ≤ ‖Ys‖
2
S e

−Cs + C

∫ t

s

e−Cs
(
γ(s) + f2

s + ‖T 3/2gs‖
2
H

)
ds.

In particular

sup
t∈[0,T ]

‖Yt‖
2
S <∞,

which together with continuity in H implies weak continuity of Y . Let tn ∈ [0, T ]
with tn ↓ t. By (6.5)

‖Ytn‖
2
S e

−Ctn ≤ ‖Yt‖
2
S e

−Ct + C

∫ tn

t

e−Cs
(
γ(s) + f2

s + ‖T 3/2gs‖
2
H

)
ds.

Hence, limn→∞ ‖Ytn‖
2
S ≤ ‖Yt‖

2
S . By weak continuity we conclude Ytn → Yt in S.

�
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6.1.2. Deterministic case with initial data x ∈ H (Theorem 2.5).

We proof Theorem 2.5. Let xδ, x̄δ ∈ S be two approximations of x in H and
Y δ, Ȳ δ be the variational solutions constructed in Theorem 2.3 corresponding to
xδ, x̄δ ∈ S. By the chain-rule

‖Y δ
t − Ȳ ε

t ‖
2
H = ‖xδ − x̄ε‖2H − 2

∫ t

0
S∗

〈
ηδr − η̄εr , Y

δ
r − Ȳ ε

r

〉
S

≤ ‖xδ − x̄ε‖2H ,

where ηδr ∈ A(Y δ
r + gr), η̄

ε
r ∈ A(Ȳ ε

r + gr). Thus Y δ is a Cauchy sequence in
C([0, T ];H) and every sequence of approximative solutions Ȳ δ converges to the
same limit Y in C([0, T ];H).

6.2. Stochastic evolution inclusions with additive noise.

Let x ∈ L0(Ω,F0;S) and X be the corresponding pathwise solution to (3.1). It
remains to prove {Ft}t∈[0,T ]-adaptedness of X .

Under the assumptions Theorem 2.3 we have shown that there is a unique solu-
tion Y to (2.2). We now prove that the solution map

F : S ×
(
L2([0, T ];S) ∩ L2

w([0, T ];D(T 3/2))
)
→ C([0, T ];H)

(x, g) 7→ Y,

is continuous (here, the subscript “ w” denotes the weak Hilbert topology). Let
xn → x in S and gn → g in L2([0, T ];S) with gn ⇀ g weakly in L2([0, T ];D(T 3/2)).
The bound in Lemma 6.2 for Y n, Y does not depend on n since gn is uniformly
bounded in L2([0, T ];D(T 3/2)). Hence ηnt ∈ A(t, Y n

t + gnt ), ηt ∈ A(t, Yt + gt) are
uniformly bounded in L2([0, T ];S∗). By the chain rule ( [Sho97, §III.4])

‖Y n
t − Yt‖

2
H = −2

∫ t

0
S∗〈η

n
s − ηs, Y

n
s − Ys〉S ds

≤ −2

∫ t

0
S∗〈η

n
s − ηs, gs − gns 〉S ds

≤ 2‖ηns − ηs‖L2([0,T ];S∗)‖g − gn‖L2([0,T ];S) → 0,

which proves the claimed continuity.
By Kuratowski’s Theorem the map N↾[0,t] : Ω → L2([0, t];D(T 3/2)) is Ft-

measurable for all t ∈ [0, T ]. Hence, continuity of the solution map F implies
{Ft}t∈[0,T ]-adaptedness of Y and thus of X .

6.3. Stochastic evolution inclusions with multiplicative noise.

We will now prove Theorem 4.2 and Theorem 4.4. The proof consists of two main
steps. First we consider the case of additive noise satisfying the weaker regularity
properties in Hypothesis 4, 5 as compared to Hypothesis 2. In the second step
we use the unique existence of solutions for additive noise in order to construct
solutions to the case of multiplicative noise, using a fixed point argument.

6.3.1. Stochastic evolution inclusions with additive Wiener noise.

For the rest of this Section assume B to be independent of x ∈ S.
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Proposition 6.3. Let x ∈ L2(Ω, F̂0;S) and assume Hypotheses 1, 4 and 5. Then
there is a solution X to (4.1) satisfying

E sup
t∈[0,T ]

‖Xt‖
2
S <∞

and X is P-a.s. right continuous in S. If x ∈ L2(Ω, F̂0;H) and Hypotheses 1 and
4 are satisfied, then there is a unique limit solution to (4.1).

Proof. We first make some general remarks concerning the approximation of el-
ements x ∈ S. Since T : D(T ) ⊆ H → H is an anticompact, self-adjoint op-
erator, there is an orthonormal basis of eigenvectors ei ∈ S of H . Let Hm =
span{e1, ..., em} and Pm : H → Hm be the orthogonal projection onto Hm in H .
Since (·, ·)S = (T 1/2·, T 1/2·)H the restriction of Pm to S is the orthogonal projection
onto Hm in S. Moreover, Pm can be extended continuously to Pm : S∗ → S with
‖Pmy‖S ≤ Cm‖y‖S∗ .

We consider the approximating equations

(6.6)

{
dXm

t +A(t,Xm
t ) dt ∋ Bm

t dWt

X0 = x,

where Bm := PmB. Then

‖PmB‖2L2([0,T ]×Ω;L2(U,S)) ≤ ‖B‖2L2([0,T ]×Ω;L2(U,S))

and ‖TPmB‖2L2([0,T ]×Ω;L2(U,S)) ≤ Cm‖B‖2L2([0,T ]×Ω;L2(U,S)). Hence

Nm
t (ω) :=

∫ t

0

Bm
s dWs(ω)

satisfies Hypothesis 2 for a.a. ω ∈ Ω. By dominated convergence Bm → B in
L2([0, T ]×Ω;L2(U,H)) and by Theorem 2.3 there is a solution Xm(ω) to (6.6) for
a.a. ω ∈ Ω.

Lemma 6.4. There is C > 0 such that

E

[
sup

t∈[0,T ]

‖Xm
t ‖2S

]
≤ 4eCT

(
E‖x‖2S +E

∫ T

0

(hs + γs) ds

)
,

where γ is as in Hypothesis 1 and h as in Hypothesis 5.

Proof. We first note that the process t 7→
∫ t

0
ηms ds (where ηm ∈ A(·, Xm) dt ⊗

P-a.s.) is progressively measurable and that under this weaker assumption Itō’s

formula (cf. [PR07, Theorem 4.2.5]) for the approximating norm ‖·‖
2
n may still be

applied. In fact, the same proof as for [PR07, Theorem 4.2.5] can be used. We
obtain by (A3):

‖Xm
t ‖2n e

−Ct = ‖x‖2n −

∫ t

0

2e−Cs
S∗〈η

m
s , Tn(X

m
s )〉S ds+

∫ t

0

2e−Cs(Xm
s , B

m
s dWs)n

+

∫ t

0

e−Cs‖Bm
s ‖2L2(U,Hn)

ds− C

∫ t

0

e−Cs‖Xm
s ‖2n ds

≤ ‖x‖2n +

∫ t

0

e−Csγs ds+ C

∫ t

0

e−Cs ‖Xm
s ‖

2
S ds

+

∫ t

0

2e−Cs(Xm
s , B

m
s dWs)n +

∫ t

0

e−Cs‖Bm
s ‖2L2(U,Hn)

ds

− C

∫ t

0

e−Cs‖Xm
s ‖2n ds.
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By Burkholder’s inequality, choosing K large enough and taking n→ ∞, we obtain

E

[
sup

t∈[0,T ]

‖Xm
t ‖2S e

−Ct

]
≤ 2

(
E‖x‖2S +E

∫ T

0

e−Cs(2hs + γs) ds

)
.

�

We proceed with the proof of Proposition 6.3. By Itō’s formula and Burkholder’s
inequality

E

[
sup

t∈[0,T ]

‖Xn
t −Xm

t ‖2H

]
≤ CE

∫ T

0

‖Bn
s −Bm

s ‖2L2(U,H) ds → 0,

for n,m → ∞. Hence, Xn → X in L2(Ω;C([0, T ];H)). By lower semi-continuity
of the norm ‖ · ‖L2(Ω;C([0,T ];S)) on L

2(Ω;C([0, T ];H)),

(6.7) E

[
sup

t∈[0,T ]

‖Xt‖
2
S

]
≤ C

(
E‖x‖2S +E

∫ T

0

(hs + γs) ds

)
.

By Lemma 6.4 and (A2), for some subsequence ηm ⇀ η̄ in L2([0, T ]× Ω;S∗) and
we obtain P-a.s.

Xt = x−

∫ t

0

η̄sds+

∫ t

0

BsdWs, ∀t ∈ [0, T ].

Applying Itō’s formula to this equation and to (6.6), then subtracting the resulting
equations yields

E

[
‖Xm

t ‖2H − ‖Xt‖
2
H

]
=−E

[∫ t

0

2 S∗〈η
m
r , X

m
r 〉S −2 S∗〈η̄r, Xr〉S dr

]

+E

∫ t

0

‖Bm
r −Br‖

2
L2(U ;H).

Thus

lim
m→∞

E

∫ t

0
S∗〈η

m
r , X

m
r 〉S ≤ E

∫ t

0
S∗〈η̄r, Xr〉S dr.

By Proposition B.4, A : L2([0, T ]×Ω;S) → L2([0, T ]×Ω;S∗) is maximal monotone.
Thus, Minty’s trick implies [X, η̄] ∈ A dt⊗P-a.e.

Right continuity of X in S is shown as in the proof of Theorem 2.3, i.e. (6.7)
yields weak continuity and repeating the calculations from Lemma 6.4 for all initial
times s ≤ t we can then deduce right-continuity.

For general initial conditions x ∈ L2(Ω, F̂0;H) and noise satisfying Hypothe-

sis 4 only we consider approximations xm ∈ L2(Ω, F̂0;S) and Bm := PmB with
corresponding variational solutions Xm. Applying Itō’s formula for the difference
‖Xm −Xn‖2H and using Burkholder’s inequality yields

E

[
sup

t∈[0,T ]

‖Xm
t −Xn

t ‖
2
H

]
≤ C

(
E‖xm − xn‖2H +E

∫ T

0

‖Bn
s −Bm

s ‖2L2(U,H) ds

)
,

which implies the existence of a limit X of Xm in L2(Ω;C([0, T ];H)). For two
approximating solutions Xm, X̄m by the same argument we obtain

E

[
sup

t∈[0,T ]

‖Xm
t − X̄m

t ‖2H

]
≤ C

(
E‖xm − x̄m‖2H +E

∫ T

0

‖Bm
s − B̄m

s ‖2L2(U,H) ds

)
,

This implies that the limit X does not depend on the approximating sequence. �
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6.3.2. Proof of Theorem 4.2.

First let x ∈ L2(Ω, F̂0;S) and B satisfy Hypothesis 4 and Hypothesis 5. We
construct a solution by freezing the noise. For K > 0 let

W
K :=

{
Z ∈ L2(Ω;C([0, T ];H))| ‖Z‖2L2(Ω;C([0,T ];S)) ≤ K

}
.

Since ‖ · ‖2L2(Ω;C([0,T ];S)) is a lower semi-continuous function on L2(Ω;C([0, T ];H))

the subsets W K are closed in L2(Ω;C([0, T ];H)). For Z ∈ L2(Ω;C([0, T ];S)) we
have

‖Bt(Zt)‖
2
L2(U,S) ≤ C‖Zt‖

2
S + ht ∈ L1([0, T ]× Ω).

By Proposition 6.3 there exists a unique corresponding solution X = F (Z) ∈
L2(Ω;C([0, T ];S)) driven by the diffusion coefficients B(Z). We will prove that the
solution map

F : L2(Ω;C([0, T ];H)) → L2(Ω;C([0, T ];H))

is a contraction for T > 0 small enough. Let Z(1), Z(2) ∈ L2(Ω;C([0, T ];H)). Then
by Itō’s formula und Burkholder’s inequality

‖F (Z(1))− F (Z(2))‖2L2(Ω;C([0,T ];H)) ≤ E

∫ T

0

‖Bs(Z
(1)
s )−Bs(Z

(2)
s )‖2L2(U,H) ds

≤ CE

∫ T

0

‖Z(1)
s − Z(2)

s ‖2H ds

≤ CT ‖Z(1)
s − Z(2)

s ‖2L2(Ω;C([0,T ];H)).

Thus, for T > 0 small enough F is a contractive mapping. For Z ∈ W K , by (6.7)

E

[
sup

t∈[0,T ]

‖Xt‖
2
S

]
≤ 4eCT

(
E‖x‖2S +E

∫ T

0

C‖Zs‖
2
Sds+E

∫ T

0

(hs + γs) ds

)

≤ 4eCT

(
E‖x‖2S + CT ‖Zs‖

2
L2(Ω;C([0,T ];S)) +E

∫ T

0

(hs + γs) ds

)

≤ 4eCT

(
E‖x‖2S + CTK +E

∫ T

0

(hs + γs) ds

)

Choosing K ≥ 8eCT
(
E‖x‖2S +E

∫ T

0
(hs + γs) ds

)
thus yields

E

[
sup

t∈[0,T ]

‖Xt‖
2
S

]
≤
K

2
+ 4CeCTTK.

Hence, for T ≥ 0 small enough, F leaves W K invariant and is contractive. By
Banach’s fixed point theorem, there is a unique fixed point X ∈ L2(Ω;C([0, T ];H)),
i.e. F (X) = X or in other words

dXt +A(Xt) dt ∋ B(Xt) dWt.

By Theorem 6.3 we have

E sup
t∈[0,T ]

‖Xt‖
2
S <∞

and X is P-a.s. right-continuous in S.
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6.3.3. Proof of Theorem 4.4.

Let x ∈ L2(Ω, F̂0;H), B satisfying Hypothesis 4 only, xn ∈ L2(Ω, F̂0;S) with

xn → x in L2(Ω, F̂0;H) and Bm := PmB, thus satisfying Hypothesis 4 and Hy-
pothesis 5. By Itō’s formula and Burkholder’s inequality

E sup
t∈[0,T ]

‖Xn
t −Xm

t ‖2H e−Ct

≤ C

(
E‖xn − xm‖2H +E

∫ T

0

‖Bn
s (X

n
s )−Bm

s (Xm
s )‖2L2(U ;H)ds

)

≤ CE‖xn − xm‖2H + CE

∫ T

0

‖Bn
s (X

n
s )−Bs(X

n
s )‖

2
L2(U ;H)ds

+ CE

∫ T

0

‖Bs(X
m
s )−Bm

s (Xm
s )‖2L2(U ;H)ds → 0,

by dominated convergence. Hence, there is a limit Xn → X ∈ L2(Ω;C([0, T ];H)).
Similar arguments yield the independence of X from the approximating sequence.

6.4. Markov processes and ergodicity.

In the following assume that the assumptions considered in Section 5 are satisfied.

Proof of Proposition 5.2: As in [PR07, Proposition 4.3.5] we note that by (5.2) it
is enough to show

Ex[G(πt1 , ..., πtn)F (πt+s)] =

∫

Ω

G(πt1(ω), ..., πtn(ω))Eπs(ω)[F (πt)] dPx(ω),

for all 0 ≤ t1 ≤ ... ≤ tn ≤ s, G : Hn → R continuous, bounded and F ∈ Cb(H).
Equivalently

E[G(X(t1, 0; ·)x, ..., X(tn, 0; ·)x)F (X(t+ s, 0; ·)x)]

=

∫

Ω

G(X(t1, 0;ω)x, ..., X(tn, 0;ω)x)E[F (X(t, 0; ·)X(s, 0;ω)x)] dP(ω).
(6.8)

Let us first consider the case of regular initial conditions x ∈ S and additive,
pathwise D(T 3/2)-regular noise (Theorem 3.2). By Corollary 3.3, X(t, s;ω)x is a
stochastic flow, i.e.

X(t, s;ω)x = X(t, r;ω)X(r, s;ω)x, ∀s ≤ r ≤ t

and a cocycle

X(t, s;ω)x = X(t− s, 0; θsω), ∀s ≤ t.

Thus:

X(t, 0, ·)X(s, 0, ω)x = X(t+ s, s, θ−s·)X(s, 0, ω)x.

Since X(t+ s, s, ·) is independent of F̂s we conclude

E[F (X(t, 0, ·)X(s, 0, ω)x)] = E[F (X(t+ s, s, ·)X(s, 0, ω)x)]

= E[F (X(t+ s, s, ·)X(s, 0, ·)x)|F̂s](ω)

= E[F (X(t+ s, 0, ·)x)|F̂s](ω)
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and thus∫

Ω

G(X(t1, 0, ω)x, ..., X(tn, 0, ω)x)E[F (X(t, 0, ·)X(s, 0, ω)x)] dP(ω)

=

∫

Ω

G(X(t1, 0, ω)x, ..., X(tn, 0, ω)x)E[F (X(t+ s, 0, ·)x)|F̂s](ω) dP(ω)

= E[G(X(t1, 0, ·)x, ..., X(tn, 0, ·)x)F (X(t+ s, 0, ·)x)].

For initial conditions x ∈ H and noise B satisfying Hypothesis 4 only, solu-
tions were constructed as limits of pathwise solutions Xm(·, 0, ·)x → X(·, 0, ·)x in
L2(Ω;C([0, T ];H)). Using uniform Lipschitz continuity of the pathwise solutions
in the initial condition we realize that (6.8) is preserved in the limit. �

Recall that u(·, 0)x ∈ C([0, T ];H) denotes the unique solution to (5.4).

Proof of Remark 5.4: The Lyapunov function Θ(x) := c‖x‖αH is measurable and
has bounded sublevel sets. It remains to prove finite time extinction.

First let x ∈ S ∩B. By the chain rule of calculus

d

dt
‖ut‖

2
H = 2 S∗〈−ηt, ut〉S ≤ −c‖ut‖

α
H = −c

(
‖ut‖

2
H

)α
2 , for a.e. t ∈ [0,∞),

where α is as in (5.5) and ηt ∈ A(ut) for a.e. t ∈ [0, T ]. Hence, informally f(t) :=
‖ut‖

2
H is a subsolution to the ordinary differential equation

f ′(t) = −cf(t)
α
2 , for a.e. t ∈ [0, T ].

Hence

‖ut‖
2
H ≤

((
‖x‖2−α

H − ct
2− α

2

)
∨ 0

) 2
2−α

≤

((
‖B‖2−α

H − ct
2− α

2

)
∨ 0

) 2
2−α

.

By continuity in the initial condition the same inequality holds for all x ∈ B. We
conclude ut ≡ 0 for all t ≥ TB := ‖B‖2−α

H
2

c(2−α) . �

In order to prove Theorem 5.5, we need some preparation. We start by proving
stochastic stability for equation (5.1).

Lemma 6.5. Suppose that Hypotheses 1, 5, 6 hold. For each T > 0, ε > 0 and
B ⊆ H bounded we have

P[‖X(T, 0; ·)x− u(T, 0)x‖2H ≤ ε] > 0,

uniformly for all x ∈ B.

Proof. Since WB
t is a trace class Wiener process on S, for each δ > 0, T > 0 we can

find a subset Ωδ ⊆ Ω of positive mass such that sup{‖WB
t (ω)‖S| t ∈ [0, T ]} < δ

2 for

all ω ∈ Ωδ. Let x ∈ S. For ω ∈ Ωδ we have by (A5)

‖Y (t, 0;ω)x‖2H = ‖x‖2H − 2

∫ t

0
S∗

〈
ηr, X(r, 0;ω)x−WB

r (ω)
〉
S
dr

≤ ‖x‖2H − c

∫ t

0

‖ηr‖S∗dr − 2

∫ t

0
S∗

〈
ηr,−W

B
r (ω)

〉
S
dr + Ct

≤ ‖x‖2H −

(
c− 2 sup

r∈[0,T ]

‖WB
r (ω)‖S

)∫ t

0

‖ηr‖S∗dr + Ct

≤ ‖x‖2H − (c− δ)

∫ t

0

‖ηr‖S∗dr + Ct,
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where ηr ∈ A(X(r, 0;ω)x) for a.e. r ∈ [0, T ] and X = Y +WB, as before. The same
argument can be applied for u(t, 0)x to obtain

∫ T

0

‖η̃r‖S∗dr +

∫ T

0

‖ηr‖S∗dr ≤ C(1 + ‖x‖2H),

where η̃r ∈ A(u(t, 0)x) and ηr ∈ A(X(r, 0;ω)x) for a.e. r ∈ [0, T ] and all δ small
enough. Using the monotonicity of A we estimate the difference to the deterministic
solution by

‖Y (t, 0;ω)x− u(t, 0)x‖2H =

∫ t

0
S∗〈ηr − η̃r, Y (r, 0;ω)x− u(r, 0)x〉S dr

≤ ‖η − η̃‖L1([0,T ];S∗)‖W
B(ω)‖L∞([0,T ];S)

≤ C(1 + ‖x‖2H)δ,

for ω ∈ Ωδ. By continuity in x this inequality remains true for all x ∈ H . Hence

‖X(t, 0;ω)x− u(t, 0)x‖2H = ‖Y (t, 0;ω)x+WB
t (ω)− u(t, 0)x‖2H

≤ C(1 + ‖x‖2H)δ, ∀ω ∈ Ωδ.

Choosing δ > 0 small enough thus yields the claim. �

Next, we prove the asymptotic concentration of the average mass on bounded
(compact resp.) sets.

Lemma 6.6. Suppose that Hypotheses 1, 5, 7, (L1) (or (L2) resp.) hold. For
each ε > 0 and each bounded set A ⊆ H there exists a bounded (compact resp.)
measurable set B = B(ε, A) ⊆ H such that

inf
x∈A

lim
T→∞

QT (x,B) > 1− ε

Proof. Let ε > 0. For R > 0 set K := KR := {Θ ≤ R}, which is a bounded
(compact resp.) measurable set by (L1) ((L2) resp.). By Itō’s formula,

1

T
E

∫ T

0

Θ(X(s, 0; ·)x) ds ≤ C(‖x‖
2
H + 1), for T ≥ 1.

Let A ⊆ H be bounded and x ∈ A. Then

QT (x,K) =
1

T

∫ T

0

Ps(x,K) ds

≥
1

T

∫ T

0

(
1−

E [Θ(X(s, 0; ·)x)]

R

)
ds ≥ 1−

C

R
(‖A‖2H + 1).

Choosing R(ε, A) > ε−1C(‖A‖
2
H + 1) yields the claim with B := KR(ε,A). �

We are now ready to prove a locally uniform lower bound for the average mass
at 0.

Lemma 6.7. Suppose that Hypotheses 1, 5, 6, 7, (L1) hold. For each δ > 0 and
each bounded set A ⊆ H

inf
x∈A

lim
T→∞

QT (x,Bδ(0)) > 0.

Proof. Let A ⊆ H be bounded, x ∈ A and B = B(12 , A) be as in Lemma 6.6. By
(L1), there exists an extinction time T0 corresponding to B such that uzT0

= 0 for
all z ∈ B. Using Lemma 6.5 yields

PT0
(z,Bδ(0)) = P(‖X

z
T0
‖H ≤ δ) = P(‖Xz

T0
− u(T0, 0)z‖H ≤ δ) ≥ γ1 > 0,(6.9)
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where γ1 = γ1(T0, δ) is independent of z ∈ B. Thus

lim
T→∞

QT (x,Bδ(0)) = lim
T→∞

1

T

∫ T

0

Ps(x,Bδ(0)) ds

= lim
T→∞

1

T

∫ T

0

Ps+T0
(x,Bδ(0))ds

= lim
T→∞

1

T

∫ T

0

∫

H

Ps(x, dz)PT0
(z,Bδ(0)) ds

≥ lim
T→∞

1

T

∫ T

0

∫

B

Ps(x, dz)PT0
(z,Bδ(0)) ds

≥ lim
T→∞

γ1
1

T

∫ T

0

∫

B

Ps(x, dz) ds

≥ γ1 lim
T→∞

QT
(
x,B

)
≥
γ1
2
> 0,

where γ1 = γ1(T0, δ) = γ1(‖A‖H , δ). �

For the next proposition, see [ESvR10, Proposition 4.9]. We shall adapt their
proof to our setting and include it for convenience.

Proposition 6.8 (Es-Sarhir–von Renesse). Suppose that Hypotheses 1, 5, 6, 7,
(L2) hold. Then for every δ > 0 and every x ∈ H:

lim
T→∞

QT (x,Bδ(0)) > 0.

Proof. Let δ > 0 and x ∈ H . Repeating the proof of Lemma 6.6, we may pick some
R > 0 such that for the compact set K := KR := {Θ ≤ R} it holds that

QT (x,K) >
1

2
, ∀T > 1.

Claim 1: There exists a γ1 > 0 and a finite sequence T1, T2, . . . , Tk, Ti > 0 for
i ∈ {1, . . . , k} such that

1

k

k∑

i=1

PTi(y,Bδ(0)) > γ1, ∀y ∈ K.

By (L2), for each z ∈ H there exists a Tz < ∞ such that u(t, 0)z ∈ Bδ/4(0) for
all t ≥ Tz. Hence, using Lemma 6.5 we obtain

PTz (z,Bδ/2(0)) ≥ P

{
‖X(Tz, 0; ·)z − u(Tz, 0)z‖H ≤

δ

4

}
=: γz > 0.

Let ϕ be a bounded Lipschitz function on H such that 1Bδ/2(0) ≤ ϕ ≤ 1Bδ(0) and

Lip(ϕ) ≤ 2/δ. Defining rz := δγz

4 , the e-property (5.3) implies

PTz (y,Bδ(0)) ≥ PTzϕ(y) ≥ PTzϕ(z)−
2

δ
‖z − y‖H

≥ PTz (z,Bδ/2(0))−
2

δ
‖z − y‖H ≥ γz −

2

δ
‖z − y‖H ≥

γz
2
, ∀y ∈ Brz(z).

Since K is compact, we may select a finite sequence (zi, rzi), i ∈ {1, . . . , k}, such

that K ⊆
⋃k

i=1 Brzi
(zi). Setting Ti := Tzi the claim follows with γ1 := 1

2 min
1≤i≤k

γxi .
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Using Fatou’s lemma we obtain

lim
T→∞

QT (x,Bδ(0)) = lim
T→∞

1

T

∫ T

0

Ps(x,Bδ(0)) ds

= lim
T→∞

1

k

k∑

i=1

1

T

∫ T

0

Ps+Ti (x,Bδ(0))ds

≥ lim
T→∞

1

k

k∑

i=1

1

T

∫ T

0

∫

K

Ps(x, dy)PTi (y,Bδ(0)) ds

≥ γ1 lim
T→∞

1

T

∫ T

0

Ps(x,K) ds

= γ1 lim
T→∞

QT (x,K)

≥
γ1
2
> 0.

�

We see that Theorem [KPS10, Theorem 2] can be applied to yield the claim of
Theorem 5.5.

7. Examples

In the following we present several examples of singular SPDE which can be
treated by the general results discussed above. Let us first consider the case in
which the drift is given as the subgradient of a convex function. Let S ⊆ H ⊆ S∗

be a Gelfand triple of Hilbert spaces and T , Tn, Jn as in Section 2.

Proposition 7.1. Let ϕ : S → R be a lower semi-continuous, convex function
such that infu∈S ϕ(u) > −∞. Then A := ∂ϕ : S → 2S

∗

satisfies (A1), (A4), (A5).
If

(7.1) ϕ(u) ≤ C
(
1 + ‖u‖

2
S

)
, ∀u ∈ S,

for some C > 0, then A satisfies (A2).
If in addition, ϕ is non-expansive with respect to Jn, i.e. ϕ(Jnu) ≤ ϕ(u) for all

u ∈ S, n ∈ N then A satisfies (A3).

Proof. By replacing ϕ with ϕ − infu∈S ϕ(u), we may assume ϕ ≥ 0. By [Phe89,
Proposition 3.3], ϕ is continuous on S. (A4) is satisfied since ϕ is independent of
time t.

(A1): By [Bar76, Theorem 2.1, Proposition 2.7] A is maximal monotone with
nonempty values.

(A5): As noted above, ϕ is continuous. Hence, there is δ > 0 such that ϕ(w) ≤
ϕ(0) + 1 for all ‖w‖S ≤ δ. For v ∈ ∂ϕ(u) we observe

‖v‖S∗ =
1

δ
sup

w∈S, ‖w‖S=δ
S∗〈v, w〉S

=
1

δ
sup

w∈S, ‖w‖S=δ
S∗〈v, w − u〉S +

1

δ S∗〈v, u〉S

≤
1

δ
sup

w∈S, ‖w‖S=δ

ϕ(w) − ϕ(u) +
1

δ S∗〈v, u〉S

≤
1

δ
(ϕ(0) + 1) +

1

δ S∗〈v, u〉S .
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(A2): Let u ∈ S, v ∈ ∂ϕ(u) and ϕ∗ be the Legendre-Fenchel transform of ϕ. By
(7.1) it follows that

ϕ∗(v) ≥
‖v‖2S∗

4C
− C. ∀v ∈ S∗,

compare e.g. with [RW98, eq. 11(3)]. Hence by Young’s equality,

‖v‖
2
S∗ ≤ 4C (ϕ∗(v) + C) = 4C ( S∗〈v, u〉S −ϕ(u) + C)

≤ 4C (‖v‖S∗ ‖u‖S + C) ,

which implies (A2).
(A3): For u ∈ S, v ∈ ∂ϕ(u)

S∗〈v, Tnu〉S = −n S∗〈v, Jnu− u〉S ≥ n (ϕ(u)− ϕ(Jnu)) ≥ 0,

for all u ∈ S and n ∈ N. �

For any convex function ϕ : S → R we define its extension onto H by ϕ(u) :=
+∞, for all u ∈ H \ S.

Proposition 7.2. Let ϕ : S → R be an even, convex function such that ϕ(u) =
infv∈S ϕ(v) iff u = 0 and such that its extension onto H has compact sublevel sets.
Then A := ∂ϕ satisfies condition (L2) in Hypothesis 7.

Proof. By the subgradient property we have

S∗〈v, u〉S ≥ ϕ(u)− ϕ(0), ∀v ∈ ∂ϕ(u).

Hence, we may choose Θ := ϕ − ϕ(0) in Hypothesis 7, (L2). Closedness of the
sublevel sets on H implies lower semi-continuity of Θ on H . Then [Bru75, Theorem
5] implies (L2). �

In the following let (Ω,F , {Ft}t≥0,P) be a (not necessarily complete nor right-
continuous) filtered probability space and N : [0, T ]× Ω → S be an {Ft}-adapted

process satisfyingN·(ω) ∈ L2([0, T ];D(T
3
2 )) for all ω ∈ Ω and strict stationarity, i.e.

(N). Furthermore, let (Ω, F̂ , {F̂t}t≥0,P) be a normal filtered probability space and

B : [0, T ]×Ω×S → L2(U,H) be an F̂t-progressively measurable map. The choice
of the underlying Gelfand triple S ⊆ H ⊆ S∗ will be specified in each example.

7.1. Stochastic generalized fast-diffusion equation.

We adopt a framework inspired by Röckner and Wang [RW08]. Let (E,B, µ) be
a finite measure space and (E , D(E )) be a symmetric Dirichlet form on L2(µ) with
associated Dirichlet operator (L,D(L)) (cf. [FOT94]). Assume that L is strictly
coercive and anticompact. Then D(E ) is a Hilbert space with norm ‖·‖0 := E 1/2(·)
and D(E ) ⊆ L2(µ) is dense and compact.

We define the generalized fast diffusion operator in the Gelfand triple

S := L2(µ) ⊆ H := D(E )∗ ⊆ S∗.

Let Ψ : R → R+ be an even, convex, continuous function with Ψ(0) = 0, subdif-
ferential Φ = ∂Ψ : R→ 2R and

Ψ(r) ≤ C
(
|r|2 + 1µ(E)<∞

)
, ∀r ∈ R

for some constant C > 0. Explicit examples are given by:

(1) Fast diffusion equation:

Φp(r) := ∂
(
s 7→ 1

p |s|
p
)
(r) = |r|p−1 sgn(r), p ∈ [1, 2].
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Note that we include the limit case p = 1 for which

Φ1(r) =

{
sgn(r), r 6= 0

[−1, 1], r = 0.

(2) Plasma diffusion:

Φln(r) := ∂
(
s 7→ (|s|+ 1) ln(|s|+ 1)− |s|

)
(r) = ln(|r| + 1) sgn(r).

We define

ϕ(u) :=

∫

E

Ψ(u(ξ)) dµ(ξ), u ∈ S

and A := ∂ϕ : S → 2S
∗

. As in [Bar76, Proposition 2.9] we obtain

(7.2) A(u) =
{
v ∈ S∗ = L2(µ)

∣∣ v(ξ) ∈ Φ(u(ξ)), a.e. ξ ∈ E
}
.

Example 7.3. Consider the stochastic generalized fast-diffusion equation

dXt ∈ LΦ(Xt) dt+

{
dNt

Bt(Xt) dWt

, t ∈ (0, T ],

X0 = x.

(7.3)

Then Theorem 3.2, Corollary 3.3, Theorem 4.2 and Theorem 4.4 apply, proving the
unique existence of a (limit) solution to (7.3).

Proof. By continuity, convexity and the growth condition for Ψ, ϕ : S → R+ is a
convex continuous function. By Proposition 7.1 it only remains to prove that ϕ is
non-expansive with respect to Jn.

Recall that −L equals the Riesz map of S as we dualize over H = D(E )∗. Since
we have assumed L to be a symmetric Dirichlet operator, it holds that

‖Jnu‖L∞(µ) ≤ ‖u‖L∞(µ) , ∀u ∈ L∞(µ), n ∈ N

and

Jnu ≤ Jnv, ∀u, v ∈ L2(µ), 0 ≤ u ≤ v µ-a.e., n ∈ N.

By an interpolation theorem due to Maligranda (cf. [Mal89, Theorem 3]), we obtain

ϕ(Jnu) ≤ ϕ(u), ∀u ∈ L̃Ψ(µ) ⊇ L2(µ) = S.

See Appendix C for the definition of L̃Ψ(µ). �

In order to prove ergodicity of the correspondingMarkovian semigroup we require
one of the following stronger coercivity conditions

(C1) For each v ∈ L2(µ) with v(ξ) ∈ Φ(u(ξ)) for a.e. ξ ∈ E we have
∫

E

vu dµ ≥ c‖u‖pH ,

for some p ∈ [1, 2) and some constant c > 0.
For example, this is satisfied in the case of stochastic fast diffusion equa-

tions on bounded domains, i.e. for E = Λ ⊆ Rd being a bounded, smooth
domain, µ = dx being the Lebesgue measure, L = ∆ being the Dirichlet

Laplacian and Ψ(r) = 1
p |r|

p with p ∈
[
1 ∨ 2d

d+2 , 2
)
(cf. also [LT11,Liu11]).

(C2) The embedding L1(µ) ⊆ H = D(E )∗ is compact, Ψ(r) = 0 iff r = 0 and

lim
r→+∞

Ψ(r)

r
= +∞.

In particular, this is satisfied by the plasma diffusion in one space di-
mension.
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Example 7.4. Consider the generalized stochastic fast-diffusion equation,

dXt ∈ LΦ(Xt) dt+B dWt, t ∈ (0, T ],

X0 = x
(7.4)

and assume that (C1) or (C2) is satisfied. Then the associated Markovian semi-
group Pt is weak-∗ mean ergodic.

Proof. First assume (C1). We prove that (L1) is satisfied by Remark 5.4. By (7.2)
and (C1) we obtain

2 S∗〈y, x〉S =

∫

E

y(ξ)x(ξ) dµ(ξ) ≥ c‖x‖pH .

Hence, Theorem 5.5 applies.
Let us now assume (C2). By Fatou’s lemma ϕ is lower semi-continuous on L1(µ).

Compactness of the embedding L1(µ) ⊆ H implies that ϕ has relatively compact
sublevel sets in H . It remains to show closedness of the sublevel sets {ϕ ≤ α}
in H . Let xn ∈ {ϕ ≤ α}, n ∈ N, such that ‖xn − x‖H → 0 for some x ∈ H .
By de la Vallée-Poussin’s theorem, {xn} is uniformly integrable in L1(µ). By the
Dunford–Pettis theorem, there is y ∈ L1(µ) and a subsequence {xn′} of {xn} such
that xn′ ⇀ y weakly in L1(µ). Since {ϕ ≤ α} is convex and closed in L1(µ), it
is also weakly closed in L1(µ) by Mazur’s lemma. Hence y ∈ {ϕ ≤ α}. By weak
continuity of the embedding L1(µ) ⊆ H , we conclude y = x.

The claim follows now from Proposition 7.2. �

As pointed out above, explicit examples include the fast diffusion equation for

p ∈
[
1 ∨ 2d

d+2 , 2
)
and the generalized stochastic plasma-diffusion equation for d = 1.

Note that in the limit case of the fast diffusion equation (Ψ1(r) = |r|), we can still
allow d = 1, 2. For d = 2 the embedding L1(µ) ⊆ H still is well-defined but not
compact. Therefore, only (L1) but not (L2) applies and thus the proof of ergodicity
crucially relies on finite time extinction for the deterministic equation.

7.2. The stochastic singular Φ-Laplacian equation.

7.2.1. Dirichlet boundary conditions in a bounded domain.
Let d ∈ N, Λ ⊆ Rd be a bounded domain with Lipschitz boundary ∂Λ and −∆

be the Dirichlet Laplacian on Λ. We define |·| and 〈·, ·〉 to be the Euclidean norm
and the inner-product on Rd respectively. Let

S := H1
0 (Λ) ⊆ H := L2(Λ) ⊆ S∗,

where we endow S with the equivalent norm ‖u‖S :=
(∫

Λ|∇u|
2 dξ

)1/2
.

Let Ψ(x) = Ψ̃(|x|) : Rd → R+ be a radially symmetric function with Ψ̃ : R →
[0,+∞) being an Orlicz function (cf. Definition C.1). We further assume

Ψ(x) ≤ C(|x|2 + 1), ∀x ∈ Rd

for some constant C > 0. Let Φ := ∂Ψ : Rd → 2R
d

. Explicit examples are given
by:

(1) Singular p-Laplacian: Φp(x) := ∂
(

1
p |·|

p
)
(x) = |x|p−1 Sgn(x), p ∈ [1, 2],

where

Sgn(x) :=





x

|x|
, if x ∈ Rd \ {0},

{
y ∈ Rd | |y| ≤ 1

}
, if x = 0.

Note that we include the limit case p = 1.
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(2) Curve shortening flow:

Φarctan(r) := ∂

(
s 7→ s arctan(s)−

1

2
ln(s2 + 1)

)
(r) = arctan(r), r ∈ R.

We define

ϕ(u) :=

∫

Λ

Ψ(∇u(ξ)) dξ, u ∈ S

and A := ∂ϕ : S → 2S
∗

. Since ∇ : S = H1
0 (Λ) → L2(Λ;Rd) is a linear, continuous

operator with adjoint ∇∗ = (−∆)−1 ◦ div, the chain-rule for subgradients (cf.
[Sho97, Proposition 7.8]) implies ∂ϕ = ∇∗ ◦ ∂

(∫
Λ Ψ(·) dξ

)
◦∇, i.e. ∇∗y ∈ ∂ϕ(x) ⊆

S∗ iff y ∈ L2(Λ;Rd) and y(ξ) ∈ Φ(∇x(ξ)) for almost every ξ ∈ Λ. In this case

(7.5) S∗〈∇
∗y, z〉S =

∫

Λ

〈y(ξ),∇z〉 dξ.

Hence A is an S-realization of the singular Φ-Laplace operator

“A(u) := − divΦ(∇u)”.

Example 7.5. Consider the stochastic, singular Φ-Laplace equation

dXt ∈ div Φ(∇Xt) dt+

{
dNt

Bt(Xt)dWt

, t ∈ (0, T ],

X0 = x,

(7.6)

with Dirichlet boundary conditions. Then Theorem 3.2, Corollary 3.3, Theorem 4.2
and Theorem 4.4 apply, proving the unique existence of a (limit) solution to (7.6).

Proof. By continuity, convexity and the growth bound of Ψ, ϕ : S → R+ is a
convex, continuous function. By Proposition 7.1 it only remains to prove that ϕ is
non-expansive with respect to Jn. This will be done in Lemma 7.6 below. �

Lemma 7.6. For all u ∈ S = H1
0 (Λ) and all n ∈ N

ϕ(Jnu) ≤ ϕ(u).

Proof. Let n ∈ N. We first note that
(
1−

∆

n

)
div η = div

((
1−

∆

n

)
η

)
, ∀η ∈ C∞

0 (Λ;Rd).

Hence, Jn(div η) = div Jnη. Since −∆ is a symmetric Dirichlet operator, by Propo-
sition C.3, we conclude as in Section 7.1

∫

Λ

Ψ∗(Jnv) dξ ≤

∫

Λ

Ψ∗(v) dξ,

for all v ∈ L̃Ψ∗

. Using Proposition C.2, we compute

ϕ(Jnu) =

∫

Λ

Ψ(∇Jnu) dξ

= sup

{∣∣∣∣
∫

Λ

〈∇Jnu, v〉 dξ

∣∣∣∣−
∫

Λ

Ψ∗(v) dξ

∣∣∣∣∣ v ∈ C∞
0 (Λ;Rd)

}

= sup

{∣∣∣∣
∫

Λ

u div Jnv dξ

∣∣∣∣−
∫

Λ

Ψ∗(v) dξ

∣∣∣∣∣ v ∈ C∞
0 (Λ;Rd)

}

≤ sup

{∣∣∣∣
∫

Λ

〈∇u, Jnv〉 dξ

∣∣∣∣−
∫

Λ

Ψ∗(Jnv) dξ

∣∣∣∣∣ Jnv ∈ C∞
0 (Λ;Rd)

}
= ϕ(u).

�
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In order to prove ergodicity of the associated Markovian semigroup for dimen-
sions (d ≥ 2) we need to assume

(C3) For some p ∈ [1, 2) and for all ∇∗v ∈ ∂ϕ(u) ⊆ S∗

∫

Λ

〈v(ξ),∇u(ξ)〉 dξ ≥ ‖u‖pH .

For example, this is the case for the stochastic singular p-Laplace equation,

i.e. for Φ(x) := |x|p−1 Sgn(x) with p ∈
[
1 ∨ 2d

2+d , 2
)
(cf. also [LT11]). For

p = 1, the result was conjectured in [CT11].

Example 7.7. Consider the stochastic, singular Φ-Laplace equation

dXt ∈ div Φ(∇Xt) dt+B dWt, t ∈ (0, T ],

X0 = x,
(7.7)

with Dirichlet boundary conditions and assume (C3) or d = 1. Then the associated
Markovian semigroup Pt is weak-∗ mean ergodic.

Proof. First assume (C3). We prove that (L1) is satisfied by Remark 5.4. Using
(7.2.1) and (7.5) we observe

2 S∗〈∇
∗y, x〉S =

∫

Λ

〈y(ξ),∇x(ξ)〉 dξ ≥ ‖x‖pH ,

for all y ∈ L2(Λ;Rd) with y(ξ) ∈ Φ(∇x(ξ)) for a.e. ξ ∈ Λ. Thus, we may apply
Theorem 5.5.

If d = 1, then Hypothesis 7, (L2) is satisfied: To see this, note that the embedding

W 1,1
0 (Λ) ⊆ L2(Λ) is compact and hence the sub-levels of ϕ are relatively compact

in L2(Λ). Also ϕ is lower semi-continuous on W 1,1
0 (Λ) by Fatou’s lemma. But ϕ

is also lower semi-continuous on L2(Λ) and thus possesses compact sub-level sets:
Indeed, let un, u ∈ L2(Λ), n ∈ N, such that ‖un − u‖L2(Λ) → 0 and ϕ(un) ≤ α.

Using Proposition C.2, we compute

ϕ(u) = sup

{∣∣∣∣
∫

Λ

u div v dξ

∣∣∣∣ −
∫

Λ

Ψ∗(v) dξ

∣∣∣∣∣ v ∈ C∞
0 (Λ;Rd)

}

= sup

{
lim
n→∞

∣∣∣∣
∫

Λ

un div v dξ

∣∣∣∣−
∫

Λ

Ψ∗(v) dξ

∣∣∣∣∣ v ∈ C∞
0 (Λ;Rd)

}

≤ lim
n→∞

sup

{∣∣∣∣
∫

Λ

un div v dξ

∣∣∣∣−
∫

Λ

Ψ∗(v) dξ

∣∣∣∣∣ v ∈ C∞
0 (Λ;Rd)

}

= lim
n→∞

∫

Λ

Ψ(∇un) dξ ≤ α.

Hence we can apply Proposition 7.2. �

In particular, this applies to the stochastic curve shortening flow in one space
dimension.

7.2.2. Neumann boundary conditions in a Riemannian manifold.
Let M be a connected, complete Riemannian manifold of dimension d ∈ N with

either convex or empty boundary ∂M and volume element dx. For x ∈M we define
〈·, ·〉x and |·|x to be the Riemannian inner-product and norm on TxM . Furthermore,

let V ∈ C2(M), Z := ∇V . Assume that
∫
M eV (x)dx < +∞, set L := ∆+ Z and

µ(dx) :=
eV (x)dx∫
M
eV (x)dx

,
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which is a symmetrizing probability measure for −L. We consider the Gelfand
triple

S := H1(M,µ) ⊆ H := L2(M,µ) ⊆ S∗,

where H1(M,µ) := {u ∈ L2(M,µ) |
∫
M
|∇u|2 dµ < +∞}. Let {Pt} be the Feller

semigroup associated to −L, assume that S ⊆ H is compact (for criteria cf. e.g.
[Wan05, Theorem 1.4.15, p. 62]) and assume that there exists a real constant KZ ≤
0 such that

Ric(X,X)− 〈∇XZ,X〉 ≥ −KZ |X |2, ∀X ∈ TM.

Then the (reflecting) L-diffusion process is nonexplosive. Let Ψ(x, ξ) = Ψ̃(|ξ|x) :

M × TM → R+ with Ψ̃ : R→ R+ being an Orlicz function. We further assume

Ψ(x, ξ) ≤ C(|ξ|2x + 1),

for some constant C > 0. Let Φ := ∂ξΨ. An explicit example is given by the
singular p-Laplacian nonlinearity

Ψp(x, ξ) :=
1
p |ξ|

p
x, ∀x ∈M, ξ ∈ TxM,

for some p ∈ [1, 2]. The nonlinear diffusion operator “A(u) := − div
(
eV Φ(∇u)

)
” is

defined rigorously as the subdifferential of the convex potential

ϕ(u) :=

∫

M

Ψ(x,∇u(x)) dµ(x), u ∈ S.

As in Section 7.2.1, A := ∂ϕ admits the variational characterization: ∇∗y ∈ A(u)
iff |y| ∈ H and y(x) ∈ Φ(x,∇u(x)) for almost every x ∈M . In this case

S∗〈∇
∗y, v〉S =

∫

M

〈y(x),∇v(x)〉x dµ(x), u, v ∈ S.

Example 7.8. Consider the stochastic Φ-Laplace equation with Neumann boundary
conditions

dXt ∈ div(eV Φ(∇Xt)) dt+

{
dNt

Bt(Xt)dWt

, t ∈ (0, T ],

X0 = x.

(7.8)

Then Theorem 3.2, Corollary 3.3, Theorem 4.2 and Theorem 4.4 apply, proving the
unique existence of a (limit) solution to (7.8).

Proof. The proof proceeds as before. It only remains to prove that ϕ is non-
expansive with respect to Jn. By [Wan05, Proposition 2.5.1, p. 108]

|∇Ptu| ≤ eKZtPt|∇u| ≤ Pt|∇u|, ∀u ∈ C1
b (M), t ≥ 0.

Hence

|∇Jnu| =

∣∣∣∣∇
∫ ∞

0

e−tPt/n(u) dt

∣∣∣∣ ≤
∫ ∞

0

e−tPt/n|∇u| dt = Jn|∇u|, ∀u ∈ C1
b (M).

Since {Pt} is Markovian symmetric on L2(M,µ), by [Mal89, Theorem 3]∫

M

Ψ̃(Jnu(x))dµ(x) ≤

∫

M

Ψ̃(u(x))dµ(x), µ-a.e. ∀u ∈ L̃Ψ(M,µ).

Combining these two inequalities we obtain

ϕ(Jnu) =

∫

M

Ψ̃(|∇Jnu(x)|x) dµ(x)

≤

∫

M

Ψ̃(Jn|∇u|(x)) dµ(x)

≤

∫

M

Ψ̃(|∇u|(x)) dµ(x) = ϕ(u), ∀u ∈ S,
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by density and dominated convergence. �

To prove ergodicity we again need to require a stronger coercivity condition, i.e.
we assume

(7.9)

∫

M

〈Φ(x,∇u(x)),∇u(x)〉x dµ(x) ≥ c‖u‖pH ,

for some c > 0 and some p ∈ [1, 2). For example, this is satisfied by the standard

p-Laplacian for p ∈
[
1 ∨ 2d

2+d , 2
)
. By the same proof as for Example 7.7 we obtain

Example 7.9. Consider the stochastic Φ-Laplace equation with Neumann boundary
conditions

dXt ∈ div(eV Φ(∇Xt)) dt+B dWt, t ∈ (0, T ],

X0 = x,
(7.10)

for Φ satisfying (7.9). Then the associated Markovian semigroup Pt is weak-∗ mean
ergodic.
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Appendix A. A deterministic existence result

Consider the following multi-valued Cauchy problem:

(A.1)





d

dt
u(t) + J(t, u(t)) ∈ F (t, u(t)) for a.e t ∈ [0, T ],

u(0) = u0.

Here J : [0, T ]× S → S∗ and F : [0, T ]× S → 2S
∗

.

Definition A.1. A solution of (A.1) is a function u ∈W 1,2(0, T ) such that

d

dt
u(t) + J(t, x(t)) = f(t)

a.e. on [0, T ], u(0) = u0 and f ∈ L2([0, T ];S∗) such that f(t) ∈ F (t, u(t)) for a.e.
t ∈ [0, T ].

We need the following definition:

Definition A.2. An operator A : S → S∗ is said to be of type (S)+, if un ⇀ u
weakly in S and

lim
n S∗〈A(un)−A(u), un − u〉S ≤ 0

together imply that un → u strongly in S.

Certainly, a strongly monotone operator A : S → S∗, i.e. for some c > 0:

S∗〈A(u)−A(v), u− v〉S ≥ c ‖u− v‖2S ∀u, v ∈ S,

is of type (S)+.
Consider the following conditions on J and F :

(J1) t 7→ J(t, x) is measurable for all x ∈ S.
(J2) x 7→ J(t, x) is demicontinuous and of type (S)+ for almost all t ∈ [0, T ].
(J3) ‖J(t, x)‖S∗ ≤ j1(t) + c1 ‖x‖S a.e. on [0, T ] for all x ∈ S with j1 ∈ L2([0, T ]),

c1 > 0.
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(J4) S∗〈J(t, x), x〉S ≥ c2 ‖x‖
2
S − c′2 ‖x‖S − j2(t) a.e. on [0, T ] for all x ∈ S with

c2, c
′
2 > 0 and j2 ∈ L1([0, T ]).

(F1) The values of F are non-empty, closed and convex.
(F2) t 7→ F (t, x) is measurable for all x ∈ S.
(F3) GrF (t, ·) is sequentially closed in S × S∗

w for almost all t ∈ [0, T ].
(F4) ‖F (t, x)‖S∗ ≤ f1(t) + c3 ‖x‖S for a.e. t ∈ [0, T ] with f1 ∈ L2([0, T ]), c3 > 0.
(F5) S∗〈y, x〉S ≤ γ(t) for a.e. t ∈ [0, T ], all x ∈ S, y ∈ F (t, x) and some γ ∈

L1([0, T ])+.

Here “Gr” denotes the graph of a multi-valued map, L1([0, T ])+ := {f ∈ L1([0, T ]) | f ≥
0 a.e. on [0, T ]} and “S∗

w” denotes the weak Hilbert topology of S∗.
The following theorem can be found in [HP00, Theorem I.2.40] or [PPY00, The-

orem 3]:

Theorem A.3 (Hu–Papageorgiou–Papalini–Yannakakis). Suppose that J and F
satisfy (J1)–(J4) and (F1)–(F5) resp. Then the set of solutions to inclusion (A.1)
for initial point u0 ∈ H is nonempty, weakly compact in W 1,2(0, T ) and compact in
C([0, T ];H).

Appendix B. Maximal monotone operators depending on a parameter

Let S be a separable Hilbert space, (E,B, µ) be a σ-finite measure space and

A : E × S → 2S
∗

satisfy:

(MM) For µ-a.a. u ∈ E the map x 7→ A(u, x) is maximal monotone with nonempty
values.

Definition B.1. A map A : S → 2S
∗

with non-empty values is called strongly-to-
weakly upper semi-continuous if for each x ∈ S and for each weakly open set V in
S∗ such that A(x) ⊆ V and for all {xn} ⊆ S with xn → x strongly, we have that
A(xn) ⊆ V for large n.

A map A : S → 2S
∗

with non-empty values is called weakly upper hemicontinu-
ous if for each x, y ∈ S, λ ∈ [0, 1] and for each weakly open set V in S∗ such that
A(x+λy) ⊆ V and for all {λn} ⊆ [0, 1] with λn → λ, we have that A(x+λny) ⊆ V
for large n.

A map A : S → 2S
∗

with non-empty values is weakly upper hemicontinuous
whenever it is strongly-to-weakly upper semi-continuous.

Let Ā be the mapping defined by:

Ā : L2(E,B, µ;S) → 2L
2(E,B,µ;S∗),

Ā : x 7→ {y ∈ L2(E,B, µ;S∗) | y(u) ∈ A(u, x(u)), µ-a.e. u ∈ E}

Note that Ā(x) might be empty for some (or all) x ∈ L2(E,B, µ;S).

Proposition B.2. Suppose that (MM) holds. Then the graph of Ā is sequentially
closed in L2(E,B, µ;S) × L2

w(E,B, µ;S∗).

Proof. Our proof is inspired by [AD72, proof of Proposition (3.4)]. Let xn → x in
L2(E,B, µ;S), such that [xn, yn] ∈ Gr Ā exists for each n ∈ N and assume that
yn ⇀ η weakly in L2(E,B, µ;S∗) for some η ∈ L2(E,B, µ;S∗). Let us extract
a subsequence {xnk

} of {xn} such that xnk
(u) → x(u) for µ-a.e. u ∈ E. By the

Banach-Saks theorem,

wn :=
1

n

n∑

i=1

yi

converges to η strongly in L2(E,B, µ;S∗) (and hence {wnk
}, too). By extracting

another subsequence, if necessary, there is a µ-nullset N ∈ B such that for all
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u ∈ E \N

xnk
(u) → x(u) strongly in S, wnk

(u) → η(u) strongly in S∗

and A(u, ·) is maximal monotone. By [HP97, Ch. 3, Theorem 1.28], A(u, ·) is
strongly-to-weakly upper semi-continuous. Let u ∈ E \ N and V be any weakly
open neighborhood of A(u, x(u)). Then ynk

(u) ∈ V for large k and hence wnk
(u) ∈

coV . As a result, η(u) = limk wnk
(u) ∈ coV . Since V was chosen arbitrarily and

A(u, x(u)) is a weakly closed, convex set (see e.g. [HP97, Ch. 3, Proposition 1.14]),
we conclude

η(u) ∈
⋂

V weakly open
V⊇A(u,x(u))

coV = A(u, x(u)).

Since we can repeat the argument for all u ∈ E \N , we get that [x, η] ∈ Gr Ā. �

Lemma B.3. Suppose that A : S → 2S
∗

is a map with non-empty values. Then
the following statements are equivalent.

(i) A is maximal monotone.
(ii) A is monotone, has weakly compact and convex values and is weakly upper

hemicontinuous.

Proof. Follows from [CZ05, Propositions 2.6.4 and 2.6.5]. �

Proposition B.4. Let (E,B, µ) be a complete σ-finite measure space. Suppose
that A : E × S → 2S

∗

is a map with non-empty values such that

(1) u 7→ A(u, x) is B-measurable for all x ∈ S.
(2) x 7→ A(u, x) is maximal monotone for all u ∈ E.
(3) supy∈A(x,u) ‖y‖S∗ ≤ f(u)+C ‖x‖S for µ-a.a. u ∈ E for all x ∈ S and some

C > 0, f ∈ L2(E,B, µ)+.

Then Ā : L2(E,B, µ;S) → 2L
2(E,B,µ;S∗) is a maximal monotone map with non-

empty values.

The above conditions mimic those in [Pap92, cond. H(A)], except for an addi-
tional coercivity condition that is assumed therein.

Proof of Proposition B.4. Compare with [Pap92, Proof of Lemma 3.3]. By con-
dition (2) and [HP97, Ch. 3, Theorem 1.28] x 7→ A(u, x) is strongly-to-weakly
upper semi-continuous for all u ∈ E. By condition (1) and [Zyg92, Theorem
1, Theorem 2] the map u 7→ A(u, x(u)) is B-measurable and non-empty valued
for all x ∈ L2(E,B, µ;S). Condition (3) implies that each measurable selection
y ∈ A(·, x(·)) is contained in L2(E,B, µ;S∗), thus Ā(x) is non-empty valued. Be-
cause of condition (2), Ā is monotone. We are left to prove that Ā is weakly upper
hemicontinuous and has weakly compact, convex values in L2(E,B, µ;S∗).

We note that by condition (2) and Lemma B.3, for all u ∈ E every x ∈
L2(E,B, µ;S), A(u, x(u)) is a non-empty, convex and weakly compact set in 2S

∗

.
It is easy to see that A(·, x(·)) is a convex subset of L2(E,B, µ;S∗). As in the proof
of Proposition B.2 we see that A(·, x(·)) is weakly closed in L2(E,B, µ;S∗). Weak
compactness follows from condition (3) and the Banach-Alaoglu theorem.

Now, let x, v ∈ L2(E,B, µ;S), λ ∈ [0, 1], V be a weakly open set such that
Ā(x + λv) ⊆ V and {λn} ⊆ [0, 1] such that λn → λ. Clearly, x + λnv → x + λv
strongly in L2(E,B, µ;S). Suppose that “Ā(x+λnv) ⊆ V for large n” is not valid.
Then there exists a subsequence ynk

∈ Ā(x + λnk
v) such that ynk

6∈ V . Passing
to a further subsequence, by condition (3) and the Banach-Alaoglu theorem, we
may assume that ynk

⇀ η weakly for some η ∈ L2(E,B, µ;S∗). By Proposition
B.2, η ∈ Ā(x + λv) ⊆ V which gives a contradiction, since V was assumed to be
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weakly open. Hence Ā is weakly upper hemicontinuous and the proof is completed
by Lemma B.3. �

Appendix C. Vector-valued Orlicz Spaces

Definition C.1. A function Ψ̃ : R→ R+ is said to be an Orlicz function, if Ψ̃ is

even, convex, continuous, non-decreasing and Ψ̃(0) = 0.

For a lower semi-continuous, proper, convex function Ψ : Rd → R+ we define
the conjugate function by Ψ∗(y) := supx∈Rd{x · y −Ψ(x)}. Then

x · y ≤ Ψ(x) + Ψ∗(y), ∀x, y ∈ Rd

with equality iff y ∈ ∂Ψ(x) iff x ∈ ∂Ψ∗(y). Let (E,B, µ) be a σ-finite measure
space and Ψ : Rd → R+ be a measurable function. We define

L̃Ψ :=

{
u : E → R

d, measurable, ϕ(u) :=

∫

E

Ψ(u) dµ <∞

}
.

Proposition C.2. Let Ψ : Rd → R+ be an even, proper, lower semi-continuous,
convex function with Ψ(0) = 0. Then

∫

E

Ψ(u) dµ = sup

{
|

∫

E

u · v dµ| −

∫
Ψ∗(v) dµ

∣∣∣∣∣ v ∈ L̃Ψ∗

}

= sup

{
|

∫

E

u · v dµ| −

∫
Ψ∗(v) dµ

∣∣∣∣∣ v bounded, µ(supp(v)) <∞

}
,(C.1)

for all u ∈ L̃Ψ.

Proof. By Young’s inequality
∫

E

u · v dµ ≤

∫

E

Ψ(u) dµ+

∫

E

Ψ∗(v) dµ,

for all u, v : E → R

d measurable with u ·v ∈ L1(E, µ). Since Ψ is even we conclude
“≥” in (C.1).

Let now u ∈ L̃Ψ. Since E is σ-finite we can choose an exhaustion Em ⊆ E with
µ(Em) <∞. Let g : Rd → R

d be a measurable selection of ∂Ψ and define

vm,n := g(u)1Em∩{u≤n}.

Then vm,n is bounded and supported on Em,n := Em∩{u ≤ n}, since subgradients
of convex functions with full domain are locally bounded. We compute

∫

E

u · vm,n dµ =

∫

Em,n

u · g(u) dµ =

∫

Em,n

Ψ(u) + Ψ∗(g(u)) dµ.

Hence, ∫

Em,n

Ψ(u) dµ ≤

∣∣∣∣
∫

E

u · vm,n dµ

∣∣∣∣−
∫

E

Ψ∗(vm,n) dµ.

Consequently,

∫

E

Ψ(u) dµ ≤ sup
m,n∈N

{∣∣∣∣
∫

E

u · vm,n dµ

∣∣∣∣−
∫

E

Ψ∗(vm,n) dµ

}
.

�

By 〈·, ·〉2, |·|2 we denote the Euclidean scalar product and norm on Rd. The
following Proposition is a vector-valued generalization of [Mal89, Theorem 3].
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Proposition C.3. Let X := L1(µ) + L∞(µ) and T : X → X be a linear operator
such that T : L1(µ) → L1(µ), T : L∞(µ) → L∞(µ) and

Tx ≤ Ty, µ-a.e. ∀ 0 ≤ x ≤ y, x, y ∈ X,

‖Tx‖1 ≤M‖x‖1, ∀x ∈ L1(µ),

‖Tx‖∞ ≤M‖x‖∞, ∀x ∈ L∞(µ).

Moreover, let Ψ(ξ) = Ψ̃(|ξ|2), ∀ξ ∈ R

d for an Orlicz function Ψ̃ : R → R+.
The operator T acts componentwisely on vector-valued functions u ∈ L1(µ;Rd) +
L∞(µ;Rd), i.e. (Tu)i := Tui for i = 1, ..., d. Then

∫

E

Ψ

(
Tu

M

)
dµ ≤

∫

E

Ψ(u) dµ,

for all u ∈ L̃Ψ(µ).

Proof. Let D ⊆ R

d be a countable, dense subset of the unit ball. Then |x|2 =
supy∈D〈x, y〉2. Hence,

∣∣∣∣
Tu

M

∣∣∣∣
2

= sup
y∈D

∣∣∣∣
〈
Tu

M
, y

〉

2

∣∣∣∣ ≤ sup
y∈D

T |〈u, y〉2|

M
≤
T |u|2
M

,

µ-almost everywhere, for all u ∈ L1(µ;Rd) + L∞(µ;Rd). Using [Mal89, Theorem
3] we conclude

∫

E

Ψ

(
Tu

M

)
dµ =

∫

E

Ψ̃

(∣∣∣∣
Tu

M

∣∣∣∣
2

)
dµ ≤

∫

E

Ψ̃

(
T |u|2
M

)
dµ

≤

∫

E

Ψ̃ (|u|2) dµ =

∫

E

Ψ(u) dµ.

�
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[BDPR09a] V. Barbu, G. Da Prato, and M. Röckner, Stochastic nonlinear diffusion equations
with singular diffusivity, SIAM J. Math. Anal. 41 (2009), no. 3, 1106–1120.
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