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Abstract

In this paper we establish local and global existence and uniqueness of solutions for
general nonlinear evolution equations with coefficients satisfying some local monotonic-
ity and generalized coercivity conditions. An analogous result is obtained for stochastic
evolution equations in Hilbert space with general additive noise. As applications, the
main results are applied to obtain simpler proofs in known cases as the stochastic 3D
Navier-Stokes equation, the tamed 3D Navier-Stokes equation and the Cahn-Hilliard
equation, but also to get new results for stochastic surface growth PDE and stochastic
power law fluids.
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1 Main results

Let (H, 〈·, ·〉H) be a real separable Hilbert space and identified with its dual space H∗ by the
Riesz isomorphism. Let V be a real reflexive Banach space such that it is continuously and
densely embedded into H. Then we have the following Gelfand triple

V ⊆ H ≡ H∗ ⊆ V ∗.

If 〈·, ·〉V denotes the dualization between V and its dual space V ∗, then it is easy to show
that

〈u, v〉V = 〈u, v〉H , u ∈ H, v ∈ V.
Now we consider the general nonlinear evolution equation

(1.1) u′(t) = A(t, u(t)), 0 < t < T, u(0) = u0 ∈ H,
∗Corresponding author: weiliu@math.uni-bielefeld.de
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where T > 0, u′ is the generalized derivative of u on (0, T ) and A : [0, T ] × V → V ∗

is restrictedly measurable, i.e. for each dt-version of u ∈ L1([0, T ];V ), t 7→ A(t, u(t)) is
V ∗-measurable on [0, T ].

A classical result says that (1.1) has a unique solution if A satisfies the monotonicity and
coercivity conditions (see e.g. [1, 6, 28, 47, 50] for more detailed exposition and references).
The proof is mainly based on the Galerkin approximation and the Minty (monotonicity) trick.
In [30], the existence and uniqueness result was established by replacing the monotonicity
condition with a local version (see (H2) below). The result was applied to many new
fundamental equations within this variational framework such as Burgers type equations,
2D Navier-Stokes equation and the 3D Leray-α model. One of the main steps in the proof in
[30] was to show that any operator satisfying local monotonicity is pseudo-monotone. One
should remark that the notion of a pseudo-monotone operator is one of the most important
extensions of the notion of a monotone operator and it was first introduced by Brézis in
[5]. The prototype of a pseudo-monotone operator is the sum of a monotone operator and
a strongly continuous operator (i.e. an operator maps a weakly convergent sequence into a
strongly convergent sequence). Hence the theory of pseudo-monotone operators unifies both
monotonicity arguments and compactness arguments (cf. [47, 50]).

Also for stochastic partial differential equations (SPDE), the above approach, also called
the variational approach, has been used extensively by many authors. The existence and
uniqueness of solutions for SPDE was first investigated by Pardoux [38], Krylov and Ro-
zovskii [26]. We refer e.g. to [23, 42, 51] for some further generalizations. In particular,
the local monotonicity condition has been used to establish well posedness for SPDE in
[31, 10]. For further references on various types of properties established for SPDE within
the variational framework, we refer to [13, 22, 31, 51].

In this work we establish existence, uniqueness and continuous dependence on initial con-
ditions of solutions to (1.1) by using the local monotonicity condition (see (H2) below) and
the generalized coercivity condition (H3) defined below. An analogous result for stochastic
PDE with general additive noise is also obtained. The standard growth condition on A (cf.
[1, 26, 28, 50]) is also replaced by a much weaker condition such that the main result can be
applied to a larger class of examples. This result seems new even in the finite dimensional
case. The main result can be applied to establish the local/global existence and uniqueness
of solutions for a large class of classical (stochastic) nonlinear evolution equations such as the
stochastic 2D and 3D Navier-Stokes equation, the tamed 3D Navier-Stokes equation and the
Cahn-Hilliard equation. Through our generalized framework we give new and significantly
simpler proofs for all these well known results. Moreover, the main result is also applied to
stochastic surface growth PDE and stochastic power law fluids to obtain some new existence
and uniqueness results for these models (see Section 3 for more details). We emphasize that
by applying the main result we obtain both the known local existence and uniqueness of
strong solutions to the stochastic 3D Navier-Stokes equation and new local existence and
uniqueness results for stochastic surface growth PDE. Here the meaning of strong solution
is in the sense of both PDE and stochastic analysis.

In particular, the (stochastic) 2D and 3D Navier-Stokes equation are now included in
this extended variational framework using the local monotonicity and generalized coerciv-
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ity condition. The study of stochastic Navier-Stokes equations dates back to the work of
Bensoussan and Temam [2]. Although we have quite satisfactory results for 2D stochas-
tic Navier-Stokes equations such as well-posedness, small noise asymptotics and ergodicity
(cf.[31, 13, 24] and the references therein), the results for the three dimensional case are still
quite incomplete due to the lack of uniqueness (cf.[11, 12, 15, 16, 19, 20, 33, 34]). Concerning
the existence of solutions, in [19] Flandoli and Gatarek proved the existence of martingale
solutions and stationary solutions for any dimensional stochastic Navier-Stokes equations in
a bounded domain. Subsequently, Mikulevicius and Rozovskii in [34] showed the existence
of martingale solutions to stochastic Navier-Stokes equations in Rd(d ≥ 2) under weaker
assumptions on the coefficients.

Replacing the standard coercivity assumption (i.e. g(x) = Cx in (H3) below) by a more
general version is motivated by many reasons. One motivation is trying to investigate the 3D
Navier-Stokes equation by applying our new result since we know that the local monotonicity
hold for both the 2D and 3D Navier-Stokes equation. However, as pointed out in [30, 31], the
growth condition (see (H4) below) fails to hold for the 3D Navier-Stokes equation. On the
other hand, inspired by a series of works on the stochastic tamed 3D Navier-Stokes equation
[44, 45, 46], we realized that, instead of working on the usual Gelfand triple H1 ⊆ H0 ⊆ H−1

(see Section 3 for details), one may use the following Gelfand triple

H2 ⊆ H1 ⊆ H0.

On this triple one can verify the growth condition and also the local monotonicity for 3D
Navier-Stokes equation, but the usual coercivity condition does not hold anymore. Therefore,
we introduce the generalized coercivity condition (H3) in order to overcome this difficulty.
However, under this general form of coercivity one is only able to get the local existence
and uniqueness of solutions. We should remark that our main result can also be applied to
the tamed 3D Navier-Stokes equation to get the global existence and uniqueness of solutions
(see Section 3 for more examples).

Another reason of using this generalized coercivity condition is coming from the proof
of existence and uniqueness results for stochastic evolution equations with general additive
type noise. It is well known that stochastic equations (see (1.4) below) can be reduced to
deterministic evolution equations with a random parameter by a standard transformation
(substitution). Then one can apply the result that we have already established for determin-
istic equations (cf. [30]). However, (H3) with the form of g(x) = Cx fails to hold in some
examples due to the more general growth condition (H4) (see the proof of Theorem 1.3).
But in such cases one will see that (H3) still holds with a certain non-decreasing continuous
function g (e.g. g(x) = Cxγ for some C, γ > 0). We refer to Section 3 for many examples
only satisfying this generalized coercivity condition.

Now let us formulate the precise conditions on the coefficients in (1.1).

Suppose for fixed α > 1, β ≥ 0 there exist constants δ > 0, C and a positive function
f ∈ L1([0, T ];R) such that the following conditions hold for all t ∈ [0, T ] and v, v1, v2 ∈ V .

(H1) (Hemicontinuity) The map s 7→ 〈A(t, v1 + sv2), v〉V is continuous on R.
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(H2) (Local monotonicity)

〈A(t, v1)− A(t, v2), v1 − v2〉V ≤ (f(t) + ρ(v1) + η(v2)) ‖v1 − v2‖2
H ,

where ρ, η : V → [0,+∞) are measurable and locally bounded functions on V .

(H3) (Generalized coercivity)

2〈A(t, v), v〉V ≤ −δ‖v‖αV + g
(
‖v‖2

H

)
+ f(t),

where g : [0,∞)→ [0,∞) is a non-decreasing continuous function.

(H4) (Growth)

‖A(t, v)‖V ∗ ≤
(
f(t)

α−1
α + C‖v‖α−1

V

)(
1 + ‖v‖βH

)
.

Remark 1.1. (1) If ρ = η ≡ 0, g(x) = Cx and β = 0, then (H1)-(H4) are the classical
monotonicity and coercivity conditions in [50, Theorem 30.A] (see also [1, 26, 28, 39]). It
can be applied to many quasilinear PDE such as porous medium equations and the p-Laplace
equation (cf.[50, 39]).

(2) If f(t) ≡ C in (H2) and g(x) = Cx in (H3), existence and uniqueness is obtained
in [30] and the result is applied to many examples such as Burgers type equations, the
2D Navier-Stokes equation, the 3D Leray-α model and the p-Laplace equation with non-
monotone perturbations. For readers interested in stochastic partial differential equations
we refer to [31, 10] where the existence and uniqueness of strong solutions is established
under another form of local monotonicity condition (namely ρ ≡ 0).

(3) We remark that (H2) also covers other non-Lipschitz conditions used in the literature
(cf. e.g. [18]). Moreover, with small modifications to the proof, (H3) can be replaced by the
following slightly modified condition:

2〈A(t, v), v〉V ≤ −δ‖v‖αV + h(t)g
(
‖v‖2

H

)
+ f(t),

where h : [0, T ]→ [0,∞) is an integrable function.

Now we can state the main result, which gives a more general framework to analyze
various classes of nonlinear evolution equations.

Theorem 1.1. Suppose that V ⊆ H is compact and (H1)-(H4) hold.
(i) For any u0 ∈ H, there exists a constant T0 ∈ (0, T ] such that (1.1) has a solution on

[0, T0], i.e.
u ∈ Lα([0, T0];V ) ∩ C([0, T0];H), u′ ∈ L

α
α−1 ([0, T0];V ∗)

and

〈u(t), v〉H = 〈u0, v〉H +

∫ t

0

〈A(s, u(s)), v〉V ds, t ∈ [0, T0], v ∈ V.

Moreover, if there exist nonnegative constants C and γ such that

(1.2) ρ(v) + η(v) ≤ C(1 + ‖v‖αV )(1 + ‖v‖γH), v ∈ V,
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then the solution of (1.1) is unique on [0, T0].
(ii) If (H3) holds with g(x) = Cx for some constant C, then all assertions in (i) hold on

[0, T ] (i.e. T0 = T ).

Remark 1.2. (1) In the proof one can see that T0 is a constant depending on u0, f and g.
More precisely, one can take any constant T0 which satisfies the following property:

0 < T0 ≤ T and T0 < sup
x∈(0,∞)

G(x)−G
(
‖u0‖2

H +

∫ T0

0

f(s)ds

)
,

where the function G is the one defined in Lemma 2.1.
In particular, if g(x) = c0x

γ(γ ≥ 1), then one can take any T0 ∈ (0, T ] satisfying

T0 <
c0

(γ − 1)
(
‖u0‖2

H +
∫ T0

0
f(s)ds

)γ−1 .

(2) If ρ ≡ 0 or η ≡ 0 in (H2), then the compactness assumption of V ⊆ H can be
removed by using a different proof (cf. [31]). Therefore, the result can also be applied to
many nonlinear evolution equations with unbounded underlying domains.

The next result shows the continuous dependence of solution of (1.1) on the initial con-
dition u0.

Theorem 1.2. Suppose that V ⊆ H is compact and (H1)-(H4) hold, and ui are solutions
of (1.1) on [0, T0] for initial conditions ui,0 ∈ H, i = 1, 2 respectively and satisfying∫ T0

0

(ρ(u1(s)) + η(u2(s))) ds <∞.

Then there exists a constant C such that

‖u1(t)− u2(t)‖2
H ≤ ‖u1,0 − u2,0‖2

H exp

[∫ t

0

(f(s) + ρ(u1(s)) + η(u2(s))) ds

]
, t ∈ [0, T0].

(1.3)

Now we formulate the analogous result for SPDE in Hilbert space with additive type noise.
Suppose that U is a Hilbert space and W (t) is a U -valued cylindrical Wiener process defined
on a filtered probability space (Ω,F ,Ft,P). We consider the following type of stochastic
evolution equations on H,

(1.4) dX(t) = [A1(t,X(t)) + A2(t,X(t))] dt+B(t)dW (t), 0 < t < T, X(0) = X0,

where A1, A2 : [0, T ] × V → V ∗ and B : [0, T ] → L2(U ;H) (here (L2(U ;H), ‖ · ‖2) denotes
the space of all Hilbert-Schmidt operators from U to H) are measurable.

Now we give the definition of a local solution to (1.4). We use τ to denote a stopping
time in the filtered probability space (Ω,F ,Ft,P).
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Definition 1.1. An H-valued Ft-adapted process {X(t)}t∈[0,τ ] is called a local solution of
(1.4) if X(·, ω) ∈ L1([0, τ(ω)];V ) ∩ L2([0, τ(ω)];H) and P-a.s. ω ∈ Ω,

X(t) = X0 +

∫ t

0

[A1(s,X(s)) + A2(s,X(s))] ds+

∫ t

0

B(s)dW (s), 0 < t < τ(ω),

where τ is a stopping time satisfying τ(ω) > 0, P-a.e. ω ∈ Ω and X0 ∈ L2(Ω→ H;F0;P).

Theorem 1.3. Suppose that V ⊆ H is compact, A1 satisfies (H1)-(H4) with ρ ≡ 0, β = 0
and g(x) = Cx, A2 satisfies (H1)-(H4), B ∈ L2([0, T ];L2(U ;H)), and there exist nonnega-
tive constants C and γ such that

ρ(u+ v) ≤ C(ρ(u) + ρ(v)), u, v ∈ V ;

η(u+ v) ≤ C(η(u) + η(v)), u, v ∈ V ;

ρ(v) + η(v) ≤ C(1 + ‖v‖αV )(1 + ‖v‖γH), v ∈ V.

Then for any X0 ∈ L2(Ω → H;F0;P), there exists a unique local solution {X(t)}t∈[0,τ ] to
(1.4) satisfying

X(·) ∈ Lα([0, τ ];V ) ∩ C([0, τ ];H), P-a.s..

Moreover, if g(x) = Cx in (H3) and αβ ≤ 2, then all assertions above hold for τ ≡ T .

Remark 1.3. (1) The main idea of the proof is to use a transformation to reduce SPDE (1.4)
to a deterministic evolution equation (with some random parameter) which Theorem 1.1 can
be applied to. More precisely, we consider the process Y which solves the following SPDE:

(1.5) dY (t) = A1(t, Y (t))dt+B(t)dW (t), 0 < t < T, Y (0) = 0.

Since A1 satisfies (H1)-(H4) with ρ ≡ 0 and g(x) = Cx, then the existence and uniqueness
of Y (t) follows from Theorem 1.1 in [31]. Let u(t) = X(t) − Y (t), then it is easy to show
that u(t) satisfies a deterministic evolution equation of type (1.1) for each fixed ω ∈ Ω.

(2) Unlike in [22], here we do not need to assume the noise to take values in V (i.e.
B ∈ L2(U ;V )). The reason is that here we use the auxiliary process Y instead of subtracting
the noise part directly as in [22] and that A1 6= 0 because it satisfies (H3).

(3) One can replace the Wiener process W (t) in (1.4) by a Lévy type noise L(t). Then
the existence and uniqueness of solutions to (1.5) can be obtained from the main result in
[10], and the rest of the proof can be carried out similarly.

More generally, one might replace W (t) in (1.4) by a U -valued adapted stochastic process
N(t) with càdlàg paths. N(t) can be various types of noises here. For instance, one can take
N(t) as cylindrical Wiener process, fractional Brownian motion or Lévy process (cf.[22]).
This subject and some further applications will be investigated in future work.

(4) Comparing with the result obtained in [31, 10], the Theorem above can be applied to
SPDE with more general drifts (see Section 3 for many examples) provided the noise is of
additive type. On the other hand, the result in [31, 10] is applicable to SPDE with general
multiplicative Wiener noise or Lévy noise if ρ ≡ 0 in (H2) and g(x) = Cx in (H3).
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The rest of the paper is organized as follows. The proofs of the main results are given
in the next section. In Section 3 we apply the main results to several concrete (stochastic)
semilinear and quasilinear evolution equations in Banach space. Throughout the paper, we
use C to denote some generic constant which might change from line to line.

2 Proofs of The Main Theorems

2.1 Proof of Theorem 1.1

We will first consider the Galerkin approximation to (1.1). However, even in the finite di-
mensional case, the existence and uniqueness of solutions to (1.1) seems not obvious because
of the local monotonicity (H2) and the generalized coercivity condition (H3). Here we prove
it by using a classical existence theorem of Carathéodory for ordinary differential equations.
Another difference is that we can not apply Gronwall’s lemma directly for this general form
of coercivity condition (H3). Instead, we will use Bihari’s inequality, which is a generalized
version of Gronwall’s lemma (cf.[3, 41]).

Lemma 2.1. (Bihari’s inequality) Let g : (0,∞) → (0,∞) be a non-decreasing continuous
function. If p, q are two positive functions on R+ and K ≥ 0 is a constant such that

p(t) ≤ K +

∫ t

0

q(s)g (p(s)) ds, t ≥ 0.

(i) Then we have

(2.1) p(t) ≤ G−1

(
G (K) +

∫ t

0

q(s)ds

)
, 0 ≤ t ≤ T0,

where G(x) :=
∫ x
x0

1
g(s)

ds is well defined for some x0 > 0, G−1 is the inverse function and

T0 ∈ (0,∞) is a constant such that G(K) +
∫ T0

0
q(s)ds belongs to the domain of G−1.

(ii) If K = 0 and there exists some ε > 0 such that∫ ε

0

1

g(s)
ds = +∞,

then p(t) ≡ 0.

Remark 2.1. It is obvious that the interval [G(K), supx∈(0,∞) G(x)) is contained in the domain
of G−1, hence (2.1) holds for t ∈ [0, T0], where T0 satisfies∫ T0

0

q(s)ds < sup
x∈(0,∞)

G(x)−G(K).

In particular, if q ≡ 1 and g(x) = C0x
γ for some constant C0 > 0 and γ ≥ 1, then

G(x) =
C0

γ − 1

(
x1−γ

0 − x1−γ) ; G−1(x) =

(
x1−γ

0 − γ − 1

C0

x

) 1
1−γ

.
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Hence (2.1) holds on [0, T0] for any T0 ∈ [0, C0

γ−1
K1−γ) (in particular, for any T0 ∈ [0,∞) if

γ = 1).

Another difficulty is due to the local monotonicity. It is well known that the hemicontinu-
ity and (global) monotonicity implies demicontinuity (cf. [39, 50]), which implies continuity
in the finite dimensional case. This is crucially used in the proof of existence of solutions for
the finite dimensional equations of the Galerkin approximation. In order to show the demi-
continuity of locally monotone operators, we need to use the techniques of pseudo-monotone
operators. We first recall the definition of a pseudo-monotone operator, which is a very
useful generalization of a monotone operator and was first introduced by Brézis in [5]. We
use the notation “⇀” for weak convergence in Banach spaces.

Definition 2.1. The operator A : V → V ∗ is called pseudo-monotone if vn ⇀ v in V and

lim inf
n→∞

〈A(vn), vn − v〉V ≥ 0

implies for all u ∈ V
〈A(v), v − u〉V ≥ lim sup

n→∞
〈A(vn), vn − u〉V .

Remark 2.2. Browder introduced a slightly different definition of a pseudo-monotone oper-
ator in [9]: An operator A : V → V ∗ is called pseudo-monotone if vn ⇀ v in V and

lim inf
n→∞

〈A(vn), vn − v〉V ≥ 0

implies

A(vn) ⇀ A(v) and lim
n→∞
〈A(vn), vn〉V = 〈A(v), v〉V .

In particular, under assumption (H4), these two definitions are equivalent (cf. [30]).

Lemma 2.2. If the embedding V ⊆ H is compact, then (H1) and (H2) imply that A(t, ·) is
pseudo-monotone for any t ∈ [0, T ].

Proof. For the proof we refer to [30, Lemma 2.5].

The proof of Theorem 1.1 is split into a few lemmas. We first consider the Galerkin
approximation to (1.1).

Let {e1, e2, · · · } ⊂ V be an orthonormal basis in H and let Hn := span{e1, · · · , en} such
that span{e1, e2, · · · } is dense in V . Let Pn : V ∗ → Hn be defined by

Pny :=
n∑
i=1

〈y, ei〉V ei, y ∈ V ∗.

Obviously, Pn|H is just the orthogonal projection onto Hn in H and we have

〈PnA(t, u), v〉V = 〈PnA(t, u), v〉H = 〈A(t, u), v〉V , u ∈ V, v ∈ Hn.
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For each finite n ∈ N we consider the following evolution equation on Hn:

(2.2) u′n(t) = PnA(t, un(t)), 0 < t < T, un(0) = Pnu0 ∈ Hn.

From now on, we fix T0 as a positive constant satisfying

0 < T0 ≤ T and T0 < sup
x∈(0,∞)

G(x)−G
(
‖u0‖2

H +

∫ T0

0

f(s)ds

)
,

where the function f and G are as in (H3) and Lemma 2.1 respectively.
In particular, if g(x) = C0x

γ(γ ≥ 1), then one can take any T0 ∈ (0, T ] satisfying

T0 <
C0

(γ − 1)
(
‖u0‖2

H +
∫ T0

0
f(s)ds

)γ−1 .

Lemma 2.3. Under the assumptions of Theorem 1.1, (2.2) has a solution on [0, T0]. More-
over, the solution is unique on [0, T0] if additionally (1.2) holds.

Proof. For any t ∈ [0, T ], it is easy to show that A(t, ·) is demicontinuous by (H1) and (H2)
(cf. [39, Remark 4.1.1] or [50, Proposition 26.4]), i.e.

un → u strongly in V as n→∞

implies that
A(t, un)→ A(t, u) weakly in V ∗ as n→∞.

In fact, one can first show that A is locally bounded by using similar arguments as in [39].
This implies that {A(t, un)} is bounded in V ∗. Hence there exists a subsequence (nk)k∈N
and w ∈ V ∗ such that A(t, unk)→ w weakly in V ∗ as k →∞.

Since unk → u strongly in V as k →∞, we have

lim
k→∞
〈A(t, unk), unk〉V = 〈w, u〉V .

By Lemma 2.2 we know that A(t, ·) is a pseudo-monotone operator. Then by Remark 2.2
we can conclude that A(u) = w. Since for all such subsequences their weak limit is A(u), we
have

A(t, un)→ A(t, u) weakly in V ∗ as n→∞.

In particular, the demicontinuity implies that PnA(t, ·) : Hn → Hn is continuous and
hence the functions

(t, u)→ 〈PnA(t, u), ej〉V , j = 1, 2, · · · , n,

satisfy the Carathéodory condition on [0, T ]×Hn, i.e. for all j = 1, 2, · · · , n

t→ 〈PnA(t, u), ej〉V is measurable on [0, T ] for all u ∈ Hn;

u→ 〈PnA(t, u), ej〉V is continuous on Hn for almost all t ∈ [0, T ].
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By (H3) and Lemma 2.1 we get the following a priori estimate for (2.2) (see Lemma 2.4):
There exist positive constants T0 and c such that if u : I0 → Hn is a solution of (2.2) on

an arbitrary subinterval I0 of [0, T0], then

‖u(t)‖H ≤ c for all t ∈ I0.

Therefore, according to the classical existence theorem of Carathéodory for ordinary
differential equations in Rn (cf. [50, pp. 799-800]), there exists a unique solution un to (2.2)
on [0, T0] such that

un ∈ Lα([0, T0];Hn) ∩ C([0, T ];Hn), u′n ∈ L
α
α−1 ([0, T0];Hn).

Remark 2.3. From the proof it is clear that the constant T0 comes from the application of
Bihari’s inequality. It only depends on u0, g, f and is independent of n.

For the constant T0 ∈ (0, T ], let X := Lα([0, T0];V ), then X∗ = L
α
α−1 ([0, T0];V ∗). We

denote by W 1
α(0, T0;V,H) the Banach space

W 1
α(0, T0;V,H) = {u ∈ X : u′ ∈ X∗},

where u′ is the weak derivative of

t 7→ u(t) ∈ V ⊆ H ⊆ V ∗

and on W 1
α(0, T0;V,H) the norm is defined by

‖u‖W := ‖u‖X + ‖u′‖X∗ =

(∫ T0

0

‖u(t)‖αV dt
) 1

α

+

(∫ T0

0

‖u′(t)‖
α
α−1

V ∗ dt

)α−1
α

.

It’s well known that W 1
α(0, T0;V,H) is a reflexive Banach space and it is continuously em-

bedded into C([0, T0];H) (cf. [50]). Moreover, we also have the following integration by
parts formula

〈u(t), v(t)〉H − 〈u(0), v(0)〉H =

∫ t

0

〈u′(s), v(s)〉V ds+

∫ t

0

〈v′(s), u(s)〉V ds,

t ∈ [0, T0], u, v ∈ W 1
α(0, T0;V,H).

Lemma 2.4. Under the assumptions of Theorem 1.1, we have for any solution un to (2.2)

‖un(t)‖2
H + δ

∫ t

0

‖un(s)‖αV ds ≤ G−1

(
G

(
‖u0‖2

H +

∫ T0

0

f(s)ds

)
+ t

)
, t ∈ [0, T0],(2.3)

where G(x) :=
∫ x
x0

1
g(r)

dr is well defined for some x0 > 0.
In particular, there exists a constant K > 0 such that

(2.4) ‖un‖X + sup
t∈[0,T0]

‖un(t)‖H + ‖A(·, un)‖X∗ ≤ K, n ≥ 1.

10



Proof. By the integration by parts formula and (H3) we have

‖un(t)‖2
H − ‖un(0)‖2

H

= 2

∫ t

0

〈u′n(s), un(s)〉V ds

= 2

∫ t

0

〈PnA(s, un(s)), un(s)〉V ds

= 2

∫ t

0

〈A(s, un(s)), un(s)〉V ds

≤
∫ t

0

(
−δ‖un(s)‖αV + g

(
‖un(s)‖2

H

)
+ f(s)

)
ds.

(2.5)

Hence we have for t ∈ [0, T0],

‖un(t)‖2
H + δ

∫ t

0

‖un(s)‖αV ds ≤ ‖u0‖2
H +

∫ T0

0

f(s)ds+

∫ t

0

g
(
‖un(s)‖2

H

)
ds.

Then by Lemma 2.1 and Remark 2.1 we know that (2.3) holds.
Therefore, there exists a constant C2 such that

‖un‖X + sup
t∈[0,T0]

‖un(t)‖H ≤ C2, n ≥ 1.

Then by (H4) there exists a constant C3 such that

‖A(·, un)‖X∗ ≤ C3, n ≥ 1.

Hence the proof is complete.

Note that X,X∗ and H are reflexive spaces. Then by Lemma 2.4 there exists a subse-
quence, again denoted by un, such that as n→∞

un ⇀ u in X and W 1
α(0, T0;V,H);

A(·, un) ⇀ w in X∗;

un(T0) ⇀ z in H.

Recall that un(0) = Pnu0 → u0 in H as n→∞.

Lemma 2.5. Under the assumptions of Theorem 1.1, the limit elements u,w and z satisfy
u ∈ W 1

α(0, T0;V,H) and

u′(t) = w(t), 0 < t < T0, u(0) = u0, u(T0) = z.

Proof. See [30, Lemma 2.3].
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The next crucial step in the proof of Theorem 1.1 is to verify w = A(u). In the case
of monotone operators, this is the well known Minty’s lemma (or monotonicity trick) (cf.
[35, 36, 7, 8]). In the case of locally monotone operators, we use the following integrated
version of Minty’s lemma which holds due to pseudo-monotonicity. The following lemma has
first been proved in [30, Lemma 2.6]. We include the proof here for the reader’s convenience.

Lemma 2.6. Under the assumptions of Theorem 1.1, and supposing that

(2.6) lim inf
n→∞

∫ T0

0

〈A(t, un(t)), un(t)〉V dt ≥
∫ T0

0

〈w(t), u(t)〉V dt,

we have for any v ∈ X

(2.7)

∫ T0

0

〈A(t, u(t)), u(t)− v(t)〉V dt ≥ lim sup
n→∞

∫ T0

0

〈A(t, un(t)), un(t)− v(t)〉V dt.

In particular, we have A(t, u(t)) = w(t), a.e. t ∈ [0, T0].

Proof. Since W 1
α(0, T0;V,H) ⊂ C([0, T0];H) is a continuous embedding, we have that un(t)

converges to u(t) weakly in H for all t ∈ [0, T0].
Claim 1: For all t ∈ [0, T0] we have

(2.8) lim sup
n→∞

〈A(t, un(t)), un(t)− u(t)〉V ≤ 0.

Suppose there exists a t0 ∈ [0, T0] such that

lim sup
n→∞

〈A(t0, un(t0)), un(t0)− u(t0)〉V > 0.

Then we can take a subsequence such that

lim
i→∞
〈A(t0, uni(t0)), uni(t0)− u(t0)〉V > 0.

By (H3) and (H4) there exists a constant K such that

2〈A(t0, uni(t0)), uni(t0)− u(t0)〉V ≤−
δ

2
‖uni(t0)‖αV +K

(
f(t) + g

(
‖uni(t0)‖2

H

))
+K

(
1 + ‖uni(t0)‖αβH

)
‖u(t0)‖αV .

Hence we know that {uni(t0)} is bounded in V (w.r.t. ‖ · ‖V ), so there exists a subsequence
of {uni(t0)} converges to some limit weakly in V .

Note that uni(t0) converges to u(t0) weakly in H, it is easy to show that uni(t0) converges
to u(t0) weakly in V .

Since A(t0, ·) is pseudo-monotone, we have

〈A(t0, u(t0)), u(t0)− v〉V ≥ lim sup
i→∞

〈A(t0, uni(t0)), uni(t0)− v〉V , v ∈ V.
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In particular, we have

lim sup
i→∞

〈A(t0, uni(t0)), uni(t0)− u(t0)〉V ≤ 0,

which is a contradiction to the definition of the subsequence {uni(t0)}.
Hence (2.8) holds.
Similarly, by (H3) and (H4) there exists a constant K such that

2〈A(t, un(t)), un(t)− v(t)〉V ≤−
δ

2
‖un(t)‖αV +K

(
f(t) + g

(
‖un(t)‖2

H

))
+K

(
1 + ‖un(t)‖αβH

)
‖v(t)‖αV , v ∈ X.

Then by Lemma 2.4, Fatou’s lemma, (2.6) and (2.8) we have

0 ≤ lim inf
n→∞

∫ T0

0

〈A(t, un(t)), un(t)− u(t)〉V dt

≤ lim sup
n→∞

∫ T0

0

〈A(t, un(t)), un(t)− u(t)〉V dt

≤
∫ T0

0

lim sup
n→∞

〈A(t, un(t)), un(t)− u(t)〉V dt ≤ 0.

(2.9)

Hence

lim
n→∞

∫ T0

0

〈A(t, un(t)), un(t)− u(t)〉V dt = 0.

Claim 2: There exists a subsequence {uni} such that

(2.10) lim
i→∞
〈A(t, uni(t)), uni(t)− u(t)〉V = 0 for a.e. t ∈ [0, T0].

Define gn(t) := 〈A(t, un(t)), un(t)− u(t)〉V , t ∈ [0, T ]. Then

lim
n→∞

∫ T0

0

gn(t)dt = 0, lim sup
n→∞

gn(t) ≤ 0, t ∈ [0, T0].

Then by Lebesgue’s dominated convergence theorem we have

lim
n→∞

∫ T0

0

g+
n (t)dt = 0,

where g+
n (t) := max{gn(t), 0}.

Note that |gn(t)| = 2g+
n (t)− gn(t), hence we have

lim
n→∞

∫ T0

0

|gn(t)|dt = 0.
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Therefore, we can take a subsequence {gni(t)} such that

lim
i→∞

gni(t) = 0 for a.e. t ∈ [0, T0],

i.e. (2.10) holds.
Therefore, for any v ∈ X, we can choose a subsequence {uni} such that

lim
i→∞

∫ T0

0

〈A(t, uni(t)), uni(t)− v(t)〉V dt = lim sup
n→∞

∫ T0

0

〈A(t, un(t)), un(t)− v(t)〉V dt;

lim
i→∞
〈A(t, uni(t)), uni(t)− u(t)〉V = 0 for a.e. t ∈ [0, T0].

Since A is pseudo-monotone, we have

〈A(t, u(t)), u(t)− v(t)〉V ≥ lim sup
i→∞

〈A(t, uni(t)), uni(t)− v(t)〉V , t ∈ [0, T0].

By Fatou’s lemma we obtain∫ T0

0

〈A(t, u(t)), u(t)− v(t)〉V dt ≥
∫ T0

0

lim sup
i→∞

〈A(t, uni(t)), uni(t)− v(t)〉V dt

≥ lim sup
i→∞

∫ T0

0

〈A(t, uni(t)), uni(t)− v(t)〉V dt

= lim sup
n→∞

∫ T0

0

〈A(t, un(t)), un(t)− v(t)〉V dt.

(2.11)

In particular, we have for any v ∈ X,∫ T0

0

〈A(t, u(t)), u(t)− v(t)〉V dt ≥ lim sup
n→∞

∫ T0

0

〈A(t, un(t)), un(t)− v(t)〉V dt

≥ lim inf
n→∞

∫ T0

0

〈A(t, un(t)), un(t)− v(t)〉V dt

≥
∫ T0

0

〈w(t), u(t)〉V dt−
∫ T0

0

〈w(t), v(t)〉V dt

=

∫ T0

0

〈w(t), u(t)− v(t)〉V dt.

Since v ∈ X is arbitrary, we have A(·, u) = w as elements in X∗.
Hence the proof is complete.

Now we can give the complete proof of Theorem 1.1.
Proof of Theorem 1.1 (i) Existence: The integration by parts formula implies that

‖un(T0)‖2
H − ‖un(0)‖2

H = 2

∫ T0

0

〈A(t, un(t)), un(t)〉V dt;
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‖u(T0)‖2
H − ‖u(0)‖2

H = 2

∫ T0

0

〈w(t), u(t)〉V dt.

Since un(T0) ⇀ z in H, by the lower semicontinuity of ‖ · ‖H we have

lim inf
n→∞

‖un(T0)‖2
H ≥ ‖z‖2

H = ‖u(T0)‖2
H .

Hence we have

lim inf
n→∞

∫ T0

0

〈A(t, un(t)), un(t)〉V dt

≥1

2

(
‖u(T0)‖2

H − ‖u(0)‖2
H

)
=

∫ T0

0

〈w(t), u(t)〉V dt.

By Lemma 2.6 we know that u is a solution to (1.1).
(ii) Uniqueness: Suppose u(·, u0), v(·, v0) are the solutions to (1.1) with starting points

u0, v0 respectively, then by the integration by parts formula we have for t ∈ [0, T0],

‖u(t)− v(t)‖2
H = ‖u0 − v0‖2

H + 2

∫ t

0

〈A(s, u(s))− A(s, v(s)), u(s)− v(s)〉V ds

≤ ‖u0 − v0‖2
H + 2

∫ t

0

(f(s) + ρ(u(s)) + η(v(s))) ‖u(s)− v(s)‖2
Hds.

By (1.2) we know that ∫ T0

0

(f(s) + ρ(u(s)) + η(v(s))) ds <∞.

Then by Gronwall’s lemma we obtain

(2.12) ‖u(t)− v(t)‖2
H ≤ ‖u0 − v0‖2

H exp

[
2

∫ t

0

(f(s) + ρ(u(s)) + η(v(s))) ds

]
, t ∈ [0, T0].

In particular, if u0 = v0, this implies the uniqueness of the solution to (1.1).

2.2 Proof of Theorem 1.2

By (H2) we have for t ∈ [0, T0],

‖u1(t)− u2(t)‖2
H

=‖u1,0 − u2,0‖2
H + 2

∫ t

0

〈A(s, u1(s))− A(s, u2(s)), u1(s)− u2(s)〉V ds

≤‖u1,0 − u2,0‖2
H +

∫ t

0

(f(s) + ρ(u1(s)) + η(u2(s))) ‖u1(s)− u2(s)‖2
Hds,
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where C is a constant.
Then by Gronwall’s lemma we have

‖u1(t)− u2(t)‖2
H ≤ exp

[∫ t

0

(f(s) + ρ(u1(s)) + η(u2(s))) ds

]
·
(
‖u1,0 − u2,0‖2

H +

∫ t

0

‖b1(s)− b2(s)‖2
Hds

)
, t ∈ [0, T0].

2.3 Proof of Theorem 1.3

We first consider the process Y which solves the following SPDE:

dY (t) = A1(t, Y (t))dt+B(t)dW (t), 0 < t < T, Y (0) = 0.

By [31, Theorem 1.1] we know that there exists a unique solution Y to the above equation
and it satisfies

Y (·) ∈ Lα([0, T ];V ) ∩ C([0, T ];H); P-a.s..

Let u(t) = X(t)− Y (t). Then it is easy to see that u(t) satisfies the following equation:

(2.13) u′(t) = Ã (t, u(t)) , 0 < t < T, u(0) = u0,

where (for fixed ω which we omit in the notation for simplicity)

Ã(t, v) := A1(t, v + Y (t))− A1(t, Y (t)) + A2(t, v + Y (t)), v ∈ V.

It is easy to show that Ã is a well defined operator from [0, T ] × V to V ∗ since Y (·) ∈
Lα([0, T ];V ).

To obtain the existence and uniqueness of solutions to (2.13) we only need to show that
Ã satisfies all the assumptions of Theorem 1.1.

Since Y (t) is measurable, Ã(t, v) is B([0, T ])⊗ B(V )-measurable. It is also easy to show
that Ã is hemicontinuous since (H1) holds for both A1 and A2.

For u, v ∈ V we have

〈Ã(t, u)− Ã(t, v), u− v〉V
=〈A1(t, u+ Y (t))− A1(t, v + Y (t)), u− v〉V

+ 〈A2(t, u+ Y (t))− A2(t, v + Y (t)), u− v〉V
≤ (f(t) + η(v + Y (t))) ‖u− v‖2

H

+ (f(t) + ρ(v + Y (t)) + η(v + Y (t))) ‖u− v‖2
H

≤C [f(t) + ρ(Y (t)) + η(Y (t)) + ρ(v) + η(v)] ‖u− v‖2
H ,

i.e. (H2) holds for Ã with

f̃(t) = C [f(t) + ρ(Y (t)) + η(Y (t))] ∈ L1([0, T ]).
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Since A2 satisfies (H3) and (H4), by Young’s inequality we have

2〈A2(t, v + Y (t)), v〉V = 2〈A2(t, v + Y (t)), v + Y (t)− Y (t)〉V
≤− δ‖v + Y (t)‖αV + g

(
‖v + Y (t)‖2

H

)
+ f(t)− 2〈A2(t, v + Y (t)), Y (t)〉V

≤− δ‖v + Y (t)‖αV + g
(
‖v + Y (t)‖2

H

)
+ f(t)

+ C
(
f(t)

α−1
α + ‖v + Y (t)‖α−1

V

)(
1 + ‖v + Y (t)‖βH

)
‖Y (t)‖V

≤− δ

2
‖v + Y (t)‖αV + g

(
‖v + Y (t)‖2

H

)
+ (1 +

δ

2
)f(t)

+ C‖Y (t)‖αV
(

1 + ‖v + Y (t)‖αβH
)

≤− δ

2

(
21−α‖v‖αV − ‖Y (t)‖αV

)
+ g

(
2‖v‖2

H + 2‖Y (t)‖2
H

)
+ (1 +

δ

2
)f(t) + C‖Y (t)‖αV

(
1 + ‖v‖αβH + ‖Y (t)‖αβH

)
≤− 2−αδ‖v‖αV + g

(
2‖v‖2

H + 2‖Y (t)‖2
H

)
+ C‖Y (t)‖αV ‖v‖

αβ
H

+ (1 +
δ

2
)f(t) + C‖Y (t)‖αV

(
1 + ‖Y (t)‖αβH

)
, v ∈ V,

where C is some constant changing from line to line (but independent of t and ω).

Similarly, we have

2〈A1(t, v + Y (t))− A1(t, Y (t)), v〉V
=2〈A1(t, v + Y (t)), v + Y (t)− Y (t)〉V − 2〈A1(t, Y (t)), v〉V
≤− δ‖v + Y (t)‖αV + C‖v + Y (t)‖2

H + f(t)

+ ‖Y (t)‖V
(
f(t)

α−1
α + C‖v + Y (t)‖α−1

V

)
+ ‖v‖V ‖A1(t, Y (t))‖V ∗

≤− δ

2
‖v + Y (t)‖αV + C‖v + Y (t)‖2

H + (1 +
δ

2
)f(t)

+ C‖Y (t)‖αV + ‖v‖V ‖A1(t, Y (t))‖V ∗

≤− δ

2

(
21−α‖v‖αV − ‖Y (t)‖αV

)
+ C

(
‖v‖2

H + ‖Y (t)‖2
H

)
+ C(f(t) + ‖Y (t)‖αV ) + ‖v‖V

(
f(t)

α−1
α + C‖Y (t)‖α−1

V

)
≤− 2−α−1δ‖v‖αV + C‖v‖2

H + C
(
f(t) + ‖Y (t)‖αV + ‖Y (t)‖2

H

)
, v ∈ V.

Since Y (·) ∈ Lα([0, T ];V ) ∩ C([0, T ];H), we know that Ã satisfies (H3) with

f̃(t) = C
(
f(t) + ‖Y (t)‖αV + ‖Y (t)‖2

H + ‖Y (t)‖αV ‖Y (t)‖αβH
)
.
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The growth condition (H4) also holds for Ã since

‖Ã(t, v)‖V ∗ =‖A1(t, v + Y (t))‖V ∗ + ‖A1(t, Y (t))‖V ∗ + ‖A2(t, v + Y (t))‖V ∗

≤C
(
f(t)

α−1
α + ‖v + Y (t)‖α−1

V

)(
1 + ‖v + Y (t)‖βH

)
+ f(t)

α−1
α + C‖Y (t)‖α−1

V

≤
(
Cf(t)

α−1
α + C‖Y (t)‖α−1

V + C‖v‖α−1
V

)(
1 + ‖Y (t)‖βH + ‖v‖βH

)
≤
(
f̃(t)

α−1
α + C‖v‖α−1

V

)(
1 + ‖v‖βH

)
.

Therefore, according to Theorem 1.1, (2.13) has a unique local solution on [0, T0(ω)] for
P-a.s.ω.

Define
X(t) := u(t) + Y (t),

then it is easy to show that X(t) is the unique local solution to (1.4).
Now the proof is complete.

3 Application to Examples

Since Theorem 1.1 is a generalization of a classical result for monotone operators (cf.[1,
28, 47, 50]) and of a recent result for locally monotone operators (cf.[30, 31]), it can be
applied to a large class of semilinear and quasilinear evolution equations such as reaction-
diffusion equations, generalized Burgers equations, 2D Navier-Stokes equation, 2D magneto-
hydrodynamic equations, 2D magnetic Bénard problem, 3D Leray-α model, porous medium
equations and generalized p-Laplace equations with locally monotone perturbations (cf.[13,
30, 31, 39]). In this section we will first apply our general results to some known cases
(Subsection 3.1, 3.2 and 3.3), but which have not been covered by the more restricted
framework in the above references. Subsequently, in Subsections 3.4 and 3.5 we apply our
results to cases, which are not covered in the existing literature, at least not in such generality.

3.1 3D Navier-Stokes equation

As we mentioned in the introduction, the first example here is to apply Theorem 1.1 to the
3D Navier-Stokes equation, which is a classical model to describe the time evolution of an
incompressible fluid, given as follows:

∂tu(t) = ν∆u(t)− (u(t) · ∇)u(t) +∇p(t) + f(t),

div(u) = 0, u(0) = u0,
(3.1)

where u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) represents the velocity field of the fluid, ν is the
viscosity constant, the pressure p(t, x) is an unknown scalar function and f is a (known)
external force field acting on the fluid. In the pioneering work [27] Leray proved the existence
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of a weak solution for the 3D Navier-Stokes equation in the whole space. However, up to
now, the uniqueness and regularity of weak solutions are still open problems (cf.[29, 48]).

Let Λ be a smooth bounded open domain in R3. Let C∞0 (Λ,R3) denote the set of all
smooth functions from Λ to R3 with compact support. For p ≥ 1, let Lp := Lp(Λ,R3) be the
vector valued Lp-space in which the norm is denoted by ‖ · ‖Lp . For any integer m ≥ 0, let
Wm,2

0 be the standard Sobolev space on Λ with values in R3, i.e. the closure of C∞0 (Λ,R3)
with respect to the norm:

‖u‖2
Wm,2

0
=

∫
Λ

|(I −∆)
m
2 u|2dx.

For the reader’s convenience, we recall the following Gagliardo-Nirenberg interpolation
inequality, which plays an essential role in the study of Navier-Stokes equations.

If q ∈ [1,∞] such that
1

q
=

1

2
− mα

3
, 0 ≤ α ≤ 1,

then there exists a constant Cm,q > 0 such that

(3.2) ‖u‖Lq ≤ Cm,q‖u‖αWm,2
0
‖u‖1−α

L2 , u ∈ Wm,2
0 .

Now we define
Hm :=

{
u ∈ Wm,2

0 : divu = 0
}
.

The norm of Wm,2
0 restricted to Hm will be denoted by ‖ · ‖Hm . We recall that H0 is a closed

linear subspace of the Hilbert space L2(Λ,R3). In the literature it is well known that one
can use the Gelfand triple H1 ⊆ H0 ⊆ (H1)∗ to analyze the Navier-Stokes equation and it
works very well in the 2D case even with general stochastic perturbations (cf.[10, 31, 48] and
the references therein). However, as pointed out in [30, 31], the growth condition (H4) fails
to hold on this triple for the 3D Navier-Stokes equation.

Motivated by some recent papers on the (stochastic) tamed 3D Navier-Stokes equation
(cf. [43, 44, 45, 46]), we will use the following Gelfand triple in order to verify the growth
condition (H4):

V := H2 ⊆ H := H1 ⊆ V ∗.

The main reason is that we can use the following inequality in the 3D case (see e.g.[25]):

(3.3) sup
x
|u(x)|2 ≤ C‖∆u‖H0‖∇u‖H0 .

Let P be the orthogonal (Helmhotz-Leray) projection from L2(Λ,R3) to H0 (cf.[48, 29]). It
is well known that P can be restricted to a bounded linear operator from Wm,2

0 to Hm. For
any u ∈ H0 and v ∈ L2(Λ,R3) we have

〈u, v〉H0 := 〈u,Pv〉H0 = 〈u, v〉L2 .

Then by means of the divergence free Hilbert spaces H2, H1 and the orthogonal projection P ,
the classical 3D Navier-Stokes equation (3.1) can be reformulated in the following abstract
form:

(3.4) u′ = Au+B(u) + F, u(0) = u0 ∈ H1,
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where
A : H2 → V ∗, Au = νP∆u;

B : H2 ×H2 → V ∗, B(u, v) = −P [(u · ∇)v] , B(u) = B(u, u);

F : [0, T ]→ H0

are well defined.

Remark 3.1. (1) It is obvious that H0 ⊆ L2(Λ,R3) ⊆ V ∗ and

‖u‖V ∗ ≤ ‖u‖L2 = ‖u‖H0 , u ∈ H0.

(2) It is well known that

〈B(u, v), w〉L2 = −〈B(u,w), v〉L2 , 〈B(u, v), v〉L2 = 0, u, v, w ∈ H2.

However, one should note that

〈B(u, v), v〉H2 := H0〈B(u, v), v〉H2 = 〈B(u, v), (I −∆)v〉L2 , u, v, w ∈ H2,

which might not be equal to 0 in general.
Therefore, it is not obvious whether the usual coercivity condition still holds on this new

triple or not? In fact, this is one reason that we introduce a generalized coercivity condition
in order to handle this nonlinear term using this new triple.

For simplicity we only apply Theorem 1.1 to the deterministic 3D Navier-Stokes equation.
But one can also add a general type additive noise to (3.4) and obtain the corresponding
result in the stochastic case by applying Theorem 1.3 and Remark 1.3.

Example 3.1. (3D Navier-Stokes equation) If F ∈ L2(0, T ;H0) and u0 ∈ H1, then there
exists a constant T0 ∈ (0, T ] such that (3.4) has a unique strong solution u ∈ L2([0, T0];H2)∩
C([0, T0];H1).

In particular, it is enough to choose T0 ∈ (0, T ] such that the following property holds:

T0 <
C

‖u0‖2
H1 +

∫ T0
0

(1 + ‖F (t)‖2
L2)dt

,

where C > 0 is some (given) constant only depending on the viscosity constant ν.

Proof. The hemicontinuity (H1) is easy to verify since B is a bilinear map.
By (3.3) and Young’s inequality we have

〈B(u)−B(v), u− v〉V
=〈B(u)−B(v), (I −∆)(u− v)〉L2

≤‖u− v‖V ‖(u · ∇)u− (v · ∇)v‖L2

≤‖u− v‖V (‖u‖L∞‖∇u−∇v‖L2 + ‖u− v‖L∞‖∇v‖L2)

≤‖u− v‖V
(
‖u‖L∞‖u− v‖H + C‖u− v‖1/2

V ‖u− v‖
1/2
H ‖v‖H

)
≤ν

2
‖u− v‖2

V + C
(
‖u‖2

L∞ + ‖v‖4
H

)
‖u− v‖2

H , u, v ∈ V,

(3.5)

20



where C > 0 is a constant only depending on ν.
Hence we have the following local monotonicity (H2):

〈Au+B(u)− Av −B(v), u− v〉V
≤− ν

2
‖u− v‖2

V + ν‖u− v‖2
H + C

(
‖u‖2

L∞ + ‖v‖4
H

)
‖u− v‖2

H , u, v ∈ V.

In particular, there exists a constant C such that (let u = 0)

〈Av +B(v), v〉V ≤ −
ν

2
‖v‖2

V + C(1 + ‖v‖6
H), v ∈ V.

Then it is easy to show that (H3) holds with g(x) = Cx3:

〈Av +B(v) + F, v〉V ≤ −
ν

2
‖v‖2

V + C(1 + ‖v‖6
H) + ‖F‖V ∗‖v‖V

≤ −ν
4
‖v‖2

V + C‖v‖6
H + C

(
1 + ‖F‖2

L2

)
, v ∈ V.

Note that by (3.3) we have

(3.6) ‖B(v)‖2
V ∗ ≤ ‖(v · ∇)v‖2

L2 ≤ ‖v‖2
L∞‖∇v‖2

L2 ≤ C‖v‖V ‖v‖3
H ≤ C‖v‖2

V ‖v‖2
H , v ∈ V.

Hence (H4) holds with β = 2.
Then the local existence and uniqueness of solutions to (3.4) follows from Theorem 1.1.

Remark 3.2. Note that the solution here is a strong solution in the sense of PDE. It is obvious
that we can also allow F in (3.4) to depend on the unknown solution u provided F satisfies
some locally monotone condition (cf.[30]).

Remark 3.3. If we analyze (3.4) by using the following Gelfand triple

V := H2 ⊆ H := H0 ⊆ V ∗,

then 〈B(v), v〉V = 0 and we have the classical coercivity (i.e. (H3) with g(x) = Cx):

〈Av+B(v)+F, v〉V ≤ −ν‖v‖2
V +ν‖v‖2

H+‖F‖V ∗‖v‖V ≤ −
ν

2
‖v‖2

V +ν‖v‖2
H+

1

2ν
‖F‖2

V ∗ , v ∈ V.

By (3.3) and Young’s inequality we have

〈B(u)−B(v), u− v〉V = −〈B(u, u− v), v〉V + 〈B(v, u− v), v〉V
= −〈B(u− v), v〉V
≤ ‖u− v‖L∞‖∇(u− v)‖L2‖v‖L∞

≤ ‖u− v‖
1
2
H‖∇(u− v)‖

3
2

L2‖v‖L∞

≤ ‖u− v‖
5
4
H‖u− v‖

3
4
V ‖v‖L∞

≤ ν

2
‖u− v‖2

V + C‖v‖
8
5
L∞‖u− v‖

2
H , u, v ∈ V.

(3.7)
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Hence we have the local monotonicity (H2):

〈Au+B(u)− Av −B(v), u− v〉V ≤ −
ν

2
‖u− v‖2

V + C
(

1 + ‖v‖
8
5
L∞

)
‖u− v‖2

H .

Concerning the growth condition we have,

‖B(u)‖2
V ∗ ≤ ‖u‖2

L∞‖∇u‖2
L2

≤ C‖u‖V ‖∇u‖3
L2

≤ C‖u‖
5
2
V ‖u‖

3
2
H , u ∈ V.

(3.8)

However, this is not enough to verify (H4).

3.2 Tamed 3D Navier-Stokes equation

In the case of the 3D Navier-Stokes equation we see that the generalized coercivity condition
holds with g(x) = Cx3, hence we only get local existence and uniqueness of solutions. In this
part we consider a tamed version of the (stochastic) 3D Navier-Stokes equation, which was
proposed recently in [45, 46] (see also [44, 43]). The main feature of this tamed equation is
that if there is a bounded smooth solution to the classical 3D Navier-Stokes equation (3.1),
then this smooth solution must also satisfy the following tamed equation (3.9) (for N large
enough):

∂tu(t) = ν∆u(t)− (u(t) · ∇)u(t) +∇p(t)− gN
(
|u(t)|2

)
u(t) + F (t),

div(u) = 0, u(0) = u0,

u|∂Λ = 0,

(3.9)

where the taming function gN : R+ → R+ is smooth and satisfies for some N > 0,
gN(r) = 0, if r ≤ N,

gN(r) = (r −N)/ν, if r ≥ N + 1,

0 ≤ g′N(r) ≤ C, r ≥ 0.

Example 3.2. (Tamed 3D Navier-Stokes equation) For F ∈ L2(0, T ;H0) and u0 ∈ H1,
(3.9) has a unique strong solution u ∈ L2([0, T ];H2) ∩ C([0, T ];H1).

Proof. Without loss of generality we may assume ν = 1 for simplicity.
Using the Gelfand triple

V := H2 ⊆ H := H1 ⊆ V ∗,

(3.9) can be rewritten in the abstract form:

u′ = Au+B(u)− P
[
gN
(
|u|2
)
u
]

+ F, u(0) = u0 ∈ H1,
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We recall the following estimates for v ∈ H2 from the proof of [46, Lemma 2.3]:

〈Av, v〉V = 〈P∆v, (I −∆)v〉L2 ≤ −‖v‖2
V + ‖v‖2

H ;

〈B(v), v〉V = −〈P(v · ∇)v, (I −∆)v〉L2 ≤ 1

4
‖v‖2

V +
1

2
‖|v| · |∇v|‖2

L2 ;

−〈P
[
gN(|v|2)v

]
, v〉V = −〈P

[
gN(|v|2)v

]
, (I −∆)v〉L2 ≤ −‖|v| · |∇v|‖2

L2 + CN‖v‖2
H .

(3.10)

Then it is easy to get the following coercivity (H3) with g(x) = C(N + 1)x:

〈Av +B(v)− P
[
gN(|v|2)v

]
+ F, v〉V ≤ −

1

2
‖v‖2

V + C(N + 1)‖v‖2
H + C‖F‖2

V ∗ , v ∈ V.

By (3.3) we have

− 〈P
[
gN(|u|2)u

]
− P

[
gN(|v|2)v

]
, u− v〉V

=− 〈P
[
gN(|u|2)u

]
− P

[
gN(|v|2)v

]
, (I −∆)(u− v)〉L2

≤‖u− v‖V ‖gN(|u|2)u− gN(|v|2)v‖L2

≤‖u− v‖V ‖
(
gN(|u|2)− gN(|v|2)

)
u− gN(|v|2) (u− v) ‖L2

≤‖u− v‖V
(
C‖u− v‖L∞‖|u|2 + |v|2‖L2 + C‖|v|2‖L2‖u− v‖L∞

)
≤C‖u− v‖

3
2
V ‖u− v‖

1
2
H

(
‖u‖2

L4 + ‖v‖2
L4

)
≤1

4
‖u− v‖2

V + C
(
‖u‖8

L4 + ‖v‖8
L4

)
‖u− v‖2

H , u, v ∈ V,

(3.11)

where C is constant changing from line to line.
Hence by (3.5) we have the following estimate (note that ν = 1):

〈Au+B(u)− P
[
gN(|u|2)u

]
− Av −B(v) + P

[
gN(|v|2)v

]
, u− v〉V

≤− 1

4
‖u− v‖2

V + C
(
1 + ‖u‖2

L∞ + ‖u‖8
L4 + ‖v‖4

H + ‖v‖8
L4

)
‖u− v‖2

H , u, v ∈ V,
(3.12)

i.e. (H2) holds with ρ(u) = ‖u‖2
L∞ + ‖u‖8

L4 and η(v) = ‖v‖4
H + ‖v‖8

L4 .
By (3.2) we have

‖P
[
gN(|v|2)v

]
‖2
V ∗ ≤ C‖v‖2

L6 ≤ C‖v‖2
H , v ∈ V.

Then by (3.6) we obtain that (H4) holds with β = 2.
Since (1.2) also holds, the global existence and uniqueness of solutions to (3.9) follows

from Theorem 1.1.

3.3 Cahn-Hilliard equation

The Cahn-Hilliard equation is a classical model to describe phase separation in a binary
alloy and some other media, we refer to [37] for a survey on this model (see also [17, 14] for
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the stochastic case). Let Λ be a bounded open domain in Rd (d ≤ 3) with smooth boundary.
The Cahn-Hilliard equation has the following form:

∂tu = −∆2u+ ∆ϕ(u), u(0) = u0,

∂

∂n
u =

∂

∂n
(∆u) = 0 on ∂Λ,

(3.13)

where ∆ is the Laplace operator, n is the outward unit normal vector on the boundary ∂Λ
and the nonlinear term ϕ is some polynomial function.

Now we consider the following Gelfand triple

V ⊆ H := L2(Λ) ⊆ V ∗,

where V := {u ∈ W 2,2(Λ) : ∂
∂n
u = ∂

∂n
(∆u) = 0 on ∂Λ}.

Then we get the following existence and uniqueness result for (3.13).

Example 3.3. Suppose that ϕ ∈ C1(R) and there exist some positive constants C and
p ≤ d+4

d
such that

ϕ′(x) ≥ −C, |ϕ(x)| ≤ C(1 + |x|p), x ∈ R;

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|p−1 + |y|p−1)|x− y|, x, y ∈ R.

Then for any u0 ∈ L2(Λ), there exists a unique solution to (3.13).

Proof. For any u, v ∈ V , we have

−〈∆2u−∆2v, u− v〉V = −‖u− v‖2
V .

By the assumptions on ϕ and Young’s inequality we get

〈∆ϕ(u)−∆ϕ(v), u− v〉V
≤‖u− v‖V ‖ϕ(u)− ϕ(v)‖L2

≤‖u− v‖V · C
(
1 + ‖u‖p−1

L∞ + ‖v‖p−1
L∞

)
‖u− v‖L2

≤1

2
‖u− v‖2

V + C
(
1 + ‖u‖2p−2

L∞ + ‖v‖2p−2
L∞

)
‖u− v‖2

H , u, v ∈ V.

Hence (H2) holds with ρ(u) = η(u) = C‖u‖2p−2
L∞ .

Similarly, by the interpolation inequality we have for any v ∈ V ,

〈∆ϕ(v), v〉V = −
∫

Λ

ϕ′(v)|∇v|2dx ≤ C‖v‖2
W 1,2 ≤

1

2
‖v‖2

V + C‖v‖2
H ,

i.e. (H3) holds with α = 2 and g(x) = Cx.
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It is also easy to see that

‖∆ϕ(v)‖V ∗ ≤ ‖ϕ(v)‖H
≤ C

(
1 + ‖v‖pL2p

)
≤ C

(
1 + ‖v‖

(p−1)d
4

V ‖v‖
d+(4−d)p

4
H

)
≤ C

(
1 + ‖v‖

(p−1)d
4

V

)(
1 + ‖v‖

d+(4−d)p
4

H

)
, v ∈ V.

Since p ≤ 4
d

+ 1 (i.e. (p−1)d
4
≤ 1) and ‖v‖H ≤ C‖v‖V , we have

‖∆ϕ(v)‖V ∗ ≤ C (1 + ‖v‖V )
(
1 + ‖v‖p−1

H

)
, v ∈ V,

i.e. (H4) holds with β = p− 1.
Note that for any v ∈ V ,

ρ(v) = C‖v‖2p−2
L∞ ≤ C‖v‖

(p−1)d
2

V ‖v‖
(p−1)(4−d)

2
H ,

i.e. (1.2) also holds.
Therefore, the conclusion follows directly from Theorem 1.1.

3.4 Surface growth PDE with random noise

We consider a model which appears in the theory of growth of surfaces, which describes
an amorphous material deposited on an initially flat surface in high vacuum (cf.[40, 4] and
the references therein). Taking account of random noises the equation is formulated on the
interval [0, L] as follows:

(3.14) dX(t) =
[
−∂4

xX(t)− ∂2
xX(t) + ∂2

x(∂xX(t))2
]
dt+B(t)dW (t), X(0) = x0,

where ∂x, ∂
2
x, ∂

4
x denote the first, second and fourth spatial derivatives respectively.

Recall that W (t) is a U -valued cylindrical Wiener process. Using the following Gelfand
triple

V := W 4,2
0 ([0, L]) ⊆ H := W 2,2([0, L]) ⊆ V ∗

we can obtain the following local existence and uniqueness of strong solutions for (3.14).

Example 3.4. Suppose that B ∈ L2([0, T ];L2(U ;H)). For any X0 ∈ L2(Ω → H;F0;P),
there exists a unique local solution {X(t)}t∈[0,τ ] to (3.14) satisfying

X(·) ∈ L2([0, τ ];V ) ∩ C([0, τ ];H2),P-a.s..

Proof. It is sufficient to verify (H1)-(H4) for (3.14), then the conclusion follows from Theo-
rem 1.3.
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For u, v ∈ V , by standard interpolation inequalities and Young’s inequality we have

〈∂2
x(∂xu)2 − ∂2

x(∂xv)2, u− v〉V
=〈∂2

x(∂xu)2 − ∂2
x(∂xv)2, ∂4

xu− ∂4
xv〉L2

≤‖u− v‖V ‖∂2
x(∂xu)2 − ∂2

x(∂xv)2‖L2

≤‖u− v‖V
[
‖(∂2

xu)2 − (∂2
xv)2‖L2 + ‖∂xu∂3

xu− ∂xv∂3
xv‖L2

]
≤‖u− v‖V

[
(‖∂2

xu‖L∞ + ‖∂2
xv‖L∞)‖u− v‖H + ‖∂xu‖L∞‖∂3

xu− ∂3
xv‖L2 + ‖∂3

xv‖L2‖∂xu− ∂xv‖L∞
]

≤‖u− v‖V
[
(‖∂2

xu‖L∞ + ‖∂2
xv‖L∞)‖u− v‖H + ‖∂xu‖L∞‖u− v‖

1
2
V ‖u− v‖

1
2
H + ‖∂3

xv‖L2‖u− v‖H
]

≤1

4
‖u− v‖2

V + C
(
‖u‖2

W 2,∞ + ‖u‖4
W 1,∞ + ‖v‖2

W 2,∞ + ‖v‖2
W 3,2

)
‖u− v‖2

H ,

where C is some constant.
Note that

〈−∂4
xu− ∂2

xu+ ∂4
xv + ∂2

xv, u− v〉V
≤− ‖u− v‖2

V + ‖u− v‖V ‖u− v‖H

≤− 3

4
‖u− v‖2

V + ‖u− v‖2
H .

Hence we know that (H2) holds with

ρ(u) = ‖u‖2
W 2,∞ + ‖u‖4

W 1,∞ , η(v) = ‖v‖2
W 2,∞ + ‖v‖2

W 3,2 .

Similarly,

‖∂2
x(∂xv)2‖V ∗ ≤‖(∂2

xv)2 + ∂xv∂
3
xv‖L2

≤‖v‖2
W 2,4 + ‖v‖W 1,∞‖v‖W 3,2

≤C‖v‖
1
2
V ‖v‖

3
2
H , v ∈ V,

i.e. (H4) holds with β = 1.
Moreover, this also implies that

2〈∂2
x(∂xv)2, v〉V ≤ 2‖v‖V ‖∂2

x(∂xv)2‖V ∗ ≤ C‖v‖
3
2
V ‖v‖

3
2
H ≤

1

2
‖v‖2

V + C‖v‖6
H .

Since

2〈−∂4
xv − ∂2

xv, v〉V ≤
3

2
‖v‖2

V + ‖v‖2
H ,

we deduce that (H3) holds with g(x) = Cx3.
Now the proof is complete.

Remark 3.4. (1) It is known in the literature that the (1-dimension) surface growth model has
some similar features of difficulty as the 3D Navier-Stokes equation, the uniqueness of weak
solutions for this model is still an open problem in both the deterministic and stochastic case.
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From the proof above one can see these similarities (e.g.(H2)-(H4)) very clearly between this
model and the 3D Navier-Stokes equation (Example 3.1).

(2) The solution obtained here for the stochastic surface growth model is a strong solution
in the sense of both PDE and SPDE. We should remark that for the space time white noise
case, the existence of a weak martingale solution was obtained by Blömker, Flandoli and
Romito in [4] for this model, and the existence of a Markov selection and ergodicity properties
were also proved there.

3.5 Stochastic power law fluids

The next example of (S)PDE is a model which describes the velocity field of a viscous
and incompressible non-Newtonian fluid subject to some random forcing. The deterministic
model has been studied intensively in PDE theory (cf.[21, 32] and the references therein).
Let Λ be a bounded domain in Rd(d ≥ 2) with sufficiently smooth boundary. For a vector
field (e.g. the velocity field of the fluid) u : Λ→ Rd, we denote the rate of strain tensor by

e(u) : Λ→ Rd ⊗ Rd; ei,j(u) =
∂iuj + ∂jui

2
, i, j = 1, · · · , d.

In this paper we consider the case that the extra stress tensor has the following polynomial
form:

τ(u) : Λ→ Rd ⊗ Rd; τ(u) = 2ν(1 + |e(u)|)p−2e(u),

where ν > 0 is the kinematic viscosity and p > 1 is some constant.
In the case of deterministic forcing, the dynamics of power law fluids can be modeled by

the following PDE:

∂tu = div (τ(u))− (u · ∇)u−∇p+ f,

div(u) = 0,
(3.15)

where u = u(t, x) = (ui(t, x))di=1 is the velocity field, p is the pressure, f is some external
force and

u · ∇ =
d∑
j=1

uj∂j, div (τ(u)) =

(
d∑
j=1

∂jτi,j(u)

)d

i=1

.

Remark 3.5. (1) Note that p = 2 describes the Newtonian fluids and (3.15) reduces to the
classical Navier-Stokes equation (3.1).

(2) The shear shining fluids (i.e. p ∈ (1, 2)) and the shear thickening fluids (i.e. p ∈
(2,∞)) has been also widely studied in different fields of science and engineering (cf.[21, 32]).

Now we consider the following Gelfand triple

V ⊆ H ⊆ V ∗,

where

V =
{
u ∈ W 1,p

0 (Λ;Rd) : divu = 0
}

; H =
{
u ∈ L2(Λ;Rd) : divu = 0

}
.
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Let P be the orthogonal (Helmhotz-Leray) projection from L2(Λ,Rd) to H. It is well known
that the following operators

A : W 2,p
0 (Λ;Rd) ∩ V → H, A(u) = P [div(τ(u))] ;

B : W 2,p
0 (Λ;Rd) ∩ V ×W 2,p

0 (Λ;Rd) ∩ V → H; B(u, v) = −P [(u · ∇)v] , B(u) := B(u, u)

can be extended to the well defined operators:

A : V → V ∗; B : V × V → V ∗.

In particular, one can show that

〈A(u), v〉V = −
∫

Λ

d∑
i,j=1

τi,j(u)ei,j(v)dx; u, v ∈ V ;

〈B(u, v), w〉V = −〈B(u,w), v〉V , 〈B(u, v), v〉V = 0, u, v, w ∈ V.
Now (3.15) can be reformulated in the following variational form:

(3.16) u′(t) = A(u(t)) +B(u(t)) + F (t), u(0) = u0.

Example 3.5. Suppose that u0 ∈ H,F ∈ L2([0, T ];V ∗) and p ≥ 3d+2
d+2

, then (3.16) has a

solution. Moreover, if p ≥ d+2
2

, then the solution of (3.16) is also unique.

Proof. Without loss of generality we may assume ν = 1.
We first recall the well known Korn’s inequality for p ∈ (1,∞):∫

Λ

|e(u)|pdx ≥ Cp‖u‖1,p, u ∈ W 1,p
0 (Λ;Rd),

where Cp > 0 is some constant.
The following inequalities are also used very often in the study of power law fluids (cf.

[32, pp.198 Lemma 1.19]):

d∑
i,j=1

τi,j(u)ei,j(u) ≥ C(|e(u)|p − 1);

d∑
i,j=1

(τi,j(u)− τi,j(v))(ei,j(u)− ei,j(v)) ≥ C
(
|e(u)− e(v)|2 + |e(u)− e(v)|p

)
;

|τi,j(u)| ≤ C(1 + |e(u)|)p−1, i, j = 1, · · · , d.

(3.17)

Then by the interpolation inequality and Young’s inequality one can show that

〈B(u)−B(v), u− v〉V
= −〈B(u− v), v〉V
= 〈B(u− v, v), u− v〉V
≤ C‖v‖V ‖u− v‖2

2p
p−1

≤ C‖v‖V ‖u− v‖
d
p

1,2‖u− v‖
2p−d
p

H

≤ ε‖u− v‖2
1,2 + Cε‖v‖

2p
2p−d
V ‖u− v‖2

H , u, v ∈ V.
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By (3.17) and Korn’s inequality we have

〈A(u)− A(v), u− v〉V

=−
∫

Λ

d∑
i,j=1

(τi,j(u)− τi,j(v)) (ei,j(u)− ei,j(v)) dx

≤− C‖e(u)− e(v)‖2
H

≤− C‖u− v‖2
1,2.

Hence we have the following estimate:

〈Au+B(u)− Av −B(v), u− v〉V ≤ −(C − ε)‖u− v‖2
1,2 + Cε‖v‖

2p
2p−d
V ‖u− v‖2

H ,

i.e. (H2) holds with ρ(v) = Cε‖v‖
2p

2p−d
V .

It is also easy to verify (H3) with α = p as follows:

〈A(v) +B(v), v〉V ≤ −C1

∫
Λ

|e(v)|pdx+ C2 ≤ −C3‖v‖pV + C2.

Note that
|〈B(v), u〉V | = |〈B(v, u), v〉V | ≤ ‖u‖V ‖v‖2

2p
p−1

, u, v ∈ V,

hence we have
‖B(v)‖V ∗ ≤ ‖v‖2

2p
p−1

, v ∈ V.

Then by the interpolation inequality and Sobolev’s inequality we have

‖v‖ 2p
p−1
≤ ‖v‖γq‖v‖

1−γ
2 ≤ C‖v‖γV ‖v‖

1−γ
H ,

where q = dp
d−p and γ = d

(d+2)p−2d
.

Note that 2γ ≤ p− 1 if p ≥ 3d+2
d+2

, and it is also easy to see that

‖A(v)‖V ∗ ≤ C(1 + ‖v‖p−1
V ), v ∈ V.

Hence the growth condition (H4) also holds.
Then the existence of solutions to (3.16) follows from Theorem 1.1. Moreover, if d ≥ 2+d

2
,

then (1.2) holds and hence the solution of (3.16) is unique.

Now we consider the power law fluids with state-dependent random forcing which can be
described by the following SPDE:

(3.18) dX(t) = (A(X(t)) +B(X(t))) dt+Q(X(t))dW (t), X(0) = X0,

where W (t) is a cylindrical Wiener process on a Hilbert space U w.r.t. the filtered probability
space (Ω,F ,Ft,P).

The following result can be obtained similarly as in the previous example using [31,
Theorem 1.1].
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Example 3.6. Suppose that p ≥ 2+d
2

, X0 ∈ L4(Ω → H;F0,P) and Q is a map from V to
L2(U ;H) such that

‖Q(u)−Q(v)‖2
2 ≤ C‖u− v‖2

H , u, v ∈ V.(3.19)

Then (3.18) has a unique strong solution X ∈ L4([0, T ]×Ω, dt×P, V )∩L4(Ω,P, C([0, T ];H)).

Remark 3.6. In [49] the authors established the existence and uniqueness of weak solutions
for (3.16) with additive Wiener noise. They first considered the Galerkin approximation
and showed the tightness of the distributions of the corresponding approximating solutions.
Then they proved that the limit is a weak solution of (3.16) with additive Wiener noise.

Here we apply the main result (Theorem 1.1) directly to (3.16) and establish the existence
and uniqueness of solutions. Therefore, by Theorem 1.3 and Remark 1.3 we can obtain the
existence and uniqueness of strong solutions (in the sense of SPDE) for (3.16) with general
additive type noises. Moreover, as just showed in Example 3.6, we can also even prove the
analogous result for (3.16) with multiplicative Wiener noise.
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