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Abstract. We generalize recent results concerning uniqueness of solutions to
Fokker-Planck equations (FPE) related to singular Hilbert space-valued SPDE

from the (cylindrical) Wiener noise case to the case of SPDE driven by noise

with jumps. Using a different space of test functions, we can relax the usual
integrability assumptions and obtain more general uniqueness results for FPE,

even in the case of SPDE driven by Wiener noise.

1. Introduction

Recently, in a series of papers (see e.g. [BDPR09], [BDPR11]), the uniqueness
of solutions to Fokker-Planck equations (FPE) related to Kolmogorov operators,
which are the generators for classes of singular SPDE, has been established for
the case of SPDE driven by (cylindrical) Wiener noise. The aim of this paper is,
to provide a detailed study of the analogous problem for SPDE driven by noise
with jumps. Our main tools include a newly established test function space (see
Subsection 1.5 below), which seems to be particularly well-suited for our analysis
(cf. Remarks 2.4 and 2.5), and some new results for the space-time generator of
the related linear SPDE, which are also proved in this paper. We focus on the case
of SPDE with a merely measurable nonlinear drift part F . Let us note, however,
that similar uniqueness results can be achieved for FPE associated to SPDE with
m-dissipative drift; we refer to Remark 2.6 below for more details.

With respect to the length of this paper, we concentrate here only on the question
of uniqueness of solutions for FPE. Nevertheless, we briefly address the existence
problem in Remark 6.2 below.

1.1. Our Framework. We consider the equation{
dX(t) =

[
AX(t) + F

(
t,X(t)

)]
dt+ dY (t)

X(s) = x ∈ H , 0 ≤ s ≤ t ≤ T,
(SPDE)

where the self-adjoint operator A is the infinitesimal generator of a C0-semigroup of
operators on a separable real Hilbert space H denoted by (etA), which we assume
to be quasi-contractive; F : D(F ) ⊂ H → H a measurable map; and T a finite
positive real number. We consider Y as the sum of a centered Lévy process J in
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The author would like to thank Michael Röckner for some very helpful discussions. Financial

support of the German Science Foundation (DFG) through CRC701 and IRTG1132 is gratefully
acknowledged.

1



2 SVEN WIESINGER

H with characteristic triplet [b, 0,M ] and a (possibly cylindrical) Wiener process√
QW . We identify H with its dual H∗ via the Riesz isomorphism.
Recall, that for a process Y of this type the characteristic function takes the

form E
[
ei〈ξ,Y (t)〉] = e−tλ(ξ), ξ ∈ H, where the so-called characteristic exponent

λ : H → C of Y can be represented in the following Lévy-Khintchine decomposition:

(1.1) λ(ξ) = −i〈ξ, b〉+
1

2
〈ξ,Qξ〉 −

∫
H

exp
[
i〈ξ, x〉

]
− 1− i〈ξ, x〉

1 + |x|2
M(dx) .

The so-called characteristic triplet [b,Q,M ] of b ∈ H, Q ∈ L(H) and the measure M
uniquely characterizes the process Y . If Y is a Lévy process, then Q is nonnegative,
symmetric and trace-class. However, to include the case of cylindrical Wiener
processes in our framework, we do not assume the trace-class property for Q. The
measure M in this characterization is a Lévy measure; that is, a Borel measure
satisfying M({0}) = 0 and

∫
H

(
1 ∧ |x|2

)
M(dx) <∞.

If Y is a Lévy process, then ξ 7→ λ(ξ) is negative definitive, Sazonov-continuous
and we have λ(0) = 0. Due to our relaxed condition on Q, the second summand
on the right-hand side of (1.1) is no longer Sazonov-continuous. Note, that the two
other summands, considered separately, still have this property (see e.g. [Par67, Ch.
VI, Thms. 2.4 and 4.8]).

It is well-known, that for any C0-semigroup (etA) the stochastic convolution

YA(t) :=
∫ t

0
esA dY (s), t ≥ 0, is well-defined; see e.g. [CM87], [PZ07]. We denote

its distribution for t ∈ [0, T ] by µt; the Fourier transform takes the form

µ̂t(ξ) = exp

[
−
∫ t

0

λ(esAξ) ds︸ ︷︷ ︸
=:λt(ξ)

]
for all t ≥ 0, ξ ∈ H,

where, as shown in [FR00], λt can be decomposed as

(1.2) λt(ξ) = −i〈ξ, bt〉+
1

2
〈ξ,Qtξ〉 −

∫
H

exp
[
i〈ξ, x〉

]
− 1− i〈ξ, x〉

1− |x|2
Mt(dx) .

As shown in the same reference, the characteristic triplet [bt, Qt,Mt] of YA can be
expressed in terms of (etA) and the characteristic triplet [b,Q,M ] of Y . If Q is of
trace-class, then Qt inherits this property. Similarly, if M is a Lévy measure on H,
then so is Mt, and if b ∈ H then bt ∈ H.

The transition semigroup (St) related to (SPDE) in the case of F ≡ 0 (linear
case) takes the form

Stϕ(x) := E
[
ϕ
(
X(t, 0, x)

)]
=

∫
H

ϕ(etAx+ y) µt(dy) , ϕ ∈ Bb(H).

It belongs to the family of so-called generalized Mehler semigroups, which have been
introduced in [BRS96] and studied e.g. in [FR00], [SS01], [LR02], [App07] (see also
the references therein). In [LR02], the restriction of the infinitesimal generator U
of (St) to a suitable space of test functionsWA (see Subsection 1.5 below) has been
identified as

Uψ(x) =

∫
H

[
i〈Aξ, x〉 − λ(ξ)

]
· ei〈ξ,x〉 F−1

(
ψ( · )

)
(dξ) , ψ ∈ WA,

where F−1 denotes the inverse Fourier transform. As pointed out in [LR02, p.

300], we have for all ψ ∈ WA, that Stψ(x)
t→0−−−→ ψ(x) for all x ∈ H. The fact, that

this convergence can be established only pointwise in H (and not with respect to
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the supremum norm in the function space), takes (St) out of reach of the theory
of C0-semigroups. Instead, we use the theory of so-called π-semigroups (see e.g.
[Cer95], [Pri99], [Man06] and the references therein) in our analysis.

1.2. The Fokker-Planck equation. To discuss our approach in the semilinear
case, let us assume for a moment, that F is sufficiently regular to establish existence
and uniqueness of a pathwise solution to (SPDE) (cf. e.g. [PZ07]). We denote the
resulting family of transition evolution operators as (Ps,t)0≤s≤t≤T . The restriction
L0 of its infinitesimal generator to suitable test functions ψ ∈ WT,A can be specified
as

L0ψ(t, · ) = Dtψ(t, · ) +
〈
Dψ(t, · ) , F (t, · )

〉
+ Uψ(t, · ) , ψ ∈ WT,A, t ∈ [s, T ],

and the family of probability measures η = (ηt)t∈[s,T ] on H defined by ηt(dx) :=
(P ∗s,tζ(dx)) (where P ∗ denotes the adjoint of the operator P , and ζ is a probability
measure on H) is known to fulfill the Fokker-Planck equation

(FPE)

∫
H

ψ(t, x) ηt(dx) =

∫
H

ψ(s, x) ζ(dx) +

∫ t

s

∫
H

L0ψ(r, x) ηr(dx) dr

for all ψ ∈ WT,A and almost all t ∈ [s, T ]. In our hypotheses below, we introduce
conditions to make sure, that the integrals in (FPE) exist.

At the heart of the approach followed in this article lies the observation, that
it is possible to identify (by approximation) the Kolmogorov operator L even for
equations of type (SPDE) with singular coefficients, for which a pathwise solution
does not necessarily exist. In this case, the aim is to find a family η, which solves
(FPE), and thus understand the development of the distribution of the solution to
(SPDE). Recent references on the study of existence and uniqueness of solutions
to Fokker-Planck equations in finite dimensions include e.g. [BDPR08], [Fig08],
[LBL08], [RZ10] and the references therein. (See also related fundamental work on
transport equations in [DL89].) In more recent years, for the first time the focus of
attention has been extended also to the infinite-dimensional case; see e.g. [AF09],
[BDPR09], [BDPR10], [BDPR11] and the references therein. However, to the best
of our knowledge, all of the current and past research on this approach via FPE
seems to have focused exclusively on the case of SPDE perturbed by Wiener noise.
The aim of this paper is, to establish uniqueness for equations of type (FPE) in the
case of a singular drift coefficient F and noise with jumps.

1.3. Structure of this paper. In the remaining part of the current section, we
introduce our technical framework, in particular the test function space WT,A (cf.
Subsection 1.5 below). In Section 2, we specify the hypotheses underlying our
approach and present the main result. A major part of the work in this paper,
which provides the basis for the main uniqueness proof, is the generalization of
results for the linear case (i.e. F = 0) from the Wiener noise case to the case of noise
with jumps. This is done in Section 3, where we extend results from the theory of
generalized Mehler semigroups to the case of space- and time-dependent function
spaces. Section 4 contains some results for the case of a regular drift coefficient
F , which are needed in the approximation procedure within the main uniqueness
proof. On these foundations, we carry out the proof of our main uniqueness result in
Section 5. In Section 6, we discuss a class of examples of time-dependent reaction-
diffusion type.
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1.4. Spaces of functions and measures, which are used below. We denote
the inner product in H by 〈 · , · 〉 and the norm by | · |. As usual, L(H) denotes the
space of bounded linear operators on H, and ‖ · ‖L(H) the operator norm.

We denote the Borel σ-algebra on H as B(H) and the Banach space of bounded,
B(H)-measurable functions H → R as Bb(H), with supremum norm ‖ · ‖0.

By Cu(H), we denote the closed subspace of Bb(H) of all functions H → R, which
are uniformly continuous; the space of continuous elements of Bb(H) is denoted by
Cb(H). The space Cu,k(H), k ∈ N, contains all functions ϕ : H → R, such that

x 7→ ϕ(x)
1+|x|k is in Cu(H). We use the norm

‖ϕ‖u,k := sup
x∈H

∣∣ϕ(x)
∣∣

1 + |x|k
for k ∈ N, ϕ ∈ Cu,k(H).

For any k ∈ N, the space Cku(H), is made up of all functions in Cu(H) with contin-
uous and bounded derivatives of order ` for any ` ≤ k.

By C
(
[0, T ]; Cu(H)

)
, we denote the space of all functions ϕ : [0, T ] × H → R,

such that x 7→ ϕ(t, x) is in Cu(H) for any t ∈ [0, T ], and t 7→ ϕ(t, · ) is continuous
with respect to the sup-norm on Cu(H). On C

(
[0, T ]; Cu(H)

)
, we define the norm

‖ϕ‖0,T := sup
t∈[0,T ]

∥∥ϕ(t, · )
∥∥

0
.

Furthermore, C
(
[0, T ]; Cu,k(H)

)
, k ∈ N, is the space of all functions ϕ : [0, T ]×H →

R, such that the mapping (t, x) 7→ ϕ(t,x)
1+|x|k is in C

(
[0, T ]; Cu(H)

)
. We use the norm

‖ϕ‖u,k,T := sup
t∈[0,T ]

∥∥ϕ(t, · )
∥∥
u,k

for k ∈ N, ϕ ∈ C
(
[0, T ]; Cu,k(H)

)
.

The (Frechet) derivative of a function with respect to space is denoted by D; the
derivative with respect to time is denoted by Dt.

The Schwartz function space S(Rd;C) is the space of all functions ϕ : Rd → C,
which are differentiable infinitely often and fulfill

‖ϕ‖α,β := sup
x∈Rd

∣∣xαDβϕ(x)
∣∣ <∞

for all d-tuples α, β of nonnegative integers.
The space of probability measures on H is denoted by M1(H) and the space

of complex-valued measures on H with bounded total variation by MC
b (H). The

Fourier transform of a measure µ is denoted by Fµ = µ̂, and the inverse Fourier
transform by F−1.

1.5. The test function space. In contrast to recent work on (FPE) in the Wiener
noise case, we need a different test function space, which can be understood as a
space of (linear combinations of) Fourier transforms of measures in MC

b (H). The
time-independent test function space WA is used in the literature on generalized
Mehler semigroups (see e.g. [BRS96], [LR02]). However, since in our case the
coefficients in (SPDE) depend explicitly on time, we introduce a time-dependent
version, which we denote by WT,A.

We consider the following spaces of functions:

WA,C : Functions ϕ : H → C, such that there exists an m ∈ N with

ϕ(x) = fm
(
〈ξ1, x〉 , . . . , 〈ξm, x〉

)
for all x ∈ H,
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where fm ∈ S(Rm;C) and {ξi}i∈N is an orthonormal basis (ONB) of H,
with each ξi being an eigenvector of A (see Hypothesis (H.1) below).

WA : Real-valued elements of WA,C.

We will sometimes write ϕ(x) = fm
(
Pmx

)
for ϕ ∈ WA, x ∈ H, where Pn, n ∈ N,

denotes the orthogonal projection of H onto span({ξ1, . . . , ξn}) (≡ Rn), defined by

Pnx :=

n∑
j=1

〈x, ξj〉ξj for all x ∈ H.

WT,A : The linear span of all functions ψ : [0, T ] ×H → R, such that there
is an m ∈ N with

ψ(t, x) = φ(t) · fm
(
〈ξ1, x〉 , . . . , 〈ξm, x〉

)
∀ (t, x) ∈ [0, T ]×H,(1.3)

where fm ∈ S(Rm;R), the {ξi}i∈N are chosen as above and φ ∈ C2
(
[0, T ]

)
,

with the additional requirement that φ(T ) = φ′(T ) = φ′′(T ) = 0.

The following remark relates to the time-independent case in [LR02, Rem. 1.1].

Remark 1.1. Choose any ψ ∈ WT,A of the form (1.3). Denote the inverse Fourier
transform of fm by gm : Rm → C. Note that gm ∈ S(Rm;C), see e.g. [RS80, Ch.
IX], and that gm is uniquely determined by the requirement, that

fm(y) =

∫
Rm

ei(r,y)Rm gm(r)dr for all y ∈ Rm.

We set

νm(dr) := gm(r)dr for r ∈ Rm.

Observe that νm is in MC
b (Rm) for each m ∈ N. Now consider the embedding

Πm : Rm → H

(r1, . . . , rm) 7→
m∑
j=1

rjξj

and define

(1.4) νt := φ(t) νm ◦Π−1
m (∈MC

b (H) for any t ∈ [0, T ]).

Similarly to [BLR99, Lem. 1.3] we see, that for all t ∈ [0, T ] and x ∈ H

F(νt)(x) =

∫
H

ei〈y,x〉 νt(dy) = φ(t) ·
∫
Rm

exp
[
i

m∑
j=1

rj · 〈ξj , x〉
]
gm(r)dr

= φ(t) · fm
(
〈ξ1, x〉, . . . , 〈ξm, x〉

)
= ψ(t, x) .

To motivate the significance of the test function space, we state the following
lemma, which we really only need in the case k = 1.

Lemma 1.2. For any ϕ ∈ C
(
[0, T ]; Cu,k(H)

)
, k ∈ N, there exists a triple-index

sequence {ψn1,n2,n3} ⊂ WT,A, such that for all (t, x) ∈ [0, T )×H
(i)
∣∣ψn1,n2,n3(t, x)

∣∣ ≤ (‖ϕ‖u,k,T + 1
)
·
(
1 + |x|k

)
for all n1, n2, n3 ∈ N

(ii) lim
n1→∞

lim
n2→∞

lim
n3→∞

ψn1,n2,n3
(t, x) = ϕ(t, x).

The lemma follows from a Stone-Weierstraß argument extending on the basic
idea of the proof of [DP04, Prop. 1.2].
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1.6. Spaces of probability kernels. Finally, let us introduce the following no-
tations for spaces of probability kernels, including the solution space for (FPE)
denoted by K0

s,ζ . Let s ∈ [0, T ] and ζ ∈M1(H). We set:

K0
s : positive Borel measures η on [s, T ]×H, such that
η(dt, dx) = ηt(dx)dt, where ηt ∈M1(H) for all t ∈ [s, T ],
and t 7→ ηt(B) is measurable on [s, T ] for all B ∈ B(H)

K0
s,ζ : elements η of K0

s , which fulfill (FPE) with initial condition ζ ∈M1(H)

K0
s,≤β : elements η of K0

s , such that there exists a β ≥ 0 with∫
[s,T ]×H

L0ψ(r, x) η(dr, dx) ≤ β ·
∫

[s,T ]×H
ψ(r, x) η(dr, dx)(1.5)

for all ψ ∈ WT,A with ψ ≥ 0.

Remark 1.3. K0
s,ζ ⊂ K0

s,≤β (see e.g. (4.3) below).

2. Hypotheses and main results

2.1. The linear case. We extend existing results about the generalized Mehler
semigroup related to (SPDE) to the case of explicitly time-dependent test functions.
These results will be needed later on. Proofs are included in Section 3. We use the
following hypotheses:

(H.1) H has an orthonormal basis {ξi}i∈N of eigenvectors of A, and A is self-
adjoint and such that 〈Ax, x〉 ≤ ω · |x|2 for some ω ≥ 0 and all x ∈ D(A).

(H.2) The characteristic exponent λ : H → C of Y is negative definite and of
the form (1.1). We require the trace-class property only for Qt, but not
for Q. The Lévy measure M has finite q-th moments for a q > 2.

For any n ∈ N and Fn := span{ξ1, . . . , ξn}, the restriction λ|Fn is in
C∞(Fn). Furthermore, kerQt = {0} for all t ≥ 0.

(H.3) etA(H) ⊂ Q1/2
t (H) for all t > 0.

Furthermore, for each t ∈ (0, T ] there is a Λt ∈ L(H), such that

Q
1/2
t Λt = etA and

∫ T
0
‖Λt‖L(H) dt <∞.

Remark 2.1. Hypothesis (H.1) is crucial for the construction of WT,A.
We denote the eigenvalues of A = A∗ (which due to the self-adjointness are real

numbers) by αi, i ∈ N: Aξi = αiξi for all i ∈ N.

Remark 2.2. Note that the assumptions on Qt are standard assumptions for the
existence of the stochastic convolution in the Wiener noise case (which is a spe-
cial case of our situation; cf. e.g. [DPZ92], [Hai09]). Some further observations
concerning Hypothesis (H.2):

(i) The trace-class property of Qt implies, that λt is Sazonov-continuous.
Note, that λt inherits from λ the property of being negative definite.

(ii) By construction, the family (µt) of probability measures is infinitely divis-
ible. It can be decomposed as µt = eG(Mt) ∗ NQt ∗ δbt for any t ∈ [0, T ],
where eG(Mt) denotes the generalized exponent of Mt, NQt the Gaussian
measure with covariance operator Qt and δbt the Dirac measure with mass
in bt (see e.g. [Lin86, Sect. 5.7] for details).

(iii) Clearly,
∫
H
|x|2 M(dx) =

∫
{|x|≤1}|x|

2 M(dx) +
∫
{|x|>1}|x|

2 M(dx). The

first summand is finite by virtue of M being a Lévy measure. The second
summand is (up to a constant) smaller than the q-th moment of M for
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any q > 2. Consequently, M has finite second moments. By [Lin86, Rem.
5.4.14] this implies, that µt also has finite second moments.

(iv) The smoothness condition on finitely based restrictions of λ is needed to
achieve, that St(WA) ⊂ WA (cf. Remark 3.5), which in turn is crucial for
the proof of Theorem 1.

See [LR02, Sect. 3] for a possible approach to the situation without this
restriction (however, only in the time-independent case).

Infinite differentiability of finitely-based restrictions of λ holds for ex-
ample, if the Lévy measure M in the Lévy-Khintchine decomposition of λ
fulfills

M(dx) = I{a|ε≤‖a‖≤1/ε}(x) ·M(dx)

for some ε > 0 (cf. [LR02, Prop. 3.3]).
An example for a negative definite, Sazonov continuous function λ :

H → R, which is C∞ on H (not only on finitely based restrictions) is

λ(ξ) =
m · ‖Cξ‖2

m+ ‖Cξ‖2
, m > 0,

where C : H → H is assumed to be symmetric, positive definite and of
trace-class (cf. [LR02, Rem. 4.2]).

Remark 2.3. For the definition of B1/2 for a nonnegative operator B, see e.g.
[RS80, Thm. VI.9].

Hypothesis (H.3) is needed for the proof of the integration by parts formula in
Lemma 3.1. The latter in turn is required to establish, that the generalized Mehler
semigroup (St) has the strong Feller property (see Lemma 3.2), on which our proof
of the approximation result presented in Theorem 1 below relies.

Consider the space-time homogenization (STτ )τ≥0 of the generalized Mehler semi-
group (St), defined for elements ϕ of

CT
(
[0, T ]; Cu,1(H)

)
:=
{
ϕ ∈ C

(
[0, T ]; Cu,1(H)

) ∣∣∣ ϕ(T, x) = 0 for all x ∈ H
}

as

(STτ ϕ)(t, x) :=

{
Sτϕ(t+ τ, · )(x) if t+ τ ≤ T
0 else.

Then, the generator
(
V,D(V )

)
of (STτ )τ≥0 on D(V ) ⊂ CT

(
[0, T ]; Cu,1(H)

)
in the

sense of π-semigroups (similar to [Pri99]) is an extension of

V0 := Dt + U , D(V0) :=WT,A ,

and we obtain the following approximation result (cf. Corollary 3.12):

Theorem 1. Let u ∈ D(V ) and η a finite nonnegative Borel measure on [0, T ]×H.
Assume, that Hypotheses (H.1)–(H.3) hold.

Then, there exist a sequence (ψn)n∈N ⊂ WT,A and an n0 ∈ N, such that for a
finite C > 0∣∣ψn(t, x)

∣∣+
∣∣Dψn(t, x)

∣∣+
∣∣V0ψn(t, x)

∣∣ ≤ C · (‖V u‖u,1,T + 1
)
·
(
1 + |x|

)
for all (t, x) ∈ [0, T ]×H, n ≥ n0, and

ψn → u , 〈Dψn, h〉 → 〈Du, h〉 , V0ψn → V u

converge in measure η as n→∞ for any h ∈ H.
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Remark 2.4. This result has been shown in the Wiener noise case in [BDPR09,
Cor. A.3] (which in turn generalizes [DPT01, Sect. 2]). However, because of the
different family of test functions used in these references, the upper bound achieved
there grows as

(
1 + |x|2

)
in space. This is essentially due to the fact, that the

results equivalent to Lemma 3.10 in these references include continuity of the map
(s, t) 7→ Stψ(s, · ) in the topology of Cu,2(H) only.

2.2. The semilinear case. We generalize results, which have been achieved for the
Wiener noise case in [BDPR11, Section 4], to our framework. Proofs are included
in Section 5.

In addition to Hypotheses (H.1)–(H.3), we require the following throughout this
part of our work:

(H.4) F : D(F )→ H is a measurable map, where D(F ) ∈ B
(
[0, T ]×H

)
.

(As a rule, we set
∣∣F (t, x)

∣∣ = +∞ if (t, x) /∈ D(F ).)

(H.5) Q−1 ∈ L(H).

Let s ∈ [0, T ] and ζ ∈M1(H). Set

Kmeas
s,ζ :=

{
η ∈ K0

s,ζ

∣∣∣∣ ∫
[s,T ]×H

|x|2 +
∣∣F (t, x)

∣∣2 + |x|2 ·
∣∣F (t, x)

∣∣2 η(dt,dx) <∞
}
.

We obtain the following result (cf. Proposition 5.5):

Theorem 2 (Main Result). Assume that Hypotheses (H.1)–(H.5) hold. Then,
Kmeas
s,ζ contains at most one element.

Remark 2.5. This result generalizes [BDPR11, Theorem 4.1] from the cylindrical
Wiener noise case to the case of (SPDE) driven by the sum of Lévy noise with jumps
and a cylindrical Wiener process. The main ingredients in the proof are a gradient
estimate for the square-field operator Γ, which we introduce in Remark 4.4(ii) below,
and the results achieved in Section 3.

In addition to the generalization, we obtain relaxed moment conditions for η; in
[BDPR11], the uniqueness of the solution to (FPE) is shown only in{

η ∈ K0
s,ζ

∣∣∣∣ ∫
[s,T ]×H

|x|4 +
∣∣F (t, x)

∣∣2 + |x|4 ·
∣∣F (t, x)

∣∣2 η(dt,dx) <∞
}
.

The differences in the moment conditions are caused by our optimized upper bound
achieved in Theorem 1; see also Remark 2.4.

It seems reasonable to expect, that existence results for solutions to Fokker-Planck
equations, similar to those obtained in [BDPR10], can also be established in the case
of noise with jumps. See also Remark 6.2 below.

Remark 2.6. Similarly to the case of a measurable nonlinear drift part F , all main
results of [BDPR09] for (SPDE) with m-dissipative nonlinear drift term F can be
generalized to the case of (SPDE) driven by noise with jumps. In particular, m-
dissipativity of the Kolmogorov operator L and uniqueness of solutions to (FPE)
can be confirmed to hold within our framework. While the m-dissipativity condition
on F is more restrictive than (H.4), Hypothesis (H.5) can be dropped in this alter-
native case. Similarly to Theorem 2, we obtain relaxed integrability conditions on
η compared to [BDPR09]. We refer to [Wie11, Sect. 2.2.3] for details.



FPE FOR SINGULAR SPDE WITH LÉVY NOISE 9

3. The linear case

The objective of this section is the generalization of results from [BDPR09] con-
cerning the generator of (St), to include the case of explicit time-dependence of the
function space, on which (St) acts. To this end, we adapt and extend methods and
results from the literature on generalized Mehler semigroups (particularly, [LR02]
and [LR04]).

Throughout this section, we assume that Hypotheses (H.1)–(H.3) hold.

3.1. The generalized Mehler semigroup (St). We start with an integration by
parts formula. Before we formulate the result, let us recall the following (see e.g.

[DP04, p.11f] for details): The range of Q
1/2
t is a strict subset of H: Q

1/2
t (H) ( H.

Thus, the white noise function W , given as

W : Q
1/2
t (H)→ L2(H,NQt)

f 7→ 〈 · , Q−1/2
t f〉=: Wf ,

is not defined on all of H. However, it can be extended uniquely to a mapping H →
L2(H,NQt). Even for this extension, we use the notation Wf ( · ) = 〈 · , Q−1/2

t f〉
for any f ∈ H. Note, that the extension of the white noise function for arbitrary
arguments in H requires, that kerQt = {0} (cf. (H.2)).

Lemma 3.1. For ϕ ∈ Cu,1(H), h ∈ H, t ∈ (0, T ], we have for all x ∈ H, that〈
DStϕ( · )(x) , h

〉
=

∫
H

∫
H

(∫
H

ϕ(etAx+ y1 + y2 + y3) · 〈Q−1/2
t etA︸ ︷︷ ︸

=Λt

h , Q
−1/2
t y1〉 NQt(dy1)

)
eG(Mt)(dy2) δbt(dy3) .

The following proof adapts a result from the Wiener noise case to our framework;
see e.g. [DP04, Cor. 1.6 and Prop. 1.7] or [DPZ02, Thm. 6.2.2]. The main reason,
why this works, is that the additional jump part in the noise does not affect the
smoothing property of the diffusion part of the noise, which in turn is crucial for
the argument.

Proof. Using the definition of (St) and the decomposition µt = NQt ∗ eG(Mt) ∗ δbt ,
we observe that 〈

DStϕ( · )(x) , h
〉

= lim
ε→0

1

ε

∫
H

∫
H

(∫
H

ϕ(etAx+ y1 + y2 + y3 + ε · etAh)− ϕ(etAx+ y1 + y2 + y3)

NQt(dy1)

)
eG(Mt)(dy2) δbt(dy3)

= lim
ε→0

1

ε

∫
H

∫
H

(∫
H

ϕ(etAx+ y1 + y2 + y3) ·
(
e〈Λt(εh),Q

−1/2
t y1〉− 1

2 |Λt(εh)|2 − 1
)

NQt(dy1)

)
eG(Mt)(dy2) δbt(dy3) ,

where we used the Cameron-Martin formula in the last step. Let us identify an
NQt-integrable upper bound (independent of ε) for the following term: By the
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intermediate value theorem, there is for any ε ∈ (0, 1] an ε0 ∈ (0, ε), such that∣∣∣∣1ε · (exp
[
〈ε · Λth , Q−1/2

t y1〉 −
ε2

2
· |Λth|2

]
− 1
)∣∣∣∣

=
∣∣〈Λth , Q−1/2

t y1〉 − ε0|Λth|2
∣∣ · exp

[
〈ε0 · Λth , Q−1/2

t y1〉 −
ε2

0

2
· |Λth|2

]
≤
( ∣∣〈Λth , Q−1/2

t y1〉
∣∣︸ ︷︷ ︸

≤exp[|〈Λth,Q−1/2
t y1〉|]

+ |Λth|2
)
· exp

[∣∣〈Λth , Q−1/2
t y1〉

∣∣]

≤
(
1 + |Λth|2

)
· exp

[
2 ·
∣∣〈Λth , Q−1/2

t y1〉
∣∣] .

Due to ∫
H

exp
[
2 ·
∣∣〈Λth , Q−1/2

t y1〉
∣∣] NQt(dy1)

≤
∫
H

exp
[
−2〈Λth , Q−1/2

t y1〉
]

+ exp
[
2〈Λth , Q−1/2

t y1〉
]
NQt(dy1) = 2e2|Λth|2

since 〈Λth , Q−1/2
t y1〉 = WΛth(y1) fulfillsNQt◦W 2

Λth
∼ N

(
0, |Λth|2

)
(cf. e.g. [DP06,

Prop. 1.15]), we may use Lebesgue’s dominated convergence theorem to obtain, that〈
DStϕ( · )(x) , h

〉
=

∫
H

∫
H

∫
H

ϕ(etAx+ y1 + y2 + y3) · lim
ε→0

1

ε

(
eε〈Λth,Q

−1/2
t y1〉− ε

2

2 |Λth|
2

− 1
)

NQt(dy1) eG(Mt)(dy2) δbt(dy3) ,

which proves the claim. �

The following result and its proof are similar to the Wiener noise case (see
[DPZ02, Prop. 11.2.5] and [Cer95]). Only the integration by parts formula used in
the proof is formulated differently (see Lemma 3.1 above), but the estimates remain
the same.

Lemma 3.2. We have the following Feller properties for (St):

(i) For ϕ ∈ Cu(H) and all (t, x) ∈ [0, T ]×H,
∣∣Stϕ(x)

∣∣ ≤ ‖ϕ‖0.
(ii) For all ϕ ∈ Cu,k(H), k ∈ N and t ∈ [0, T ], we have

‖Stϕ‖u,k ≤ Ceωt · ‖ϕ‖u,k ·
∫
H

1 + |y|k µt(dy) ,

where C ∈ (0,∞) is independent of t, x and ϕ.
(iii) For ϕ ∈ Cu(H) and all (t, x) ∈ (0, T ]×H,∣∣DStϕ(x)

∣∣ ≤ ‖Λt‖L(H) · ‖ϕ‖0 .
(iv) For all (t, x) ∈ (0, T ]×H and ϕ ∈ Cu,1(H), we have∣∣DStϕ(x)

∣∣
1 + |x|

≤ C̃etω · ‖Λt‖L(H) ·
(∫

H

1 + |y|2 µt(dy)

)1/2

· ‖ϕ‖u,1 ,

where C̃ ∈ (0,∞) is independent of t, x and ϕ.

Note, that our assumptions imply the existence of finite first and second moments
for µt. Thus, in our framework the upper bounds in (ii), if k ∈ {1, 2}, and in (iv)
are finite.
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3.2. The space-time homogenization of the generalized Mehler semigroup
and its generator. Recall, that V0ψ(t, · ) := Dtψ(t, · ) + Uψ(t, · ) for any ψ ∈
WT,A. The following remark adapts [LR02, Thm. 1.1(i)]) to the time-dependent
case. The proof is similar to that in [LR02], and thus not included. (The observa-
tion, that U maps the test function space into itself, has not been made in [LR02],
but it follows immediately from the proof presented there.)

Remark 3.3. For ψ ∈ WT,A, we have Uψ ∈ WT,A and V0ψ ∈ CT
(
[0, T ]; Cu(H)

)
.

To extend the operator V0 to a larger domain, we consider for each α ∈ R

RVα f(t, · )(x) :=

∫ T

t

e−α(s−t) · Ss−tf(s, · )(x) ds , f ∈ C
(
[0, T ]; Cu,1(H)

)
.

By Lemma 3.2, RVα f ∈ C
(
[0, T ]; Cu,1(H)

)
for any f ∈ C

(
[0, T ]; Cu,1(H)

)
.

Remark 3.4. RVα fulfills the resolvent identity

RVα −RVκ = (κ− α) ·RVκ RVα for all κ, α ∈ R.

As a consequence of Remark 3.4 it follows, that the range RVα
(
C([0, T ]; Cu,1(H))

)
does not depend on the choice of α. We also observe, that for any ϕ ∈ C

(
[0, T ]; Cu,1(H)

)
α ·RVαϕ(t, x) = α ·

∫ T−t

0

e−αs · Ssϕ(s+ t, · )(x) ds

=

∫ α(T−t)

0

e−s · Ss/αϕ
(
s

α
+ t, ·

)
(x) ds

α→∞−−−−→ ϕ(t, x) .

Thus, RVα is injective and continuous for each α, with D(RVα ) := C
(
[0, T ]; Cu,1(H)

)
.

Consequently, for each α the inverse operator (RVα )−1 exists and is a closed linear
operator on RVα

(
D(RVα )

)
. Which implies, that

V := αI − (RVα )−1

is a closed linear operator defined on

D(V ) := RVα
(
C([0, T ]; Cu,1(H))

)
(⊂ C

(
[0, T ]; Cu,1(H)

)
) .

(Again, this definition is independent of α.)
It is easily seen, that the family (STτ )τ≥0 of operators given by the space-time

homogenization of (St) in the space CT
(
[0, T ]; Cu,1(H)

)
, cf. Section 2, forms a

semigroup. Observe furthermore, that for any ϕ ∈ CT
(
[0, T ]; Cu,1(H)

)
we have∫ ∞

0

e−αr · (STr ϕ)(t, x) dr =

∫ T−t

0

e−αr · Srϕ(t+ r, · )(x) dr = RVαϕ(t, · )(x) .

The next remark generalizes [LR02, Thm. 1.3(i)] to the time-dependent case.

Remark 3.5. For any τ ∈ [0, T ], we have STτ (WT,A) ⊂ WT,A and Sτ (WT,A) ⊂
WT,A.

The proof is a more detailed and time-dependent version of that in [LR02]. In
the proof we denote by Bτ,m the diagonal (m×m)-matrix

Bτ,m =

e
τα1 0

. . .

0 eταm

 , τ ∈ [0, T ], m ∈ N,
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where {αi}i∈N are the eigenvalues of A corresponding to {ξi}i∈N (cf. Rem. 2.1).
Furthermore, we define φτ : [0, T ]→ R by

φτ (s) :=

{
φ(s+ τ) if s+ τ ≤ T
0 if s+ τ > T .

Observe, that φτ ∈ C2
(
[0, T ]

)
, and that φτ (T ) = φ′τ (T ) = φ′′τ (T ) = 0.

Proof of Remark 3.5. Let ψ ∈ WT,A (of the form (1.3)) and (s, τ) ∈ [0, T ]× [0, T ].
Then,

(STτ ψ)(s, x) =

0 if s+ τ > T∫
H

ψ(s+ τ, eτAx+ y) µτ (dy) if s+ τ ≤ T

= φτ (s)

∫
H

∫
Rm

exp
[
i
〈
Πm(r) , eτAx+ y

〉]
νm(dr) µτ (dy) .

Since the absolute value of the integrand is bounded by 1, νm ∈ MC
b (Rm) and

µτ ∈M1(H), we can apply Fubini’s theorem to obtain that

(STτ ψ)(s, x)

= φτ (s)

∫
Rm

exp
[
i
〈
Πm(r) , eτAx

〉]
·
(∫

H

exp
[
i
〈
Πm(r), y

〉]
µτ (dy)

)
gm(r)dr

= φτ (s)

∫
Rm

exp
[
i

m∑
j=1

rj · 〈eταjξj , x〉
]

︸ ︷︷ ︸
=ei(Bτr , (〈ξ1,x〉,...,〈ξm,x〉))Rm

· exp

[
−
∫ τ

0

λ
( m∑
j=1

rj · euαjξj
)

du

]
︸ ︷︷ ︸

=µ̂(Πm(r))

gm(r)dr

= φτ (s)

∫
Rm

exp
[
i(r, Pmx)Rm

]
· µ̂τ

(
Πm(B−1

τ,mr)
)
gm(B−1

τ,mr) ·
1

detBτ,m︸ ︷︷ ︸
=:g̃m(r)

dr .

Due to the regularity properties of λ|Fm , we have that g̃m(r) ∈ S(Rm;C). The fact,
that STτ ψ is real-valued, follows by construction.

A similar argument shows that Sτ (WT,A) ⊂ WT,A as well. �

Remark 3.6. The semigroup (STτ )τ≥0 is a π-semigroup on CT
(
[0, T ]; Cu,1(H)

)
.

(In particular, continuity in time τ follows from an argument similar to the proof
of [Man06, Prop 4.6(iii)].)

To show that V , as the extension of V0, generates the semigroup (STτ )τ≥0 in the
sense of π-semigroups (arguing as in [Pri99]), we use the following criteria:

u ∈ D(V ) and V u = f(3.1)

⇔


lim
h→0

(STh u)(t, x)− u(t, x)

h
= f(t, x) for all (t, x) ∈ [0, T ]×H

sup
h∈(0,T ],

(t,x)∈[0,T ]×H

(
1 + |x|

)−1

h
·
∣∣(STh u)(t, x)− u(t, x)

∣∣ <∞ .

For the first condition, we generalize [LR02, Thm. 1.1(ii)] to the case of explicit
time-dependence.
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Lemma 3.7. For any ψ ∈ WT,A, x ∈ H, t ∈ [0, T ) and h ∈ [0, T ) we have that

(STh ψ)(t, x)− ψ(t, x) =

∫ h

0

(STs V0ψ)(t, x) ds .

Proof. Assume without loss of generality, that ψ ∈ WT,A is of the form (1.3). By
Remark 3.3, we know that V0ψ ∈ CT

(
[0, T ]; Cu(H)

)
for all ψ ∈ WT,A. Thus, STs V0ψ

is well-defined, and by the definitions of STs and V0 we see that

(STs V0ψ)(t, x) =

{
SsV0ψ(t+ s, · )(x) if s ≤ T − t
0 if s+ t > T

(from here on, assume first that the first case holds)

=

∫
H

V0ψ(t+ s, esAx+ y) µs(dy)

=

∫
H

Uψ(t+ s, esAx+ y) µs(dy) +

∫
H

(Dtψ)(t+ s, esAx+ y) µs(dy) .(3.2)

We start by considering the summands separately.
Similarly to [LR02, pp. 303–305] we obtain, that∫ h

0

∫
H

Uψ(t+ s, esAx+ y) µs(dy) ds(3.3)

=

∫ h

0

∫
H

(
i〈esAAξ, x〉 − λ(esAξ)

)
· exp

[
i〈esAξ, x〉 −

∫ s

0

λ(eθAξ) dθ

]
νt+s(dξ) ds

=

∫ h

0

∫
Rm

d

ds

(
exp

[
i〈esA

( m∑
j=1

rjξj

)
, x〉 −

∫ s

0

λ(eθA
( m∑
j=1

rjξj

)
) dθ

])
· φ(s+ t) · gm(r)dr ds .

After applying Fubini’s Theorem we see, that for each fixed r ∈ Rm∫ h

0

d

ds

(
exp

[
i〈esA

( m∑
j=1

rjξj

)
, x〉 −

∫ s

0

λ(eθA
( m∑
j=1

rjξj

)
) dθ

])
· φ(s+ t) · gm(r) ds

=

[
exp

[
i〈esA

( m∑
j=1

rjξj

)
, x〉 −

∫ s

0

λ(eθA
( m∑
j=1

rjξj

)
) dθ

]
· φ(s+ t) · gm(r)

]s=h
s=0

(3.4)

−
∫ h

0

exp

[
i〈esA

( m∑
j=1

rjξj

)
, x〉 −

∫ s

0

λ(eθA
( m∑
j=1

rjξj

)
) dθ

]

·
(

d

ds
φ(t+ s)

)
· gm(r) ds .
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For the time derivative summand in (3.2), we observe that∫
H

(Dtψ)(t+ s, esAx+ y) µs(dy)

=

∫
H

Dt

(
φ(t+ s) · fm

(
〈ξ1, esAx+ y〉, . . . , 〈ξm, esAx+ y〉

))
µs(dy)

=

(
d

dt
φ(t+ s)

)
·
∫
H

∫
Rm

exp
[
i
( m∑
j=1

rj〈ξj , esAx+ y〉
)]
gm(r)dr µs(dy)

=

(
d

dt
φ(t+ s)

)
·
∫
Rm

∫
H

exp
[
i〈
( m∑
j=1

rjξj

)
, y〉
]
µs(dy) · exp

[
i
( m∑
j=1

rj〈ξj , esAx〉
)]

gm(r)dr

=

(
d

dt
φ(t+ s)

)
·
∫
Rm

exp

[
−
∫ s

0

λ(eθA
( m∑
j=1

rjξj

)
) dθ + i

( m∑
j=1

rj〈ξj , esAx〉
)]

gm(r)dr .

Finally, using (3.3), (3.4) and the equation above we obtain:∫ h

0

(STs V0ψ)(t, x) ds(3.5)

=

∫
Rm

[
exp

[
i〈esA

( m∑
j=1

rjξj

)
, x〉 −

∫ s

0

λ(eθA
( m∑
j=1

rjξj

)
) dθ

]

· φ(s+ t) · gm(r)

]s=h
s=0

dr

= φ(h+ t) ·
∫
Rm

exp

[
i〈ehA

( m∑
j=1

rjξj

)
, x〉 −

∫ h

0

λ(eθA
( m∑
j=1

rjξj

)
) dθ

]
gm(r)dr

−φ(t) ·
∫
Rm

exp
[
i〈
( m∑
j=1

rjξj

)
, x〉
]
gm(r)dr .

Considering the two summands separately we see, that

φ(t) ·
∫
Rm

exp
[
i〈
( m∑
j=1

rjξj

)
, x〉
]
gm(r)dr = ψ(t, x)

and, using Remark 1.1 and the different re-formulations of µ̂h(ξ),∫
H

exp

[
i〈ehAξ, x〉 −

∫ h

0

λ(eθAξ) dθ

]
νh+t(dξ)

=

∫
H

∫
H

exp
[
i〈ξ, ehAx+ y〉

]
νh+t(ξ) µh(dy) = Shψ(t+ h, · )(x) .

Recalling that (STh ψ)(t, x)− ψ(t, x) = Shψ(t+ h, · )(x)− ψ(t, x) for h ∈ [0, T ), we
conclude the proof for the case s ≤ T − t.

Now, let s+ t > T . Then, by definition of the family (STτ )τ≥0,

(STs ψ)(t, x)− ψ(t, x) = −ψ(t, x) ,
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whereas on the other hand, using the definitions and the result proved above for
the case s+ t ≤ T∫ s

0

(STr V0ψ)(t, x) dr =

∫ T−t

0

(STr V0ψ)(t, x) dr + 0

= (STT−tψ)(t, x)− ψ(t, x) = ST−tψ(T, x)− ψ(t, x) = −ψ(t, x) ,

which proves the assertion. �

For the second criterium in (3.1) we show the following, stronger result (which
actually implies that (STh )h≥0, restricted to WT,A, is a C0-semigroup):

Lemma 3.8. For all ψ ∈ WT,A,

sup
h∈(0,T ],

(t,x)∈[0,T ]×H

∣∣(STh ψ)(t, x)− ψ(t, x)
∣∣

h
<∞ .

Proof. If t = T , then by definition of WT,A we have that (STh ψ)(t, x) = ψ(t, x) = 0,
and the claim is fulfilled. From here on, let t < T .

As before, assume first that t + h ≤ T . Choose ψ ∈ WT,A and assume without
loss of generality, that ψ(t, x) = φ(t) · fm(Pmx). If ψ = 0, the assertion is trivially
fulfilled; assume that ‖ψ‖0,T > 0. Use Lemma 3.7 to see that

(STh ψ)(t, x)− ψ(t, x) =

∫ h

0

(STs V0ψ)(t, x) ds ≤ h · sup
s∈[0,h]

∣∣(STs V0ψ)(t, x)
∣∣ .

By definition of (STt )t≥0 (and recalling that t+ h ≤ T , i.e. s+ t ≤ T for s ∈ [0, h]),

(STh ψ)(t, x)− ψ(t, x) ≤ h · sup
s∈[0,h]

∣∣SsV0ψ(t+ s, · )(x)
∣∣ .

Recall that, using Remark 3.3, there is a ψ̃ ∈ WT,A, such that

V0ψ(t+ s, · )(x) = (Dt + U)ψ(t+ s, · )(x) = φ′(t+ s) · fm(Pmx) + ψ̃(t+ s, x) .

Now we can use Lemma 3.2(i) to obtain, that

sup
x∈H

∣∣(STh ψ)(t, x)− ψ(t, x)
∣∣ ≤ h · sup

(t,x)∈[0,T ]×H

∣∣φ′(t) · fm(Pmx) + ψ̃(t, x)
∣∣︸ ︷︷ ︸

=:C

,(3.6)

where C ∈ (0,∞) is independent of h, s, t and x.
Consider the case t + h > T . There exists an ε > 0, such that h > ε, and by

definition of (STh )h≥0,

(STh ψ)(t, x)− ψ(t, x) = −ψ(t, x) ,

which proves the claim, since h > ε and WT,A ⊂ C
(
[0, T ]; Cu(H)

)
. �

3.3. A core for the generator. The following result and proof is adapted from
[BDPR09, Prop. A.2], which in turn generalizes [DPT01, Prop. 2.5]. Note, that
we are working on a different space of test functions, which changes some of the
arguments (in particular, the continuity argument; cf. Lemma 3.10 and (3.14)). As
a consequence of these changes we gain, that the upper bounds (3.7) and (3.17)
depend only linearly (and not quadratically) on |x|.
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Proposition 3.9. Let u ∈ D(V ), ε > 0, and η a finite nonnegative Borel measure
on [0, T ]×H. Then there exist a sequence (ψn) ⊂ WT,A, a constant c ∈ (0,∞) and
an n0 ∈ N, such that∣∣ψn(t, x)

∣∣+
∣∣V0ψn(t, x)

∣∣ ≤ (cT + 1) ·
(
‖V u‖u,1,T + 1

)
·
(
1 + |x|

)
(3.7)

for all (t, x) ∈ [0, T ]×H and n ≥ n0, and

ψn
n→∞−−−−→ u and V ψn = V0ψn

n→∞−−−−→ V u

converge in measure η on [0, T )×H.

Proof. Replacing η by 1
1+|x| · η we may assume, that

∫
H

1 + |x| η(dt,dx) <∞.

Let f ∈ C
(
[0, T ]; Cu,1(H)

)
and u = −RV0 f = V −1f , i.e., for all (t, x) ∈ [0, T ]×H,

u(t, x) = −
∫ T

t

Ss−tf(s, · )(x) ds .

Note that, by definition of V , all u ∈ D(V ) are of this form.
By Lemma 1.2 we can identify a triple-index sequence (ψn1,n2,n3)n1,n2,n3∈N ⊂

WT,A, such that for all (t, x) ∈ [0, T )×H
lim

n1→∞
lim

n2→∞
lim

n3→∞
ψn1,n2,n3

(t, x) = f(t, x) and(3.8) ∣∣ψn1,n2,n3(t, x)
∣∣ ≤ (‖f‖u,1,T + 1

)
·
(
1 + |x|

)
for all n1, n2, n3.

To simplify notation, we denote the triple-index n1, n2, n3 by n̄ and the triple-limit
limn1→∞ limn2→∞ limn3→∞ by limn̄⇒∞ for the rest of this proof; (3.8) now reads:

lim
n̄⇒∞

ψn̄(t, x) = f(t, x) and((3.8)) ∣∣ψn̄(t, x)
∣∣ ≤ (‖f‖u,1,T + 1

)
·
(
1 + |x|

)
∀ n̄.

Now we set, for each n̄ and all (t, x) ∈ [0, T ]×H,

un̄(t, x) := V −1ψn̄(t, x) = −
∫ T

t

Ss−tψn̄(s, · )(x) ds

= −(T − t) ·
∫ 1

0

S(T−t)rψn̄
(
(T − t)r + t, ·

)
(x) dr .

Again from Lemma 1.2 we conclude, that there exists a c ∈ (0,∞) independent of
t and x, such that for all (t, x) ∈ [0, T )×H

lim
n̄⇒∞

un̄(t, x) = u(t, x) and(3.9) ∣∣un̄(t, x)
∣∣

1 + |x|
≤ (T − t) · sup

s∈[t,T ]

(
Ss−tψn̄(s, · )(x)

1 + |x|

)
≤ T · sup

s∈[t,T ]

(∫
H

ψn̄
(
s, e(s−t)Ax+ y

)
1 +

∣∣e(s−t)Ax+ y
∣∣ · 1 +

∣∣e(s−t)Ax+ y
∣∣

1 + |x|
µs−t(dy)

)
≤ cT ·

(
‖f‖u,1,T + 1

)
= cT ·

(
‖V u‖u,1,T + 1

)
∀ n̄.

Furthermore, V un̄(t, x) = V V −1ψn̄(t, x) = ψn̄, hence by (3.8)

lim
n̄⇒∞

V un̄(t, x) = V u(t, x) = f(t, x) and(3.10) ∣∣V un̄(t, x)
∣∣ =

∣∣ψn̄(t, x)
∣∣

≤
(
‖f‖u,1,T + 1

)
·
(
1 + |x|

)
=
(
‖V u‖u,1,T + 1

)
·
(
1 + |x|

)
∀ n̄.
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Next, we construct sequences of elements ofWT,A, which approximate the un̄ (which
in turn are elements of RVα (WT,A) ⊂ C

(
[0, T ]; Cu(H)

)
). We set

Σ :=
{

partitions σN = {t0, . . . , tN} of [0, 1]
∣∣ 0 = t0 < t1 < · · · < tN = 1

}
|σN | := max

i=1,...,N
|ti − ti−1| .

For any given σN = {t0, . . . , tN} ∈ Σ, triple-index n̄ and (t, x) ∈ [0, T ]×H we set

un̄,σN (t, x) := −(T − t) ·
N∑
k=1

S(T−t)tkψn̄
(
(T − t)tk + t, ·

)
(x) · (tk − tk−1) .(3.11)

By Remark 3.5, St(WT,A) is a subset of WT,A, and Stψ depends on the same A-
eigenspaces as ψ. Thus, the sum in the definition of un̄,σN is still inWT,A. Consider
furthermore

V0un̄,σN (t, x) := −(T − t) ·
N∑
k=1

S(T−t)tkV0ψn̄
(
(T − t)tk + t, ·

)
(x) · (tk − tk−1) .

(3.8), (3.9) and (3.11) together imply that for all (t, x) ∈ [0, T )×H
lim
n̄⇒∞

lim
|σN |→0

un̄,σN (t, x) = u(t, x) and(3.12)∣∣un̄,σN (t, x)
∣∣ ≤ cT · (‖V u‖u,1,T + 1

)
·
(
1 + |x|

)
for all n̄ and any N large enough

and similarly

(3.13) lim
n̄⇒∞

lim
|σN |→0

V0un̄,σN (t, x) = V u(t, x) .

By Lemma 3.10 below, the mapping (t, s) 7→ Ssψ(t, · )(x) is continuous in the
topology of Cu(H) for any ψ ∈ WT,A. Consequently,

un̄,σN (t, x)
|σN |→0−−−−−→ −(T − t) ·

∫ 1

0

S(T−t)rψn̄
(
(T − t)r + t, ·

)
(x) dr︸ ︷︷ ︸

=un̄(t,x)

(3.14)

converges in the topology of Cu(H) for each t ∈ [0, T ]. Thus, there is a δ > 0, such
that if |σN | < δ, then for all n̄, t, x and all N big enough,∣∣∣∣V un̄(t, x)−

(
−(T − t) ·

N∑
k=1

S(T−t)tkV0ψn̄
(
(T − t)tk + t, ·

)
(x) · (tk − tk−1)

)∣∣∣∣ ≤ 1

which is equivalent to

(3.15)
∣∣V un̄,σN (t, x)

∣∣︸ ︷︷ ︸
=V0un̄,σN (t,x)

≤
∣∣V un̄(t, x)

∣∣+ 1 for all n̄, t, x and all N big enough.

Now, let σN ∈ Σ be chosen as σN = {0, 1/2N , 2/2N , . . . , 1}. Clearly, |σN |
N→∞−−−−→

0. For n̄ fixed, un̄,σN (t, x)
N→∞−−−−→ un̄(t, x). By (3.9) and (3.15), the pointwise

convergences in (3.12) and (3.13) imply L1(η)-convergence on [0, T ) × H in both
cases through the dominated convergence theorem of Lebesgue. Finally, we choose
a sequence of elements ψn from the net un̄,σN , which preserves the convergences of
ψn and V0ψn to u and V u, respectively, in L1(η) and thus in measure η. Without
loss of generality, this sequence can be chosen such, that for an n0 big enough∣∣V0ψn(t, x)

∣∣ ≤ (‖V u‖u,1,T + 1
)
·
(
1 + |x|

)
for all t, x and all n ≥ n0
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(using (3.15) and (3.10)). �

Lemma 3.10. The mapping

[0, T ]× [0, T ] → Cu(H)

(t, s) 7→ Ssψ(t, · )

is continuous in the topology of Cu(H) for all ψ ∈ WT,A.

Proof. Fix (s, t) ∈ [0, T ]×[0, T ], a test function ψ ∈ WT,A and a sequence
(
(sn, tn)

)
n∈N

converging to (s, t) as n→∞. Assume without loss of generality, that ψ(t, x) is of
the form φ(t) · fm(Pmx). We show that

lim
n→∞

sup
x∈H

∣∣Ssnψ(tn, · )(x)− Ssψ(t, · )(x)
∣∣ = 0 .

Observe that ∥∥Ssnψ(tn, · )− Ssψ(t, · )
∥∥

0
(3.16)

≤
∥∥Ssnψ(tn, · )− Ssnψ(t, · )

∥∥
0

+
∥∥Ssnψ(t, · )− Ssψ(t, · )

∥∥
0
.

We have ∥∥Ssnψ(tn, · )− Ssnψ(t, · )
∥∥

0

≤
∣∣φ(tn)− φ(t)

∣∣ · ∥∥∥∥∫
H

fm
(
Pm(esnA · +y)

)
µsn(dy)

∥∥∥∥
0

n→∞−−−−→ 0 ,

since φ ∈ C2
(
[0, T ]

)
and supz∈H fm(Pmz) <∞.

For the second summand on the right hand side of (3.16), by the semigroup

property of (St) it is sufficient to consider the case s = 0 (i.e., sn
n→∞−−−−→ 0):∥∥Ssnψ(t, · )− S0ψ(t, · )

∥∥
0

≤
∥∥Ssnψ(t, · )− Ssnψ(t+ sn, · )

∥∥
0

+
∥∥STsnψ(t, · )− ψ(t, · )

∥∥
0
.

Here, the first summand on the right hand side converges to 0 as n → ∞ by the
same argument as above, and for the second summand we obtain convergence to 0
using Lemma 3.8 (resp., equation (3.6) in its proof). �

Lemma 3.11. If u ∈ D(V ), then it is differentiable in space for all t ∈ [0, T ], and

Du(t, x) = −
∫ T

t

DSs−tV u(s, · )(x) ds .

Proof. Let u ∈ D(V ) = RVα
(
C([0, T ]; Cu,1(H))

)
. Then there is an f ∈ C

(
[0, T ]; Cu,1(H)

)
with f = V u, and we can write u as

u(t, x) = −
∫ T

t

Ss−tf(s, · )(x) ds .

Recall that, by Lemma 3.2, there is a c ∈ (0,∞) independent of t and x, such that∣∣DSθf(t, x)
∣∣ ≤ c‖Λθ‖L(H) ·

(∫
H

1 + |y|2 µθ(dy)

)1/2

·
∥∥f(t, · )

∥∥
u,1
·
(
1 + |x|

)
for any θ > 0, x ∈ H and f ∈ C

(
[0, T ]; Cu,1(H)

)
. Thus, integration and differentia-

tion may be exchanged by (H.3). �
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Corollary 3.12. Let u ∈ D(V ) and η a finite nonnegative Borel measure on [0, T ]×
H.

Then, there exists a sequence (ψn) ⊂ WT,A, such that for a c ∈ (0,∞) and an
n0 ∈ N large enough (similar to Proposition 3.9 above), we have∣∣ψn(t, x)

∣∣+
∣∣Dψn(t, x)

∣∣+
∣∣V0ψn(t, x)

∣∣(3.17)

≤
(
cT + 1 +

∫ T

0

‖Λs‖L(H) ds

)
·
(
‖V u‖u,1,T + 1

)
·
(
1 + |x|

)
for all (t, x) ∈ [0, T ]×H and n ≥ n0, and ψn → u, 〈Dψn, h〉 → 〈Du, h〉, V0ψn → V u
converge in measure η as n→∞ for any h ∈ H.

Observe that
∫ T

0
‖Λs‖L(H) ds <∞ by Hypothesis (H.3).

Proof. Let (ψn) be the approximating sequence constructed in Proposition 3.9
above. By Lemma 3.2, Lemma 3.11 and Proposition 3.9, we have

Dψn(t, x) ≤
∫ T

0

‖Λs‖L(H) ds ·
(
‖V u‖u,1,T + 1

)
·
(
1 + |x|

)
for all (t, x) ∈ [0, T ] × H and any n ∈ N big enough. Thus, the claimed upper
bound is valid in light of the proposition.

It remains to show the convergence of 〈Dψn, h〉 → 〈Du, h〉 as stated in the claim.
We use the convergence result in the proposition, that V0ψn → V u converges in
measure η on [0, T )×H. Applying the integration by parts formula in Lemma 3.1
together with Lemma 3.2 and Lemma 3.11, we see that for each h ∈ H, (t, x) ∈
[0, T )×H,

lim
n→∞

〈
Dψn(t, x) , h

〉
=

〈
− lim
n→∞

∫ T

t

DSs−tV0ψn(s, x) ds , h

〉
=

〈
−
∫ T

t

DSs−tV u(s, x) ds , h

〉
=
〈
Du(t, x) , h

〉
. �

4. Regular drift

Before we consider (SPDE) in the singular case, we need to collect some ob-
servations for the case, where the following regularity condition is fulfilled. These
observations adapt parts of [BDPR09, Sect. 2] to our framework. Let us note that,
actually, all main results of [BDPR09, Sect. 2] can be generalized to our framework
for noise with jumps; we refer to [Wie11].

For this section we assume, that in addition to (H.1)–(H.3) the following holds:

(H.6) Both F : [0, T ] × H → H and DF (t, · ) : H → L(H) (the latter for any
t ∈ [0, T ]) are continuous.

Furthermore, there is a K > 0, such that∣∣F (t, x)− F (t, y)
∣∣ ≤ K · |x− y| for all x, y ∈ H, t ∈ [0, T ].

We use the following fact (e.g. from [MPR10, Thm. 2.4], where actually even
the multiplicative case is covered; see also [MR10, Thm. 12 and Rem. 13]):

Remark 4.1. Given Hypotheses (H.1)–(H.3) and (H.6), (SPDE) has for any s ≥ 0
a mild solution

(
X(t, s, x)

)
s≤t≤T with cadlag sample paths, given by

X(t, s, x) = e(t−s)Ax+

∫ t

s

e(t−r)AF
(
r,X(r, s, x)

)
dr +

∫ t

s

e(t−r)A dY (r)
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for all 0 ≤ s ≤ t ≤ T . The map x 7→ X(t, s, x) is Lipschitz continuous, and the
solution has the Markov property.

Define the transition evolution operator related to (SPDE) by

Ps,tϕ(x) := E
[
ϕ
(
X(t, s, x)

)]
, 0 ≤ s ≤ t ≤ T, ϕ ∈ Cu(H).

Due to the Markov property of the solution, the family (Ps,t)0≤s≤t≤T fulfills the
Chapman-Kolmogorov equation: Ps,t = Pr,t ◦ Ps,r for any 0 ≤ s ≤ r ≤ t ≤ T .

Similarly to the Wiener noise case in [BDPR09], the following result follows from
Itô’s formula. The proof uses a more concrete formulation of the operator U , which
has been established in [LR04, Prop. 3.5].

Lemma 4.2. For any 0 ≤ s ≤ t ≤ T , we have that Ps,t
(
Cu(H)

)
⊂ Cu(H). Fur-

thermore, observe that for all ψ ∈ WT,A we have

Ps,tψ(t, x) = ψ(s, x) +

∫ t

s

Ps,rL0ψ(r, x) dr for any 0 ≤ s ≤ t ≤ T and x ∈ H.

4.1. Extension of the generator. Let α ∈ R and (s, x) ∈ [0, T ]×H. Define

RLαϕ(s, x) :=

∫ T

s

e−α(r−s) · Ps,rϕ(r, · )(x) dr , ϕ ∈ C
(
[0, T ]; Cu,1(H)

)
.

Similarly to Section 3.2 we observe, thatRLα is injective, D(RLα) = C
(
[0, T ]; Cu,1(H)

)
,

and that RLα
(
D(RLα)

)
is independent of α. We conclude that (RLα)−1 exists and is

closed on RLα
(
D(RLα)

)
. Thus, L := αI − (RLα)−1 is also closed as a densely defined

operator on C
(
[0, T ]; Cu,1(H)

)
. It is independent of α, and

RLα = (αI − L)−1 and D(L) = RLα
(
C([0, T ]; Cu,1(H))

)
for all α ∈ R.

The space-time homogenization PTτ of Ps,t in CT
(
[0, T ]; Cu,1(H)

)
, given by

(PTτ ϕ)(t, x)

:=

{
Pt,t+τϕ(t+ τ, · )(x) = E

[
ϕ
(
t+ τ,X(t+ τ, t, x)

)]
for t+ τ ≤ T

0 otherwise,

is again a semigroup; similar to (STτ )τ≥0 before, (PTτ )τ≥0 is a π-semigroup on
CT
(
[0, T ]; Cu,1(H)

)
. In the same way as in [BDPR09, (2.10)], we can adapt [Pri99]

to have the following criterium to establish the generator L of PTτ in the sense of
π-semigroups and its domain D(L):

u ∈ D(L) and Lu = ϕ(4.1)

⇔


lim
h→0

1

h

(
(PTh u)(t, x)− u(t, x)

)
= ϕ(t, x) for all (t, x) ∈ [0, T ]×H

sup
h∈(0,1],

(t,x)∈[0,T ]×H

(
1 + |x|

)−1

h
·
∣∣(PTh u)(t, x)− u(t, x)

∣∣ <∞ .

To establish that L extends L0, we need to show that WT,A ⊂ D(L) and that
Lψ = L0ψ for all ψ ∈ WT,A. However, these facts both follow immediately from
(4.1) together with Lemma 4.2 and an argument similar to the proof of Lemma 3.8:
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In particular, for any ψ ∈ WT,A, t < T and t+ h ≤ T , we have that there exists a
C ∈ (0,∞) such that

(PTh ψ)(t, x)− ψ(t, x) = Pt,t+hψ(t+ h, · )(x)− ψ(t, x) =

∫ t+h

t

Pt,rL0ψ(r, x) dr

≤ h · C
(
1 + |x|

)
,

where we use the definition of L0, and the Lipschitz property of both F (in space)
and X (with respect to the initial condition).

Lemma 4.3. Let f ∈ C
(
[0, T ]; C1

u(H)
)

and α ∈ R. Set u := (αI − L)−1f . Then,

(i) Du ∈ C
(
[0, T ]; Cb(H;H)

)
(ii) u ∈ D(V ), and

αu− V u− 〈Du,F 〉 = f .

In particular, Lu = V u+ 〈Du,F 〉.

Using results from [MPR10], the proof of this lemma remains the same as in the
Wiener noise case (see [BDPR09, Lem. 2.5]).

As mentioned in Remark 2.6, similar to the case of (SPDE) with regular drift
term F (cf. (H.6)) driven by Wiener noise, L can be shown to be m-dissipative.

For the next section, we need one more observation (which has been made in
[BDPR09, Rem. 1.1] for the case of (SPDE) driven by Wiener noise).

Remark 4.4. Let ζ ∈M1(H) and s ∈ [0, T ]. We note the following:

(i) Independent of the (non)regularity of F , any η ∈ K0
s,ζ fulfills for all ψ ∈

WT,A ∫ T

s

∫
H

L0ψ(r, x) ηr(dx) dr = −
∫
H

ψ(s, x) ζ(dx)(4.2)

and, consequently,∫ T

s

∫
H

L0ψ(r, x) ηr(dx) dr ≤ 0 for all ψ ∈ WT,A with ψ ≥ 0.(4.3)

(ii) If ψ ∈ WT,A, then ψ2 ∈ WT,A (due to WT,A being a sub-algebra of
Cu
(
[0, T ]×H

)
), and the square field operator Γ takes the form

Γ(ψ,ψ)(t, x) := L0ψ
2(t, x)− 2ψ(t, x) · L0ψ(t, x)(4.4)

=
〈
Dψ(t, x) , Q

(
Dψ(t, x)

)〉
+

∫
H

(
ψ(t, x)− ψ(t, x+ y)

)2
M(dy) ,

where Q and M are as in (1.1). Note, that both summands on the right
hand side are nonnegative.

Using [LR04, Prop. 4.1], the observations of this remark follow from some simple
computations.

5. Measurable drift

In this section, we prove uniqueness of the solution to (FPE) in the case of
(SPDE) with a merely measurable nonlinear drift part F . Throughout this section,
we assume that conditions (H.1)–(H.5) hold.
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A main ingredient to the proof of this uniqueness result is a gradient estimate
using the square-field operator Γ introduced in Remark 4.4(ii) above. It is this
estimate, which requires us to assume that Q−1 ∈ L(H). Using this, we can adapt
the approach of [BDPR11, Sect. 4], to obtain uniqueness of the solution to (FPE).

5.1. The dense range condition. We need to establish, that for s ∈ [0, T ] the
dense range condition

(5.1) L0

(
D(L0)

)
is dense in L1

(
[s, T ]×H; η

)
is fulfilled for any η in a convex set Kmeas

s,≤2α of measures to be defined below.

Definition 5.1. For α ≥ 0, we set

Kmeas
s,≤2α :=

{
η ∈ K0

s,≤2α

∣∣∣∣ ∫
[s,T ]×H

|x|2 +
∣∣F (t, x)

∣∣2 + |x|2 ·
∣∣F (t, x)

∣∣2 η(dt,dx) <∞
}
.

Lemma 5.2. Let α ≥ 0, s ∈ [0, T ] and η ∈ K0
s,≤2α. Then, for all ψ ∈ WT,A,∫

[s,T ]×H
ψ(t, x)L0ψ(t, x) η(dt,dx)(5.2)

≤ α
∫

[s,T ]×H
ψ2(t, x) η(dt, dx)− 1

2

∫
[s,T ]×H

Γ(ψ,ψ)(t, x) η(dt,dx) .

In particular,
(
L0,WT,A

)
is quasi-dissipative, hence closable in L2

(
[0, T ]×H, η

)
for any η ∈ Kmeas

s,≤2α; we denote the closure by
(
L2, D(L2)

)
.

Proof. By Remark 4.4(ii) and since WT,A is a sub-algebra of Cu
(
[0, T ] × H

)
=

C
(
[0, T ]; Cu(H)

)
, for any ψ ∈ WT,A we have ψ2 ∈ WT,A and∫

[s,T ]×H
ψ(t, x) · L0ψ(t, x) η(dt, dx)

=
1

2

∫
[s,T ]×H

L0ψ
2(t, x) η(dt, dx)− 1

2

∫
[s,T ]×H

Γ(ψ,ψ)(t, x) η(dt,dx) ,

which proves the claim using (1.5). �

Lemma 5.3. Let α > 0, s ∈ [0, T ], η ∈ Kmeas
s,≤2α and f ∈ C

(
[s, T ]; C1

u(H)
)
. Let Fc :

[0, T ]×H → H fulfill Hypothesis (H.6) and assume, that it fulfills the integrability
condition in the definition of Kmeas

s,≤2α above (together with η). Then, by Lemma 4.3,

there is a uc ∈ D(V ) with

αuc − V uc −
〈
Duc , Fc

〉
= f .

By the m-dissipativity of L in the case, where (H.6) is fulfilled, we obtain that
‖uc‖0,T ≤ 1

α · ‖f‖0,T . In this situation, the following assertions hold:

(i) uc ∈ D(L2) and

(5.3) αuc − L2uc = f +
〈
Duc , Fc − F

〉
in L2

(
[s, T ]×H; η

)
.
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(ii) We have ∫
[s,T ]×H

∣∣Duc(t, x)
∣∣2 η(dt,dx)

≤ 4‖Q−1‖ · 1

α2
· ‖f‖20,T

·
(
α · (T − s) + ‖Q−1‖

∫
[s,T ]×H

∣∣Fc(t, x)− F (t, x)
∣∣2 η(dt, dx)

)
.

Note, that the right hand side is finite for any f ∈ C
(
[s, T ]; C1

u(H)
)
.

Proof. By Corollary 3.12 there exists a sequence (ψn)n∈N ⊂ WT,A, such that for a
constant C3 ∈ (0,∞), independent of t and x, we have∣∣ψn(t, x)

∣∣+
∣∣Dψn(t, x)

∣∣+
∣∣V0ψn(t, x)

∣∣ ≤ C3 ·
(
1 + |x|

)
for all (t, x) ∈ [0, T ]×H, n ∈ N, and

ψn → uc , 〈Dψn, h〉 → 〈Duc, h〉 , V0ψn → V uc

converge for any h ∈ H in measure η as n→∞.
Thus,

L0ψn = V0ψn +
〈
Dψn , F

〉 n→∞−−−−→ V uc +
〈
Duc , F

〉
converges in measure η, and

∣∣L0ψn(t, · )(x)
∣∣ ≤ C3 ·

(
1 + |x|

)
·
(
1 + |F (t, x)|

)
. Since

η ∈ Kmeas
s,≤2α, we get with Lebesgue’s dominated convergence theorem, that

L0ψn
n→∞−−−−→ V uc +

〈
Duc , F

〉
converges in L2

(
[s, T ]×H; η

)
and, consequently, uc ∈ D(L2).

To complete the proof of (i), we simply recall that, by construction of L2 and by
assumption, we have

L2uc − V uc = 〈Duc , F 〉 and αuc − V uc = f + 〈Duc , Fc〉 .

Let us consider (ii). Since η ∈ Kmeas
s,≤2α, we obtain from a similar approximation

as above, that (5.2) holds for uc ∈ D(L2) replacing ψ. This implies, that

1

2

∫
[s,T ]×H

Γ(uc, uc)(t, x) η(dt,dx)(5.4)

≤ α
∫

[s,T ]×H
u2
c(t, x) η(dt, dx)−

∫
[s,T ]×H

uc(t, x) · L2uc(t, x) η(dt,dx) .

On the other hand, if we multiply (5.3) by uc, we have

αu2
c − uc · L2uc = uc · f + uc ·

〈
Duc , Fc − F

〉
in L2

(
[s, T ]×H; η

)
.(5.5)

By (5.4), (5.5) and the definition of the square field operator Γ we conclude, that

1

2

∫
[s,T ]×H

∣∣Q1/2
(
Duc(t, x)

)∣∣2 η(dt, dx)

+

∫
[s,T ]×H

∫
H

(
uc(t, x)− uc(t, x+ y)

)2
M(dy) η(dt, dx)︸ ︷︷ ︸

≥0
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≤
∫

[s,T ]×H

∣∣uc(t, x)
∣∣ · ∣∣f(t, x)

∣∣ η(dt,dx)

+

∫
[s,T ]×H

∣∣uc(t, x)
∣∣ · ∣∣Duc(t, x)

∣∣ · ∣∣Fc(t, x)− F (t, x)
∣∣ η(dt, dx)

≤ (T − s) · 1

α
· ‖f‖20,T

+

∫
[s,T ]×H

1

2
· 1

2‖Q−1‖
·
∣∣Duc(t, x)

∣∣2
+

1

2
· 2‖Q−1‖ · 1

α2
· ‖f‖20,T ·

∣∣Fc(t, x)− F (t, x)
∣∣2 η(dt, dx) ,

where we used Young’s inequality in the last step. This implies the assertion of the
Lemma. �

Proposition 5.4. Let α > 0, s ∈ [0, T ] and η ∈ Kmeas
s,≤2α. Then, the dense range

condition (5.1) is fulfilled.

Proof. For any measurable map F : D(F ) ⊂ [0, T ]×H → H and η ∈ Kmeas
s,≤2α, there

exists a sequence (Fn)n∈N of functions, which fulfill Hypothesis (H.6) and

(5.6) lim
n→∞

∫
[s,T ]×H

|Fn − F |2 dη = 0 .

Let f ∈ C
(
[s, T ]; C1

u(H)
)
. Then, by Lemma 4.3 and Corollary 3.12, there exists for

any n ∈ N a function ψn ∈ WT,A, such that

αψn − V ψn −
〈
Dψn , Fn

〉
= f .

By m-dissipativity of L in the regular case, we have ‖ψn‖0,T ≤ 1
α · ‖f‖0,T . Thus,

by Lemma 5.3(i), for any n ∈ N

(5.7) αψn − L2ψn = f +
〈
Dψn , Fn − F

〉
(in L2),

and from Lemma 5.3(ii) we obtain that

(5.8) sup
n∈N

∫
[s,T ]×H

∣∣Dψn(t, x)
∣∣2 η(dt, dx) <∞ .

Together, (5.6)–(5.8) imply (as n→∞), that f is in the closure of (α−L0)
(
WT,A

)
in L1

(
[s, T ]×H; η

)
.

Now, since f is arbitrarily chosen from C
(
[s, T ]; C1

u(H)
)
, and since C

(
[s, T ]; C1

u(H)
)

is dense in L1
(
[s, T ]×H; η

)
, the dense range condition (5.1) is shown. �

5.2. Uniqueness of the solution to the Fokker-Planck equation. We return
to our initial aim, to establish a proof for Theorem 2.

Since Kmeas
s,≤2α is a superset of Kmeas

s,ζ (by virtue of K0
s,≤2α being a superset of

K0
s,ζ ; see Remark 4.4(i) and (4.2)), we know by the preceding subsection, that

any η ∈ Kmeas
s,ζ fulfills the dense range condition (5.1). As a consequence, we get

the uniqueness of the solution to (FPE) from the following result. The proof is a
standard argument, which we include here only for the convenience of the reader.

Proposition 5.5. Let K̃ ⊂ K0
s,ζ be a convex subset, such that the dense range

condition (5.1) is fulfilled for any η ∈ K̃.

Then, K̃ contains at most one element.
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Proof. Let η(1), η(2) ∈ K̃ and set µ := 1
2η

(1) + 1
2η

(2). Then µ ∈ K̃, and η(i) = σiµ
for some measurable functions σi : [s, T ]×H → [0, 2], for i ∈ {1, 2}.

By (4.2) we see, that∫
[s,T ]×H

L0ψ dη(1) =

∫
[s,T ]×H

L0ψ dη(2) for all ψ ∈ WT,A,

in other words, ∫
[s,T ]×H

L0ψ (σ1 − σ2)dµ = 0 for all ψ ∈ WT,A.

However, by Proposition 5.4 the range of (L0,WT,A) is dense in L1
(
[s, T ]×H;µ

)
.

Also, (σ1 − σ2) is bounded by definition. Thus, we see that σ1 = σ2. �

6. Example

One classical example for semilinear equations of type (SPDE) are reaction-
diffusion equations, where the linear part describes the diffusion of substances e.g.
in a fluid, and the nonlinear part describes the space-time development of a reaction
(e.g. chemical or biological) between these substances.

In this section, we explain the application of our results to such a situation.
Let us note two things. First, it is not proven at this moment, in which way
existing existence results for solutions to (FPE) from the Wiener noise case can be
adapted to our framework. We thus have to assume for this section, that existence
results similar to those from the Wiener noise case exist within our framework.
Second, what follows below is naturally not the first description of how to apply
abstract results for Fokker-Planck equations characterizing the solutions of SPDE
to reaction-diffusion problems. Our presentation below is structured along the lines
of that in [BDPR11, Sect. 6].

Let H := L2
(
(0, 1)

)
(the L2-space with respect to the Lebesgue measure on

(0, 1) ⊂ R) with norm | · |H = | · |L2((0,1)). Define the linear operator A : D(A) ⊂
H → H by Ax(r) := d2

dr2x(r) and D(A) := H2
(
(0, 1)

)
∩H1

0

(
(0, 1)

)
. This operator

fulfills Hypothesis (H.1).
The nonlinear drift part F : D(F ) → H is defined, for a given m ∈ N, on

D(F ) := [0, T ]× L2m
(
(0, 1)

)
by

F (t, x)(r) := f
(
r, t, x(r)

)
+ h
(
r, t, x(r)

)
for all r ∈ (0, 1), (t, x) ∈ D(F ),

where we assume that f, h : (0, 1)× [0, T ]×R→ R are measurable functions, which
fulfill the following conditions:

(0) For any fixed r ∈ (0, 1), the functions f(r, · , · ) and h(r, · , · ) are continu-
ous on [0, T ]× R.

(f1) (polynomial growth). There exist an odd integer m ∈ N and a nonnegative
c1 ∈ L2

(
[0, T ]

)
, such that∣∣f(r, t, z)

∣∣
H
≤ c1(t) ·

(
1 + |z|mH

)
for all t ∈ [0, T ], z ∈ R, r ∈ (0, 1).

(f2) (quasi-dissipativity). There exists a nonnegative c2 ∈ L1
(
[0, T ]

)
, such

that [
f(r, t, z1)− f(r, t, z2)

]
· (z1 − z2) ≤ c2(t) · |z1 − z2|2H

for all t ∈ [0, T ]; z1, z2 ∈ R; r ∈ (0, 1).
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(h1) (linear growth). There exists a nonnegative c3 ∈ L2
(
[0, T ]

)
, such that∣∣h(r, t, z)

∣∣
H
≤ c3(t) ·

(
1 + |z|H

)
for all t ∈ [0, T ], z ∈ R, r ∈ (0, 1).

For such a nonlinear drift part, it is not yet established, whether there exists a
pathwise solution to equations of type (SPDE) (for either Wiener or more general
noise). However, F as described above fits into the framework of Section 5, fulfilling
(H.4).

Assume, that Hypotheses (H.2)–(H.3) and (H.5) are fulfilled. Set c4(t) :=
2
[
c1(t) + c3(t) + 1

]
and define, for N ∈ N,

VN (t, x) :=

{
c4(t) ·

(
1 + |x|NL2N ((0,1))

)
if (t, x) ∈ [0, T ]× L2N

(
(0, 1)

)
+∞ else.

Observe, that (f1) and (h1) imply

(6.1)
∣∣F (t, x)

∣∣
H
≤ Vm(t, x) <∞ .

Assume that from here on N ≥ m.

Assumption 6.1. For any ζ ∈M1(H) with
∫
H
|x|2NL2N ((0,1)) ζ(dx) <∞, there exists

a solution η ∈ K0
s,ζ to (FPE).

This solution has the following additional properties:

sup
t∈[s,T ]

∫
H

|x|2H ηt(dx) <∞ ,

t 7→
∫
H

ψ(t, x) ηt(dx) is continuous for all ψ ∈ WT,A ,∫ T

s

∫
H

V 2
N (r, x) +

∣∣(−A)δx
∣∣2
H
ηr(dx) dr(6.2)

≤ C5 ·
∫ T

s

∫
H

V 2
N (r, x) ζ(dx) dr <∞ for a C5 ∈ (0,∞) and any δ ∈

(
0, 1

2

)
.

(Note, that any Dirac measure δx with x ∈ L2N
(
(0, 1)

)
fulfills the requirements

for ζ indicated above.)

Remark 6.2. This Assumption is proven to be valid for the Wiener noise case in
[BDPR10, Sect. 4]. The approach from the Wiener noise case, involving a technique
of subtracting the noise in combination with an application of Itô’s formula, can
be generalized. The details, that this will lead to an existence proof for the case of
noise with jumps, will be the topic of a forthcoming paper.

Choose now N := m+ 2 and observe that by construction of VN and (6.1) (note
that c4(t) ≥ 1 for all t by definition),∫ T

s

∫
H

∣∣F (t, x)
∣∣2
H
ηt(dx) dt ≤

∫ T

s

∫
H

V 2
m(t, x) ηt(dx) dt

≤
∫ T

s

∫
H

[
c4(t) ·

(
1 + |x|mL2m((0,1))

)]2
ηt(dx) dt

≤
∫ T

s

c24(t)

∫
H

1 + |x|2mL2m((0,1)) ηt(dx) dt ,



FPE FOR SINGULAR SPDE WITH LÉVY NOISE 27

which implies, together with the properties of our assumedly existing solution η,
that η is in Kmeas

s,ζ , if the initial condition ζ fulfills∫
H

|x|2(m+2)

L2(m+2)((0,1))
ζ(dx) <∞ .

Consequently, by Theorem 2, η is the only solution to (FPE) with coefficients and
initial data as specified above.
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