
ASYMPTOTIC BEHAVIOR OF LARGE EIGENVALUES
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Abstract. We consider a class of unbounded self-adjoint operators with discrete
spectrum obtained as a modification of the Hamiltonian of the Jaynes–Cummings
model without rotating-wave approximation (RWA). The corresponding operators
are defined by infinite Jacobi matrices and the purpose of this paper is to investigate
the asymptotic behavior of large eigenvalues.

1. Introduction

1.1. Main result. We consider an infinite real Jacobi matrix
d(1) a(1) 0 0 0 . . .
a(1) d(2) a(2) 0 0 . . .

0 a(2) d(3) a(3) 0 . . .
0 0 a(3) d(4) a(4) . . .
...

...
...

...
...

. . .

 (1.1)

where the form of entries {d(k)}∞k=1, {a(k)}∞k=1 is motivated by the structure of the
Hamiltonian of the Jaynes–Cummings model without rotating-wave approximation
(RWA). Following È. A. Tur [8] this model can be represented by the Jacobi matrix
(1.1) with {

d(k) = k + c0(−1)k,

a(k) = c1k
1/2

(1.2)

where c0 ∈ R, c1 > 0 are some constants.
Here we consider a “modified Jaynes–Cummings model”, which means a Jacobi ma-

trix (1.1) with {
d(k) = kα + v(k),

a(k) = c1k
γ

(1.3)

where α > γ > 0, c1 > 0 are some constants and v is real-valued, periodic of period
N ≥ 1, i.e., for any k ∈ N∗ = {1, 2, . . . },

v(k +N) = v(k). (1.4)

Let l2 = l2(N∗) denote the Hilbert space of square-summable complex sequences
x : N∗ → C equipped with the scalar product 〈x, y〉 :=

∑∞
k=1 x(k)y(k) and with the
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norm ‖x‖l2 :=
(∑∞

k=1 |x(k)|2
)1/2

<∞. We denote

D :=
{
x ∈ l2 :

∞∑
k=1

d(k)2|x(k)|2 <∞
}

(1.5)

and define J : D → l2 by the formula

(Jx)(k) = d(k)x(k) + a(k)x(k + 1) + a(k − 1)x(k − 1) (1.6)

where, by convention, x(0) = 0 and a(0) = 0. Then J is self-adjoint with compact
resolvent and there exists an orthonormal basis {vn}∞n=1 such that Jvn = λn(J)vn
where {λn(J)}∞n=1 is the non-decreasing sequence of real eigenvalues, i.e.,

λ1(J) ≤ · · · ≤ λn(J) ≤ λn+1(J) ≤ . . . .

In this paper we consider the above “modified Jaynes–Cummings model” with α = 1
and prove the following

Theorem 1.1. Let J be the self-adjoint operator defined in l2(N∗) by (1.6) where{
d(k) = k + v(k),

a(k) = c1k
γ .

(1.7)

Assume v is real-valued, periodic of period N ≥ 1, c1 > 0, 0 < γ < 1 and denote

〈v〉 :=
1

N

∑
1≤k≤N

v(k), (1.8)

ρN := max
1≤k≤N

|v(k)− 〈v〉|. (1.9)

If λn(J) denotes the n-th eigenvalue of J , we have the large n asymptotic formula

λn(J) = n+ 〈v〉+ O
(
n−γ/2 lnn + n2γ−1

)
, (1.10)

provided ρN is small enough.

In Section 1.2 we discuss the place of Theorem 1.1 among other known results and
we precise the assumption concerning ρN . In Section 1.3 we state Theorem 1.2 which
is a slight generalization of Theorem 1.1. In Section 2 we outline the main steps of the
proof.

1.2. Discussion.

1.2.1. α−γ > 1 or not. Concerning the asymptotic behavior of λn(J) for the modified
Jaynes–Cummings model, i.e., for J given by (1.6), (1.7) we observe that the analysis
strongly depends on whether α− γ > 1 or not. In fact except [2] all results known up
to now concern the easy case α − γ > 1 when it is possible to apply approximation
methods based on an idea of successive diagonalizations described in [1]— see also [6].

The main purpose of this paper is to exhibit a radical change of the asymptotic
behavior of λn(J) in the case when α = 1 and 0 < γ < 1

2 . The new phenomenon
consists in the absence of a periodic modulation of large eigenvalues. The case of the
Jaynes–Cummings model, i.e., α = 1 and γ = 1

2 is more complicated to analyze, but a
similar phenomenon holds.
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1.2.2. Known estimates. Let us discuss the nature of known asymptotic estimates for
eigenvalues of the modified Jaynes–Cummings model. First of all we cite the paper of
A. Boutet de Monvel, S. Naboko, L.O. Silva [1] treating the case α = 2 and γ = 1

2 .
This work ensures the large n asymptotic estimate

λn(J) = n2 + v(n) + O(n−1). (1.11)

Then the works of M. Malejki [7] and A. Boutet de Monvel, L. Zielinski [3] ensure the
large n asymptotic estimate

λn(J) = nα + v(n) + O(nγ−2κ + n2γ−α) (1.12)

where κ := α− 1− γ > 0. We observe that under the additional conditions α ≤ 2 and
γ < 2

3 (α− 1) we have α− 2γ > 0 and 2κ− γ = 2(α− 1)− 3γ > 0, hence we obtain the
large n asymptotic behavior of the difference

λn(J)− nα = v(n) + o(1), (1.13)

reflecting the oscillations determined by the periodic nature of v. Consequently in the
case when v is not constant and α = 1 the asymptotic behavior of λn(J)− n given by
(1.13) is quite different from the assertion of Theorem 1.1 ensuring λn(J)−n→ 〈v〉 as
n→∞.

1.2.3. Case 0 < γ < α = 1. This is the case considered in Theorem 1.1. First of all we
observe that for v(k) = const the result of [2] ensures the large n behavior

λn(J) = n+ 〈v〉+ O(n2γ−1) (1.14)

and O(n2γ−1) cannot be replaced by o(n2γ−1). Moreover in the case 1
2 ≤ γ < 1,

Theorem 1.1 follows easily from [2]. Indeed, if a bounded sequence {v(k)}∞k=1 is replaced
by 0 then the error term is of order O(1) due to the min-max principle and it can be
included in the remainder O(n2γ−1) since 1

2 ≤ γ < 1. Thus Theorem 1.1 is new only
when γ < 1

2 .

1.2.4. Assumption on γ. From now one we always assume

γ ≤ 1

2
.

This assumption is sufficient to prove some partial results (Propositions 2.1, 2.2 and 2.5),
but other (Propositions 2.4 and 2.6) are proved under the stronger assumption γ < 1

2 .
The case γ = 1

2 should require a more involved analysis.

1.2.5. Assumption on ρN . In Theorem 1.1 we made a purely qualitative assumption on
ρN claiming that (1.10) holds provided ρN is “small enough”. Now we give quantitative
assumptions. For N = 2 it suffices to take

ρ2 <
1

2
.

For N ≥ 3 we consider the N ×N Vandermonde matrix M :=
(
e2πijk/N

)N−1

j,k=0
which is

invertible since detM 6= 0 and we denote

‖M−1‖ := sup
w∈CN
|w|=1

|M−1w|, (1.15)
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where |w| = (|w1|2 + · · ·+ |wN |2)
1/2 for w = (w1, . . . , wN ) ∈ CN . We prove that (1.10)

holds if
ρN < min

{1

2
,

1

πN‖M−1‖

}
.

1.3. A generalization. We assume that the entries {d(k)}∞k=1, {a(k)}∞k=1 are real,

d(k) = k + v(k), (1.16)

where v is periodic of period N ≥ 1 and

a(k) −−−−→
k→∞

∞. (1.17)

Theorem 1.1 is a simple application of the following more general result.

Theorem 1.2. Let J be the self-adjoint operator defined in l2(N∗) by (1.6) with real
entries {d(k)}k≥1, {a(k)}k≥1 such that
(i) a(k)→∞ as k →∞,
(ii) there exist real constants 0 < γ < 1

2 , γ1 < 1, C0 > 0 such that for any k ≥ 1

0 < a(k) ≤ C0k
γ , (1.18)

|a(k + 1)− a(k)| ≤ C0k
−γ1 , (1.19)

(iii) d(k) = k + v(k) with v real-valued of period N ≥ 1.
Let ρN be given by (1.9). We also assume
(iv) ρN < 1

2 ,
(v) ρN < 1/(πN‖M−1‖) if N ≥ 3.

We have then the large n estimate

λn(J) = n+ 〈v〉+ O
(
a(n)−1/2 lnn + nγ−γ1

)
. (1.20)

Proof scheme. It is based on Propositions all stated in Section 2, as follows:
Proposition 2.5
Proposition 2.6

}
=⇒ Theorem 1.2.

See end of Section 2.5. Proposition 2.6 uses [4] to compare eigenvalues of two Jacobi
matrices. Proposition 2.5 derives from trace formulas:

Proposition 2.1
Lemma 2.3

}
=⇒ Proposition 2.4

Proposition 2.2

}
=⇒ Proposition 2.5.

Proof of Theorem 1.1. Theorem 1.2 applies with a(k) = c1k
γ , γ < 1

2 and γ1 = 1 − γ.
For these data the asymptotic formula (1.20) takes the form given in (1.10). �

2. Outline

2.1. Contents. Our approach uses special properties of auxiliary operators Jn and J ′n
acting in H := l2(Z). They are presented in Sections 2.3 and 2.4, respectively.

In Sections 3 and 4 we investigate the operators Jn with frozen off-diagonal entries.
The simple structure of Jn allows us to establish a trace formula (Proposition 2.1).

In Section 5 we investigate operators J ′n which differ from Jn by an additional cut-off
in the configuration space but a trace formula remains valid (Proposition 2.2).

In Section 6 we deduce spectral asymptotics for J ′n from the trace formula (Proposi-
tion 2.5). In Section 7 we compare the n-th eigenvalue of J by that of J ′n giving a large
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n estimate of the difference (Proposition 2.6). We thus obtain the large n asymptotics
of the n-th eigenvalue of J as claimed in Theorem 1.2.

In Section 8 we prove auxiliary results mainly used in Section 5.

2.2. Notations. Let H := l2(Z) denote the Hilbert space of square-summable complex
sequences x : Z→ C whose scalar product is 〈x, y〉 =

∑
k∈Z x(k)y(k), with norm

‖x‖H :=
(∑
k∈Z
|x(k)|2

)1/2
<∞. (2.1)

We denote by B(H) the algebra of bounded operators on H equipped with the operator
norm ‖ · ‖B(H). Let {ek}k∈Z be the canonical basis of H, i.e., ek(k) = 1 and ek(j) = 0
if j 6= k. We define the shift S ∈ B(H) by

Sek = ek+1 (2.2)

for any k ∈ Z. We also consider the closed linear operator Λ: H1 → H satisfying

Λek = kek (2.3)

for any k ∈ Z, whose domain is

H1 =
{
x ∈ H :

∑
k∈Z

k2|x(k)|2 <∞
}
. (2.4)

If b : Z→ C then b(Λ) denotes the closed linear operator satisfying b(Λ)ek = b(k)ek for
any k ∈ Z. Further on we assume that v : Z→ R is periodic of period N ≥ 1, hence

‖v(Λ)‖B(H) = sup
j∈Z
|v(j)| = max

1≤j≤N
|v(j)|.

Assumption on v. Since λn(J + µ) = λn(J) + µ holds for any µ ∈ R, we may assume
further on, without loss of generality, that

〈v〉 = 0. (2.5)

Let ρN be as in (1.9). Under assumption (2.5) we find

ρN = ‖v(Λ)‖B(H). (2.6)

2.3. Operators Jn.

2.3.1. Spectrum of Jn. For each n ≥ 1 we define an operator Jn : H1 → H by

Jn := J0
n + v(Λ) (2.7)

where J0
n : H1 → H is given by

J0
n := Λ + a(n)(S + S−1). (2.8)

We first show (Lemma 3.1) that J0
n is unitary equivalent with Λ. Therefore its spectrum

is σ(J0
n) = σ(Λ) = Z. Then, by an elementary perturbation argument using (2.6),

σ(Jn) ⊂
⋃
k∈Z

[k − ρN , k + ρN ]. (2.9)

Since all eigenvalues of Λ and J0
n are simple, the additional assumption ρN < 1

2 ensures
that all eigenvalues of Jn are simple as well.
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2.3.2. Trace formula for Jn. Our key result is the following trace formula.

Proposition 2.1 (trace formula for Jn). Let Jn be as above, acting in l2(Z). Assume
(i) v : Z→ R is periodic of period N ≥ 1,
(ii) 〈v〉 = 0,
(iii) ρN < 1

2 ,
(iv) a(k) = O(k1/2) as k →∞,
(v) a(k)→∞ as k →∞.

Let moreover χ : R→ C be such that

χ(λ) =

∫ ∞
−∞

χ̂(t)eitλdt (2.10)

with χ̂ ∈ C∞0 (R) and denote, for n ≥ 1,

G0
n :=

∑
k∈Z

(
χ
(
λk(Jn)− n

)
− χ(k − n)

)
. (2.11)

We have then the large n estimate

G0
n = O

(
a(n)−1/2 lnn

)
. (2.12)

Remark. The assumption χ̂ ∈ C∞0 (R) implies χ ∈ S(R), where S(R) is the Schwartz
class of rapidly decreasing functions on R. Then χ̂ is the Fourier transform of χ:

χ̂(t) =

∫ ∞
−∞

e−itλχ(λ)
dλ

2π
. (2.13)

Proof scheme. After initial steps described in Section 3 the proof is completed in Sec-
tion 4, according to the following scheme:

Lemma 4.1 =⇒ Proposition 3.3 =⇒ Proposition 3.2
Lemma 4.2

}
=⇒ Proposition 2.1. �

2.4. Operators J ′
n.

2.4.1. Spectrum of J ′n. For each n ≥ 1 we introduce an operator J ′n : H1 → H which is
intermediary between Jn and J , and defined by

J ′n = Λ + v(Λ) + a(n)
(
S θ+(Λ

n ) + θ+(Λ
n )S−1

)
(2.14)

where θ+ ∈ C∞(R) is a cut-off such that

θ+(t) =

{
1 if t ≥ 1

2 ,

0 if t ≤ 1
3 .

The reason of introducing these operators is that J ′n commutes with the projector Π+

on the closed subspace l2(N∗) generated by {ek}∞k=1. Moreover we have

J ′nek =

{
J+
n ek if k ≥ 1,

(k + v(k))ek if k ≤ 0,
(2.15)

where J+
n is a Jacobi operator from the class of operators investigated by P. A. Cojuhari,

J. Janas [5], i.e., a self-adjoint bounded from below operator on l2(N∗) with compact
resolvent. Thus J+

n can be diagonalized in an orthonormal basis {vn,k}∞k=1, i.e., for any
k ≥ 1,

J+
n vn,k = λk(J+

n )vn,k
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and we find the spectrum σ(J ′n) = {λk(J ′n)}k∈Z with

λk(J ′n) =

{
λk(J+

n ) if k ≥ 1,

k + v(k) if k ≤ 0.
(2.16)

2.4.2. Trace formula for J ′n. We show that a trace formula still holds for J ′n.

Proposition 2.2 (trace formula for J ′n). Let J ′n be as above, acting in l2(Z). Under
assumptions and with notations of Proposition 2.1, we consider

G+
n :=

∑
k∈Z

(
χ
(
λk(J ′n)− n

)
− χ(k − n)

)
. (2.17)

We have the large n behavior

G+
n = O

(
a(n)−1/2 lnn

)
. (2.18)

To prove this behavior we use estimate (2.19) from

Lemma 2.3. Let Jn, J ′n be as above and χ ∈ S(R). Then

‖χ(J ′n − n)− χ(Jn − n)‖B1(H) = O(nγ−1). (2.19)

Proof. See Section 8.3. �

Proof of Proposition 2.2. Consequence of Proposition 2.1 and Lemma 2.3. By (2.12),

G0
n = O

(
a(n)−1/2 lnn

)
.

By Lemma 2.3,
G+
n − G0

n = O(nγ−1). (2.20)

Here γ = 1
2 by our assumption a(n) = O(n1/2). Hence G+

n −G0
n = O(n−1/2). Moreover,

n−1/2a(n)1/2 = O(n−1/4), hence

n−1/2 = O
(
a(n)−1/2

)
= O

(
a(n)−1/2 lnn

)
. (2.21)

Thus, estimate (2.18) follows from (2.12) and (2.20). �

2.5. Eigenvalue asymptotics.

2.5.1. Estimates of eigenvalues of J ′n. Here is a better description of σ(J ′n) for large n.

Proposition 2.4 (spectrum of J ′n). Let J ′n be as above, acting in l2(Z). Assume
(i) v : Z→ R is periodic of period N ≥ 1,
(ii) 〈v〉 = 0,
(iii) ρN < 1

2 ,
(iv) a(k) = O(kγ) with γ < 1

2 .
Let ε be such that 0 < ε < 1

2 − ρN .
Then there is nε ≥ 1 such that for any n ≥ nε the spectrum of J ′n is discrete, all

eigenvalues of J ′n are simple and there is exactly one eigenvalue of J ′n in each interval
(k − 1

2 , k + 1
2 ], k ∈ Z, i.e.

σ(J ′n) = {λk(J ′n)}k∈Z
with, for each k ∈ Z,

σ(J ′n) ∩
(
k − 1

2 , k + 1
2

]
= {λk(J ′n)}. (2.22)
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Moreover for any n ≥ nε we have the estimates

sup
k∈Z
|λk(J ′n)− k| ≤ ρN + ε, (2.23)

sup
k∈Z
|λk+N (J ′n)− λk(J ′n)−N | = O(nγ−1). (2.24)

Sketch of proof. We use the method of “approximative diagonalization” (see [2, 3]) in
the case v = 0. The general case follows similarly as before, i.e., the control of the
perturbed spectrum is ensured by the condition ρN + ε < 1

2 for n ≥ nε. The details
are given in Sections 5.2 and 5.3. �

2.5.2. Estimate of λn(J ′n). We show the following estimate of Tauberian nature.

Proposition 2.5. Let J ′n be as above, acting in l2(Z). We assume:
(i) Estimate (2.12) holds if χ is given by (2.10) with χ̂ ∈ C∞0 (R).
(ii) ρN < 1

2 .
(iii) ρN < 1/(πN‖M−1‖) if N ≥ 3.
(iv) For any ε > 0 one can find nε ≥ 1 such that estimates (2.23) and (2.24) hold for

any n ≥ nε.
Then we have the large n estimate

λn(J ′n) = n+ O
(
a(n)−1/2 lnn

)
. (2.25)

Proof scheme. The proof is given in Section 6 according to the scheme:

Proposition 2.4
Proposition 2.2

}
=⇒ Proposition 2.5. �

2.5.3. Estimate of λn(J ′n) − λn(J). In the last step we prove the following relation
between eigenvalues of J ′n and J :

Proposition 2.6. Let assume a(k) satisfies (1.18), (1.19) with 0 < γ < γ1 < 1. Then
we have the large n estimate

λn(J) = λn(J ′n) + O(nγ−γ1). (2.26)

Sketch of proof. The proof is by comparison of eigenvalues of two Jacobi matrices using
[4]. Details are given in Section 7. �

Proof of Theorem 1.2. Clearly follows from Propositions 2.6, 2.5 with 2.4, and 2.1:

λn(J)− n = λn(J ′n) + O(nγ−γ1) by (2.26)

= n+ O
(
a(n)−1/2 lnn

)
+ O(nγ−γ1) by (2.25)

which is (1.20) when 〈v〉 = 0. �

3. First considerations

3.1. The first step. The starting point of our analysis is the following simple result.

Lemma 3.1. For every t ∈ R one has

et(S−S
−1) (Λ + t(S + S−1))e−t(S−S

−1) = Λ. (3.1)
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Proof. Since (3.1) holds when t = 0, it suffices to check that

d

dt

(
et(S−S

−1) (Λ + t(S + S−1))e−t(S−S
−1)
)

= 0 (3.2)

holds for all t ∈ R. However the left hand side of (3.2) has the form

et(S−S
−1) ([S − S−1,Λ] + S + S−1)e−t(S−S

−1)

and the direct computation of the commutator

[Sk,Λ]en = SkΛen − ΛSken = Sknen − (n+ k)en+k = −kSken

for k ∈ Z gives [S − S−1,Λ] = −S − S−1, completing the proof of (3.1). �

3.2. Reformulations. We denote by Q∗ the adjoint of Q ∈ B(H) and we write

ImQ :=
1

2i
(Q−Q∗).

If J0
n is given by (2.8), then Lemma 3.1 with t = a(n) gives

Λ = e2ia(n) ImS J0
n e−2ia(n) ImS . (3.3)

Thus J0
n is unitary equivalent to Λ as claimed at the beginning of Section 2.3. We

will use this fact in the following way. Instead of investigating directly the operators
Jn = J0

n + v(Λ) we will work with the operators

Ln := e2ia(n) ImS Jn e−2ia(n) ImS . (3.4)

We denote by B1(H) the ideal of trace class operators on H with the norm

‖Q‖B1(H) := tr(Q∗Q)1/2.

Further on we assume that χ is given by (2.10) with χ̂ ∈ C∞0 ((0, 4π)). Then χ ∈
S(R) where S(R) denotes the Schwartz space of rapidly decreasing functions on R and
χ(Ln − n), χ(Λ − n) ∈ B1(H) (see Lemma 8.1 in Section 8). Since the eigenvalues of
Jn coincide with eigenvalues of Ln, the quantity (2.11) can be expressed in the form

G0
n = trχ(Ln − n)− trχ(Λ− n). (3.5)

Before proving Proposition 2.1 we consider its modification

Proposition 3.2. Let Ln be the operator defined by (3.4), acting in l2(Z). We assume
(i) ρN < 1

2 ,
(ii) a(k)→∞ as k →∞,
(iii) a(k) = O(k1/2).
Assume moreover that
(iv) χ is given by (2.10) with χ̂ ∈ C∞0 (R),
(v) θ ∈ C∞0 (( 1

2 , 2)) is such that θ(t) = 1 if 3
4 ≤ t ≤

3
2 .

If we denote
Gn := tr

(
θ(Λ/n)χ(Ln − n)

)
− tr

(
θ(Λ/n)χ(Λ− n)

)
, (3.6)

then we have the large n behavior

Gn = O
(
a(n)−1/2 lnn

)
. (3.7)
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3.3. Proof of Proposition 3.2.

Proof. (a) First step. Taking Ln − n and Λ− n instead of λ in (2.10) we find

χ(Ln − n)− χ(Λ− n) =

∫ ∞
−∞

χ̂(t) e−itn
(
eitLn − eitΛ

)
dt. (3.8)

Introducing
Un(t) := e−itΛeitLn (3.9)

we can express the right-hand side of (3.6) in the form

Gn =

∫ ∞
−∞

χ̂(t) tr
(
θ(Λ/n)eit(Λ−n)(Un(t)− I)

)
dt. (3.10)

Since −i d
dt Un(t) = e−itΛ(Ln − Λ)eitLn we have

−i
d

dt
Un(t) = Hn(t)Un(t), Un(0) = I (3.11)

with
Hn(t) := e−itΛ(Ln − Λ)eitΛ. (3.12)

Then we introduce the operators

hn := −θ(Λ/n)
(
Λ− n− 1

2

)−1 (3.13)

which allow us to write

hn i
d

dt
eit(Λ−n−1/2) = θ(Λ/n) eit(Λ−n−1/2) (3.14)

and using (3.14) in (3.10) we find

Gn =

∫ ∞
−∞

χ̂(t)eit/2 tr

(
hn

(
i

d

dt
eit(Λ−n−1/2)

)
(Un(t)− I)

)
dt. (3.15)

Then by integration by parts
Gn = G′n − iG′′n (3.16)

with

G′n =

∫ ∞
−∞

χ̃(t) tr
(

eit(Λ−n)hn(Un(t)− I)
)

dt, (3.17)

where χ̃(t) := 1
2 χ̂(t)− idχ̂

dt (t) and

G′′n = i

∫ ∞
−∞

χ̂(t) tr
(

eit(Λ−n)hnHn(t)Un(t)
)

dt. (3.18)

(b) Next step. We use the analytic expansion formula

Un(t) = I + i

∫ t

0

dt1Hn(t1) +

∞∑
ν=2

iν
∫ t

0

dt1 . . .

∫ tν−1

0

dtν Hn(t1) . . . Hn(tν).

For this purpose we introduce more notations. For t1, t ∈ R we denote

gn,1(t; t1) = i tr
(

eit(Λ−n)hnHn(t1)
)

(3.19)

and more generally for ν ∈ N∗, (t1, . . . , tν) ∈ Rν we introduce

gn,ν(t; t1, . . . , tν) = iν tr
(

eit(Λ−n)hnHn(t1) . . . Hn(tν)
)
. (3.20)
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Then the analytic expansion of Un(t) allows us to express

G′n =

∞∑
ν=1

G′n,ν , (3.21)

where

G′n,1 =

∫ ∞
−∞

dt χ̃(t)

∫ t

0

dt1 gn,1(t; t1)

and

G′n,ν =

∫ ∞
−∞

dt χ̃(t)

∫ t

0

dt1 . . .

∫ tν−1

0

dtν gn,ν(t; t1, . . . , tν)

for ν ≥ 2. Similarly

G′′n =

∞∑
ν=1

G′′n,ν , (3.22)

holds with

G′′n,1 =

∫ ∞
−∞

dt χ̂(t) gn,1(t; t),

G′′n,2(n) =

∫ ∞
−∞

dt χ̂(t)

∫ t

0

dt2 gn,2(t; t, t2),

and, for ν ≥ 3,

G′′n,ν =

∫ ∞
−∞

dt χ̂(t)

∫ t

0

dt2 . . .

∫ tν−1

0

dtν gn,ν(t; t, t2, . . . , tν).

To complete the proof we need estimates (3.23) and (3.24) from the next proposition.

Proposition 3.3. Let τ0 > 0 be such that supp χ̂ ⊂ [−τ0, τ0]. There exists a constant
C > 0 such that

|gn,1(t; t1)| ≤ Ca(n)−1/2 lnn (3.23)
holds for t, t1 ∈ [−τ0, τ0] and∫ 4π

0

|gn,ν(t; t1, . . . , tν)|dtν ≤ Cνa(n)−1/2 lnn (3.24)

holds for any ν ≥ 2 and t, t1, . . . , tν−1 ∈ [−τ0, τ0].

Proof. Estimates (3.23) and (3.24) are proven in Sections 4.2 and 4.4 respectively. �

End of proof of Proposition 3.2. (c) Last step. Estimates (3.23) and (3.24) ensure ex-
istence of a constant C0 > 0 such that

|G′n,ν |+ |G′′n,ν | ≤
Cν0
ν!

a(n)−1/2 lnn. (3.25)

It is clear that (3.25) allows us to estimate Gn by O(a(n)−1/2 lnn). �

4. Proof of Proposition 2.1

The proof scheme is as follows and it remains essentially to prove Proposition 3.3:

Lemma 4.1 =⇒ Proposition 3.3 =⇒ Proposition 3.2
Lemma 4.2

}
=⇒ Proposition 2.1.
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4.1. Notations. Since v is of period N we can express

v(k) =
∑
ω∈Ω

cωeiωk (4.1)

where cω ∈ C are constants and Ω = {2πk/N}k=0,1,...,N−1. Moreover our assumption
〈v〉 = 0 ensures c0 = 0 and we can express

v(Λ) =
∑
w∈Ω∗

cωeiωΛ (4.2)

with Ω∗ = Ω \ {0}. Due to (3.3) and (3.4) we find

Ln = Λ + Ṽn (4.3)

with
Ṽn = e2ia(n) ImSv(Λ)e−2ia(n) ImS (4.4)

and we consider the decomposition

Ṽn =
∑
ω∈Ω∗

Ṽ ωn (4.5)

with
Ṽ ωn := cωe2ia(n) ImSeiωΛe−2ia(n) ImS . (4.6)

Moreover we use the notation

Hn(t) = e−itΛṼneitΛ =
∑
ω∈Ω∗

Hω
n (t) (4.7)

with
Hω
n (t) := e−itΛṼ ωn eitΛ (4.8)

and for ν ∈ N∗, t = (t1, . . . , tν) ∈ Rν , ω = (ω1, . . . , ων) ∈ (Ω∗)ν , we write

Hω
n (t) := Hω1

n (t1) . . . Hων
n (tν). (4.9)

This notation allows us to decompose

gn,ν(t; t) =
∑

ω∈(Ω∗)ν

gωn (t; t) (4.10)

with
gωn (t; t) = iν tr

(
eit(Λ−n)hnH

ω
n (t)

)
. (4.11)

4.2. Proof of Proposition 3.3 – estimate (3.23).

Proof. Let b : Z → C be bounded and q : C → C be continuous. Then the operator
b(Λ)q(S) ∈ B(H) has the kernel

〈ej , b(Λ)q(S)ek〉 = b(j)

∫ 2π

0

ei(j−k)ξq(eiξ)
dξ

2π
. (4.12)

If supp b is bounded then b(Λ)q(S) ∈ B1(H) and its trace is given by

tr
(
b(Λ)q(S)

)
=
∑
k∈Z
〈ek, b(Λ)q(S)ek〉 =

∑
k∈Z

b(k)

∫ 2π

0

q(eiξ)
dξ

2π
. (4.13)

Since e−iωΛSeiωΛ = e−iωS we have

e−iωΛe2ia(n) ImSeiωΛ = e2ia(n) Im(e−iωS) (4.14)
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and find the expression
Ṽ ωn = cωeiωΛeiψωn (S) (4.15)

with
ψωn (S) = 2a(n) Im

(
(e−iω − 1)S

)
. (4.16)

Therefore
Hω
n (t) = cωeiωΛeiψωn (t,S) (4.17)

holds with
ψωn (t, S) = ψωn (e−itS). (4.18)

Applying (4.13) we find

gωn (t; t1) = i cω
∑
k∈Z

θ(k/n)

k − n− 1
2

eit(k−n)+iωk hωn(t1) (4.19)

with

hωn(t1) :=

∫ 2π

0

eiψωn (t1,e
iξ) dξ

2π
. (4.20)

Since supp θ ⊂ [ 1
2 , 2],∑
k∈Z

|θ(k/n)|
|k − n− 1

2 |
≤

∑
c1n≤k≤c2n

C

|k − n− 1
2 |
≤ C ′ lnn, (4.21)

hence the estimate |gωn (t; t1)| ≤ C ′|cω| × |hωn(t1)| × lnn. Recall we want to prove that
gn,1(t; t1) = O

(
a(n)−1/2 lnn

)
. Since

gn,1(t; t1) =
∑
ω∈Ω∗

gωn (t; t1)

where #Ω∗ <∞, it only remains to show that

hωn(t1) = O
(
a(n)−1/2

)
. (4.22)

It suffices to observe that

ψωn (t1, e
iξ) = 2a(n) Im

(
(e−iω − 1)ei(ξ−t1)

)
= −4a(n) sin

ω

2
cos
(
ξ − t1 −

ω

2

)
has non-degenerate critical points at ξ = t1 + ω

2 and ξ = t1 + ω
2 +π. Then the stationary

phase method gives (4.22). �

4.3. Auxiliary results. For ω = (ω1, . . . , ων) ∈ (Ω∗)ν we write |ω|1 = ω1 + · · · + ων
and using induction with respect to ν we prove

Hω
n (t) = cω ei|ω|1Λeiψωn (t,S) (4.23)

holds with some real phase functions ψωn and cω := cω1
. . . cων To begin we observe that

due to (4.16)-(4.18) in the case ν = 1 the formula (4.23) holds with ψωn = Im Ψω
n where

Ψω
n(t, eiξ) = 2a(n)

(
e−iω − 1

)
ei(ξ−t). (4.24)

Next we write ω = (ω′, ω) ∈ (Ω∗)ν−1 × Ω∗, t = (t′, t) ∈ Rν−1 × R and assume that

Hω′

n (t′) = cω′ e
i|ω′|1Λeiψω

′
n (t′,S) (4.25)

holds with ψω
′

n = Im Ψ
ω′

n and

Ψω′

n (t′, eiξ) = Ψω′

n (t′, 1)eiξ. (4.26)
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Then writing

Hω′

n (t′)Hω
n (t) = cω′cω ei|ω′|1Λeiψω

′
n (t′,S)eiωΛeiψωn (t,S) (4.27)

and using

e−iωΛeiψω
′

n (t′,S)eiωΛ = eiψω
′

n (t′, e−iωS) (4.28)

we obtain (4.23) taking ψωn = Im Ψ
ω
n where

Ψω
n(t′, t, eiξ) = Ψω′

n (t′, ei(ξ−ω)) + Ψω
n(t, eiξ). (4.29)

Moreover (4.26), (4.24) and (4.29) ensure

Ψω
n(t, eiξ) = Ψω

n(t, 1)eiξ. (4.30)

Next we show

Lemma 4.1. Let Ψ
ω
n be defined as above. Then there exist c0 > 0 and a measurable

function η ωn : Rν−1 → [0, 2π) such that one has

|Ψω
n(t, eiξ)| = |Ψω

n(t, 1)| ≥ c0a(n)|t− η ωn(t′)|modπ, (4.31)

where t = (t′, t) ∈ Rν−1 × R and |s|modπ := dist(s+ πZ, πZ).

Proof. Due to (4.24) we have

Ψ
ω′

n (t′, eiω)

Ψω
n(t, 1)

= Φωn(t′)eit (4.32)

and using (4.29) we find
Ψ
ω
n(t, 1)

Ψω
n(t, 1)

= 1 + Φωn(t′)eit (4.33)

and it is clear that

|Φωn(t′)| ≤ 1

2
=⇒

∣∣∣∣Ψω
n(t, 1)

Ψω
n(t, 1)

∣∣∣∣ ≥ 1

2
. (4.34)

Let −ηωn (t′) be the argument of Φ
ω
n(t′), i.e.

Ψ
ω
n(t, 1)

Ψων
n (t, 1)

= 1 + |Φωn(t′)|ei(t−ηωn (t′)), (4.35)

hence

Im

(
Ψ
ω
n(t, 1)

Ψω
n(t, 1)

)
= |Φωn(t′)| sin(t− ηωn (t′)) (4.36)

and

|Φωn(t′)| > 1

2
=⇒

∣∣∣∣Ψω
n(t, 1)

Ψω
n(t, 1)

∣∣∣∣ > 1

2
| sin(t− ηωn (t′))|. (4.37)

Thus combining (4.34) and (4.37) we observe that we can always estimate

|Ψω
n(t, 1)| ≥ |Ψ

ω
n(t, 1)|
2π

|t− ηωn (t′)|modπ (4.38)

and |Ψω
n(t, 1)| = 4a(n) sin(ω/2) ≥ 4a(n) sin(π/N) completes the proof. �
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4.4. Proof of Proposition 3.3 – estimate (3.24).

Proof. To complete the proof of Proposition 3.3 it remains to show estimate (3.24).
Using (4.23) we have

gωn (t, t) = iνcω tr
(
hneit(Λ−n)+i|ω|1Λeiψωn (t,S)

)
. (4.39)

As in Section 4.2 we obtain

gωn (t, t) = iνcω
∑
k∈Z

θ(k/n)

k − n− 1
2

eit(k−n)+ik|ω|1hωn(t) (4.40)

with

hωn(t) =

∫ 2π

0

eiψωn (t,eiξ) dξ

2π
. (4.41)

Let η̃ ωn (t) ∈ [0, 2π) denote the argument of Ψ
ω
n(t, 1). Then

ψωn (t, eiξ) = Im
(

Ψω
n(t, 1)eiξ

)
= |Ψω

n(t, 1)| sin(η̃ ωn (t) + ξ) (4.42)

and the stationary phase formula allows us to estimate

|hωn(t)| ≤ C0|Ψω
n(t, 1)|−1/2. (4.43)

Then similarly as in Section 4.2 we have

|gωn (t, t)| ≤ C0 lnn |Ψω
n(t, 1)|−1/2 (4.44)

and due to Lemma 4.1 the left hand side of (3.24) can be estimated by

C1 lnn

∫ 4π

0

|a(n)|−1/2|tν − ηωn (t′)|−1/2
modπdtν . (4.45)

Since t → |t|−1/2 is locally integrable on R it is clear that the quantity (4.45) can be
estimated by C lnn |a(n)|−1/2, which completes the proof. �

4.5. End of proof of Proposition 2.1. We use estimate (4.46) from the next lemma.

Lemma 4.2. Let Ln, θ be as in Proposition 3.2 and χ ∈ S(R). Then we have the large
n estimate

‖
(
I − θ(Λ/n)

)
χ(Ln − n)‖B1(H) = O(nγ−1). (4.46)

Proof. See Section 8.2. �

End of proof of Proposition 2.1. It is obvious that Lemma 4.2 still holds with Ln re-
placed by Λ, hence the large n estimate

G0
n − Gn = O(nγ−1). (4.47)

Since nγ−1 = O(a(n)−1/2 lnn) (see (2.21)) it is clear that Proposition 3.2 and Lemma 4.2
imply Proposition 2.1. �
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5. Proof of Proposition 2.4

5.1. Operators J+
n . Let {e+

n }∞n=1 be the canonical basis of l2 = l2(N∗), i.e., e+
n (k) = 0

when k 6= n and e+
n (n) = 1. If T is a self-adjoint operator which is bounded from

below and has compact resolvent, let (λk(T ))∞k=1 denote the sequence of its eigenvalues
enumerated in non-decreasing order with repetitions according to their multiplicities.

Let S+ ∈ B(l2) be the shift operator defined by

S+e+
n = e+

n+1 (5.1)

and let Λ+ : D → l2 be the closed linear operator defined by

Λ+e+
n = ne+

n . (5.2)

For every b : N∗ → C we denote by b(Λ+) the closed linear operator satisfying

b(Λ+)e+
n = b(n)e+

n

for any n ≥ 1. With these notations the operator J defined by (1.6) can be written in
the form

J = Λ+ + v(Λ+) + 2 Re
(
S+a(Λ+)

)
, (5.3)

where ReQ := 1
2 (Q + Q∗). We identify l2 = l2(N∗) with the closed subspace of

H = l2(Z) generated by {en}∞n=1. Since D = H1 ∩ l2 is invariant by J ′n we can define
the restriction

J+
n := J ′n|D.

Then we can express
J+
n = Λ+ + v(Λ+) +A+

n (5.4)
with

A+
n := 2 Re

(
S+a+

n (Λ+)
)
, (5.5)

where a+
n (k) := a(n)θ+(k/n) for any k ≥ 1.

5.2. Proof of Proposition 2.4 – estimate (2.23).

Proof. We denote ImQ := 1
2i (Q−Q

∗) and for t ∈ R we introduce

Gn(t) := eitB+
n (Λ+ + tA+

n )e−itB+
n (5.6)

where
B+
n := 2 Im(S+a+

n (Λ+)). (5.7)
We observe that λk(J+

n ) = λk(L+
n ) holds with

L+
n := eiB+

n J+
n e−iB+

n (5.8)

and L+
n −Gn(1) = eiB+

n v(Λ+)e−iB+
n ensures ||L+

n −Gn(1)||B(l2) = ||v(Λ+)||B(l2), hence
the min-max principle allows us to estimate

|λk(Gn(1))− λk(L+
n )| ≤ ||v(Λ+)||B(l2) ≤ ρN . (5.9)

Next we observe that the derivative of t→ Gn(t) is

G′n(t) = eitB+
n ([iB+

n , Λ+ + tA+
n ] +A+

n )e−itB+
n (5.10)

and similarly as in Section 2, [S+, Λ+] = −S+ allows us to compute

[iB+
n ,Λ

+] = 2 Re[S+a+
n (Λ+),Λ+] = 2 Re[S+,Λ+]a+

n (Λ+) = −A+
n , (5.11)

hence
G′n(t) = eitB+

n [iB+
n , tA

+
n ]e−itB+

n . (5.12)
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However due to the min-max principle we have

|λk(Gn(1))− λk(Gn(0))| ≤ ‖Gn(1)−Gn(0)‖B(l2) (5.13)

and Gn(1) − Gn(0) =
∫ 1

0
G′n(s) ds allows us to estimate the right-hand side of (5.13)

by
sup

0≤s≤1
‖G′n(s)‖B(l2) ≤ ||[iB+

n , A
+
n ]||B(l2). (5.14)

In order to estimate the norm of [iB+
n , A

+
n ] = 2 Re[S+a+

n (Λ+), A+
n ] we observe that

[S+a+
n (Λ+), A+

n ] = [S+a+
n (Λ+), S+a+

n (Λ+) + a+
n (Λ+)(S+)∗]

= S+a+
n (Λ+)2(S+)∗ − a+

n (Λ+)(S+)∗S+a+
n (Λ+)

= a+
n (Λ+ − I)2 − a+

n (Λ+)2.

However

|a+
n (k − 1)2 − a+

n (k)2| = a(n)2|θ+((k − 1)/n)2 − θ+(k/n)2| ≤ Cn2γ−1

allows us to estimate the norm of the right hand side of (5.14) by O(n2γ−1), hence

|λk(Gn(1))− λk(Gn(0))| ≤ Cn2γ−1. (5.15)

Due to λk(J+
n ) = λk(L+

n ) and λk(Gn(0)) = λk(Λ+) = k, we can estimate

|λk(J+
n )− k| = |λk(L+

n )− λk(Gn(0))|
≤ |λk(L+

n )− λk(Gn(1))|+ |λk(Gn(1))− λk(Gn(0))|
≤ ρN + Cn2γ−1. (5.16)

Let ε > 0. Since γ < 1
2 ensures n2γ−1 → 0 as n →∞, we can find nε large enough to

ensure ρN + Cn2γ−1
0 ≤ ρN + ε. If ρN + ε < 1

2 and n ≥ nε then all eigenvalues of J+
n

are simple and the interval (k− 1
2 , k+ 1

2 ] contains exactly one eigenvalue of J ′n for any
k ∈ Z, i.e., σ(J+

n ) = {λk(J+
n )}k∈Z holds with

σ(J+
n ) ∩

(
k − 1

2 , k + 1
2

]
= {λk(J+

n )}. (5.17)

We complete the proof due to (2.16). �

5.3. Proof of Proposition 2.4 – estimate (2.24).

Proof. We first note that

J ′n = Λ + v(Λ) + 2 Re
(
Sa+

n (Λ)
)
, (5.18)

with
a+
n (k) := a(n)θ+(k/n).

Next we observe that

S−Nv(Λ)SN = v(Λ +N) = v(Λ),

S−Nθ+(Λ/n)SN = θ+((Λ +N)/n),

and due to |θ+((λ+N)/n)− θ+(λ/n)| ≤ C/n we have

S−NJ ′nS
N = J ′n +N +Rn (5.19)

with ‖Rn‖B(H) = O(nγ−1). Moreover

σ(J ′n) = σ(S−NJ ′nS
N ) = σ(J ′n +N +Rn) ⊂

⋃
j∈Z

∆j,n (5.20)
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holds with

∆j,n :=
[
λj(J

′
n) +N − ‖Rn‖B(H), λj(J

′
n) +N + ‖Rn‖B(H)

]
.

However by definition of ∆j,n we have

λ ∈ ∆j,n =⇒ |λ− λj(J ′n)−N | ≤ ‖Rn‖B(H)

and using assumption (2.23) we find

λ ∈ ∆j,n =⇒ |λ− j −N | ≤ ρN + Cn2γ−1 + ‖Rn‖B(H).

However γ < 1
2 ensures n2γ−1 → 0 as n→∞ and we can find n0 ∈ N∗ such that

n ≥ n0 =⇒ ρN + Cn2γ−1 + ‖Rn‖B(H) <
1

2
.

Therefore denoting ∆r := (r − 1
2 , r + 1

2 ) we find

n ≥ n0 =⇒ ∆j,n ⊂ ∆j+N

and we conclude

n ≥ n0 =⇒ λk+N (J ′n) ∈ ∆k+N ∩
⋃
j∈Z

∆j,n = ∆k,n,

which implies |λk+N (J ′n)− λk(J ′n)−N | ≤ ‖Rn‖B(l2) = O(nγ−1). �

6. Proof of Proposition 2.5

Proof. At the beginning we write

trχ(Λ− n) =
∑
l∈Z

χ(l) =

N−1∑
k=0

∑
m∈Z

χ(Nm+ k) (6.1)

and introduce χk(λ) = χ(Nλ + k) (k = 0, . . . , N − 1). Then the Poisson summation
formula allows us to express (6.1) in the form

N−1∑
k=0

∑
m∈Z

χk(m) =

N−1∑
k=0

∑
m∈Z

χ̂k(2mπ) (6.2)

with

χ̂k(t) =

∫ ∞
−∞

e−itλ χ(Nλ+ k)
dλ

2π
= eikt/N χ̂(t/N)

N
(6.3)

(see (2.13)). We denote ρ′N := ρN +ε0 with ε0 > 0 fixed small enough to ensure ρ′N < 1
2

and ρ′N < 1/(πN ||M−1||) if N ≥ 3. Then the assumption (iv) ensures

n ≥ n0 =⇒ |λk(J ′n)− k| ≤ ρ′N . (6.4)

Further on we always assume n ≥ n0 and consider

rn(k) := λn+k(J ′n)− n− k ∈ [−ρ′N , ρ′N ]. (6.5)

However
rn(N + k)− rn(k) = λn+k+N (J ′n)−N − λn+k(J ′n)

and using assumption (2.24) we can estimate

|rn(mN + k)− rn(k)| ≤ Cmnγ−1. (6.6)
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Then we write

trχ(J ′n − n) =

N−1∑
k=0

∑
m∈Z

χ(λn+mN+k(J ′n)− n) (6.7)

and for every fixed ε > 0 we have

trχ(J ′n − n)−
N−1∑
k=0

∑
|m|≤nε

χ(λn+mN+k(J ′n)− n) = O (n−∞). (6.8)

Moreover |m| ≤ nε ensures

λn+mN+k(J ′n)− n = mN + k + rn(mN + k)

= mN + k + rn(k) + O(nε+γ−1) (6.9)

and we obtain

trχ(J ′n − n) −
N−1∑
k=0

∑
|m|≤nε

χ(mN + k + rn(k)) = O (n2ε+γ−1). (6.10)

Then denoting χn,k(λ) = χ(λN + k + rn(k)) we can write

trχ(J ′n − n) −
N−1∑
k=0

∑
m∈Z

χn,k(m) = O (n2ε+γ−1) (6.11)

and Poisson summation formula allows us to express (6.11) in the form

trχ(J ′n − n) −
N−1∑
k=0

∑
m∈Z

χ̂n,k(2πm) = O(n2ε+γ−1) (6.12)

with

χ̂n,k(t) =

∫ ∞
−∞

e−itλ χn,k(λ)
dλ

2π
= ei(k+rn(k))t/N χ̂(t/N)

N
(6.13)

(see (2.13)). Let us fix j = 1, . . . , N and take χ̂ ∈ C∞0 (R) such that χ̂(2πm/N) = Nδm,j
for m ∈ Z. Then

N−1∑
k=0

∑
m∈Z

(χ̂n,k(2πm)− χ̂k(2πm)) =

N−1∑
k=0

(χ̂n,k(2πj)− χ̂k(2πj))

=

N−1∑
k=0

(zk+1(n)j − wjk+1),

where zk+1(n) := e2πi(k+rn(k))/N and wk+1 := e2πik/N for k = 0, . . . , N−1. Introducing
Fj : CN → C by the formula

Fj(z1, . . . , zN ) =

N−1∑
k=0

zjk+1

j

and z(n) = (z1(n), . . . , zN (n)), w = (w1, . . . , wN ) we find

j
(
Fj(z(n))− Fj(w)

)
= trχ(J ′n − n)− trχ(Λ− n) + O(n2ε+γ−1). (6.14)

Let ε ≤ 1
8 . Then 2ε+γ−1 ≤ − 1

4 ≤ −
γ
2 and due to (2.21) it is clear that (6.14) implies

j
(
Fj(z(n))− Fj(w)

)
= G+

n + O
(
a(n)−1/2 lnn

)
, (6.15)
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where G+
n is as in (2.18). Thus Proposition 2.2 ensures

|Fj(z(n))− Fj(w)| ≤ CG+
n . (6.16)

We notice that the estimate (6.16) holds for every j = 1, . . . , N and further on we
consider F (z) = (F1(z), . . . , FN (z)) ∈ CN . Then F ′(z) = (zj−1

l )Nj,l=1 and F ′(w) = M .
Introducing

G(z) =

∫ 1

0

(F ′(w + t(z − w))−M) dt

we can express

F (z)− F (w)−M(z − w) = G(z)(z − w)

and

z(n)− w = M−1(F (z(n))− F (w))−M−1G(z(n))(z(n)− w).

We denote z(n, t) = w + t(z(n)− w) and we want to estimate

F ′(z(n, t))−M = (zl(n, t)
j−1 − wj−1

l )Nj,l=1 (0 ≤ t ≤ 1)

Case N ≥ 3. Then estimating

|zl(n, t)j−1 − wj−1
l | ≤ (j − 1)|zl(n, t)− wl|

≤ Nt|zl(n)− wl|

= Nt|e2iπrn(l−1)/N − 1|
= 2Nt | sin(πrn(l − 1)/N)|
≤ 2πρ′N t

we deduce easily ||F ′(z(n, t))−M || ≤ 2πNρ′N t and ‖G(z)‖ ≤ πNρ′N , hence

|z(n)− w| ≤ ||M−1(F (z(n))− F (w))||+ µN |z(n)− w|

holds with µN := πNρ′N ||M−1||. Therefore we can estimate

(1− µN )|z(n)− w| ≤ ||M−1(F (z(n))− F (w))|| ≤ C|F (z(n))− F (w)| (6.17)

and our choice of ρ′N ensures µN < 1, hence it is clear that (6.17) implies

rn(k) = O(|F (z(n))− F (w)|)

for k = 0, . . . , N − 1 and due to (6.16) the proof of Proposition 2.5 is done for N ≥ 3.
Case N = 2. We have (w1, w2) = (1,−1),

M =

(
1 1
1 −1

)
, G(z) =

(
0 0

(z1 − 1)/2 (z2 + 1)/2

)
and

ρ2 <
1

2
=⇒ (|z1 − 1|2 + |z1 − 1|2)1/2 ≤ 2µ

with a certain µ < 1. Then ‖M−1G(z(n))‖ ≤ µ. For N = 2 the estimate (6.17) still
holds with µ2 < 1, hence the assertion of Proposition 2.5 also still holds. �
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7. Proof of Proposition 2.6

Proof. Let J̃n be the operator acting in `2 = `2(N∗) and defined by

J̃n := Λ+ + 2 Re
(
S+ãn(Λ+)

)
+ v(Λ+) (7.1)

with

ãn(k) :=

{
a(k) if n− C0(n+ 1)γ ≤ k ≤ n+ C0(n+ 1)γ ,

a+
n (k) otherwise,

(7.2)

with C0 large enough. Let us fix n0 ≥ (2C0)1/(1−γ) and assume n ≥ n0. Then

k ≥ n− C0n
1−γ ≥ n/2 =⇒ a+

n (k) = a(n)

and due to ∆a(k) := a(k + 1)− a(k) = O(k−γ1) we have the estimate

sup
k∈Z
|ãn(k)− a+

n (k)| ≤ sup
|i|≤C0nγ

|an(n+ i)− a(n)| ≤ C1n
γ−γ1 , (7.3)

hence ||J̃n − J+
n ||B(l2) = O(nγ−γ1) and

|λn(J̃n)− λn(J+
n )| ≤ ||J̃n − J+

n ||B(l2) (7.4)

follows from the min-max principle. To complete the proof we show that the estimates

λn(J) = λn(J̃n) + O(n−ν) (7.5)

hold for any ν > 0 under the assumption that C0 is chosen large enough in (7.2).
For this purpose we will use a property of Jacobi matrices proved in [4]. We fix C0

large enough and for λ, λ′ > 0 we define

κ(λ) := λ+ C0λ
γ and κ(λ, λ′) := λ′ − C0λ

γ . (7.6)

We denote λn := λn(J) and λn := λn−λ−νn where ν ≥ 1 is fixed. Since |λn(J)−n| ≤ 1
2

for n ≥ n0 we deduce

κ(λn, λ
′
n) ≤ k ≤ κ(λn) =⇒ Je+

k = J̃ne+
k (7.7)

for n ≥ n0 due to (7.2). We notice that (7.6) defines κ(λ), κ(λ, λ′) considered in
[4, Theorem 2.3] applied to J , i.e., to the case of the diagonal entries dk = k + v(k)
and off-diagonal entries bk = a(k) (corresponding to the values c = 1, α = 1, β = γ in
[4, Theorem 2.3]. The condition (7.7) allows us to use [4, Theorem 2.3] with λ = λn,
λ′ = λ′n and Jλ,λ′ = J̃n for n ≥ n0, which ensures

card
(
σ(J) ∩ (λn − λ−νn , λn]

)
≤ card

(
σ(J̃n) ∩

(
λn − 2λ−νn , λn + λ−νn

])
. (7.8)

However
σ(J) ∩

(
λn − λ−νn , λn

]
= {λn} (7.9)

due to λn = λn(J) and

σ(J̃n) ∩
(
λn − 2λ−νn , λn + λ−νn

]
⊂ {λn(J̃n)}, (7.10)

hence (7.8) ensures that “⊂” can be replaced by “=” in (7.10). Thus

λn(J̃n) ∈
(
λn(J)− 2λn(J)−ν , λn(J) + λn(J)−ν

]
holds for n ≥ n0 and (7.5) follows, completing the proof of Proposition 2.6. �
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8. Appendix

8.1. Auxiliary lemmas.

Lemma 8.1. Let χ ∈ C2(R) and let C > 0 be such that

|χ(λ)|+ |χ′(λ)|+ |χ′′(λ)| ≤ C(1 + λ2)−1 (λ ∈ R) (8.1)

Assume that L, L′ : D → H are self-adjoint and their common domain D is invariant
with respect to h ∈ B(H). If Lh− hL′ ∈ B(H) then

||χ(L)h− hχ(L′)||B(H) ≤ Cχ||Lh− hL′||B(H) (8.2)

Proof. For x from the domain of L we can write(
eitLh− heitL′

)
x = it

∫ 1

0

eistL(Lh− hL′)ei(1−s)tL′xds. (8.3)

Since (8.1) ensures that t→ χ̂(t) and t→ tχ̂(t) are integrable on R, we can express(
χ(L)h− hχ(L′)

)
x =

∫ ∞
−∞

χ̂(t)
(
eitLh− heitL′

)
xdt, (8.4)

and using (8.4) we obtain (8.2) with Cχ =
∫∞
−∞ |tχ̂(t)|dt. �

Lemma 8.2. Let θ ∈ C∞0
(
( 1

2 , 2)
)
be such that θ(t) = 1 if 3

4 ≤ t ≤
3
2 and let χ be as in

Lemma 8.1. Then one has

||(I − θ(Λ/n))χ(Jn − n)||B(H) = O(nγ−1). (8.5)

Proof. Since supλ∈R |(1− θ(λ/n))χ(λ− n)| = O(n−2) we have

||(1− θ(Jn/n))χ(Jn − n)||B(H) = O(n−2). (8.6)

We deduce (8.5) combining (8.6) with the estimate

||θ(Jn/n)− θ(Λ/n)||B(H) ≤ C||(Jn − Λ)/n||B(H) = O(nγ−1), (8.7)

which follows from Lemma 8.1 with L = Jn/n, L′ = Λ/n and h = I. �

Lemma 8.3. Let χ be as in Lemma 8.1. Then

||χ(J ′n − n)− χ(Jn − n)||B(H) = O(nγ−1) (8.8)

Proof. Let θ be as in Lemma 8.2. Then using (8.5) and a similar estimate

||χ(J ′n − n)(I − θ(Λ/n))||B(H) = O(nγ−1) (8.9)

we find that in order to prove (8.8) it suffices to check

||χ(J ′n − n)θ(Λ/n)− θ(Λ/n)χ(Jn − n)||B(H) = O(nγ−1). (8.10)

We observe that (Jn − J ′n)θ(Λ/n) = 0 by definition of Jn, J ′n and θ, hence using
Lemma 8.1 with L = Jn, L′ = J ′n, h = θ(Λ/n) we can estimate the left-hand side of
(8.10) by

Cχ||J ′nθ(Λ/n)− θ(Λ/n)Jn||B(H) = Cχ|| [Jn, θ(Λ/n)] ||B(H) (8.11)
and to complete the proof we observe that the right-hand side of (8.11) is O(nγ−1). �

Lemma 8.4. Let χ be as in Lemma 8.1. Then one has the estimate

sup
n
||χ(Jn − n)||B1(H) <∞. (8.12)
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Proof. We write χ = χ1χ0 with χ0(λ) = (1+λ2)−1. Since |χ1(λ)| = |χ(λ)|(1+λ2) ≤ C,

||χ(Jn − n)||B1(H) ≤ C||χ0(Jn − n)||B1(H) = C||χ0(Ln − n)||B1(H),

where Ln := eiA′nJne−iA′n and it suffices to show that

sup
n
||((Ln − n)2 + I)−1||B1(H) = sup

n
||(Ln − n− i)−1||2B2(H) <∞, (8.13)

where ||Q||B2(H) :=
(
tr(Q∗Q)

)
1/2. We observe that

||Ln − Λ|| = ||Ṽn||B(H) = ||v(Λ)||B(H) <
1

2

and

(Ln − n− i)−1 = (Λ− n− i)−1 + (Ln − n− i)−1Ṽn(Λ− n− i)−1,

hence the estimate

||(Λ− n− i)−1||2B2(H) = ||(Λ− i)−1||2B2(H) =
∑
k∈Z

(1 + k2)−1

allows us to complete the proof. �

8.2. Proof of Lemma 4.2.

Proof. Assume that χ ∈ C2(R) is such that

|χ(λ)|+ |χ′(λ)|+ |χ′′(λ)| ≤ C(1 + λ2)−2 (λ ∈ R) (8.14)

holds with a certain constant C > 0. Then we can write χ = χ1χ0 with χ0(λ) =
(1 + λ2)−1. Since χ1(λ) = χ(λ)(1 + λ2) satisfies the hypothesis of Lemma 8.1, we
complete the proof estimating the left-hand side of (4.46) by

||(I − θ(Λ/n))χ1(Jn − n)||B(H)||χ0(Jn − n)||B1(H). �

8.3. Proof of Lemma 2.3.

Proof. We write χ = χ1χ2 with χ2(λ) = (1 + λ2)−1. Then χ1 ∈ S(R) and we can
express χ(J ′n − n)− χ(Jn − n) in the form

(χ1(J ′n − n)− χ1(Jn − n))χ2(J ′n − n) + χ1(Jn − n)(χ2(J ′n − n)− χ2(Jn − n)).

Thus the left-hand side of (2.19) can be estimated by the sum of

||χ1(J ′n − n)− χ1(Jn − n)||B(H)||χ2(J ′n − n)||B1(H) (8.15)

||χ1(Jn − n)||B1(H)||χ2(J ′n − n)− χ2(Jn − n)||B(H). (8.16)

To complete the proof we observe that the assertion of Lemma 4.2 holds with J ′n instead
of Jn, hence using Lemma 8.3 and Lemma 8.4 with χ1, χ2 instead of χ we can estimate
(8.15) and (8.16) by O(nγ−1). �
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