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Abstract
In this work, we introduce a new method to prove the existence

and uniqueness of a variational solution to the stochastic nonlinear dif-
fusion equation dX(t) = div

[ ∇X(t)
|∇X(t)|

]
dt + X(t)dW (t) in (0,∞)×O,

where O is a bounded and open domain in RN , N ≥ 1, and W (t) is
a Wiener process of the form W (t) =

∑∞
k=1 µkekβk(t), ek ∈ C2(O) ∩

H1
0 (O), and βk, k ∈ N, are independent Brownian motions. This is

a stochastic diffusion equation with a highly singular diffusivity term
and one main result established here is that, for all initial conditions
in L2(O), it is well posed in a class of continuous solutions to the
corresponding stochastic variational inequality. Thus one obtains a
stochastic version of the (minimal) total variation flow. The new ap-
proach developed here also allows to prove the finite time extinction
of solutions in dimensions 1 ≤ N ≤ 3, which is another main result of
this work.
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1 Introduction

We are concerned here with the stochastic nonlinear diffusion equation

dX(t) = div[sgn(∇X(t))]dt + X(t)dW (t) in (0,∞)×O,

X = 0 on (0,∞)× ∂O,

X(0) = x in O,

(1.1)

where O is a bounded and convex open domain in RN , N ≥ 1, with smooth
boundary ∂O and W (t) is a Wiener process of the form

W (t) =
∞∑

k=1

µkekβk(t), t ≥ 0, in O, (1.2)

where µk are real numbers, ek ∈ C2(O)∩H1
0 (O) forming an orthonormal basis

in L2(O) and {βk}∞k=1 are independent Brownian motions on a stochastic
basis {Ω,F ,Ft,P}. For simplicity, let us assume that ek, k ∈ N, are the
eigenfunctions of the Dirichlet Laplacian:

−∆ek = λkek in O; ek = 0 on ∂O,

(but cf. Remark 2.1 (iii) below).
Throughout the paper, we assume

(H1) C2
∞ :=

∞∑

k=1

µ2
k|ek|2∞ < ∞,

and

(H2) D∞ :=
∞∑

k=1

µk|∇ek|∞ < ∞,

where | · |∞ denotes supremum norm in C(O).
Define

µ(ξ) :=
∞∑

k=1

µ2
ke

2
k(ξ), ξ ∈ O. (1.3)

The multi–valued graph sgn : RN → 2R
N

is defined by

sgn r = r|r|−1 if r 6= 0; sgn 0 = {r ∈ RN ; |r| ≤ 1}, (1.4)
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and |·| is the Euclidean norm of RN . By the same symbol |x|, we shall denote
the absolute value of x ∈ R. It should be emphasized that the homogeneous
boundary condition arising in (1.1) is in a certain sense formal because (1.1)
is not well posed in the classical Sobolev spaces with zero trace on the boun-
dary.

In nonlinear diffusion theory, equation (1.1) is derived from the continuity
equation perturbed by a Gaussian process proportional to the density X(t)
of the material, that is,

dX(t) = div J(∇X(t))dt + X(t)dW (t),

where J = sgn is the flux of the diffusing material. (See [23], [24], [25].)
Equation (1.1) is also relevant as a mathematical model for faceted crystal

growth under a stochastic perturbation as well as in material sciences (see
[26] for the deterministic model and complete references on the subject).
As a matter of fact, these models are based on differential gradient systems
corresponding to a convex and nondifferentiable potential (energy).

Other recent applications refer to the PDE approach to image recovery
(see, e.g., [18] and also [6], [19]). In fact, if x ∈ L2(O) is the blurred image,
one might find the restored image via the total variation flow X = X(t)
generated by the stochastic equation

dX(t) = div

( ∇X(t)

|∇X(t)|
)

dt + X(t)dW (t) in (0,∞)×O,

X(0) = x in O.

(1.5)

In its deterministic form, this is the so-called total variation based image
restoration model and its stochastic version (1.5) arises naturally in this con-
text as perturbation of the total variation flow by a Gaussian (Wiener) noise
(which explains the title of the paper).

It should be said that, due to its high singularity, equation (1.1) does not
have a solution in the standard sense for every initial condition in L2(O), that
is, as an Itô integral equation, and this happens in the deterministic case,
too. However, this equation has a natural formulation in the framework of
stochastic variational inequalities (SVI) (see Definition 3.1 below) and, as
we show later on, it is well posed in this generalized sense. Below, we shall
call solutions to such (SVI) variational solutions and solutions to standard
Itô-integral equations, as e.g. the solutions to the approximating equation
(1.7) below (see Proposition 5.1 (i), ordinary variational solutions.
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In [8], a complete existence and uniqueness result was proved for varia-
tional solutions to (1.1) in the case of additive noise, that is,

dX(t)− div[sgn(∇X(t))]dt = dW (t) in (0,∞)×O,

X(0) = x in O, X(t) = 0 on (0,∞)× ∂O,
(1.6)

if 1 ≤ N ≤ 2. For the multiplicative noise X(t)dW (t), only the existence
of a variational solution was proved and uniqueness remained open. (See,
however, the work [22] for recent results on this line, if x ∈ H1

0 (O).)
In this paper, we prove the existence and uniqueness of variational so-

lutions to (1.1) in all dimensions N ≥ 1 (see Theorem 3.2) and all initial
conditions x ∈ L2(O). We would like to stress that one main difficulty is
when x ∈ L2(O) \ H1

0 (O), while the case x ∈ H1
0 (O) is more standard (see

Remark 3.6 below). Furthermore, we prove the finite-time extinction of so-
lutions with positive probability, if N ≤ 3.

The approach we use here to prove the existence and uniqueness of (1.1)
is obtained approximating equation (1.1) by

dX −∆ψ̃λ(X)dt = X dW in (0, T )×O,

X = 0 on (0, T )× ∂O, X(0) = x in O,
(1.7)

where ψ̃λ(r) = ψλ(r) + λr and ψλ is the Yosida approximation of the graph
(1.4). By the substitution Y = e−W X (“scaling“), we reduce (1.1) and (1.7)
to a random nonlinear diffusion equation (see (4.1) and cf. [9], [12], [13]) and,
again, we reformulate this random equation as a (this time, deterministic)
variational inequality (VI), but with random coefficients (see Definition 4.1).
This equivalent formulation of (1.1) (respectively (1.7)) as a random partial
differential equation (PDE) is crucial for the uniqueness proof of variational
solutions to (1.1) (see Section 5) and allows to obtain sharper regularity
results for (1.7) (see, e.g., Proposition 5.1(iii) and Lemma 5.4) than those
obtained by a direct analysis of the stochastic equation as in [8], [11]. This
approach which combines the analysis of approximating stochastic equations
in connection with their equivalent random deterministic PDE versions is by
our knowledge new in the general theory of stochastic PDE and represents
one principal contribution of this work.
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2 Preliminaries

For every 1 ≤ p ≤ ∞, by Lp(O) we denote the space of all Lebesgue p-
integrable functions on O with norm | · |p. The scalar product in L2(O) is
denoted by 〈·, ·〉. W 1,p(O) denotes the standard Sobolev space {u ∈ Lp(O);
∇u ∈ Lp(O)} with the corresponding norm

‖u‖1,p :=

(∫

O
|∇u|pdξ

)1/p

,

where dξ denotes the Lebesgue measure on O. W 1,p
0 (O) denotes the space

{u ∈ W 1,p(O); u = 0 on ∂O}. We set H1
0 (O) = W 1,2

0 (O), ‖ · ‖1 = ‖ · ‖1,2 and
H2(O) = {u ∈ L2(O) : D2

iju ∈ L2(O), 1 ≤ i, j ≤ N}, with its usual norm

‖ · ‖H2(O). H−1(O) with norm ‖ · ‖−1 denotes the dual of H1
0 (O) = W 1,2

0 (O).
By BV (O) we denote the space of functions u of bounded variation on O
and by ‖Du‖ the variation of u, that is,

‖Du‖ = sup

{∫

O
u div ϕdξ; ϕ ∈ C∞

0 (O;RN), |ϕ|∞ ≤ 1

}
. (2.1)

By BV 0(O) we denote the space of the functions u ∈ BV (O) with vanishing
trace on ∂O.

Consider the function φ0 : L1(O) → R = (−∞, +∞]

φ0(u) =

{
‖Du‖ if u ∈ BV 0(O),

+∞ otherwise,

and denote by cl φ0 the lower semicontinuous closure of φ0 in L1(O), that is,

clφ0(u) = inf
{
lim inf φ0(un); un → u ∈ L1(O)

}
. (2.2)

As in [4, p. 437] define, for u ∈ L1(O),

G(u) =





∫

O
|∇u|dξ if u ∈ W 1,1

0 (Ω),

+∞ otherwise.

Then (e.g., by [1, Theorem 3.9]) it is easy to see that

clφ0 = cl G.
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Hence, by [4, Proposition 11.3.2], for u ∈ L1(O),

clφ0(u) =




‖Du‖+

∫

∂O
|γ0(u)|dHN−1 if u ∈ BV (O),

+∞ otherwise,

where γ0(u) is the trace of u on the boundary and dHN−1 is the Hausdorff
measure.

Let φ denote the restriction of cl φ0(u) to L2(O), i.e.,

φ(u) = ‖Du‖+

∫

∂O
|γ0(u)|dHN−1 if u ∈ BV (O) ∩ L2(O),

φ(u) = +∞ if u ∈ L2(O) \BV (O).

(2.3)

By ∂φ : D(∂φ) ⊂ L2(O) → L2(O), we denote the subdifferential of φ, that is,

∂φ(u) = {η ∈ L2(O); φ(u)− φ(v) ≤ 〈η, u− v〉 , ∀v ∈ D(φ)}, (2.4)

where
D(φ) = {u ∈ L2(O); φ(u) < ∞} = BV (O) ∩ L2(O).

It turns out (see [1]) that η ∈ ∂φ(u) iff there is z ∈ L∞(O;RN) such that
η = −div z, |z|∞ ≤ 1, and

∫
O ηudξ = φ(u).(Here and everywhere in the

following the derivatives are taken in the sense of distributions on O.) The
mapping ∂φ is not everywhere defined on D(φ), but it is maximal monotone
in L2(O) and so generates a semigroup flow u(t, x) = e−t∂φx which is the
solution to the evolution equation (see [15], p. 72, [5], p. 47)

du

dt
(t) + ∂φ(u(t)) 3 0, ∀t ≥ 0, u(0) = x, (2.5)

for each x ∈ D(φ) = L2(O). More precisely, for x ∈ L2(O), there is a unique
strong solution u : [0,∞] → L2(O) to (2.5) and, for each T > 0,

√
t

du

dt
∈ L2(0, T ; L2(O)), tφ(u(t)) ∈ L∞(0, T ), φ(u) ∈ L1(0, T ),(2.6)

t
du

dt
∈ L∞(0, T ; L2(O)), u ∈ C([0, T ]; L2(O)). (2.7)

(See [5], p. 158.) In fact, if u ∈ W 1,1
0 (O) and η ∈ div [sgn(∇u)]∩L2(O) 6= ∅,

then it is easily seen that u ∈ D(∂φ) and η ∈ ∂φ(u).
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We can rewrite equation (1.1) as

dX(t) + ∂φ(X(t))dt 3 X(t)dW (t), t ≥ 0,

X(0) = x.
(2.8)

However, since the multi-valued mapping ∂φ : L2(O) → L2(O) is highly
singular, at present no general existence result for stochastic infinite dimen-
sional equations of subgradient type is applicable to the present situation and
so a direct approach should be used in order to get existence and uniqueness
of solutions for (2.8).

In the following, Lp(0, T ; E), 1 ≤ p ≤ ∞, and E a Banach space, denotes
the space of all Bochner measurable functions u : (0, T ) → E with ‖u‖E ∈
Lp(0, T ). By C([0, T ]; E) we denote the space of all the continuous E-valued
functions on [0, T ]. We also use the notation

W 1,p([0, T ]; E) =

{
u ∈ Lp(0, T ; E),

du

dt
∈ Lp(0, T ; E)

}
,

where
du

dt
is taken in sense of E-valued distributions on (0, T ). (We recall

that any u ∈ W 1,p([0, T ]; E) is absolutely continuous and a.e. differentiable.)
The plan of the rest of the paper is the following.
In Section 3, one defines the variational solution to (1.1) through an SVI

and one formulates the main existence result which is proved in Section 5,
via the mentioned scaling method. In Section 6, we prove the positivity of
solutions with nonnegative initial data and, in Section 7, we prove the finite
time extinction of solutions.

We close this section with some remarks on our conditions (H1), (H2)
and the stochastic integral in (1.1).

Remark 2.1

(i) It is easy to check that under (H1) the sum in (1.2) converges in
L2(Ω; C([0, T ]; C(O))) and that under (H1) and (H2) the sum in (1.2)
converges in L2(Ω; C([0, T ]; C1(O))). In particular, for P-a.e. ω ∈ Ω the
map [0, T ]×O 3 (t, ξ) 7−→ W (t, ξ)(ω) ∈ R is continuous and, for each
ξ ∈ O, the process (W (t, ξ))t≥0 is a real-valued (not standard) (Ft)-
Brownian motion with quadratic variation µ(ξ)t, with µ as defined in
(1.3). Furthermore, by Fernique’s theorem,
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exp

(
sup

0≤t≤T
|W (t)|∞

)
∈ Lp(Ω) for all p ∈ (0,∞). (2.9)

(ii) Let F : [0, T ] × O × Ω → R be such that F (restricted to [0, t]) is
B([0, t]) ⊗ B(O) ⊗ Ft–measurable and F ∈ L2([0, T ] × O × Ω), where
L2 (instead of L2) denotes square integrable functions (rather than
equivalence classes thereof). Then, for ξ ∈ O, we have P-a.s.

∫ t

0

F (s, ξ)dW (s, ξ) =
∞∑

k=1

µkek(ξ)

∫ t

0

F (s, ξ)dβk(s), t ∈ [0, T ], (2.10)

where the sum on the right hand side converges in L2(Ω; C([0, T ];R))
for each ξ ∈ O and also in L2(Ω; C([0, T ]; L2(O))). Indeed, defining for
N ∈ N

WN(t, ξ) :=
N∑

k=1

µkek(ξ)βk(t), t ∈ [0, T ], ξ ∈ O,

we have for fixed ξ ∈ O, N ∈ N, by Doob’s inequality and Itô’s isometry

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

F (s, ξ)d(W −WN)(s, ξ)

∣∣∣∣
2
]

≤ 2E
[∫ T

0

|F (s, ξ)|2ds

] ∞∑

k=N+1

µ2
ke

2
k(ξ)

and, similarly, for N < M ,

E


 sup

t∈[0,T ]

∫

O

∣∣∣∣∣
M∑

k=N

µkek(ξ)

∫ t

0

F (s, ξ)βk(ds)

∣∣∣∣∣

2

dξ




≤ 2
M∑

k,k′=N

µkµk′

∫

O
ek(ξ)ek′(ξ)Ak,k′(ξ)dξ,

where

Ak,k′(ξ) := E
[∫ T

0

F (s, ξ)dβk(s)

∫ T

0

F (s, ξ)dβk′(s)

]

= δk,k′E
[∫ T

0

|F (s, ξ)|2ds

]
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since βk, βk′ are independent. So, both claimed convergences follow
from (H1).

(iii) The assumption that ek, k ∈ N, is an eigenbasis of the Dirichlet Lapla-
cian is only used in the proof of Proposition 5.1 (ii) below. As it is
pointed out there, this assumption is not necessary, provided the ini-
tial condition x is in H1

0 (O). Since Proposition 5.1 (ii) is only used in
this paper for x ∈ H1

0 (O), we may drop the above assumption on ek,
k ∈ N, and just assume that it is any orthonormal basis of L2(O) in
C2(O) ∩H1

0 (O).

Remark 2.2 Let H = L2(O) with usual inner product 〈·, ·〉 and norm | · |2.
Under (H1), for all h ∈ H we have

∞∑

k=1

|µk| |〈h, ek〉| |ek|∞ ≤ C∞|h|2.

Hence ∞∑

k=1

µk 〈h, ek〉 ek ∈ C(O)

and, for every x ∈ H, the following operator is well-defined

B(x)h := x

∞∑

k=1

µk 〈h, ek〉 ek

(
=

∞∑

k=1

µk 〈h, ek〉 (ek · x)

)
, h ∈ H.

It is easy to check that B(x) ∈ L2(H, H) (= all Hilbert-Schmidt operators
from H to H) and that

‖B(x)‖L2(H,H) =

( ∞∑

k=1

µ2
k|ekx|22

)1/2

≤ C∞|x|2. (2.11)

Therefore, if we consider the cylindrical Wiener process

W̃ (t) := (βk(t)ek)k∈N,

then, it is easy to check that, if F is as in Remark 2.1 (ii), hence (s, ω) 7→
F (s, ·, ω) ∈ L2(O) progressively measurable, then we have the following iden-
tities of L2(O)-valued stochastic integrals in L2(Ω; C([0, T ]; L2(O)))

∫ •

0

F (s)dW (s) =

∫ •

0

B(X(s))dW̃ (s) =
∞∑

k=1

µk

∫ •

0

F (s)ekdβk(s), (2.12)
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where also the sum on the right hand side converges in L2(Ω; C([0, T ]; L2(O))).
In particular, the stochastic integral in (1.1) is a standard one. An easy ap-
plication of the stochastic Fubini Theorem (cf. the proof of Claim 2 in the
proof of Proposition 4.3) then shows that, by (2.12) and Remark 2.1 (ii), for
every t ∈ [0, T ] and P-a.e. ω ∈ Ω,

ξ 7→
∫ t

0

F (s, ξ)dW (s, ξ)(ω)

(which is a real-valued stochastic integral) is a dξ-version of

∫ t

0

F (s)dW (s)

(which is an L2(O)-valued stochastic integral).

3 Definition of stochastic variational solutions

and the main existence and uniqueness

result

Definition 3.1 Let 0 < T < ∞ and let x ∈ L2(O). A stochastic process
X : [0, T ] × Ω → L2(O) is said to be a variational solution to (1.1) if the
following conditions hold.

(i) X is (Ft)-adapted, has P-a.s. continuous sample paths in L2(O) and
X(0) = x.

(ii) X ∈ L2([0, T ]× Ω; L2(O)), φ(X) ∈ L1([0, T ]× Ω).

(iii) For each (Ft)- progressively measurable process G ∈ L2([0, T ]×Ω; L2(O))
and each (Ft)-adapted L2(O)-valued process Z with P-a.s. continuous
sample paths such that Z ∈ L2([0, T ] × Ω; H1

0 (O)) and, solving the
equation

Z(t)− Z(0) +

∫ t

0

G(s)ds =

∫ t

0

Z(s)dW (s), t ∈ [0, T ], (3.1)

we have

1

2
E|X(t)− Z(t)|22 + E

∫ t

0

φ(X(τ))dτ ≤ 1

2
E|x− Z(0)|22

+E
∫ t

0

φ(Z(τ))dτ +
1

2
E

∫ t

0

∫

O
µ(X(τ)− Z(τ))2dξ dτ

+E
∫ t

0

〈X(τ)− Z(τ), G(τ)〉 dτ, t ∈ [0, T ].

(3.2)
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Here, φ is defined by (2.3), µ =
∞∑

k=1

µ2
ke

2
k and 〈·, ·〉 is the duality pairing with

pivot space L2(O). We also recall that (3.1) has a unique solution for a given
initial condition in L2(O).

The relationship between (1.1) and (3.2) becomes more transparent if we
recall that (1.1) can be rewritten as (2.8) and so we have

d(X − Z) + (∂φ(X)−G)dt 3 (X − Z)dW. (3.3)

If we (formally) apply the Itô formula to
1

2
|X − Z|22 in (3.3) and take into

account (2.4), we obtain just (3.2) after taking expectation. It should be
emphasized, however, that X arising in Definition 3.1 is not a strong solution
to (1.1) (or (2.8)) in the standard sense, that is,

X(t)− x ∈ −
∫ t

0

∂φ(X(s))ds +

∫ t

0

X(s)dW (s), ∀t ∈ [0, T ].

We also note that this concept of solution for equation (1.1) was already
introduced in [8]. Theorem 3.2 below is our first main result.

Theorem 3.2 Let O be a bounded and convex open subset of RN with smooth
boundary and T > 0. For each x ∈ L2(O) there is a variational solution X
to equation (1.1), such that, for all p ∈ [2,∞),

sup
t∈[0,T ]

E[|X(t)|p2] ≤ exp
[
C2
∞

p

2
(p− 1)

]
‖x‖p

2. (3.4)

X is the unique solution in the class of all solutions X such that, for some
δ > 0,

X ∈ L2+δ(Ω; L2([0, T ]; L2(O))). (3.5)

Furthermore, if x, x∗ ∈ L2(O) and X, X∗ are the corresponding variational
solutions with initial conditions x, x∗, respectively, then, for some positive
constant C = C(N,C2

∞),

E

[
sup

τ∈[0,T ]

|X(τ)−X∗(τ)|22
]
≤ 2|x− x∗|22eCT . (3.6)
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In particular,

E

[
sup

t∈[0,T ]

|X(t)|22
]
≤ 2|x|22eCT , (3.7)

and, moreover, X ∈ L2(Ω; C([0, T ]; L2(O))).

Remark 3.3 A similar result was established in [8] for the equation with
additive noise where N = 1, 2. However, in the definition of the solution in
[8], erroneously was taken the functional φ0 instead of φ defined above, as
it is correct. In this context we cite also the work [11], where this point
was already clarified. Furthermore, by Remark 8.4 below, the convexity
assumption on O can be relaxed. It is enough that ∂O can be parametrized
locally by a convex C2-map.

Remark 3.4 Apparently, the variational solution X defined above does not
satisfy in any common sense the Dirichlet homogeneous condition on ∂O, as
written in (1.1). However, since φ(X) ∈ L1((0, T )× Ω) and, as seen earlier,
φ is just the closure in L2(O) of φ0 and, in particular, of the norm |∇u|1 of
the space W 1,1

0 (O), we may regard X as a generalized solution to (1.1). For
instance, if in (1.1) we replace the Dirichlet condition by the Neumann ho-
mogeneous condition, then in the above definition of the variational solution
one should replace the function φ by

φ1(u) = ||Du||, ∀u ∈ BV (O) ∩ L2(O); φ1(u) = +∞ otherwise.

Remark 3.5 It follows from Lemma 7.3 below by Fatou’s Lemma that, for
N ≤ 3, in addition to (3.6) we also have, for some constant C > 0,

E

[
sup

τ∈[0,T ]

|X(τ)−X∗(τ)|NN
]
≤ 2|x− x∗|NNeCT . (3.8)

Remark 3.6 If x ∈ H1
0 (O), it follows by Lemma 5.3 and Fatou’s Lemma

that, for some C > 0 (independent of x),

E

[
sup

t∈[0,T ]

‖X(t)‖2
1

]
≤ C‖x‖2

1,

hence X ∈ L2(Ω; L∞([0, T ]; H1
0 (O))). From this, one can deduce that, if

the initial condition x is in H1
0 (O), then the corresponding solution X in
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Theorem 3.2 is, in fact, an ordinary variational solution of the (multivalued)
equation (1.1) (not just in the sense of SVI as in Definition 3.1). Our main
point is, however, here to have existence and uniqueness for all starting points
x ∈ L2(O). Therefore, we skip the details on the simpler case of special initial
conditions in H1

0 (O).

4 The random partial differential equation

equivalent to (1.1)

Inspired by [9, Section 4] and [12], we would like to reduce equation (1.1) to
the random differential equation

∂Y

∂t
= e−W div(sgn(∇(eW Y )))− 1

2
µY, P-a.s. in (0, T )×O,

Y (0, ξ) = x(ξ), ξ ∈ O,

Y = 0 on (0, T )× ∂O,

(4.1)

by the substitution Y (t) = e−W (t)X(t). The meaning of boundary condition
in (4.1) is taken in the generalized sense as discussed in Remark 3.4. (We note
that, in equation (1.1), XdW is meant to be an Itô differential, otherwise, i.e.,
if it is taken in the Stratonovich sense, then, in the corresponding equation

(4.1), the linear term
1

2
µY would be missing.)

To do the reduction from (1.1) to (4.1) rigorously, our definitions of solu-
tions for (4.1) must be again in the sense of a variational inequality, but this

time a deterministic one, since the test processes Z̃ (replacing Z in Definition
3.1) solve a deterministic PDE, however, with random coefficients.

Definition 4.1 Let 0 < T < ∞ and let x ∈ L2(O). A stochastic process
Y : [0, T ] × Ω → L2(O) is said to be a variational solution to (4.1) if the
following conditions hold:

(i) Y is (Ft)-adapted, has P-a.s. continuous sample paths, and Y (0) = x.

(ii) eW Y ∈ L2([0, T ]× Ω; L2(O)), φ(eW Y ) ∈ L1([0, T ]× Ω).

(iii) For each (Ft)-progressively measurable process G ∈ L2([0, T ]×Ω; L2(O))

and each (Ft)-adapted, L2(O)-valued process Z̃ with P-a.s. continuous
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sample paths such that eW Z̃ ∈ L2([0, T ] × Ω; H1
0 (O)) and solving the

equation

Z̃(t)− Z̃(0) +

∫ t

0

e−W (s)G(s)ds +
1

2

∫ t

0

µZ̃(s)ds = 0,

t ∈ [0, T ], P-a.s.,

(4.2)

we have

1

2
E|eW (t)(Y (t)− Z̃(t))|22 + E

∫ t

0

φ(eW (τ)Y (τ))dτ

≤ 1

2
E|x− Z̃(0)|22 + E

∫ t

0

φ(eW (τ)Z̃(τ))dτ

+
1

2
E

∫ t

0

∫

O
µe2W (τ)(Y (τ)− Z̃(τ))2dξ dτ

+E
∫ t

0

〈
eW (τ)(Y (τ)− Z̃(τ)), G(τ)

〉
dτ, t ∈ [0, T ].

(4.3)

We recall that the deterministic equation (4.2) has a unique solution for a
given initial condition in L2(O) for P-a.e. given ω ∈ Ω.

Proposition 4.2 X : [0, T ]× Ω → L2(O) is a variational solution to equa-
tion (1.1) if and only if Y := e−W X is a variational solution to (4.1).

The above proposition is an immediate consequence of Proposition 4.3(iii)
below, which addresses a technical, but very important issue. To be precise
(and make our point) in its proof, we have to distinguish between the space
L2(O) of square integrable functions and L2(O), i.e., the corresponding dξ-
classes.

Proposition 4.3 Let G ∈ L2([0, T ] × Ω; L2(O)) be (Ft)-progressively mea-
surable and Z(0) ∈ L2(Ω,F0; L

2(O)). Let G0 be a (dt ⊗ dξ ⊗ P)-version of
G such that (t, ω) 7−→ G0(t, ξ, ω) is (Ft)-progressively measurable and in
L2([0, T ]×Ω) for every ξ ∈ O. Furthermore, let Z0(0) be a (dξ⊗P)-version
of Z(0) such that ω 7−→ Z0(0)(ξ, ω) is F0-measurable for all ξ ∈ O.

(i) Fix ξ ∈ O. Then

Z0
ξ (t) := eW (t,ξ)− 1

2
µ(ξ)tZ0(0)(ξ)

−eW (t,ξ)− 1
2

µ(ξ)t

∫ t

0

e−W (s,ξ)+ 1
2

µ(ξ)sG0(s, ξ)ds, t ∈ [0, T ],
(4.4)

14



is a real-valued continuous solution to the stochastic differential equa-
tion

dZ0
ξ (t) = −G0(t, ξ)dt + Z0

ξ (t)dW (t, ξ), t ∈ [0, T ],

Z0
ξ (0) = Z0(0, ξ),

(4.5)

which is B([0, t])⊗ B(O)⊗Ft-measurable for each t ∈ [0, T ].

Furthermore, the map [0, T ] 3 t 7−→ Z0
· (t) ∈ L2(O) is P-a.s. continous.

Hence the corresponding dξ-classes Z(t) ∈ L2(O), t ∈ [0, T ], form the
unique solution to (3.1).

(ii) Fix ξ ∈ O. Then

Z̃0
ξ (t) := e−

1
2

µ(ξ)tZ0(0)(ξ)− e−
1
2

µ(ξ)t

∫ t

0

e−W (s,ξ)+ 1
2

µ(ξ)sG0(s, ξ)ds,

t ∈ [0, T ],

is a real-valued continuous solution to the differential equation

dZ̃0
ξ (t) = −e−W (t,ξ)G0(t, ξ)dt− 1

2
µ(ξ)Z̃0

ξ (t)dt, Z̃0
ξ (0) = Z0(0, ξ),

which is B([0, t])⊗ B(O)⊗Ft-measurable for each t ∈ [0, T ].

Furthermore, the map [0, T ] 3 t 7−→ Z̃0
· (t) ∈ L2(O) is P-a.s. conti-

nuous. Hence the corresponding dξ-classes Z̃·(t) ∈ L2(O), t ∈ [0, T ],
form the unique solution of the deterministic equation (4.4) for P-a.e.
given ω ∈ Ω.

(iii) An (Ft)-adapted P-a.s. continuous L2(O)-valued process (Z(t))t∈[0,T ] is
a solution to the stochastic equation (3.1) if and only if (e−W (t)Z(t))t∈[0,T ]

is a solution to the deterministic equation (4.1) for P-a.e. given ω ∈ Ω.

Proof. (iii) is an immediate consequence of (i) and (ii). (ii) is more or less
well-known since it is about a deterministic equation and the proof is anyway
similar to that of (i). Therefore, we only prove (i).

First, we note that applying a mollifier in ξ and taking the limsup of a
properly chosen subsequence, the mentioned version of G0 and Z0(0) always
exist. Obviously, Z0

ξ is a well-defined, (Ft)-adapted, P-a.s. continuous real-
valued process, and applying Itô’s product formula we obtain that it solves
(4.5). Furthermore, the stated continuity in L2(O) is obvious. So, it remains
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to show the last part of the assertion, which follows from the following two
claims.

Claim 1. Let t ∈ [0, T ]. Then P-a.e. ξ 7−→ ∫ t

0
G0(s, ξ)ds, ξ ∈ O, is a

dξ-version of the L2(O)-valued Bochner integral
∫ t

0
G(s)ds.

Claim 2. Let t ∈ [0, T ]. Then P-a.s. ξ 7−→ ∫ t

0
Z0

ξ (s)dW (s, ξ), ξ ∈ O, is a

dξ-version of the L2(O)-valued stochastic integral
∫ t

0
Z(s)dW (s).

Claim 1 is a trivial consequence of Fubini’s theorem. So, we only prove
Claim 2 whose proof is similar, but based on the stochastic Fubini theorem.

Proof of Claim 2. Let i ∈ N. Then P-a.s. for every t ∈ [0, T ], by Remark
2.1 (ii), ∫

O
ei(ξ)

∫ t

0

Z0
ξ (s)dW (s, ξ)dξ

=
∞∑

k=1

µk

∫

O
ei(ξ)ek(ξ)

∫ t

0

Z0
ξ (s)dβk(s)dξ

=
∞∑

k=1

µk

∫ t

0

∫

O
ei(ξ)ek(ξ)Z

0
ξ (s)dξdβk(s)

=
∞∑

k=1

µk

∫ t

0

〈ei, ekZ(s)〉 dβk(s)

=
∞∑

k=1

µk

〈
ei,

∫ t

0

ekZ(s)dβk(s)

〉

=

〈
ei,

∫ t

0

Z(s)dW (s)

〉
,

where we used the stochastic Fubini theorem in the second equality. Now,
Claim 2 follows. ¤

Remark 4.4 Proposition 4.3 justifies to apply Itô’s formula for a solution
Z(t), t ∈ [0, T ], to (3.1) for dξ-a.e. ξ ∈ O to the process Z(t)(ξ), t ∈ [0, T ],
by taking the version Z0

ξ (t), t ∈ [0, T ], from Proposition 4.3(i). We stress
that for Proposition 4.3 we only used (H1), not (H2) (see Remark 2.1).

In particular, by Theorem 3.2, Proposition 4.2 and (5.12) below, we have
the following existence result for (4.1), which has an intrinsic interest.
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Proposition 4.5 Under the assumptions of Theorem 3.2, for each x ∈ L2(O),
there is a variational solution Y to (4.1), which is unique in the class of all
solutions Y such that, for some δ > 0,

Y ∈ L2+δ(Ω; L2([0, T ]; L2(O))).

Moreover,
Y ∈ L2(Ω; C([0, T ]; L2(O))).

5 Proof of Theorem 3.2

It should be said that, for the proof of the uniqueness part of Theorem 3.2,
as well as for the finite-time extinction property of the solutions to (1.1),
it is convenient and apparently necessary to replace (1.1) by (4.1) and to
construct approximating schemes for both equations.

We approximate (1.1) by

dXλ = div ψ̃λ(∇Xλ)dt + XλdW in (0, T )×O,

Xλ(0) = x in O,

Xλ = 0 on (0, T )× ∂O,

(5.1)

and the corresponding rescaled equation (4.1) by

dYλ

dt
= e−W div(ψ̃λ(∇(eW Yλ)))− 1

2
µYλ

in (0, T )×O, P-a.s.,

Yλ(0) = x in O, Yλ = 0 on (0, T )× ∂O,

(5.2)

where λ ∈ (0, 1], ψ̃λ(u) = ψλ(u) + λu, ∀u ∈ RN .
In (5.2), d

dt
Yλ ∈ L2(0, T ; H−1(O)) is the strong derivative of t → Yλ(t)

and the operator div is taken in sense of distributions on O.
Here, ψλ is the Yosida approximation of the function ψ(u) = sgn u, that

is (see, e.g., [5]),

ψλ(u) =





1

λ
u if |u| ≤ λ,

u

|u| if |u| > λ.
(5.3)
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Let jλ(u) = inf
v

{ |u− v|2
2λ

+ |v|
}

be the Moreau–Yosida approximation of

the function v → |v|. We recall that ∇jλ = ψλ, ∀λ > 0 (see, e.g., [5], p. 48).
We first prove the existence of a strong solution Yλ to (5.2).

It should be emphasized that, for the existence and uniqueness part of
the proof, it is convenient to analyze equation (5.1) while, for getting sharp
estimates on the variational solutions X to (1.1), it is necessary to work
directly with the random equation (5.2) instead of (5.1). As regards the
existence and uniqueness for (5.1), (5.2), we have:

Proposition 5.1

(i) For each λ ∈ (0, 1] and each x ∈ L2(O), there is a unique strong
solution Xλ to (5.1) which satisfies Xλ(0) = x, that is, Xλ is P-a.s.
continuous in L2(O) and {Ft}-adapted such that

Xλ ∈ L2([0, T ]× Ω; H1
0 (O)),

Xλ(t) = x +

∫ t

0

div ψ̃λ (∇Xλ(s)) ds +

∫ t

0

Xλ(s)dW (s),

t ∈ [0, T ], P-a.s.

(5.4)

Furthermore, Xλ ∈ L2(Ω; C([0, T ]; L2(O))) and, for all p ∈ [2,∞),

sup
t∈[0,T ]

E [|Xλ(t)|p2] ≤ exp
[
C2
∞

p

2
(p− 1)

]
|x|p2, (5.5)

and, if x, x∗ ∈ L2(O) and Xλ and X∗
λ are the corresponding solutions

with initial conditions x, x∗, respectively, then, for some positive con-
stant C = C(N, C2

∞),

E

[
sup

τ∈[0,T ]

|Xλ(τ)−X∗
λ(τ)|22

]
≤ 2|x− x∗|22eCT . (5.6)

(ii) Yλ = e−W Xλ is an (Ft)-adapted process Yλ : [0, T ] × Ω → L2(O) with
P-a.s. continuous paths which is the unique solution of (5.2), i.e., it
satisfies P-a.s. equation (5.2) with Yλ(0) = x and

Yλ ∈ L2([0, T ]; H1
0 (O))∩C([0, T ]; L2(O))∩W 1,2([0, T ]; H−1(O)), (5.7)

a.e. t ∈ [0, T ].
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(iii) If x ∈ H1
0 (O), then P-a.s.

Xλ ∈ C([0, T ]; H1
0 (O)) (5.8)

and

Xλ ∈ L2(Ω; L∞([0, T ]; H1
0 (O))) ∩ L2([0, T ]× Ω; H2(O)). (5.9)

Remark 5.2 It is readily seen that, by Itô’s formula, Xλ is also a variational
solution to (5.1) in the sense of Definition 3.1, where φ(y) is replaced by

φ̃λ(y) =

∫

O

(
jλ(∇y) +

λ

2
|∇y|2

)
dξ.

Proof of Proposition 5.1. Consider the operator Aλ : H1
0 (O) → H−1(O)

defined by

〈Aλy, ϕ〉 =

∫

O
ψ̃λ(∇y) · ∇ϕdξ, ∀ϕ ∈ H1

0 (O), (5.10)

and note that Aλ is demicontinuous (see, for instance, [5], p. 81).
Moreover, we have

‖Aλy‖−1 ≤ λ‖y‖1 +

(∫

O
dξ

) 1
2

, ∀y ∈ H1
0 (O),

〈Aλy1 − Aλy2, y1 − y2〉 ≥ λ‖y1 − y2‖2
1, ∀y ∈ H1

0 (O).

On the other hand, equation (5.1) can be rewritten as

dXλ + AλXλdt = XλdW, t ∈ [0, T ],

Xλ(0) = x.
(5.11)

Then, by the standard existence theory for stochastic differential equations
associated with nonlinear monotone and demicontinuous operators in a dua-
lity pair (V, V ′) ([27], [29], [30]) equation (5.11) (equivalently, (5.1)) has a
unique strong solution Xλ satisfying (5.4) and (5.6). (5.5) is then an easy
consequence of Itô’s formula for |Xλ|22 (see, e.g., [30]).

To prove (ii), below we use 〈·, ·〉2 to denote the inner product in L2(O),
in order to avoid confusion with the quadratic variation process.
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Let ϕ ∈ H1
0 (O) ∩ L∞(O). Then, for every t ∈ [0, T ],

〈
ϕ, e−W (t)Xλ(t)

〉
2

=
∞∑

j=1

〈
ej, e

−W (t)ϕ
〉

2
〈ej, Xλ(t)〉2 .

Furthermore, by Itô’s formula we have dξ ⊗ P-a.e. that, for all ξ ∈ O,
t ∈ [0, T ],

e−W (t,ξ) = 1−
∫ t

0

e−W (s,ξ)dW (s, ξ) +
1

2
µ(ξ)

∫ t

0

e−W (s,ξ)ds.

Now, fix j ∈ N. Then, by Remark 2.1 (ii) and Remark 2.2, we have P-a.e.
that, for all t ∈ [0, T ],

〈
ej, e

−W (t)ϕ
〉

2
= 〈ej, ϕ〉2 −

∞∑

k=1

µk

∫

O
ej(ξ)ϕ(ξ)ek(ξ)

∫ t

0

e−W (s,ξ)dβk(s)dξ

+
1

2

∫ t

0

〈
ej, µe−W (s)ϕ

〉
2
ds

= 〈ej, ϕ〉 −
∞∑

k=1

µk

∫ t

0

〈
ej, eke

−W (s)ϕ
〉

2
dβk(s)

+
1

2

∫ t

0

〈
ej, µe−W (s)ϕ

〉
2
ds,

where we used the stochastic Fubini Theorem in the second equality and the
sums converge in L2(Ω; C([0, T ];R)). By Itô’s product rule we hence obtain
P-a.s. that, for all t ∈ [0, T ],

〈
ej, e

−W (t)ϕ
〉
2
〈ej, Xλ(t)〉2 = 〈ej, ϕ〉2 〈ej, x〉2

+

∫ t

0

〈
ej, e

−W (s)ϕ
〉

2

〈
ej, div ψ̃λ(∇Xλ(s))

〉
ds

+
∞∑

k=1

µk

∫ t

0

〈
ej, e

−W (s)ϕ
〉
2
〈ej, Xλ(s)ek〉2 dβk(s)

−
∞∑

k=1

µk

∫ t

0

〈
ej, eke

−W (s)ϕ
〉
2
〈ej, Xλ(s)〉2 dβk(s)
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+
1

2

∫ t

0

〈
ej, µe−W (s)ϕ

〉
2
〈ej, Xλ(s)〉2 ds

−
∞∑

k=1

µ2
k

∫ t

0

〈ej, Xλ(s)ek〉2
〈
ej, eke

−W (s)ϕ
〉
2
ds,

where all the sums converge in L2(Ω; C([0, T ];R)) and interchanging the in-
finite sums with stochastic differentials is justified by Remark 2.1 (ii) and
Remark 2.2, because of (5.5) and since, by (2.9),

sup
(t,ξ)∈[0,T ]×O

e−W (s,ξ) |Xλ|2 ∈ Lp([0, T ]× Ω;R) for all p ≥ 1. (5.12)

(We shall implicitly use both (5.5) and (5.12) several times in the rest of this
paper without further notice.)

Now, we sum the above equation from j = 1 to j = ∞ and assume that
we can interchange this summation both with the sum over k and with the
deterministic and stochastic integrals (which we shall justify below). Then,
because the two terms involving the stochastic integrals cancel, we obtain

〈
ϕ, e−W (t)Xλ(t)

〉
2

= 〈ϕ, x〉2 +

∫ t

0

〈
ϕ, e−W (s)div ψ̃λ(∇Xλ(s))

〉
ds

+
1

2

∫ t

0

〈
ϕ, µe−W (s)Xλ(s)

〉
2
ds−

∞∑

k=1

µ2
k

∫ t

0

〈
ϕ, e2

ke
−W (s)Xλ(s)

〉
2
ds,

which immediately implies that Yλ = e−W Xλ solves (5.2).
To justify interchanging sums and integrals, it suffices to note that, for

the second term on the right hand side, this is true because {ek} is the
eigenbasis of the Laplacian and that for the last term this is obvious be-
cause of (H1), while, for the two terms which cancel each other and involve
stochastic integrals, this follows by applying the Burkholder–Davis–Gundy
inequality and (H1). If, however, x ∈ H1

0 (O), then, by Lemma 5.3 below,

div ψ̃λ(∇Xλ) ∈ L2([0, T ]×Ω; L2(O)) (and not only in L2([0, T ]×Ω; H−1(O))).
Hence, the above equality is true for any orthonormal basis ek, k ∈ N, of
L2(O) in C2(O).

It remains to prove the uniqueness. In fact, as it will be explained below,
by standard methods one can prove directly the existence and uniqueness of
a solution Yλ to (5.2), which hence must be of the form Yλ = e−W Xλ. To
this end, for each ω ∈ Ω, consider the operator

Ã = Ãλ(t, ω) : H1
0 (O) → H−1(O)
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defined by

〈
Ãλ(t)y, ϕ

〉
=

∫

O
ψλ(∇eW (t)y)) · ∇(e−W (t)ϕ)dξ

+λ

∫

O
∇(eW (t)y) · ∇(e−W (t)ϕ)dξ +

1

2

∫

O
µyϕ dξ,

∀ϕ ∈ H1
0 (O).

(5.13)

In terms of Ãλ, equation (5.2) becomes

dYλ

dt
+ Ãλ(t)Yλ(t) = 0, a.e. t ∈ (0, T ),

Xλ(0) = x.
(5.14)

It is easily seen that, for every t ∈ [0, T ] and P-a.s., ω ∈ Ω, Ãλ(t) = Ãλ(t)(ω)
is demicontinuous (that is, strongly-weakly continuous), coercive, that is,

〈
Ãλ(t)y, y

〉
≥ λ‖y‖2

1 − αλ
t |y|22, ∀y ∈ H1

0 (O), (5.15)

bounded, that is,

‖Ãλ(t)y‖−1 ≤ Ct(1 + ‖y‖1), ∀y ∈ H1
0 (O), (5.16)

and δ-monotone, that is,
〈
Ãλ(t)y − Ãλ(t)z, y − z

〉
+ δλ

t |y − z|22 ≥ 0, ∀y, z ∈ H1
0 (O), (5.17)

where Ct, α
λ
t , δ

λ
t : Ω → R+, t ∈ [0, T ], are (Ft)-adapted processes, P-a.s. con-

tinuous on [0, T ]. (Since, as pointed out before, we only need the uniqueness
part, i.e., we only need (5.17), for the reader’s convenience we include its
proof in Appendix 2, i.e., Section 10.)

Hence, for each x ∈ L2(O), there is a unique solution Yλ to (5.14) satis-
fying (5.7). (See, e.g., [6], p. 177). This completes the proof of (ii). To prove
(iii), we need the following two lemmas:

Lemma 5.3 Let x ∈ H1
0 (O). Then, Xλ ∈ L2(Ω; L∞([0, T ]; H1

0 (O))) ∩
L2([0, T ]× Ω; H2(O)) and

E

[
sup

t∈[0,T ]

‖Xλ(t)‖2
1

]
+ λE

∫ T

0

|∆Xλ(t)|22dt ≤ C‖x‖2
1, λ ∈ (0, 1]. (5.18)
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Proof of Lemma 5.3. In this proof, constants may change from line to
line, though we continue to denote them by C. We set A = −∆, D(A) =
H1

0 (O) ∩H2(O), Jε = (1 + εA)−1, Aε = AJε = 1
ε
(I − Jε) and note that, by

virtue of Corollary 8.7 in Appendix 1, we have

−〈AεXλ, div ψλ(∇Xλ)〉 =
1

ε

∫

O
(∇y −∇Jε(y)) · ψλ(∇y)dξ

≥ 1

ε

∫

O
(jλ(∇y)− jλ(∇Jε(y)))dξ ≥ 0.

(5.19)

Now, we apply Itô’s formula to the function ϕ(x) = 1
2
|A

1
2
ε x|22. We have

Dϕ = Aε, and so we get by Hypotheses (H1) and (H2) that

1

2
|A

1
2
ε Xλ(t)|22 + λ

∫ t

0

〈AεXλ(s), AXλ(s)〉 ds

−
∫ t

0

〈AεXλ(s), div ψλ(∇Xλ(s))〉 ds

≤ 1

2
|x|22 + C

∫ t

0

‖Xλ(s)‖2
1ds

+

∫ t

0

〈AεXλ(s), Xλ(s)dW (s)〉 , t ∈ [0, T ],

(5.20)

since |A
1
2
ε x|2 ≤ ‖x‖1, ∀x ∈ H1

0 (O), ε ∈ (0, 1].
Now, keeping in mind that, for all ε > 0,

〈Aεy, Ay〉 ≥ |Aεy|22, ∀y ∈ H1
0 (O),

and, taking into account (5.19), we obtain by (5.20) that, for some C > 0
independent of λ and ε,

|A
1
2
ε Xλ(t)|22 + λ

∫ t

0

|AεXλ(s)|22ds ≤ 1

2
|x|22 + C

∫ t

0

‖Xλ(s)‖2
1ds

+

∫ t

0

〈AεXλ(s), Xλ(s)dW (s)〉 , t ∈ [0, T ], ∀λ, ε > 0.

(5.21)

In particular, for all t ∈ [0, T ]

sup
r∈[0,t]

|A
1
2
ε Xλ(r)|22 ≤ ‖x‖2

1 + C

∫ t

0

sup
r∈[0,s]

‖Xλ(r)‖2
1ds

+ sup
r∈[0,t]

∣∣∣∣
∫ r

0

〈AεXλ(s), Xλ(s)dW (s)〉
∣∣∣∣ .
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Hence, by the Burkholder-Davis-Gundy (for p = 1) and Gronwall’s inequali-
ties, we obtain that, for some C > 0, independent of λ and ε,

E

[
sup

s∈[0,T ]

|A
1
2
ε Xλ(s)|22

]
≤ 2‖x‖2

1e
CT , ∀λ, ε ∈ (0, 1].

Letting ε → 0, we obtain

E

[
sup

t∈[0,T ]

‖Xλ(t)‖2
1

]
≤ C‖x‖2

1, ∀λ ∈ (0, 1]. (5.22)

Hence, taking expectation in (5.21) and letting ε → 0, we obtain

λE
∫ T

0

|∆Xλ(s)|22ds ≤ C‖x‖2
1, ∀λ ∈ (0, 1].

This completes the proof of Lemma 5.3. ¤

Lemma 5.4 Let x ∈ H1
0 (O). Then, Yλ ∈ C([0, T ]; H1

0 (O))∩L2([0, T ]; H2(O)),
P-a.s.

Proof. We rewrite (5.2) as the linear parabolic random equation

∂Yλ

∂t
= λ∆Yλ + f(t, ξ) in (0, T )×O,

Yλ = 0 on (0, T )× ∂O,

Yλ(0, ξ) = x(ξ) in O,

(5.23)

where

f(t, ξ) = e−W (t,ξ)div ψλ(∇(eW (t,ξ)Yλ(t, ξ)))− 1

2
µ(ξ)Yλ(t, ξ)

+2λ∇W (t, ξ) · ∇Yλ(t, ξ) + ∆W (t, ξ)Yλ(t, ξ) + Yλ|∇W |2.

Since, for y ∈ H1
0 (O) ∩H2(O),

div ψλ(∇y) =





1

λ
∆y on {|∇y| ≤ λ},

∆y

|∇y| −
∇y · ∇|∇y|
|∇y|2 on {|∇y| > λ},

(5.24)
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by Lemma 5.3, we know that

f(t) ∈ L2(0, T ; L2(O)), P-a.s. (5.25)

Then, by the general theory of linear parabolic equations (see, e.g. [14]), we
have, for each ω ∈ Ω,

Yλ ∈ C([0, T ]; H1
0 (O)) ∩ L2([0, T ]; H2(O)), (5.26)

and the lemma is proved. ¤

Lemmas 5.3, 5.4 and part (ii) now imply part (iii) and the proof of Propo-
sition 5.1 is complete. ¤

Proof of Theorem 3.2 (continued). It is enough to prove the existence
for initial conditions x ∈ H1

0 (O), provided one can also prove (3.6) for such
solutions with initial conditions x, x∗ ∈ H1

0 (O). Indeed, if we have that we
can extend our solutions for arbitrary x ∈ L2(O), since H1

0 (O) is dense in
L2(O) and (3.2) is obviously stable under taking limits in Xn replacing X,
with Xn converging in L2(Ω; C([0, T ]; L2(O))) (since φ is lower semicontinu-
ous on L2(O)).

Hence, let x ∈ H1
0 (O). Using the Itô formula in (5.1) (or, equivalently, in

(5.4)), we obtain that

E|Xλ(t)|22 +2E
∫ t

0

∫

O
jλ(∇(Xλ(s, ξ)))dξ ds + λE

∫ t

0

|∇(Xλ(s))|22ds

≤ |x|22 +
1

2
E

∫ t

0

∫

O

∞∑
j=1

µ2
j |Xλej|2dξ ds, t ∈ [0, T ],

because ψ̃λ(u) · u ≥ jλ(u) + λ|u|2,∀u ∈ RN .
This yields (via Gronwall’s lemma)

E|Xλ(t)|22 + 2E
∫ t

0

∫

O
jλ(∇Xλ(s, ξ))dξ ds

+λE
∫ t

0

∫

O
|∇Xλ|2dξ ds ≤ C1, ∀λ > 0, t ∈ [0, T ],

(5.27)

where C1 = e2C2∞|x|22.
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Moreover, we have, for all t ∈ [0, T ],

E
∫ t

0

φ(X(t))dt ≤ lim inf
λ→0

E
∫ t

0

∫

O
jλ(∇(Xλ(t)))dξ dt < ∞, (5.28)

where φ is defined by (2.3). Indeed, we have

|jλ(∇u)− |∇u| | ≤ 1

2
λ, (5.29)

and this yields
∣∣∣∣E

(∫ t

0

∫

O
jλ(∇Xλ(t))dξ dt−

∫ t

0

φ(Xλ(t))dt

)∣∣∣∣ ≤ Cλ, ∀λ ∈ (0, 1]. (5.30)

On the other hand, we have

lim
λ→0

E

[
sup

t∈[0,T ]

|Xλ(t)−X(t)|22
]

= 0. (5.31)

Indeed, by Itô’s formula, we have

1

2
d|Xλ(t)−Xε(t)|22

+ 〈ψλ(∇Xλ(t))− ψε(∇Xε(t)),∇(Xλ(t)−Xε(t))〉
+ 〈λ∇Xλ(t)− ε∇Xε(t),∇(Xλ(t)−Xε(t))〉

=
1

2

∫ t

0

∫

O

∞∑
j=1

µ2
j |(Xλ(s)−Xε(s))ej|2ds dξ

+

∫ t

0

〈Xλ −Xε, (Xλ −Xε)dW (s)〉 , t ∈ [0, T ].

Taking into account that, by the definition of ψλ,

(ψλ(u)− ψε(v)) · (u− v) ≥ (λψλ(u)− εψε(v)) · (ψλ(u)− ψε(v)) ≥ −(λ + ε)

and that

〈λ∇Xλ(t)− ε∇Xε(t),∇(Xλ(t)−Xε(t))〉
= −〈λ∆Xλ(t)− ε∆Xε(t), Xλ(t)−Xε(t)〉
≥ −(λ2|∆Xλ(t)|22 + ε2|∆Xε(t)|22)−

1

2
|Xλ −Xε|22,
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we get, for some constant C > 0 and all t ∈ [0, T ],

|Xλ(t)−Xε(t)|22 ≤ (C2
∞ + 1)

∫ t

0

|Xλ(s)−X(s)|22ds + Mλ,ε(t)

+2(λ + ε)t

∫

O
dξ + 2λ2

∫ t

0

|∆Xλ(s)|22ds + 2ε2

∫ t

0

|∆Xε(s)|22ds,

where

Mλ,ε(t) = 2

∫ t

0

〈Xλ −Xε, (Xλ −Xε)dW (s)〉 , t ∈ [0, T ],

is a local real-valued (Ft)-martingale. Then, by the Burkholder-Davis-Gundy
inequality (for p = 1), we get (see [9], (3.12)-(3.13)), for some constant C > 0,

E sup
0≤s≤t

|Xλ(s)−Xε(s)|22 ≤ C(λ + ε) + C

∫ t

0

E sup
0≤s≤t

|Xλ(s)−Xε(s)|22ds

+Cλ2E
∫ t

0

|∆Xλ(s)|22ds + Cε2E
∫ t

0

|∆Xε(s)|22ds, t ∈ [0, T ],

and, by Lemma 5.3 and Gronwall’s lemma, it follows that {Xλ}λ is Cauchy
in L2(Ω; C([0, T ]; L2(O))), which completes the proof of (5.31).

Now, recalling that φ is lower-semicontinuous in L1(O) (see (2.2)), we
have by (5.31) and Fatou’s lemma that

lim inf
λ→0

E
∫ t

0

φ(Xλ(t))dt ≥ E
∫ t

0

φ(X(t))dt, ∀t ∈ [0, T ],

which, by virtue of (5.30), implies (5.28), as claimed.
We note that (5.31) and (5.6) imply (3.6), and that (3.4) then follows

from (5.5) and Fatou’s lemma.
It remains to prove (3.2). By Itô’s formula, we have, for all the processes

Z satisfying Definition 3.1(iii) and (3.1), (cf. Remark 5.2),

1

2
E|(Xλ(t)− Z(t))|22 + E

∫ t

0

∫

O
jλ(∇Xλ(τ))dξ dτ

≤ 1

2
E|x− Z(0)|22 + E

∫ t

0

∫

O
jλ(∇Z(τ))dξ dτ

+
1

2
E

∫ t

0

〈Xλ(τ)− Z(τ), G(τ)〉 dτ

+
1

2
E

∫ t

0

∫

O
µ(Xλ(τ)− Z(τ))2dξ dτ, t ∈ [0, T ].

(5.32)
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Now, letting λ tend to zero, it follows by (5.28), (5.29) and (5.31) that
(3.2) holds. This completes the proof of the existence. ¤

Uniqueness. Let X∗ be an arbitrary variational solution to (3.1) with
X∗(0) = x∗ ∈ L2(O) and satisfying (3.5).

Let x ∈ H1
0 (O) and X be the solution constructed in the existence part

of the proof, but with X(0) = x. Set Y ∗ := e−W X∗ and Y := e−W X. We
set Y ε

λ = Jε(Yλ), where Yλ is the solution to (5.2), but with initial condition
x ∈ H1

0 (O). On the basis of (H2) and Lemma 5.3 it follows that e−W Y ε
λ ∈

L2([0, T ] × Ω; H1
0 (O)). Clearly, it is also a P-a.s. continuous (Ft)-adapted

process in L2(O). Hence, in (4.4), (4.3), we may choose Z̃ = Y ε
λ and we

obtain that for

G = Gε
λ = −Jε(div ψ̃λ(∇(eW Yλ))) + ηε

λ,

where

ηε
λ =

1

2
eW (Jε(µYλ)− µJε(Yλ))

+Jε(div ψ̃λ(∇(eW Yλ)))− eW Jε(e
−W div ψ̃λ(∇(eW Yλ))),

the function Z̃ satisfies (4.4).

Then, by (4.3), we have

1

2
E|eW (t)(Y ∗(t)− Y ε

λ (t))|22 + E
∫ t

0

φ(eW (τ)Y ∗(τ))dτ

≤ 1

2
|x∗ − x|22 + E

∫ t

0

φ(eW (τ)Y ε
λ (τ))dτ

+
1

2
E

∫ t

0

∫

O
µe2W (τ)(Y ∗(τ)− Y ε

λ (τ))2dξ dτ

+E
∫ t

0

〈
eW (τ)(Y ∗(τ)− Y ε

λ (τ)), Gε
λ

〉
dτ,

a.e. t ∈ [0, T ], λ > 0.

(5.33)

By Green’s formula, we have
〈
eW (Y ∗ − Y ε

λ ), Gε
λ

〉

=
〈
ψλ(∇(eW Yλ)) + λ∇(eW Yλ),∇Jε(e

W Y ∗)−∇(eW Yλ)
〉

+
〈
ψλ(∇(eW Yλ)) + λ∇(eW Yλ), ζ

ε
λ

〉
+

〈
eW (Y ∗ − Y ε

λ ), ηε
λ

〉
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where
ζε
λ = ∇(eW Yλ)−∇Jε(e

W Y ε
λ ).

Taking into account that

ψλ(u) · (u− v) ≥ jλ(u)− jλ(v), ∀u, v ∈ Rd,

this yields

〈
eW (Y ∗ − Y ε

λ ), Gε
λ

〉 ≤ φλ(Jε(e
W Y ∗))− φλ(e

W Yλ)− λ|∇(eW Yλ)|22
−λ

〈
∆(eW Yλ), Jε(e

W Y ∗)
〉

+
〈
eW (Y ∗ − Y ε

λ ), ηε
λ

〉

+
〈
ψλ(∇(eW Yλ)) + λ∇(eW Yλ), ζ

ε
λ

〉
.

Here, φλ is the function

φλ(z) =

∫

O
jλ(∇z)dξ, ∀z ∈ H1

0 (O).

Substituting into (5.33), we obtain that

1

2
E|eW (t)(Y ∗(t)− Y ε

λ (t))|22 + E
∫ t

0

φ(eW (τ)Y ∗(τ))dτ

+E
∫ t

0

φλ(e
W (τ)Yλ(τ))dτ + λE

∫ t

0

|∇(eW (τ)Yλ(τ))|22dτ

≤ 1

2
|x∗ − x|22 + E

∫ t

0

φ(eW (τ)Y ε
λ (τ))dτ

+E
∫ t

0

φλ(Jε(e
W Y ∗(τ)))dτ

−λE
∫ t

0

〈
∆(eW (τ)Yλ(τ)), Jε(e

W (τ)Y ∗(τ))
〉
dτ

+E
∫ t

0

(〈
eW (Y ∗ − Y ε

λ ), ηε
λ

〉
+

〈
ψλ(∇(eW Yλ)) + λ∇(eW Yλ), ζ

ε
λ

〉)
dτ

+
1

2
C2
∞E

∫ t

0

(eW (τ)(Y ∗(τ)− Y ε
λ (τ)))|22dτ, t ∈ [0, T ], ∀λ > 0,

(5.34)

where C2
∞ is as in (H1). Now, as seen earlier in (5.30), we have

|φ(eW (τ)Yλ(τ))− φλ(e
W (τ)Yλ(τ))| ≤ Cλ, ∀τ ∈ [0, T ]. (5.35)
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Similarly, we have also
∫ T

0

|φλ(Jε(e
W (τ)Y ∗(τ)))− φ(Jε(e

W (τ)Y ∗(τ))|dτ ≤ Cλ. (5.36)

Substituting (5.35), (5.36) in (5.34), yields

1

2
E|eW (t)(Y ∗(t)− Y ε

λ (t))|22 + E
∫ t

0

φ(eW (τ)Y ∗(τ))dτ

≤ 1

2
|x∗ − x|22 + E

∫ t

0

φ(Jε(e
W (τ)Y ∗(τ)))dτ

+E
∫ t

0

(φ(eW (τ)Y ε
λ (τ))− φ(eW (τ)Yλ(τ)))dτ

+
1

2
C2
∞E

∫ t

0

|eW (τ)(Y ∗(τ)− Y ε
λ (τ))|22dτ

−λE
∫ t

0

〈
∆(eW (τ)Yλ(τ)), Jε(e

W (τ)Y ∗(τ))
〉
dτ

+Cλ,ε

(
E

∫ t

0

|ζε
λ(τ)|22dτ

)1/2

+ Cλ,ε

(
E

(∫ t

0

|ηε
λ(τ)|22dτ

)r/2
)1/r

,

(5.37)

where δ is as in (3.5), r = δ+2
δ+1

and

Cλ,ε = 4


E

(∫ T

0

|eW (Y ∗ − Y ε
λ )|22dτ

) 2+δ
2




1
2+δ

+4 + 4

(
E

∫ T

0

λ|∇(eW Yλ)|22dτ

)1/2

.

Now, recalling that, by Corollary 8.5,

E
∫ t

0

φ(Jε(e
W (τ)Y ∗(τ)))dτ ≤ E

∫ t

0

φ(eW (τ)Y ∗(τ))dτ, ∀ε > 0,

letting ε → 0 in (5.37) yields

E|eW (t)(Y ∗(t)− Yλ(t))|22 ≤ |x∗ − x|22
+ C2

∞E
∫ t

0

|eW (τ)(Y ∗(τ)− Yλ(τ))|2dτ

−λE
∫ t

0

〈
∆(eW (τ)Yλ(τ)), eW (τ)Y ∗(τ)

〉
dτ.

(5.38)
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because

lim
ε→0

E
(∫ T

0

|ηε
λ(τ)|22dτ

)r/2

= 0,

lim
ε→0

E
∫ T

0

|ζε
λ(τ)|22dτ = 0,

sup{Cλ,ε; ε ∈ (0, 1)} < ∞,

eW Yλ = Xλ ∈ L2([0, T ]× Ω; H2(O)) by Lemma 5.3 and

eW Y ∗ ∈ L2([0, T ]× Ω; L2(O)).

To check all this is pretty routine. The main problem is to justify the inter-
change of ”limε→0” with the integral with respect to dτ ⊗ P, i.e., to find an
integrable uniformly dominating function. As an exemplary case, we show
how this is done for the last summand in the definition of ηε

λ:
Clearly, since Jε is a contraction on L2(O), it follows by (5.24) that there

exists a constant c > 0 such that, for all ε ∈ (0, 1),

|eW Jε(e
−W div ψ̃λ(∇(eW Yλ)))|22 ≤ c · exp

(
4 sup

τ∈[0,T ]

|W (τ)|∞
)
‖Xλ‖2

H2(O).

Hence, applying Hölder’s inequality with p = 2
r

(> 1), q = 2
2−r

to the expec-
tation, we obtain

E

(∫ T

0

exp

(
4 sup

τ∈[0,T ]

|W (τ)|∞
)
‖Xλ‖2

H2(O)dτ

)r/2

≤
(
E exp

(
8r

2− r
sup

τ∈[0,T ]

|W (τ)|∞
)) 2−r

2 (
E

∫ T

0

‖Xλ(τ)‖2
H2(O)dτ

)r/2

,

which is finite by (2.9) and Lemma 5.3.
Now, by Lemma 5.3, we have

lim
λ→0

λE
∫ t

0

〈
∆(eW (τ)Yλ(τ)), eW (τ)Y ∗(τ)

〉
dτ = 0.

Then, letting λ → 0 in (5.38), we obtain via Gronwall’s lemma

E|X∗(t)−X(t)|22 = E|eW (t)(Y ∗(t)− Y (t))|22 ≤ |x∗ − x|22eC2∞T .
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Now, letting x → x∗ in L2(O), we see by (3.6) that X∗ coincides with the
solution starting at x∗ constructed in the existence part of the proof, which
is hence unique. ¤

Remark 5.5 We did not succeed in proving the uniqueness for Theorem 3.2
directly for the original equation (1.1). The reason is that, regularizing (1.1)
by Jε destroys the special form of the noise. Therefore, we had to use equation
(4.1) and Proposition 4.2.

6 Positivity of solutions

It should be emphasized that physical models of nonlinear diffusion are con-
cerned in general with nonnegative solutions of equation (1.1). In this con-
text, we have the following result.

Theorem 6.1 In Theorem 3.2 assume further that x ≥ 0, a.e. in O. Then

X(t, ξ) ≥ 0 a.e. in (0, T )×O × Ω. (6.1)

Proof. It suffices to show that the solution Xλ to (5.1) is a.e. nonnegative
on [0, T ]×O × Ω. By (5.6) we may assume that x ∈ L4(O). Below we only
give a heuristic argument to prove the assertion (e.g., apply Itô’s formula
in an informal way), which can be made rigorous by regularization. Since
the latter is analogous as in the proof of Theorem 2.2 in [7] or can be done
similarly as in the proof of Theorem 7.1 below, we omit the details.

We apply the Itô formula in (5.1) to the function x → 1
4
|x−|44. We obtain

1

4
E

∫

O
|X−

λ (t, ξ)|4dξ + E
∫ t

0

∫

O
ψ̃λ(∇Xλ(s, ξ)) · ∇|X−

λ (s, ξ)|3dξ ds

=
1

4

∫

O
|x−(ξ)|4dξ + E

∫ t

0

∫

O

∞∑
j=1

µ2
j(Xλej)

2(X−
λ )2dξ ds.

Recalling that ∇y · ∇y− = −|∇y−|2 a.e. in O for each y ∈ H1(O), it
follows that

E
∫

O
|X−

λ (t, ξ)|4dξ ≤ CE
∫ t

0

∫

O
|X−

λ (t, ξ)|4dξ ds, ∀t ∈ [0, T ],

which implies that X−
λ ≡ 0, as claimed.
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7 Extinction in finite-time

A striking feature of highly singular nonlinear diffusion equations is the ex-
tinction in finite time of the solution. In nonlinear diffusion phenomena, this
is due to the singularity at level X = 0 of the diffusivity and this causes a
fast loss of mass. (See [10] for the case of stochastic porous media equation
and [9], [13] for stochastic self-organized criticality.) A similar phenomenon
happens in the case of equation (1.1).

Theorem 7.1 Let 2 ≤ N ≤ 3. Let X be as in Theorem 3.2, with initial
condition x ∈ LN(O), and let τ= inf{t ≥ 0; |X(t)|N = 0}. Then, we have

P[τ ≤ t] ≥ 1− ρ−1

(∫ t

0

e−C∗sds

)−1

|x|N , ∀t ≥ 0. (7.1)

Here ρ = inf{|y|W 1,1
0 (O)/|y| N

N−1
; y ∈ W 1,1

0 (O)} and C∗ = C2∞
2

(N − 1). In

particular, if |x|N < ρ/C∗, then P[τ < ∞] > 0.

We shall prove Theorem 7.1 as stated, i.e., only for 2 ≤ N ≤ 3. The
case N = 1 is similar, but one proves extinction in L2(O)-norm rather than
L1(O)-norm (see [11, Theorem 3] for details). We fix λ ∈ (0, 1] and start
with the following lemma, which is one of the main ingredients of the proof.

Before, we recall that, by (5.8), Xλ is P-a.s. continuous in H1
0 (O). For

K ∈ N, K > ‖x‖1, define the {Ft}-stopping time

τK := inf{t ≥ 0; ‖Xλ(t)‖1 > K}.
Lemma 7.2 Let x ∈ H1

0 (O). Then:

(i) e−NC∗t|Xλ(t)|NN , t ≥ 0, is an {Ft}-supermartingale, and hence so is
e−C∗t|Xλ(t)|N , t ≥ 0.

(ii) We have P-a.s.

|Xλ(t)|NN + Nρ

∫ t

s

|Xλ(r)|N−1
N dr

≤ |Xλ(s)|NN + NC∗
∫ t

s

|Xλ(r)|NNdr + N(N − 1)λ

∫ t

s

|Xλ(r)|N−2
N−2dr

+N

∫ t

s

〈|Xλ(r)|N−2Xλ(r), Xλ(r)dW (r)
〉
, ∀s, t ∈ [0, T ], s ≤ t.

(7.2)
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Proof. Since N ≤ 3, we have by Sobolev embedding, H1
0 (O) ⊂ L4(O)

continuously, hence, for some constant C > 0,

sup
t∈[0,τK ]

|Xλ(t)|N ≤ CK on Ω. (7.3)

We have by standard interpolation (see, e.g., [32, Theorem 2.1]) if N = 3

E
∫ τK

0

‖Xλ(t)‖3
1,3dt ≤ CE

∫ τK

0

‖Xλ(t)‖2
H2(O)|Xλ(t)|3dt

≤ CKE
∫ T

0

‖Xλ(t)‖2
H2(O)dt < ∞

by (5.9), and if N = 2

E
∫ τK

0

‖Xλ(t)‖2
1dt < ∞.

Hence, by Theorem 2.1 in [28], applied with

ft := ψ̃λ(∇Xλ(t)) (≤ 1 + λ|∇Xλ(t)|)
f ◦t := 0

gh
t := µkekXλ(t),

we have the following Itô formula for the LN(O)-norm P-a.s.

|Xλ(t ∧ τK)|NN + N(N − 1)

∫ t∧τK

s∧τK

∫

O
|Xλ(r)|N−2∇Xλ(r) · ψ̃λ(∇Xλ(r))dξ dr

= |Xλ(s ∧ τK)|NN +
1

2
N(N − 1)

∫ t∧τK

s∧τK

∫

O
µ|Xλ(r)|Ndξ dr

+N

∫ t∧τK

s∧τK

〈|Xλ(r)|N−2Xλ(r), Xλ(r)dW (r)
〉
, ∀s, t ∈ [0, T ], s ≤ t.

(7.4)

Since, by interpolation (cf. [32, Theorem 2.1])

E
∫ T

0

|Xλ(r)|63dr ≤ CE
∫ T

0

(‖Xλ(r)‖
3
2

H2(O)|Xλ(r)|
9
2
2 )dr

≤ CE
∫ T

0

(‖Xλ(r)‖2
H2(O) + |Xλ(r)|92)dr,
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and, since by (5.9) and (5.5) the last term is finite, we can let K → ∞ in
(7.4) to obtain

|Xλ(t)|NN + N(N − 1)

∫ t

s

∫

O
|Xλ(r)|N−2∇Xλ(r) · ψ̃λ(∇Xλ(r))dξ dr

= |Xλ(s)|NN +
1

2
N(N − 1)

∫ t

s

∫

O
µ|Xλ(r)|Ndξ dr

+N

∫ t

s

〈|Xλ(r)|N−2Xλ(r), Xλ(r)dW (r)
〉
, ∀s, t ∈ [0, T ], s ≤ t.

(7.5)

To prove (i), we recall that ψ̃λ(u) · u ≥ 0 for all u ∈ RN . Hence, (7.5)
implies that

e−NC∗t|Xλ(t)|NN ≤ e−NC∗s|Xλ(s)|NN
+N

∫ t

s

e−NC∗r 〈|Xλ(r)|N−2Xλ(r), Xλ(r)dW (r)
〉
, ∀s, t ∈ [0, T ], s ≤ t,

from which assertion (i) follows.

To prove (ii), we recall that ψ̃λ(u) · u ≥ |u| − λ. Hence, we have

(N − 1)|Xλ|N−2∇Xλ(r) · ψ̃λ(∇Xλ)

≥ (N − 1)|Xλ|N−2(|∇Xλ| − λ)

= |∇(|Xλ|N−1)| − (N − 1)λ|Xλ|N−2.

(7.6)

Hence, the second term on the left hand side of (7.5) is bigger than

Nρ

∫ t

s

∫

O
|Xλ(r)|N−1

N dr −N(N − 1)λ

∫ t

s

|Xλ(r)|N−2
N−2dr,

where we used Sobolev’s embedding theorem in W 1,1
0 (O), i.e.,

ρ|y| N
N−1

≤ ‖y‖1,1, ∀y ∈ W 1,1
0 (O),

in the last step. Plugging this into (7.5) implies the assertion of the lemma. ¤
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Lemma 7.3 Let x, y ∈ H1
0 (O) and let Xx

λ , Xy
λ denote the solutions to (5.1)

with initial conditions x, y, respectively. Then P-a.s.

|Xx
λ(t)−Xy

λ(t)|NN ≤ |Xx
λ(s)−Xy

λ(s)|NN + NC∗
∫ t

s

|Xx
λ(r)−Xy

λ(r)|NNdr

+N

∫ t

s

〈|Xx
λ(r)−Xy

λ(r)|N−2(Xx
λ(r)−Xy

λ(r)), (Xx
λ(r)−Xy

λ(r))dW (r)
〉
,

∀s, t ∈ [0, T ], s ≤ t.

(7.7)

Furthermore, for some constant C independent of λ

E

[
sup

t∈[0,T ]

|Xx
λ(t)−Xy

λ(t)|NN
]
≤ 2|x− y|NNeCT , ∀x, y ∈ LN(O). (7.8)

Proof. (7.7) follows analogously to (7.5), taking into account that (ϕ̃λ(u)−
ϕ̃λ(v)) · (u− v) ≥ 0, ∀u, v ∈ RN . Then, for x, y ∈ H1

0 (O), (7.8) follows by a
standard application of the Burkholder-Davis-Gundy inequality (for p = 1).
For arbitrary x, y ∈ LN(O), (7.8) then follows by (3.6), since H1

0 (O) ⊂
LN(O) densely. ¤

Proof of Theorem 7.1 (continued). Let x ∈ H1
0 (O) and Xx

λ be the
solution to (5.1) with initial condition x.

Since x ∈ H1
0 (O), by Lemma 5.3, Remark 3.6 and interpolation we have,

for N = 3 and some C > 0,

E

[
sup

t∈[0,T ]

|Xx
λ(t)−Xx(t)|2N

]

≤ C

(
E

[
sup

t∈[0,T ]

|Xx
λ(t)−Xx(t)|22

]) 1
2

‖x‖1, ∀λ ∈ (0, 1].

(7.9)

where Xx is the solution to (1.1) with initial condition x.
Hence, by (5.31), for 2 ≤ N ≤ 3,

lim
λ→0

E

[
sup

t∈[0,T ]

|Xx
λ(t)−Xx(t)|2N

]
= 0. (7.10)
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Furthermore, applying Itô’s formula to (7.5) and the function ϕε(r) =

(r + ε)
1
N , ε ∈ (0, 1), and proceeding as in the proof of the previous lemma,

we obtain P-a.s.

ϕε(|Xx
λ(t)|NN) + ρ

∫ t

0

|Xx
λ(r)|N−1

N (|Xx
λ(r)|NN + ε)−

N−1
N dr

≤ ϕε(|x|NN) + C∗
∫ t

0

|Xx
λ(r)|Ndr

+λ(N − 1)

∫ t

0

|Xx
λ(r)|N−2

N−2(|Xx
λ(r)|NN + ε)−

N−1
N dr

+

∫ t

0

〈
Xx

λ(r)|Xx
λ(r)|N−2(|Xx

λ(r)|NN + ε)−
N−1

N , Xx
λ(r)dW (r)

〉
, ∀t ≥ 0.

(7.11)

Taking expectation in (7.11), we see that, by (7.10) and Fatou’s Lemma we
may then let λ → 0 and, subsequently, let ε → 0 to arrive at

e−C∗tE|Xx(t)|N + ρ

∫ t

0

e−C∗θP[|Xx(θ)|N > 0]dθ ≤ |x|N , ∀t > 0. (7.12)

Since for each t > 0,

∫ t

0

e−C∗θP[|Xx(θ)|N > 0]dθ = sup
ε>0

∫ t

0

e−C∗E[|Xx(θ)|N(|Xx(θ)|N + ε)−1]dθ,

by (7.8) and Fatou’s lemma, (7.12) extends to the solution Xx of (1.1) for
arbitrary x ∈ LN(O). But, for x ∈ LN(O), by Lemma 7.2 (i), (7.8) and
(7.10), the process t → e−C∗t|Xx(t)|N is an L1-limit of supermartingales,
hence itself a supermartingale. Hence

|Xx(t)|N = 0 for t ≥ τ = inf{t ≥ 0 : |Xx(t)|N = 0},

and thus P[|Xx(θ)|N > 0] = P[τ > θ]. By (7.12), for Xx with x ∈ LN(O),

this yields P[τ > t] ≤
(

ρ

∫ t

0

e−C∗θdθ

)−1

|x|N , as claimed. ¤

Remark 7.4 In particular, taking µk = 0 for all k, implying C∗ = 0, we
have τ ≤ |x|N

ρ
and recover the deterministic case ([2]).

37



8 Appendix 1

Proposition 8.1 below is due to H. Brezis ([16]) who answered a question we
raised and we are grateful to him for this.

Proposition 8.1 Let O be a bounded, convex domain of RN , N ≥ 1, with
smooth boundary (of class C2). Let Jε = (I+εA)−1, where A = −∆, D(A) =
H1

0 (O) ∩H2(O) and ε > 0. Then
∫

O
|∇Jε(y)|dξ ≤

∫

O
|∇y|dξ, ∀y ∈ W 1,1

0 (O). (8.1)

Proof. For simplicity, we shall write here |∇y| instead of |∇y|N . Rescaling,
we can assume ε = 1 and so reduce (8.1) to

∫

O
|∇u|dξ ≤

∫

O
|∇y|dξ, ∀y ∈ W 1,1

0 (O), (8.2)

where
u−∆u = y in O; u = 0 dS − a.e. on ∂O, (8.3)

and dS is the surface measure on ∂O. Without loss of generality, we may
also assume y ∈ C∞

0 (O).
We set

Di =
∂

∂ξi

, D2
ij =

∂2

∂ξi∂ξj

, i, j = 1, ..., N,

ϕ(ξ) = |∇u(ξ)| =
(

N∑
i=1

|Diu|2
) 1

2

, ϕε(ξ) =
√

ε2 + |∇u(ξ)|2.
(8.4)

We shall prove (8.2) following several steps.

Lemma 8.2 We have

ϕ2

ϕε

−∆ϕε ≤ |∇y| in O. (8.5)

Proof. By (8.4), we have

ϕεDjϕε =
N∑

i=1

DiuD2
iju,
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which yields

(Djϕε)
2 ≤ 1

ϕ2
ε

|∇u|2
N∑

i=1

(D2
iju)2

and therefore

|∇ϕε|2 ≤ ϕ2

ϕ2
ε

N∑
i,j=1

|D2
iju|2 ≤

N∑
i,j=1

|D2
iju|2 in O. (8.6)

We also have

ϕε∆ϕε + |∇ϕε|2 =
N∑

i,j=1

|D2
iju|2 +

N∑
i=1

Diu∆Diu

=
N∑

i,j=1

|D2
iju|2 +

N∑
i=1

Diu(Diu−Diy)

=
N∑

i,j=1

|D2
iju|2 + |∇u|2 −∇u · ∇y ≥ |∇ϕε|2 + ϕ2 − ϕ|∇y|,

where the last inequality follows by (8.6). This yields

−ϕε∆ϕε + ϕ2 ≤ ϕ|∇y|,
which implies (8.5), as claimed.

Assume that 0 ∈ ∂O and represent locally ∂O = {(ξ′, ξN); ξN = γ(ξ′)},
where γ is a C2-function in a neighborhood of 0 in RN−1 and γ(0) = 0,
∇γ(0) = 0.

Lemma 8.3 We have

DNϕε(0) = (DNu)2(0)(ε2 + (DNu)2(0))−
1
2 ∆ξ′γ(0). (8.7)

Proof. By (8.4), we have

ϕεDNϕε =
N∑

i=1

DiuDNiu. (8.8)

Since u = 0 on ∂O, we have

u(ξ1, ξ2, ..., ξN−1, γ(ξ1, ξ2, ..., ξN−1)) = 0
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and differentiating with respect to ξi, i = 1, ..., N − 1, yields

Diu + DNuDiγ ≡ 0, i = 1, ..., N − 1, (8.9)

D2
iiu + 2DiNuDiγ + D2

NNu(Diγ)2 + DNuDiiγ ≡ 0. (8.10)

By (8.9), (8.10), we get in ξ′ = 0, ξN = 0,

Diu(0) = 0, Diiu(0) + DNu(0)Diiγ(0) = 0. (8.11)

By (8.11), we have

∆u(0) = DNNu(0)−DNu(0)∆ξ′γ(0),

while, by (8.3), we have ∆u(0) = 0, which yields

DNNu(0) = DN(0)∆ξ′γ(0). (8.12)

Now, taking (8.8) in 0 and using (8.11), (8.12), we obtain
√

ε2 + (DNu(0))2 DNϕε(0) = DNu(0)DNNu(0) = (DNu)2(0)∆ξ′γ(0),

as claimed.

Proof of Proposition 8.1. Let n be the outward normed to ∂O. We have

∂ϕε

∂n
(0) = −DNϕε(0) =

−(DNu(0))2

√
ε2 + (DNu)2(0)

∆ξ′γ(0). (8.13)

On the other hand, since O is convex, we have ∆γ(0) ≥ 0 and, therefore,

∂ϕε

∂n
(0) ≤ 0. (8.14)

Since 0 can be replaced by an arbitrary point of ∂O, we have therefore

∂ϕε

∂n
≤ 0 on ∂O. (8.15)

Integrating (8.5) over O, we get
∫

O

ϕ2

ϕε

dξ −
∫

∂O

∂ϕε

∂n
dS ≤

∫

O
|∇y|dξ,

and so, by (8.15), we have
∫

O

ϕ2

ϕε

dξ ≤
∫

O
|∇y|dξ.

Then, letting ε → 0, we get (8.2), thereby completing the proof.
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Remark 8.4 Proposition 8.1, which has an interest in itself, amounts to
saying that the heat flow on convex smooth domains O is nonexpansive in
W 1,1

0 (O). Analyzing the previous proof, one sees that it remains true for
domains with piecewise smooth and convex boundary.

Corollary 8.5 Let O be a convex, bounded and open subset of RN . Then

φ(Jε(u)) ≤ φ(u), ∀u ∈ BV (O), (8.16)

where φ is the functional (2.2).

Proof. Let u ∈ BV (O), φ(u) < ∞. This means that there is {un}⊂W 1,1
0 (O)

such that un → u in L1(O) and

φ(u) ≥ lim sup
n→∞

∫

O
|∇un|dξ. (8.17)

while

lim sup
n→∞

∫

O
|∇Jε(yn)|dξ ≥ φ(Jε(y)). (8.18)

By (8.16), (8.17) and (8.1), it follows (8.16). ¤

Proposition 8.1 can be extended as follows.

Proposition 8.6 Let g : [0,∞) → [0,∞) be a continuous and convex func-
tion of at most quadratic growth such that g(0) = 0. Then

∫

O
g(|∇Jε(y)|)dξ ≤

∫

O
g(|∇y|)dξ, ∀y ∈ H1

0 (O). (8.19)

Proof. Since g is of at most quadratic growth, as before we may assume
that y ∈ C∞

0 (O). Furthermore, without loss of generality, we may assume
that g ∈ C2([0,∞)). (This can be achieved by regularizing the function g.)
As in the previous case, it suffices to prove (8.19) for ε = 1. We set

φ(ξ) = g(ϕ(ξ)), φε(ξ) = g(ϕε(ξ)), ξ ∈ O,

where ϕ and ϕε are in (8.4). We have

∇φε = g′(ϕε)∇ϕε, ∆φε = g′(ϕε)∆ϕε + g′′(ϕε)|∇ϕε|2, ξ ∈ O,

41



and so, by (8.5),

φ2

φε

−∆φε = g′(ϕε)

(
ϕ2

ϕε

−∆ϕε

)
+

g2(ϕ)

g(ϕε)

−g′(ϕε)
ϕ2

ϕε

− g′′(ϕε)|∇ϕε|2

≤ g′(ϕε)|∇y|+ g2(ϕ)

g(ϕε)
− g′(ϕε)

ϕ2

ϕε

.

(8.20)

Now, proceeding as in the proof of Proposition 8.1, we take 0 ∈ ∂O and
represent locally ∂O as {(ξ′, ξN); ξN = γ(ξ′)}, where γ ∈ C2, γ(0) = 0,
∇γ(0) = 0. By (8.14) and since g is increasing, we have

DNφε(0) = g′(ϕε(0))DNϕε(0) = −g′(ϕε(0))
∂ϕε

∂n
(0) ≥ 0.

This yields ∂φε

∂n
(0) = −DNφε(0) ≤ 0 and, therefore, replacing 0 by an arbi-

trary point of ∂O, we obtain that

∂φε

∂n
≤ 0 on ∂O.

Integrating (8.20) over O, we therefore get

∫

O

φ2

φε

dξ ≤
∫

O

(
g′(ϕε)

(
|∇y| − ϕ2

ϕε

)
+

g2(ϕ)

g(ϕε)

)
dξ.

Letting ε → 0, we see that
∫

O
g(ϕ)dξ ≤

∫

O
g′(ϕ)(|∇y| − ϕ)dξ +

∫

O
g(ϕ)dξ ≤

∫

O
g(|∇y|)dξ

because g′(u)(u− v) ≥ g(u)− g(v), ∀u, v ∈ R+. This completes the proof of
(8.19). ¤

Let jλ : RN → R be the Moreau–Yosida approximation from Section 5.
Then, since ∇jλ = ψλ, it is easy to check that

jλ(u) =





1

2λ
|u|2N for |u|N ≤ λ,

|u|N − λ

2
for |u|N > λ.
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Corollary 8.7 For all ε > 0 and λ > 0, we have∫

O
jλ(∇Jε(y))dξ ≤

∫

O
jλ(∇y(ξ))dξ, ∀y ∈ H1

0 (O). (8.21)

Proof. One applies Proposition 8.6 to the function

g(r) =





1

2λ
r2 for 0 ≤ r ≤ λ,

r − λ

2
for r > λ. ¤

Remark 8.8 In Corollary 8.7, the quadratic growth condition on g can be
relaxed. If, e.g., g grows at most of order p ∈ [1,∞), then∫

g(|∇Jε(y)|)dξ ≤
∫

g(|∇y|)dξ, ∀y ∈ W 1,p
0 (O).

In particular, applying Corollary 8.7 to g(u) = |u|p, where 1 ≤ p < ∞,
we obtain that for each bounded and convex set O ⊂ RN with C2-boundary,
we have

|∇Jε(y)|p ≤ |∇y|p, ∀y ∈ W 1,p
0 (O). (8.22)

The case p = ∞ is also true and was earlier proved by Brezis and Stam-
pacchia ([17]). In other words, the operator A is dissipative in W 1,p

0 (O) for
all 1 ≤ p ≤ ∞.

9 Appendix 2. (Proof of (5.17))

We have, for y, z ∈ H1
0 (O),

〈
Ãλ(t)y − Ãλ(t)z, y − z

〉

=

∫

O
(ψλ(∇(eW (t)y))− ψλ(∇(eW (t)z))) · ∇(e−W (t)(y − z))dξ

+λ

∫

O
∇(e−W (t) · (y − z)) · ∇(eW (t)(y − z))dξ +

1

2

∫

O
µ|y − z|2dξ

=

∫

O
(ψλ(∇(eW (t)y))− ψλ(∇(eW (t)z))) · (∇(eW (t)y)−∇(eW (t)z))e−2W (t)dξ

+

∫

O
(ψλ(∇(eW (t)y))− ψλ(∇(eW (t)z)))eW (t)(y − z) · ∇(e−2W (t))dξ

+
1

2

∫

O
µ|y − z|2dξ + λ

∫

O
∇(e−W (t)(y − z)) · ∇(eW (t)(y − z))dξ
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≥ −2Lipψλ

∫

O
|∇(eW (t)(y − z))||y − z| |∇W (t)| e−W (t)dξ

+λ

∫

O
|∇(y − z)|2dξ − λ

∫

O
(y − z)2|∇W (t)|2dξ

≥ −2Lip ψλ

∫

O
(|∇(y − z)||y − z||∇W (t)|+ |y − z|2|∇W (t)|2)dξ

+λ

∫

O
(|∇(y − z)|2 − (y − z)2|∇W (t)|2)dξ ≥ −δλ

t (ω)|y − z|22, ∀t ∈ [0, T ],

where

δλ
t (ω) =

(
1

λ
(Lip ψλ)

2 + 2

)
|∇W (t)(ω)|2∞,

Lip ψλ is the Lipschitz constant of ψλ and we have used the Young inequality
in the last step. Then, (5.17) follows.
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223, Birkhäuser, Basel, 2004.

[4] H. Attouch, G. Buttazzo, M. Gerard, Variational Analysis in Sobolev
Spaces and BV Spaces; Applications to PDES and Optimization, SIAM
Series on Optimization, Philadelphia, 2006.

[5] V. Barbu, Nonlinear Differential Equations of Monotone Type in Ba-
nach Spaces, Springer, New York, 2010.

[6] T. Barbu, V. Barbu, V. Biga, D. Coca, A PDE variational approach to
image denoising and restoration, Nonlinear Analysis Real World Appli-
cations, 10 (2009), 1351-1361.
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[11] V. Barbu, G. Da Prato, M. Röckner, Addendum to “Stochastic non-
linear diffusion equations with singular diffusivity, SIAM J. Math. Anal.,
vol. 41, 3 (2009), 1106-1120. CRC 701 - Preprint 2011.
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