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1. Introduction

Let us consider the second order operator

Lu = % div
(
A∇u

)
+
√
%(b,∇u) +

√
%cu

acting on functions u on Rd × (0, T ), where %(x, t) ≥ 0, A(x, t) is a nonnegative
d × d-matrix, b(x, t) ∈ Rd and c(x, t) ≤ 0; div and ∇ are taken with respect to x.
We study uniqueness of solutions to the Cauchy problem

∂tz = L∗z, z|t=0 = 0. (1)

We shall say that a function z belonging to the class L2(Rd×[κ, T ]) for every number
κ ∈ (0, T ) satisfies the Fokker–Planck–Kolmogorov equation ∂tz = L∗z if∫ T

0

∫
Rd

[∂tu(x, t) + Lu(x, t)]z(x, t) dx dt = 0 ∀u ∈ C∞
0 (Rd × (0, T )).

A function z satisfies the initial condition z|t=0 = 0 if (I −∆)−1z(x, t) ∈ L1(Rd) for
almost all t ∈ (0, T ) and

lim
n→∞

ess supt∈(0,1/n)‖(I −∆)−1z( · , t)‖L1 = 0, (2)

lim
n→∞

ess supt∈(0,1/n)‖(I −∆)−1/2z( · , t)‖L2 = 0. (3)

The last equality means convergence to zero in the negative Sobolev space H2,−1(Rd)
dual to the Sobolev space H2,1(Rd), so that z( · , t) belongs to this space once it is
in L2; equality (2) corresponds to the norm in the space H1,−2(Rd) also belonging
to the scale of spaces

Hp,r(Rd) := (I −∆)−r/2(Lp(Rd)), ‖(I −∆)−r/2f‖p,r = ‖f‖p,
where ‖f‖p is the norm in Lp(Rd). In terms of the function g = (I −∆)−1z condi-
tion (3) means that lim

t→0
‖g( · , t)‖2,1 = 0 provided we consider t in some full measure

set in (0, T ), while (2) is simply lim
t→0

‖g( · , t)‖1 = 0 with the same interpretation.

Let c = 0. Similarly, one can consider the Cauchy problem

∂tz = L∗z, z|t=0 = ν (4)
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in the class of functions z such that z( · , t) is a probability density for a.e. t (such
solutions will be called probability solutions) with the initial condition ν that is a
probability measure on Rd. In that case the definition of the initial condition in (4)
is this: there is a full measure set S0 ⊂ (0, T ) such that, as t→ 0 in S0, the measures
z( · , t)dx converge to the measure ν weakly, that is,

lim
t→0,t∈S0

∫
ϕ(x)z(x, t) dx =

∫
ϕ(x) ν(dx), ϕ ∈ Cb(Rd). (5)

We recall that in the case of probability measures it is enough to have this equality
just for all ϕ ∈ C∞

0 (Rd) (which is convergence in the sense of distributions), so that
it follows from (2) or (3) (the latter, of course, requires also the membership in L2

for the solution).
Note that (4) holds for transition densities of diffusions processes, but we do not

discuss such processes here and do not assume their existence.
In this paper we give a sufficient condition that the Cauchy problems (1) and (4)

have unique solutions.

Let us list our assumptions about the coefficients of the operator L:

(H1) % is a nonnegative measurable function on Rd× [0, T ] (neither boundedness
nor strict positivity or smoothness is assumed);

(H2) A(x, t) = (aij(x, t))i,j≤d is a symmetric positive definite matrix with bounded
and Lipschitzian in the variables (x, t) components aij such that for some number
λ > 0 one has A(x, t) ≥ λI;

(H3) b = (bi)i≤d is a vector mapping with components bi ∈ L∞(Rd × [0, T ]),
c ∈ L2(Rd × [0, T ])

⋂
L∞(Rd × [0, T ]) and c ≤ 0.

Our main result is the following theorem.

Theorem 1. Let Conditions (H1), (H2), and (H3) be fulfilled. Then the Cauchy
problem (1) (with initial condition in the sense of (2), (3)) has the unique solution
z = 0 in the class of solutions such that, for every κ ∈ (0, T ) and every ball U ⊂ Rd,
one has z ∈ L2(Rd × [κ, T ]), %z ∈ L2(U × [κ, T ]) and

lim
N→∞

∫ T

κ

∫
N≤|x|≤2N

√
%(x, t)|z(x, t)|

1 + |x|
+
%(x, t)|z(x, t)|

1 + |x|
+
%(x, t)2|z(x, t)|2

1 + |x|2
dx dt = 0.

(6)
If (6) holds for κ = 0, then the same is true if in place of (2), (3) we have convergence
z( · , t) → 0 as t→ 0, t ∈ S0 in the sense of distributions.

Let c = 0. If z1 and z2 are probability solutions to the Cauchy problem (4) such
that, letting z = z1−z2, we have z ∈ L2(Rd× [κ, T ]) for every number κ ∈ (0, T ) and
also (3) and (6) hold, then z1 = z2. If (6) holds with κ = 0, then, for any probability
measure ν on Rd, the Cauchy problem (4) with (5) in place of (2), (3) has at most
one probability solution belonging to L2(Rd × [κ, T ]) for each κ ∈ (0, T ).

In the case of coefficients of the class C2 the uniqueness of solutions to the Cauchy
problem for degenerate Fokker–Planck–Kolmogorov equations was proved, e.g., in
[19]. The case of integrable and Sobolev coefficients was studied in [14], [9], [16],
[3], and [2]. In all these papers the existence of densities of solutions was assumed.
Without this assumption in the case of a degenerate diffusion matrix there is no
uniqueness of solutions; see Girsanov’s example [10], where d = 1, b = 0, c = 0,
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A = 1, %(x) = |x|γ, γ ∈ (0, 1/2), Dirac’s measure at 0 is a solution and there is
another solution (an example with bounded % is given in Remark 3.11 in [3]).

In [3] in the one-dimensional case and in [2] in the multi-dimensional case, unique-
ness was studied for the equation ∂tz = ∆(%z), where no smoothness of % was as-
sumed, but only its measurability. Thus, we extend the results from [3], [2] to the
case of more general operators L. We split the problem in the two parts: degeneracy
of % and a connection with the initial data; conditions (2)–(3) and (6) are our princi-
pal novelties. We remark that we follow a completely different approach to the proof
of uniqueness, which is a modification of the classical Holmgren principle. The case
of a nondegenerate diffusion matrix was investigated in many works, among which
we note [1], [11], [15], [4], [17], [18], and [7]. A survey of recent progress in the study
of equation (4) for measures (its definition is similar) is given in [6]. It is worth
noting that a probability measure satisfying (4) is given by a density if % > 0 (see
[5] and [6]), otherwise singular solutions may exist.

2. Proof and additional remarks

The proof of Theorem 1 is based on a number of auxiliary results.

Lemma 1. Suppose that z is a solution to the equation ∂tz = L∗z and α ∈ (0, T ).
Then, for every function u ∈ C∞

0 (Rd× (−1, α]), there exists a set Ju of full measure
in [0, α] such that for every pair s, t ∈ Ju with s < t∫

Rd

u(x, t)z(x, t) dx =

∫
Rd

u(x, s)z(x, s) dx+

∫ t

s

∫
Rd

[∂tu(x, t) +Lu(x, t)]z(x, t) dx dτ.

Proof. Let η ∈ C∞
0 ((0, α)). By definition∫ α

0

∫
Rd

[∂t(uη) + L(uη)]z dx dt = 0.

Hence we obtain

−
∫ α

0

η′(t)

∫
Rd

u(x, t)z(x, t) dx dt =

∫ α

0

η(t)

∫
Rd

[∂tu+ Lu]z dx dt.

Therefore, the function

t 7→
∫

Rd

u(x, t)z(x, t) dx

has an absolutely continuous version and

d

dt

∫
Rd

u(x, t)z(x, t) dx =

∫
Rd

[∂tu+ Lu]z dx.

Then for some number C ∈ R∫
Rd

u(x, t)z(x, t) dx = C +

∫ t

0

∫
Rd

[∂su+ Lu]z dx ds

for almost all t ∈ [0, α]. Let Ju denote the set of all those t for which the last
equality is fulfilled. Then, subtracting from this equality for t the equality for s, for
all t, s ∈ Ju we obtain the desired identity. �

Remark 1. (i) If u(x, t) = ψ(x) with ψ ∈ C∞
0 (Rd), then there exists a full measure

set Jψ in [0, α] such that for all t, s ∈ Jψ∫
Rd

ψ(x)z(x, t) dx =

∫
Rd

ψ(x)z(x, s) dx+

∫ t

s

∫
Rd

Lψ(x)z(x, τ) dx dτ.
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(ii) Let u ∈ C∞
0 (Rd × (−1, α]) and α ∈ Ju( · ,α). Then for all s ∈ Ju( · ,α)∫

Rd

u(x, α)z(x, α) dx =

∫
Rd

u(x, s)z(x, s) dx+

∫ α

s

∫
Rd

[∂tu+ Lu]z dx dτ.

We need an estimate on solutions to the backward Cauchy problem for the adjoint
operator.

Lemma 2. Let q ∈ C∞
0 (Rd × (−1, α]), q ≥ 0, rij, hi, g ∈ C∞(Rd × (−1, α]), g ≤ 0,

and g ∈ L2(Rd × (−1, α]). Suppose also that R = (rij) is a symmetric matrix such
that for some number λ > 0 one has R ≥ λI. Then the Cauchy problem

∂tf + q div(R∇f) +
√
q(h,∇f) +

√
qgf = 0, f |t=α = ψ, (7)

where ψ ∈ C∞
0 (Rd), has a solution of the class C∞(Rd × (−1, α]) such that∫

Rd

|∇f(x, t)|2 dx+ λ−1

∫ α

t

∫
Rd

q
∣∣div(R∇f)

∣∣2 dx ds ≤
≤ λ−1M

∫
Rd

|∇ψ(x)|2 dx+ λ−1M max
x
|ψ(x)|2

∫ α

−1

∫
Rd

|g(x, t)|2 dx dt, (8)

where M = 2 supx,t |R(x, t)| exp
(
2αλ−1 supx,t |∂tR(x, t)|+2αλ−1 supx,t |h(x, t)|2

)
and

∂tR denotes the matrix (∂tr
ij)i,j≤d.

Proof. 1. Let us prove the existence of a solution. According to [13, Chapter IV,
§ 5, Theorem 5.1] for every natural number n ≥ 1 there exists a bounded solution
fn ∈ C∞(Rd × (−1, α]) of the backward Cauchy problem

∂tfn + (q + n−1) div(R∇fn) +
√
q(h,∇fn) +

√
qgfn = 0, fn|t=α = ψ.

Recall that g ≤ 0. By the maximum principle (see [13, Chapter I, § 2, Theorem 2.5])
we have maxx,t |fn(x, t)| ≤ maxx |ψ(x)|. Applying [19, Section 3.2, Theorem 3.2.4]
we obtain the following estimate for every fixed pair of natural numbers m and l:

max
x,t

|∂mt ∂lxfn(x, t)| ≤ Cm,l,

where Cm,l does not depend on n. Hence there exists a subsequence {fnk
} which

converges together with all derivatives to a function f . It is clear that f belongs to
C∞(Rd × (−1, α]) and is a solution of the Cauchy problem (7).

2. Let us prove our main estimate (8). Let U be a ball in Rd such that q = 0
and ψ = 0 outside of U . Then, whenever x 6∈ U , we have ∂tf(x, t) = 0 and
f(x, α) = ψ(x) = 0. Therefore, f(x, t) = 0 for all t ∈ (−1, α] whenever x does not
belong to U . Multiplying the equation by div(R∇f) and integrating we obtain∫

Rd

∂tf div(R∇f) dx+

∫
Rd

q
∣∣div(R∇f)

∣∣2 dx =

= −
∫

Rd

√
q(h,∇f)div(R∇f) dx−

∫
Rd

√
qgfdiv(R∇f) dx. (9)

To simply long formulas we omit indication of variables of functions like f(x, t),
R(x, t), etc. Integrating by parts (f has compact support) we have

2

∫
Rd

∂tf div(R∇f
)
dx = − d

dt

∫
Rd

|
√
R∇f |2 dx+

∫
Rd

(∂tR∇f,∇f) dx.
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Applying the inequality 2xy ≤ 2−1x2 + 2y2, we find that

2

∣∣∣∣∫
Rd

√
q(h,∇f)div(R∇f) dx

∣∣∣∣ ≤
≤ 2−1

∫
Rd

q
∣∣div(R∇f)

∣∣2 dx+ 2 sup
x,t

|R(x, t)−1/2h(x, t)|2
∫

Rd

|
√
R∇f |2 dx.

By the maximum principle maxx,t |f(x, t)| ≤ maxx |ψ(x)|. Hence

2

∣∣∣∣∫
Rd

√
qgfdiv(R∇f) dx

∣∣∣∣ ≤ 2−1

∫
Rd

q
∣∣div(R∇f)

∣∣2 dx+2 max
x
|ψ(x)|2

∫
Rd

|g(x, t)|2 dx.

Using these relations in (9) and integrating over [t, α], we arrive at the inequality∫
Rd

|
√
R(x, t)∇f(x, t)|2 dx+

∫ α

t

∫
Rd

q
∣∣div(R∇f)

∣∣2 dx ds ≤
≤

∫
Rd

|
√
R(x, α)∇ψ(x)|2 dx+ 2 max

x
|ψ(x)|2

∫ α

t

∫
Rd

|g|2 dx ds+

+M1

∫ α

t

∫
Rd

|
√
R∇f |2 dx ds,

where M1 = 2λ−1 supx,t |∂tR(x, t)|+ 2λ−1 supx,t |h(x, t)|2. In particular,∫
Rd

|
√
R(x, t)∇f(x, t)|2 dx ≤

∫
Rd

|
√
R(x, α)∇ψ(x)|2 dx+

+ 2 max
x
|ψ(x)|2

∫ α

t

∫
Rd

|g|2 dx ds+M1

∫ α

t

∫
Rd

|
√
R∇f |2 dx ds.

Applying the Gronwall inequality and the estimate R ≥ λI, we obtain the required
estimate. �

Remark 2. We observe that subtracting the function ψ from f we may assume that
f solves the Cauchy problem for a non-homogeneous equation, but with zero initial
condition. Applying inner estimates for strong solutions to parabolic equations (see
[12, Section 4 in Chapter 2]), we can assert the following. Let q > 0 on some ball U .
Then for every ball U ′ with U ′ ⊂ U one has∫ α

0

∫
U ′

[
|∂xi

f(x, t)|2 + |∂xi
∂xj

f(x, t)|2
]
dx dt ≤ C1,

where C1 depends on U , U ′, q, ψ, and supx,t(|R|+ |∇R|+ |∂tR|+ |h|+ |g|).

Now let us prove Theorem 1. Informally speaking, the idea is to multiply the
solution by the solution to the backward Cauchy problem with the adjoint operator
and integrate, but due to rather weak assumptions we end up with inequalities.

Proof. Let ψ ∈ C∞
0 (Rd), |ψ(x)| ≤ 1 and∫

Rd

|∇ψ(x)|2 dx ≤ 1.

Let also ϕN(x) = ϕ(x/N), where ϕ ∈ C∞
0 (Rd) is such that ϕ ≥ 0, ϕ(x) = 1 if |x| < 1

and ϕ(x) = 0 if |x| > 2. Fix a natural number N . Let U2N = {x : |x| < 2N}. Let
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a sequence of functions qn ∈ C∞
0 (Rd × (−1, α]) be such that qn ≥ 0, qn(x) > 0 if

|x| < 2(N + 1) and

lim
n→∞

∫ T

κ

∫
U2N

|%− qn|2

qn
z2 dx dt = 0 ∀κ ∈ (0, T ).

Note that existence of such a sequence follows from the condition that %z belongs to
L2(U2N × [κ, T ]) for every κ ∈ (0, T ). Indeed, for every κ = 1/n there is a smooth
nonnegative function q̃n with compact support such that∫ T

1/n

∫
U2N

|%− q̃n|2z2 dx dt < 1/n2.

Set qn = q̃n + n−1ω, where ω ∈ C∞
0 (Rd), ω ≥ 0, ω(x) = 1 if |x| < 2(N + 1) and

ω(x) = 0 if |x| > 2(N + 2). It is clear that {qn} is the required sequence.
We recall that b ∈ L∞(Rd× [0, T ]). Therefore, there exists a sequence of functions

hm ∈ C∞(Rd × (−1, T )) such that |hm(x, t)| ≤ ‖b‖L∞ and hm(x, t) → b(x, t) for
almost all (x, t) in Rd × [0, T ].

We also recall that c ∈ L2(Rd × [0, T ])
⋂
L∞(Rd × [0, T ]) and c ≤ 0. Therefore,

there exists a sequence of functions gm ∈ C∞(Rd × (−1, T )) such that gm ≤ 0,
|gm(x, t)| ≤ ‖c‖L∞ , ‖gm‖L2(Rd×[−1,T ]) ≤ 2‖c‖L2(Rd×[0,T ]) and gm(x, t) → c(x, t) for

almost all (x, t) in Rd × [0, T ].
By assumption the matrix A has Lipschitzian (in (x, t)) entries aij. Let Λ be a

common Lipschitz constant for the functions aij. There is a sequence of functions
Rij
m ∈ C∞(Rd × (−1, T )) such that the operators Rm := (Rij

m)i,j≤d are strictly posi-
tive, the functions Rij

m converge to aij uniformly on U × [0, T ] for every ball U , there
holds the estimate |∂tRij

m|+ |∇Rij
m| ≤ 2Λ and ∇Rij

m(x, t) → ∇aij(x, t) for almost all
(x, t) ∈ Rd × [0, T ].

Let α ∈
⋂
N JψϕN

and 0 < α < T . We observe that
⋂
N JψϕN

is a full measure set
in the interval (0, T ). Let fn,m be the solution to the following backward Cauchy
problem in Rd × (−1, α]:

∂tfn,m+ qndiv
(
Rm∇fn,m

)
+
√
qn

(
hm,∇fn,m

)
+
√
qngmfn,m = 0, fn,m(x, α) = ψ(x).

Set

L̂u = qndiv
(
Rm∇u

)
+
√
qn

(
hm,∇u

)
+
√
qngmu, L0u = % div

(
A∇u

)
+
√
%(b,∇u).

Applying Lemma 1 to the function u = fn,mϕN , we obtain the equality∫
Rd

ψ(x)ϕN(x)z(x, α) dx =

∫
Rd

fn,m(x, s)ϕN(x)z(x, s) dx+

+

∫ α

s

∫
Rd

[(Lfn,m − L̂fn,m)ϕN + fn,mL0ϕN + 2%(A∇fn,m,∇ϕN)]z dx dt (10)

for almost all s ∈ (0, α). We observe that by the maximum principle

|fn,m(x, t)| ≤ sup
x
|ψ(x)| ≤ 1.

Hence ∫ α

s

∫
Rd

fn,mL0ϕNz dx dt ≤
∫ T

s

∫
Rd

|L0ϕN ||z| dx dt.
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By Lemma 2 there exists a number C, which does not depend on n,m, N , and t,
such that ∫

Rd

|∇fn,m(x, t)|2 dx+

∫ α

0

∫
Rd

qn
∣∣div(Rm∇fn,m)

∣∣2 dx dt ≤ C. (11)

Then, taking only the first term in this estimate and using the Cauchy inequality,
we have∫ α

s

∫
Rd

%(A∇fn,m,∇ϕN)z dx dt ≤
√
CT

(∫ T

s

∫
Rd

%2z2|A∇ϕN |2 dx dt
)1/2

.

Let us prove that for all fixed s and N one has

lim
n→∞

(
lim
m→∞

∫ α

s

∫
Rd

(Lfn,m − L̂fn,m)ϕNz dx dt

)
= 0.

To this end we observe that

Lfn,m − L̂fn,m = (%− qn)div(Rm∇fn,m) + %div
(
(A−Rm)∇fn,m

)
+

+ (
√
%−√

qn)(hm,∇fn,m) +
√
%(b− hm,∇fn,m)+

+ (
√
%−√

qn)gmfn,m +
√
%(c− gm)fn,m. (12)

Let us consider the summands separately. We recall that 0 ≤ ϕN ≤ 1. Applying
estimate (11), where we take only the second term, we obtain∫ α

s

∫
Rd

(%− qn)zϕNdiv(Rm∇fn,m) dx dt ≤

≤
(∫ T

s

∫
U2N

|%− qn|2

qn
z2 dx dt

)1/2(∫ α

s

∫
Rd

qn|div(Rm∇fn,m)|2 dx dt
)1/2

≤

≤ C1/2

(∫ T

s

∫
U2N

|%− qn|2

qn
z2 dx dt

)1/2

.

Noting that |√%−√
qn|2 ≤ |%− qn|2q−1

n and |hm| ≤ ‖b‖L∞ , we obtain the estimate∫ α

s

∫
Rd

(
√
%−√

qn)(hm,∇fn,m)zϕN dx dt ≤

≤ C1/2‖b‖L∞
(∫ T

s

∫
U2N

|%− qn|2

qn
z2 dx dt

)1/2

.

We now estimate the term in (12) with
√
%(b− hm,∇fn,m). We have∫ T

s

∫
Rd

√
%(b− hm,∇fn,m)zϕN dx dt ≤ C1/2

(∫ T

s

∫
U2N

%z2|b− hm|2 dx dt
)1/2

.

In the same way we estimate the terms with (
√
%−√qn)gmfn,m and

√
%(c−gm)fn,m.

We obtain∫ α

s

∫
Rd

(
√
%−√

qn)gmfn,mϕNz dx dt ≤ 2‖c‖L2

(∫ T

s

∫
U2N

|%− qn|2

qn
z2 dx dt

)1/2

and∫ α

s

∫
Rd

√
%(c− gm)fn,mϕNz dx dt ≤ ‖c− gm‖L2(U2N×[0,T ])

(∫ T

s

∫
U2N

%z2 dx dt

)1/2

.
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According to Remark 2,∫ α

0

∫
U2N

|∂xi
∂xj

fn,m(x, t)|2 dx dt ≤ C1(n),

where C1(n) does not depend on m. Then∫ α

s

∫
Rd

%zϕNdiv
(
(A−Rm)∇fn,m

)
dx dt ≤

≤ C1(n)1/2

(∫ T

s

∫
U2N

%2z2|A−Rm|2 dx dt
)1/2

+

+ C1/2

(∫ T

s

∫
U2N

%2z2|∇(A−Rm)|2 dx dt
)1/2

.

Therefore, we arrive at the estimate∣∣∣∣∫ α

s

∫
Rd

(Lfn,m − L̂fn,m)ϕNz dx dt

∣∣∣∣ ≤
≤ C1/2(1 + ‖b‖L∞ + 2‖c‖L2)

∫ T

s

∫
U2N

|%− qn|2

qn
z2 dx dt+

+ C1/2

(∫ T

s

∫
U2N

%z2|b− hm|2 dx dt
)1/2

+

+ ‖c− gm‖L2(U2N×[0,T ])

(∫ T

s

∫
U2N

%z2 dx dt

)1/2

+

+ C1(n)1/2

(∫ T

s

∫
U2N

%2z2|A−Rm|2 dx dt
)1/2

+

+ C1/2

(∫ T

s

∫
U2N

%2z2|∇(A−Rm)|2 dx dt
)1/2

.

It remains to observe that letting first m → ∞ and then n → ∞, we see that the
right-hand side of the latter inequality vanishes in the limit taken in the indicated
order. Finally, let us consider in (10) the term∫

Rd

fn,m(x, s)ϕN(x)z(x, s) dx.

Let g(x, s) = (I −∆)−1z(x, s). Then

g( · , s)−∆g( · , s) = z( · , s), g( · , s) ∈ L1(Rd) ∩ L2(Rd).

By the definition of the initial condition there is a full measure set S0 ⊂ (0, T ) such
that

lim
s→0,s∈S0

‖g( · , s)‖1 = 0, lim
s→0,s∈S0

‖g( · , s)‖2,1 = 0.
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Substituting g −∆g in place of z and integrating by parts (which is possible, since
fn,m and g are Sobolev in x and ϕN ∈ C∞

0 ), we arrive at the equality∫
Rd

fn,m(x, s)ϕN(x)z(x, s) dx =

=

∫
Rd

fn,m(x, s)ϕN(x)g(x, s) dx+

∫
Rd

(∇fn,m(x, s),∇g(x, s))ϕN(x) dx−

−
∫

Rd

(∇fn,m(x, s),∇ϕN(x))g(x, s) dx−
∫

Rd

fn,m(x, s)∆ϕN(x)g(x, s) dx.

Since the sequences {ϕN}, {∇ϕN}, {∆ϕN}, and {fn,m} are uniformly bounded and
‖∇fn,m( · , t)‖2

L2(Rd)
≤ C, there exists a number C2 > 0, which does not depend on

N , n, and m, such that∫
Rd

fn,m(x, s)ϕN(x)z(x, s) dx ≤ C2

(
‖g( · , s)‖1 + ‖g( · , s)‖2,1

)
.

Summing the obtained inequalities and letting first m → ∞ and then n → ∞, on
the basis of (10) we arrive at the estimate∫

Rd

ψ(x)ϕN(x)z(x, α) dx ≤ C2

(
‖g( · , s)‖1 + ‖g( · , s)‖2,1

)
+

+

∫ T

s

∫
Rd

|L0ϕN ||z| dx dt+ 2
√
CT

(∫ T

s

∫
Rd

%2z2|A∇ϕN |2 dx dt
)1/2

.

Note that for some number C3 > 0∫ T

s

∫
Rd

|L0ϕN ||z| dx dt ≤ C3

∫ T

s

∫
N≤|x|≤2N

√
%(x, t)|z(x, t)|

1 + |x|
+
%(x, t)|z(x, t)|

1 + |x|
dx dt,

since |∇ϕN | ≤ N−1 maxx |∇ϕ(x)|, |∂xi
∂xj

ϕN | ≤ N−2 maxx |∂xi
∂xj

ϕ(x)|. Letting now
N →∞ and then s→ 0, s ∈ S0, we obtain∫

Rd

ψ(x)z(x, α) dx ≤ 0

for almost all α ∈ (0, T ). Since ψ was arbitrary, we obtain that z = 0. Hence the
first assertion of the theorem is proven.

Let c = 0. Let z1 and z2 be two probability solutions (zi ≥ 0 and ‖zi( · , t)‖1 = 1,
i = 1, 2) to the Cauchy problem ∂tz = L∗z, z|t=0 = ν, where the initial condition is
understood in the sense of (5). Then the difference z = z1 − z2 satisfies the Cauchy
problem with zero initial condition. We recall that z ∈ L2(Rd × [κ, T ]) for every
κ ∈ (0, T ). Let us fix a full measure set S0 ⊂ (0, T ) such that for all t ∈ S0 one has
z( · , t) ∈ L2(Rd) and lim

t→0,t∈S0

‖(I −∆)−1/2z( · , t)‖2 = 0. Let us show that (2) holds

automatically:
lim

t→0,t∈S0

‖(I −∆)−1z( · , t)‖1 = 0.

Indeed, let g1(x, t) = (I − ∆)−1z1(x, t). Then g1( · , t) belongs to H2,2(Rd) and
satisfies the equation g1 − ∆g1 = z1 for each fixed t ∈ S0. By the maximum
principle g1 ≥ 0. Let us consider the Fourier transform:

ĝ1(y, t) = (1 + |y|2)−1ẑ1(y, t).

We observe that ĝ1(0, t) = 1, hence each g1(x, t) dx, t ∈ S0, is a probability measure.
Similarly, g2( · , t) dx is a probability measure, g2(x, t) = (I −∆)−1z2(x, t) if t ∈ S0.
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In addition, for every y the function ẑ1(y, t) tends to ν̂(y) as t → 0, t ∈ S0, which
implies convergence of ĝ1(y, t) to ĝ1(y, 0). Hence the measures g1(x, t) dx converge
weakly to g1(x, 0) dx as t→ 0, t ∈ S0. Since L1(Rd) ⊂ Hq,−1(Rd) with q = p/(p−1),
p > d and (I − ∆)−1(Hq,−1(Rd)) = Hq,1(Rd), we have ‖g1( · , t)‖q,1 ≤ C for some
number C that does not depend on t ∈ S0. Therefore, one has convergence of g1(x, t)
to g(x) in L1(U) on every ball U ⊂ Rd as t → 0, t ∈ S0. This implies convergence
of g1(x, t) to g1(x, 0) in L1(Rd), since g1(x, t) are probability densities in x. The
same reasoning applies to g2. Therefore, the difference g1( · , t) − g2( · , t) converges
to zero in L1(Rd) as t→ 0, t ∈ S0. Thus, in the considered situation of probability
solutions it is enough to keep only condition (3).

Finally, we observe that if in (6) we allow κ = 0, then (2), (3) can be replaced by
convergence z( · , t) → 0 as t→ 0, t ∈ S0 in the sense of distributions (in the case of
probability solutions by (5)). To this end, it suffices to apply the same reasoning as
above, but with s = 0, when the first integral on the right in (10) vanishes at s = 0,
so that (2) and (3) are not used. �

It is worth noting that in the first assertion in Theorem 1 a solution need not be
integrable on the whole space. Certainly, this assertion can be applied to obtain
uniqueness in the class of signed bounded measures possessing square integrable
densities satisfying (6). In particular, it gives uniqueness in the class of bounded
integrable functions satisfying (6) (and the latter holds automatically in this class
if % is uniformly bounded).

Remark 3. Let V ∈ C2(Rd), V ≥ 0 and lim
|x|→∞

V (x) = +∞. Repeating the proof of

the theorem with the function ϕN(x) = ϕ(V (x)/N), we see that Theorem 1 remains
valid if condition (6) is replaced by the following one:

lim
N→∞

N−1

∫ T

κ

∫
N≤V (x)≤2N

((
|L0V |+ %|

√
A∇V |2

)
|z|+ %2|z|2|A∇V |2

)
dx dt = 0

for every κ ∈ (0, T ), where L0V = % div
(
A∇V

)
+
√
%(b,∇V ).

Note also that if %(x, t) ≤ C(1+ |x|) and z ∈ L1(Rd× [κ, T ])∩L2(Rd× [κ, T ]), then
(6) holds automatically. If % is bounded and d ≤ 2, then (6) holds automatically
too.

Remark 4. We observe that for the functions fn,m constructed in the proof (solu-
tions to the backward equation) the Sobolev inequality yields∫

Rd

|fn,m|2d/(d−2) dx ≤ C(d)

(∫
Rd

|∇fn,m|2 dx
)(d−2)/d

.

Therefore, for some number C > 0∫ α

s

∫
Rd

fn,mL0ϕNz dx dt ≤

≤ CN−1

(∫ α

s

∫
N≤|x|≤2N

|%|2d/(d+2)|z|2d/(d+2) dx dt

)(d+2)/2d

+

+ CN−1

(∫ α

s

∫
N≤|x|≤2N

|%|d/(d+2)|z|2d/(d+2) dx dt

)(d+2)/2d

,
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whose right-hand side is estimated by

C1

(∫ α

s

∫
N≤|x|≤2N

|%|2|z|2 dx dt
)1/2

+

+ C1

(∫ α

s

∫
N≤|x|≤2N

|%|2|z|2 dx dt
)1/4(∫ α

s

∫
N≤|x|≤2N

|z|2 dx dt
)1/4

.

Therefore, condition (6) can be also replaced by

lim
N→∞

∫ T

κ

∫
N≤|x|≤2N

%2|z|2 dx dt = 0 ∀κ ∈ (0, T ).

Remark 5. Let us also note that (3) is equivalent to

lim
n→∞

ess supt∈(0,1/n)‖(1 + |y|2)−1/2ẑ(y, t)‖L2 = 0, (13)

where ẑ(y, t) denotes the Fourier transform in the first variable. In particular, due
to the dominated convergence theorem (13) holds in the case of probability solutions
on R1; for probability solutions in case d = 2 it is ensured by an estimate

|ẑ(y, t)| ≤ C/ log(|y|+ 1),

for probability solutions in any dimension by an estimate

|ẑ(y, t)|2 ≤ (1 + |y|)3−dΦ(|y|)
with an integrable function Φ on [0,+∞). For general solutions the latter estimate
and (2) also yield (13).

If d = 1, then, as noted above, condition (3) can be omitted (since it holds auto-
matically), however, the requirement that admissible solutions are in L2 is essential
for uniqueness, as shows the example from [3] with bounded % mentioned above.

This work was supported by the RFBR projects 10-01-00518, 11-01-90421-Ukr-f-
a, 11-01-12104-ofi-m, the Russian President Grant MK-3674.2011.1, and the DFG
through the programme SFB 701 at Bielefeld University.
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