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Abstract

We prove that the solutions to the stochastic wave equation in
O ⊂ Rd, dẊt −∆Xtdt+ g(Xt)dt = σ(Xt)dWt, for d = 1, 2, 3, where g
is a C1-function with polynomial growth less than 3 and σ is Lipschitz
with σ(0) = 0, propagate with finite speed. This result resembles the
classical finite speed of propagation result for the solution to the Klein-
Gordon equation and extends to equations with dissipative damping.
A similar result follows for the equation with additive noise of the
form F (t)dWt where F (t) = F (t, ξ) has compact support (in ξ) for
each t > 0.
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1 Introduction

It is well known that relativistic equations, such as nonlinear wave and Klein-
Gordon equations, have the finite speed of propagation property and this is
a distinctive feature of hyperbolic equations. We shall prove here that this
property remains valid for nonlinear wave equations driven by multiplicative
Wiener noise.
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(vb41@uaic.ro)
†Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany

(roeckner@math.uni-bielefeld.de).

1



More precisely, we here consider the stochastic equation

(1.1)

dẊ(t)−∆X(t)dt+ g(X(t))dt = σ(X(t))dW (t)

in (0,∞)×O,
X(0, ξ) = x(ξ), ξ ∈ O, Ẋ(0, ξ) = y(ξ), ξ ∈ O,
X(t) = 0 on (0,∞)× ∂O,

where O is a bounded and open domain in Rd, d ≥ 1, σ : R→ R is Lipschitz,
σ(0) = 0 and W (t) is a spatial Gaussian noise, that is, white in time. More
precisely,

(1.2) W (t, ξ) =
∞∑
j=1

µjej(ξ)βj(t), t ≥ 0, ξ ∈ O.

Here {βj}∞j=1 are mutually independent Brownian motions on a probability
space {Ω,F ,Ft,P}, {F}t is the natural filtration induced by {βj(t)}j and
{ej} is an orthonormal system in the space L2(O). For simplicity, we take
{ej} the orthonormal system of eigenfunctions of the Laplace operator ∆
with Dirichlet boundary conditions, that is,

(1.3) −∆ej = λjej in O; ej = 0 on ∂O.

The function g : R→ R is assumed to satisfy

(H1) g ∈ C1(R), g is increasing and g(0) = 0, ∀r ∈ R and

(1.4) |g′(r)| ≤ L(1 + |r|p), ∀r ∈ R,

where 0 ≤ p ≤ 2 if d = 3 and p ≥ 0 if d = 1, 2.

In the special case of the normalized Klein-Gordon equation from quan-
tum field theory, i.e. g(r) = α|r|pr, assumption (H1) is satisfied (cf. [15]).
As regards the Wiener process (1.2), we assume that

(1.5)
∞∑
j=1

µ2
j |ej|2∞ <∞

and in 3−D, by virtue of (1.3), this holds if

(1.5′)
∞∑
j=1

µ2
jλ

2
j <∞.
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The existence theory for nonlinear stochastic wave equations was treated
e.g. in [3], [4], [6], [7], [9], [10], [11], [12], [14]. The existence of an invariant
measure and ergodic properties of the transition semigroups corresponding
to stochastic wave equations with dissipative damping and additive noise
were studied in [1], [2], [3], [5]. Here we shall prove that, for equation (1.1)
with probability one, the speed of propagation is with velocity less or equal
to 1. This localization result is new in the stochastic case we consider here.
The standard strategy to prove this property for the deterministic Klein-
Gordon equation is based on the Paley-Wiener theorem combined with fix
point arguments (cf. [15]), but this does not seem applicable here, and so we
shall use a different approach inspired by Tartar’s energy method (see [16]).

2 Preliminaries

Everywhere in the following, O is a bounded and open subset of Rd with
boundary ∂O. Denote by W 1,p(O), 1 ≤ p ≤ ∞, Hk(O), k = 1, 2, and
H1

0 (O) the standard Sobolev spaces on O. The norm in the space Lp(O) of
Lebesgue p-integrable functions on O is denoted by | · |p, the scalar product
by 〈·, ·〉2 and | · | is the Euclidean norm in Rd.

Given a Hilbert space with the norm | · |H, denote by Lq([0, T ];Lp(Ω;H)),
p, q ∈ [1,+∞], the space of all q-integrable functions u : [0, T ] → Lp(Ω;H).
C([0, T ];Lp(Ω;H)) denotes the corresponding space of maps which are p-
mean continuous, with norm

‖u‖C([0,T ];Lp(Ω;H)) = sup{E|u(t)|pH; t ∈ [0, T ]}1/p.

We set V = H1
0 (O) with the norm ‖u‖2

V =
∫
O |∇u|

2dξ and scalar product
〈u, v〉V =

∫
O∇u · ∇v dξ. Denote by H the space L2(O). We write prob-

lem(1.1) as an infinite dimensional system setting Y (t) = Ẋ(t),

(2.1)


dX(t) = Y (t)dt,

dY (t) = −(AX(t) + g(X(t))dt+ σ(X(t))dW (t),

X(0) = x, Y (0) = y,

where A is the realization of the Laplace operator with Dirichlet boundary
conditions in L2(O), that is, Ax = −∆x, ∀x ∈ D(A) := H2(O) ∩H1

0 (O).
We consider the product Hilbert space H = V ×H with scalar product

〈(u, v), (ũ, ṽ)〉H = 〈u, ũ〉V + 〈v, ṽ〉2 .
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We can rewrite problem (2.2) in the space V ×H as

(2.2)


dZ = AZ dt−F(Z)dt+ B(Z)dW (t),

Z(0) =

(
x

y

)
,

where

Z(t) =

(
X(t)

Y (t)

)
, A =

(
0 1

−A 0

)
,

F(Z) =

(
0

g(X)

)
, B(Z)W =

(
0

σ(X)W

)
.

It is well known (see, e.g., [13], po. 220) that A is the infinitesimal generator
of a strongly continuous group in V ×H given by (the wave kernel)

etA =

(
cos(A

1
2 t) A−

1
2 sin(A

1
2 t)

−A 1
2 sin(A

1
2 t) cos(A

1
2 t)

)
.

Definition 2.1 An {Ft}-adapted stochastic process Z(t) =
(
X(t)
Y (t)

)
with P-a.s.-

continuous sample paths in V ×H is called a mild solution to system (2.1)
if, for any T > 0, we have

(i) X ∈ C([0, T ];L2(Ω;V )), Y ∈ C([0, T ];L2(Ω;H)),

(ii) j(X) ∈ L∞(0, T ;L1(Ω×O)),

(iii) for all t ≥ 0, P-a.s.

X(t) = x+

∫ t

0

Y (s)ds,

Y (t) = −A 1
2 sin(A

1
2 t)x+ cos(A

1
2 t)y −

∫ t

0

cos(A
1
2 (t− s))g(X(s))ds

+

∫ t

0

cos(A
1
2 (t− s))σ(X(s))dW (s).

Here j(r) =

∫ r

0

g(s)ds, ∀r ∈ R.

As regards the global existence in equation (2.2), we have the following
result, which is well known (see, e.g., [4], [12]), but we recall it for conve-
nience.
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Proposition 2.2 Let x ∈ V, y ∈ H. Then there is a unique mild solution
(X, Y ) to (2.2).

Proof. The proof will be sketched only. First, we prove the existence for
the equations

(2.3)

dXn = Yndt, t ∈ (0, T ),

dYn = −AXndt− gn(Xn)dt+ σ(Xn)dW,

Xn(0) = x, Yn(0) = y,

where gn : V → H is the truncation operator

gn(u) =


g(u), if ‖u‖V ≤ n,

g

(
nu

‖u‖V

)
, if ‖u‖V > n.

Since, by virtue of (H1), gn is Lipschitz from V to H, by standard existence
results for infinite dimensional stochastic differential equations (see [7]), it
follows that there is a unique process(

Xn

Yn

)
∈ C([0, T ];L2(Ω;V ))× C([0, T ];L2(Ω;H))

satisfying equation (iii) in Definition 2.1. Moreover, since etA, t > 0, is a
semigroup of contractions on V ×H, it follows by [7, Proposition 6.11] that
this process has P-a.s. continuous sample paths in V × H. In other words,
(Xn, Yn) is a mild solution to (2.3) in the sense of Definition 2.1, of which
property (ii) will be proved below.

Now, by (2.3), via Itô’s formula applied to the function

φ(u, v) =
1

2
(‖u‖2

V +|v|22),

we obtain that

1

2
E(‖Xn(t)‖2

V + |Yn(t)|22) + E
∫ t

0

∫
O
g(Xn(s, ξ))Yn(s, ξ)dξ ds

=
1

2
(‖x‖2

V + |y|22) +
1

2
E
∫ t

0

∫
O

∞∑
j=1

µ2
j |σ(Xn(s))ej|2dξ ds.
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More precisely, we apply Itô’s formula to the square of the Fourier coefficients
of (Xn, Yn) ∈ V ×H with respect to an orthonormal basis in V ×H and then
take the sum.

Recalling that Yn =
∂Xn

∂t
and that j(Xn(t)) =

∫ Xn(t)

0

g(u)du, a.e. t > 0,

we find the estimate

(2.4)

1

2
E(‖Xn(t)‖2

V + |Ẋn(t)|22) + E
∫
O
j(Xn(t, ξ))dξ

≤ 1

2
(‖x‖2

V + |y|22) + CE
∫ t

0

|Xn(s)|22ds+

∫
O
j(x)dξ, ∀t ∈ [0, T ],

which, in particular, implies (ii) in Definition 2.1 for Xn. Hence

(2.5) E‖Xn(t)‖2
V + E|Ẋn(t)|22 ≤ C(1 + ‖x‖2

V + |x|p+2
p+2 + |y|22), ∀t ∈ [0, T ],

where C is independent of n. By (2.5), it follows that for each n and t ∈ [0, T ]

(2.6) P[‖Xn(t)‖V ≥ n] ≤ Cn−2(1 + ‖x‖2
V + |x|p+2

p+2 + |y|22).

If τn = inf{t > 0; ‖Xn(t)‖V > n} ∧ T , we have that gn(Xn) = g(Xn) on
(0, τn) and so X(t) = Xn(t), Y (t) = Yn(t) for 0 < t ≤ τn is a solution to
(2.1). By (2.6), we see that lim

n→∞
τn = T , P-a.s., and so (X, Y ) is a solution to

(2.1) in the sense of Definition 2.1, as desired, since letting n→∞ in (2.4),
also (ii) in Definition 2.1 holds.

The uniqueness is immediate by the local Lipschitz property of the func-
tion g from V to H via Itô’s formula. �

3 The main result

If K is a closed subset of O we denote by dK(ξ) the distance from ξ ∈ O to
K, that is,

inf{|ξ − η|; η ∈ K}

and, for each r > 0, we set

Kr = {ξ ∈ O; dK(ξ) ≤ r}.

For a given function f : O → R, let support {f} denote the closure of the
set {ξ ∈ O; f(ξ) 6= 0}.
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Theorem 3.1 Let d=1, 2, 3 and let K be a closed subset of O. Let X=X(t)
be the solution to (1.1) in the sense of Definition 2.1 with initial data x ∈ V,
y ∈ H. If

(3.1) support {x} ⊂ K, support {y} ⊂ K,

then P-a.s.

(3.2) support {X(t)} ⊂ Kt, ∀t ≥ 0.

In other words, P-a.s. the wave front of the solution at time t is in the
neighborhood Kt of the set K. This amounts to saying that with probability
one the solution X = X(t) to (1.1) propagates with finite velocity ≤ 1 and
has its support in the space-time cone {(t, ξ) ∈ (0,∞)×O; dK(ξ) ≤ t}.

Proof. We consider a function ρ ∈ C1(R) such that

ρ(s) = 0, ∀s ≤ 0, ρ(s) > 0, ∀s > 0,(3.3)

ρ′(s) ≥ 0, ∀s ≥ 0,(3.4)

sup
s≥0

(ρ(s) + ρ′(s)) <∞.(3.5)

Consider the local energy function φ : [0,∞)× V ×H → R defined by

(3.6) φ(t, u, v) =
1

2

∫
O
ρ(dK(ξ)− t)(|∇u(ξ)|2 + |v(ξ)|2)dξ.

By (3.1), (3.3), we see that

(3.7) φ(0, x, y) = 0.

In order to make clear the idea of the proof, we continue with a naive (formal)
argument which will be made rigorous later on. (In fact, the formal and not
rigorous aspects of this argument presented below consists in the application
of Itô’s formula in system (2.2) to the Lyapunov function φ defined above.)
Heuristically, applying Itô’s formula in (2.1), we obtain that
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dφ(t,X(t), Y (t))

= φt(t,X(t), Y (t))dt+ 〈∇uφ(t,X(t), Y (t)), Y (t)〉V dt

+ 〈∇vφ(t,X(t), Y (t)),−AX(t)− g(X(t))〉2 dt

+
1

2

∞∑
j=1

µ2
j

〈
∇2

vφ(t,X(t), Y (t))(σ(X(t))ej), σ(X(t))ej
〉

2
dt

+ 〈∇vφ(t,X(t), Y (t)), σ(X(t))dW (t)〉2 , t ≥ 0.

This yields

(3.8)

φ(t,X(t), Y (t))

= −1

2

∫ t

0

∫
O
ρ′(dK(ξ)− s)(|∇X(s, ξ)|2 + |Y (s, ξ)|2)dξ ds

+

∫ t

0

∫
O
ρ(dK(ξ)− s)(∇X(s, ξ) · ∇Y (s, ξ)

+Y (s, ξ)∆X(s, ξ)− Y (s, ξ)g(X(s, ξ)))dξ ds

+
1

2

∞∑
j=1

µ2
j

∫ t

0

∫
O
ρ(dK(ξ)− s)|σ(X(s, ξ))ej(ξ)|2dξ ds

+

∫ t

0

〈Y (s), σ(X(s))dW (s)〉2 , P-a.s., t ≥ 0.

because, by (3.7), φ(0, X(0), Y (0)) = 0.

Taking into account that

|dK(ξ)− dK(ξ̄)| ≤ |ξ − ξ̄| for all ξ, ξ̄ ∈ Rd,

we infer that dK ∈ W 1,∞(Rd) and

(3.9) |∇dK(ξ)| ≤ 1, a.e. ξ ∈ Rd.

On the other hand, by Green’s formula we have that

8



(3.10)

∫
O
ρ(dK(ξ)− s)Y (s, ξ)∆X(s, ξ)dξ

= −
∫
O
ρ(dK(ξ)− s)∇Y (s, ξ) · ∇X(s, ξ))dξ

−
∫
O
ρ′(dK(ξ)− s)Y (s, ξ)∇dK(ξ) · ∇X(s, ξ)dξ.

(The latter is true of course only if Y (s, ·) ∈ V, ∀s ≥ 0.)
Then, by (3.8) and (3.10), we obtain that

(3.11)

φ(t,X(t), Y (t)) = −1

2

∫ t

0

∫
O
ρ′(dK(ξ)− s)|∇X(s, ξ)|2 + |Y (s, ξ)|2

+2Y (s, ξ)∇dK(ξ) · ∇X(s, ξ))dξ ds

+
1

2

∞∑
j=1

∫ t

0

∫
O
ρ(dK(ξ)− s)|σ(X(s, ξ))|2e2

j(ξ)dξ ds

−
∫ t

0

∫
O
ρ(dK(ξ)− s) ∂

∂s
j(X(s, ξ))dξ ds

+

∫ t

0

〈Y (s), σ(X(s))dW (s)〉2 , ∀t ≥ 0,P-a.s.

because Y (s) =
∂

∂s
j(X(s, ξ)) = g(X(s, ξ))Y (s, ξ), a.e. in (0,∞) × O. This

yields

(3.12)

φ(t,X(t), Y (t)) ≤ −1

2

∫ t

0

∫
O
ρ′(dK(ξ)− s)(|∇X(s, ξ)|2 + |Y (s, ξ)|2

+2Y (s, ξ)∇dK(ξ) · ∇X(s, ξ))dξ ds

+
1

2

∞∑
j=1

µ2
j

∫ t

0

∫
O
ρ(dK(ξ)− s)|σ(X(s, ξ))ej(ξ)|2dξ ds

+

∫ t

0

〈Y (s), σ(X(s))dW (s)〉2 , ∀t ≥ 0, P-a.s.,

because j ≥ 0 on R and so, by virtue of (3.1), ρ(dK(ξ))j(x(ξ)) ≡ 0, ∀ξ ∈ O.
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On the other hand, by (3.9) we see that

1

2
(|∇X(s, ξ)|2 + |Y (s, ξ)|2 − 2Y (s, ξ)∇dK(ξ)∇X(s, ξ)) ≥ 0,

a.e. ξ ∈ O, s ≥ 0.

Then, substituting the latter into (3.12), taking expectation and recalling
(1.5), (3.4), (3.5), we obtain that

(3.13) Eφ(t,X(t), Y (t)) ≤ C

∫ t

0

Eφ(s,X(s), Y (s))ds, ∀t ≥ 0,

and hence, since s 7→ φ(s,X(s), Y (s)) is continuous P-a.s., we obtain that
P-a.s.

φ(s,X(s), Y (s)) = 0, ∀s ≥ 0,

and, therefore, P-a.s., ∀t ≥ 0,

(3.14) ρ(dK(ξ)− t)(|∇X(t, ξ)|2 + |Y (t, ξ)|2) = 0, for dξ- a.e. ξ ∈ O.

Recalling (3.3) and that X(t) ∈ H1
0 (O), this yields X(t, ξ) = 0 on

{t < dK(ξ)}, for dξ-a.e. ξ ∈ O, that is

support {X(t)} ⊂ Kt,∀t ∈ [0, T ],

as claimed.
In order to complete the proof, it remains to give a rigorous proof for the

energy formula (3.11). To this purpose, we set

Xε = (I + εA)−1X, Yε = (I + εA)−1Y, ε > 0.

Then, by (2.1) we have

(3.15)

dXε(t) = Yε(t)dt,

dYε(t) = −AXε(t)dt+ (I + εA)−1g(Xε(t)) + σε(X)dW,

Xε(0) = xε = (I + εA)−1x, Yε(0) = yε = (I + εA)−1y,

where σε(X)W =
∞∑
j=1

µj(I + εA)−1(σ(X)ej)βj. We note that by (i), (ii) we

have

(3.16) Xε ∈ C([0, T ];L2(Ω, D(A)), Yε ∈ C([0, T ];L2(Ω;V )).
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Moreover, by (H1) and the Sobolev-Gagliardo-Nirenberg embedding theorem
(H1(O) ⊂ L6(O), for 1 ≤ d ≤ 3), we see that g(X) ∈ L2(0, T ;L2(Ω × O))
and, therefore,

(3.17) (I + εA)−1g(X) ∈ L2(0, T ;L2(Ω, H2(O) ∩H1
0 (O)), ∀ε > 0.

Then, applying in (3.15) the Itô formula to the function φ = φ(t, u, v), we
obtain as above (see (3.8))

(3.18)

φ(t,Xε(t), Yε(t))

= −1

2

∫ t

0

∫
O
ρ′(dK(ξ)− s)(|∇Xε(s, ξ)|2d + |Yε(s, ξ)|2)dξ ds

+

∫ t

0

∫
O
ρ(dK(ξ)− s)(∇Xε(s, ξ) · ∇Yε(s, ξ)

+Yε(s, ξ)∆Xε(s, ξ))− Yε(s, ξ)(I + εA)−1g(X(s, ξ)))dξ ds

+
1

2

∞∑
j=1

µ2
j

∫ t

0

∫
O
ρ(dK(ξ)− s)|(I + εA)−1(σ(X(s))ej)|2dξ ds

+

∫ t

0

〈Yε(s), σε(X(s))dW (s)〉2 , P-a.s.

By (3.16) and Greens formula, we have (see (3.10))∫
O
ρ(dK(ξ)− s)Yε(s, ξ)∆Xε(s, ξ)dξ

= −
∫
O
ρ(dK(ξ)− s)∇Yε(s, ξ) · ∇Xε(s, ξ))dξ

−
∫
O
ρ′(dK(ξ)− s)Yε(s, ξ)(∇dK(ξ) · ∇Xε(s, ξ))dξ.

Substituting into (3.18), we obtain as above that, for all ε > 0,

(3.19)

Eφ(t,Xε(t), Yε(t))

≤ 1

2
E
∫ t

0

∫
O

∞∑
j=1

µ2
j |(I + εA)−1(σ(X(s))ej)|2ρ(dK(ξ)− s)dξds

−E
∫ t

0

∫
O
ρ(dK(ξ)− s)Yε(s, ξ)(I + εA)−1g(X(s, ξ))dξds, ∀t ≥ 0.
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On the other hand, we have, for ε→ 0,

Xε → X in C([0, T ];L2(Ω;V ))

Yε → Y in C([0, T ];L2(Ω;H))

(I + εA)−1g(X) → g(X) in L2(0, T ;L2(Ω;H)),

because X ∈ L2(0, T ;L2(Ω;V )) and |g(X)| ≤ C|X|3.
Since X ∈ C([0, T ];L2(Ω;V ), this implies via the embedding theorem

mentioned above that g(X) ∈ L2(0, T ;L2(Ω;H)). Then, letting ε → 0 in
(3.19), we get

Eφ(t,X(t), Y (t)) ≤ C

∫ t

0

φ(s,X(s), Y (s))ds

+E
∫ t

0

∫
O
ρ(dK(ξ)− s)Y (s, ξ)g(X(s, ξ))ds dξ

≤ CE
∫ t

0

φ(s,X(s), Y (s))ds, ∀t ≥ 0,

because, as seen earlier, we have∫
O
Yε(s, ξ)g(Xε(s, ξ))dξ =

∂

∂s

∫
O
j(Xε(s, ξ))dξ, ∀ε > 0.

We have, therefore, obtained (3.13), which, as seen above, completes the
proof.

Remark 3.2 As a matter of fact, by (3.16), Theorem 3.1 remains true for the
stochastic wave equation (1.1) with nonlinear dissipative damping, that is,

(3.20)

dẊ −∆X dt+ g(X)dt+ U(Ẋ)dt = σ(X) dW in (0,∞)×O,
X(0) = x, Ẋ(0) = y in O,
X = 0 on (0,∞)× ∂O,

where g satisfies Hypothesis (H1) and U : R → R is a monotonically non-
decreasing C1 function satisfying a polynomial growth condition. Leaving
aside the existence problem for (3.19), which was treated in [2], we note that
in this case in the energy equation (3.8) as well as in (3.12) there arises one
more term

−
∫ t

0

∫
O
ρ(dK(ξ)− s)Y (s, ξ)U ′(Y (s, ξ))ds dξ,
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which is ≤ 0 and so we conclude the proof as in the previous case. In
particular, the equation

(3.21) ε dẊ + Ẋ dt−∆X dt = σ(X) dW, ε > 0,

describes the Cattaneo-Vernotte non Fourier heat conduction model per-
turbed by Gaussian noise (the relativistic stochastic heat equation). The
details are omitted.

4 The wave equation driven by additive noise

Consider here the equation

(4.1)

dẊ(t, ξ)−∆X(t, ξ)dt+ g(X(t, ξ))dt = F (t)dW (t) in (0,∞)×O,
X(0, ξ) = x(ξ), ξ ∈ O, Ẋ(0, ξ) = y(ξ), ξ ∈ O,
X(t, ξ) = 0 on (0,∞)× ∂O,

where W is the Wiener process (1.2) , g satisfies Hypothesis (H1) and F
satisfies Hypothesis (H2) below.

(H2) F : [0,∞) × Ω −→ L2(O) is an adapted process to the filtration (Ft)
and

∞∑
j=1

µ2
j

∫ t

0

E
∫
O

(F (s, ξ)2e2
j(ξ)dξ ds <∞.

Then, we have

Theorem 4.1 Let d=1, 2, 3 and let K be a closed subset of O. Let X=X(t)
be the solution to (4.1) in the sense of Definition 2.1 with the initial data
x ∈ V, y ∈ H. If

(4.2) support {x} ⊂ K, support {y} ⊂ K, support {F(t, ·) ⊂ Kt,∀t > 0.

then P-a.s.

(4.3) support {X(t)} ⊂ Kt, ∀t ≥ 0.

13



Proof. It is essentially the same as that of Theorem 3.1 and so it will be
sketched only. If we use in the system

(4.4)


dX(t) = Y (t)dt,

dY (t) = −(AX(t) + g(X(t))dt+ F (t)dW (t),

X(0) = x, Y (0) = y,

the Itô formula for the Lyapunov function (3.6), we obtain as above (see
(3.12)) that

(4.5)

φ(t,X(t), Y (t)) ≤ −1

2

∫ t

0

∫
O
ρ′(dK(ξ)− s)(|∇X(s, ξ)|2d + |Y (s, ξ)|2

+2Y (s, ξ)∇dK(ξ) · ∇X(s, ξ))dξ ds

+
1

2

∞∑
j=1

µ2
j

∫ t

0

∫
O
ρ(dK(ξ)− s)|)|F (s, ξ)ej(ξ)|2dξ ds

+

∫ t

0

〈Y (s), F (s)dW (s)〉2 , ∀t ≥ 0, P-a.s.,

(As a matter of fact, to make the calculus rigorous, one must proceed as in
the previous case by replacing (4.4) by the corresponding system (3.15) and
subsequently letting ε go to zero. But the details are omitted.) Taking into
account that, by Hypothesis (H2), ρ(dK(ξ)−s)F 2(s, ξ) = 0 a.e on (0,∞)×O,
we see by (4.5) that (4.3) holds. This completes the proof.
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