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Abstract

In this note we study the 2d stochastic quasi-geostrophic equation in T2 for general parameter
α ∈ (0, 1) and multiplicative noise. We prove the existence of martingale solutions and pathwise
uniqueness under some condition in the general case , i.e. for all α ∈ (0, 1) . In the subcritical case
α > 1/2, we prove existence and uniqueness of (probabilistically) strong solutions and construct a
Markov family of solutions. In particular, it is uniquely ergodic for α > 2

3 provided the noise is
non-degenerate. In this case, the convergence to the (unique) invariant measure is exponentially fast.
In the general case, we prove the existence of Markov selections.

1. Introduction and notation——Consider the following two dimensional (2D) stochastic quasi-
geostrophic equation in the periodic domain T2 = R2/(2πZ)2:

∂θ(t, x)

∂t
= −u(t, x) · ∇θ(t, x)− κ(−4)αθ(t, x) +G(θ, ξ)(t, x), (1.1)

with initial condition θ(0, x) = θ0(x), where θ(t, x) is a real-valued function of x and t, 0 < α < 1, κ > 0
are real numbers. u is determined by θ through a stream function ψ via the following relations:

u = (u1, u2) = (−R2θ,R1θ). (1.2)

Here Rj is the j-th periodic Riesz transform and ξ(t, x) is a Gaussian random field, white noise in time,
subject to the restrictions imposed below. The variable θ represents the potential temperature, and
u is the fluid velocity. The case α = 1

2 is called the critical case, the case α > 1
2 sub-critical and the

case α < 1
2 super-critical. This equation is important model in geophysical fluid dynamics. The case

α = 1/2 exhibits similar features (singularities) as the 3D Navier-Stokes equations and can therefore
serve as a model case for the latter. In the deterministic case this equation has been intensively
investigated because of both its mathematical importance and its background in geophysical fluid
dynamics. The existence of weak solutions in the deterministic case has been obtained in [7]. In the
following, we will restrict ourselves to flows which have zero average on the torus, i.e.

∫
T2 θdx = 0. Set

H = L2(T2) and let | · | and 〈., .〉 denote the norm and inner product in H, respectively. We recall that
on T2, sin(k · x), cos(k · x) form an eigenbasis of −4. Here k ∈ Z2\{0}, x ∈ T2 and the corresponding
eigenvalues are |k|2. Define ‖f‖2Hs :=

∑
k |k|2s〈f, ek〉2 and let Hs denote the Sobolev space of all
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f for which ‖f‖Hs is finite. Set Λ = (−4)1/2. Define the linear operator A : D(A) ⊂ H → H as
Au = κ(−4)αu. The operator A is positive definite and selfadjoint. Denote the eigenvalues of A
by 0 < λ1 ≤ λ2 ≤ · · · , and by e1, e2,... the corresponding complete orthonormal system in H of
eigenvectors of A. We also denote ‖u‖ = |A1/2u|, then ‖θ‖2 ≥ λ1|θ|2.

2. Existence and uniqueness of solutions —–By the above definitions Eqs (1.1)-(1.2) turn into
the abstract stochastic evolution equation{

dθ(t) +Aθ(t)dt+ u(t) · ∇θ(t)dt = G(θ(t))dW (t),
θ(0) = x,

(2.1)

where u satisfies (1.2) and W (t) is a cylindrical Wiener process in a separable Hibert space K defined
on a probability space (Ω,F , P ). Here G is a mapping from Hα to L2(K,H).

Definition 2.1 We say that there exists a martingale solution to (2.1) if there exists a stochastic basis
(Ω,F , {Ft}t∈[0,T ], P ), a cylindrical Wiener process W on the space K and a progressively measurable
process θ : [0, T ]× Ω→ H, such that for P -a.e ω ∈ Ω

θ(·, ω) ∈ L∞(0, T ;H) ∩ L2(0, T ;Hα) ∩ C([0, T ];Hw) (2.2)

and P -a.s.

〈θ(t), ψ〉+

∫ t

0

〈A1/2θ(s), A1/2ψ〉ds−
∫ t

0

〈u(s) · ∇ψ, θ(s)〉ds = 〈x, ψ〉+ 〈
∫ t

0

G(θ(s))dW (s), ψ〉, (2.3)

for all t ∈ [0, T ] and all ψ ∈ C1(T2). Here C([0, T ];Hw) denotes the space of H-valued weakly
continuous functions on [0, T ].

Remark 2.2 Note that for regular functions θ and v, we have 〈u(s) · ∇(θ(s) + ψ), θ(s) + ψ〉 = 0, so
〈u(s) · ∇θ(s), ψ〉 = −〈u(s) · ∇ψ, θ(s)〉. Thus the integral equation (2.3) corresponds to equation (2.1).

Definition 2.3 We say that there exists a (probabilistically strong) solution to (2.1) over the time
interval [0, T ] if for every probability space (Ω,F , {Ft}t∈[0,T ], P ) with an Ft-Wiener process W , there
exists a a progressively measurable process θ : [0, T ]× Ω→ H such that (2.2) and (2.3) hold.

2.1. The general case—–Consider the following condition:

(G.1) G : H → L2(K,H) is continuous and |G(θ)|2L2(K,H) ≤ λ0|θ|2 + ρ, θ ∈ H for some positive real
numbers λ0 and ρ.
By the compactness method based on fractional Sobolev spaces in [3], we obtain the existence of
martingale solutions.
Theorem 2.1.1 Let α ∈ (0, 1). Under Assumption (G.1), there exists a martingale solution (Ω,F , {Ft},
P,W, θ) to (2.1).

Let fn, n ∈ N, be an ONB of K.

Theorem 2.1.2 Let α ∈ (0, 1). If G ∈ L2(K,H) satisfies (G.1) and also the following conditions: for
all θ ∈ Hα ∩ Lp(T2), ∫

(
∑
j

|G(θ)(fj)|2)p/2dξ ≤ C(

∫
|θ|pdξ + 1),∀t > 0, (2.4)

with 2 < p <∞ for some constant C := C(p) > 0 and for all θ1, θ2 ∈ Hα ∩ Lp(T2),∫
(
∑
j

|(G(θ1)−G(θ2))(fj)|2)p/2dξ ≤ C
∫
|θ1 − θ2|pdξ, (2.5)

then there exists a martingale solution (Ω,F , {Ft}, P,W, θ) to (2.1). Moreover, if θ0 ∈ Lp(T2) with
p > 2, then E supt∈[0,T ] ‖θ(t)‖

p
Lp <∞.
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Theorem 2.1.3 Let α ∈ (0, 1). If G satisfies the Lipschitz condition

‖G(u)−G(v)‖2L2(K,H) ≤ β|u− v|
2 + β1‖u− v‖2Hα

for all u, v ∈ Hα, for some β ∈ R independent of u, v, and β1 < 2κ, then (2.1) admits at most one
solution in the sense of Definition 2.3 such that E supt∈[0,T ] |θ(t)|4 <∞and∫ T

0

‖Λ1−α+εθ(t)‖qLpdt <∞,
1

p
+
α

q
=
α+ ε

2
P − a.s.,

where ε ∈ (0, α] and q <∞.

2.2. The subcritical case—–In this section, we will consider the subcritical case.

Theorem 2.2.1 Assume α > 1
2 . If G satisfies the following condition

‖Λ−1/2(G(u)−G(v))‖2L2(K,H) ≤ β|Λ
−1/2(u− v)|2 + β1|Λα−

1
2 (u− v)|2, (2.6)

for all u, v ∈ Hα, for some β ∈ R independent of u, v, and β1 < 2κ, then (2.1) admits at most one
probabilistically strong solution in the sense of Definition 2.3 such that

sup
t∈[0,T ]

‖θ(t)‖Lq <∞, P − a.s.,

with 0 < 1/q < α− 1
2 , and E supt∈[0.T ] |Λ−1/2θ(t)|2 <∞.

Corollary 2.2.2 Assume α > 1
2 . If there exists a probabilistically strong solution θ2 in the sense of

Definition 2.3 such that
sup
t∈[0,T ]

‖θ2(t)‖Lq <∞, P − a.s.

for some q with 0 < 1/q < α− 1
2 and G satisfies (2.6), then θ2 is the only solution to (2.1) such that

E supt∈[0,T ] |Λ−1/2θ2(t)|2 <∞.

Theorem 2.2.3 Assume α > 1
2 and that G satisfies (2.6), (G.1), (2.4) and (2.5) with 0 < 1/p < α− 1

2 .
Then for each initial condition θ0 ∈ Lp, there exists a pathwise unique probabilistically strong solution
θ of equation (2.1) over [0, T ] with initial condition θ(0) = θ0 such that E supt∈[0,T ] |Λ−1/2θ(t)|2 <∞.
Moreover, the solution satisfies supt∈[0,T ] ‖θ(t)‖Lp <∞, P − a.s..

Theorem 2.2.4 (Markov property) Assume α > 1
2 and that G satisfies (G.1),(2.6) and (2.4),(2.5)

with 0 < 1/p < α − 1
2 . If θ0 ∈ Lp , then for every bounded, B(H)-measurable F : H → R, and all

s, t ∈ [0, T ], s ≤ t

E(F (θ(t))|Fs)(ω) = E(F (θ(t, s, θ(s)(ω)))) for P − a.s.ω ∈ Ω.

Here θ(t, s, θ(s)(ω)) denotes the solution to (3.1) starting from θ(s) at time s satisfying

E sup
t∈[s,T ]

|Λ−1/2θ(t)|2 <∞.

Set pt(x, dy) := P ◦ (θ(t, x))−1(dy), 0 ≤ t ≤ T, x ∈ H, and for B(H)-measurable F : H → R, and
t ∈ [0, T ], x ∈ H,PtF (x) :=

∫
F (y)pt(x, dy), provided F is pt(x, dy)-integrable. Then by Theorem

2.2.4, we have for F : H → R, bounded and B(H)-measurable, s, t ≥ 0, Ps(PtF )(x) = Ps+tF (x), x ∈
Lp for some p with 0 ≤ 1/p < α− 1

2 .

3. Ergodicity and Exponential convergence for α > 2
3

3



Assumption 3.1 There are an isomophism Q0 of H and a number s ≥ 1 such that G = A−
s+α
2α Q

1/2
0 ,

and furthermore, G satisfies (2.4) for some fixed p ∈ ((α− 1
2 )−1,∞) and fj = ej , (which is e.g. always

the case if Q0 = I ).

Set W = D(Λs) and |x|W = |Λsx|. Then by a similar method as in [4] and using the abstract
results in [5] for exponential convergence, we obtain the following results.

Theorem 3.2 Assume α > 2
3 and Assumption 3.1. Then there exists a unique invariant measure ν

on W for the transition semigroup (Pt)t≥0. Moreover:

(i) The invariant measure ν is ergodic in the sense of [2].

(ii) The transition semigroup (Pt)t≥0 isW-strong Feller, irreducible, and therefore strongly mixing
in the sense of [2].

(iii) Moreover, we additionally assume that s > 3 − 2α. Then there is Cexp > 0 and a > 0 such
that ‖P ∗t δx0

−µ‖TV ≤ ‖P ∗t δx0
−µ‖V ≤ Cexp(1 + ‖x0‖qLq )e−at, for all t > 0 and x0 ∈ W, where ‖ · ‖TV

is the total variation distance for measures.

4. Markov Selections in the general case—–By using the abstract results for Markov selections
in [6], we obtain the following results.

Theorem 4.1 Assume G satisfies (G.1). Then there exists an almost sure Markov family (Px0
)x0∈H

for Eq. (2.1).
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[6] B. Goldys, M. Röckner and X.C. Zhang, Martingale solutions and Markov selections for stochastic
partial differential equations, Stochastic Processes and their Appliations 119 (2009) 1725-1764

[7] S. Resnick, Danamical Problems in Non-linear Advective Partial Differential Equations, PhD
thesis, University of Chicago, Chicago (1995)

4


