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Summary
In this thesis, we study two classes of stochastic differential equations

(SDEs in short) with jump noise in weighted L2 spaces over Rd. More pre-
cisely, the first class of SDEs is a jump-diffusion model in the sense of Merton
(see his paper [82] on the theory of option pricing), i.e. the SDE is driven by
a Wiener noise and a Poisson noise. The second class consists of SDE’s with
Lévy noise. We show existence of mild solutions and establish their regu-
larity properties in the case of a drift term consisting of a nonautonomous
linear (differential) operator and a non-Lipschitz Nemitskii-type operator.
There are two principal issues, that make it impossible to apply the general
theory of stochastic evolution equations in Hilbert spaces directly. First,
the diffusion coefficients, given by multiplication operators in L2, are not
Hilbert-Schmidt and, second, the generating functions of the Nemitskii drift
operators are non-Lipschitz and have polynomial growth.
Compared to the framework known for SDEs with Wiener noise, the new
situation requires a detailed analysis of the stochastic convolution w.r.t. a
compensated Poisson random measure in weighted L2 spaces. To this end,
we introduce several regularity conditions on the evolution operator gener-
ated by the nonautonomous drift operators, which are additional to those
in the Wiener case. Furthermore, we need certain integrability conditions
on the Lévy intensity measure associated to the jump process. We prove
both the meansquare continuity and, under certain restrictions, the càdlàg
property of the stochastic convolution w.r.t. compensated Poisson random
measures.
We first show existence (and even uniqueness) of solutions in the case of
Lipschitz functions defining the corresponding Nemitskii operators. Then,
we prove an infinite-dimensional comparison theorem for jump-type diffu-
sions with different Lipschitz drift coefficients. This allows us to prove the
existence of solutions in the case of non-Lipschitz drifts by constructing ap-
propriate Lipschitz approximations and applying the comparison theorem
shown before. It should be noted that a sufficient condition for the solvabil-
ity of the above equations involves an explicit relation between the degree
of polynomial growth of the drift coefficients, integrability properties of the
Lévy intensity measure and the regularity properties of the evolution oper-
ator. Furthermore, in the autonomous case with a Nemitskii drift operator
being defined through a maximal monotone function, we even get uniqueness
of some of the solutions in the additive case if we restrict our considerations
to bounded domains Θ ∈ Rd and cylindrical Wiener processes.
To establish the existence and comparison results in the multiplicative case,
we need to analyse approximating equations in Sobolev spaces Wm,2(Θ) of
order m > d

2 in domains Θ ⊂ Rd obeying the weak cone property. Further-
more, the jump coefficient has to be monotonically increasing and uniformly
bounded, whereas the intensity measure corresponding to the jump noise has
to be concentrated on the set of only positive functions in L2.
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Chapter 1

Introduction

This thesis is concerned with two types of stochastic evolution equations
with jump noise in weighted L2-spaces. Such an abstract setting includes
a large class of stochastic partial differential equations (SPDEs in short) of
parabolic type in (bounded or unbounded) domains Θ ⊂ Rd.
The first equation, named (1.1) below, is a stochastic differential equation
(SDE in short) consisting of:

• a drift part with a nonautonomous operator and a continuous drift
coefficient having polynomial growth,

• a Wiener part with a Lipschitz diffusion coefficient, and

• a Poissonian jump part with a Lipschitz jump coefficient.

This is a jump-diffusion model in the sense of option pricing theory (cf.
Merton’s paper [82], where this terminology was introduced).
The second equation, named (1.2) below, is an SDE consisting of

• a drift part of the same type as in equation (1.1),

• a Lévy jump part with a Lipschitz jump diffusion coefficient.

Note that in the whole thesis, we use the term diffusion coefficient resp.
jump coefficient for the coefficient corresponding to the Wiener resp. Pois-
son noise of an SDE of the form (1.1). Since, in general, a Lévy process L
obeys both a diffusion and jumps, we use the term jump diffusion coefficient
for the coefficient corresponding to the Lévy noise of an SDE of the form
(1.2).

The basic aim of our work is to develop a unified theory of infinite-dimensional
SDEs driven by jump noises (i.e. Poisson random measures or Lévy processes)

1



2 CHAPTER 1. INTRODUCTION

in weighted Lp-spaces. This includes most of the known results for continu-
ous diffusions in Hilbert spaces driven by a Wiener noise as well as particular
results known so far in infinite dimensions for jump diffusions driven by Lévy
noise (see the discussion in Section 1.2 below).

In this thesis, we will put particular emphasis on the transition from the
standard assumptions of (globally) Lipschitz drift coefficients to the case
of continuous coefficients of polynomial growth. The latter case is of es-
sential interest in various applications. Furthermore, we cover the case of
time-dependent evolution operators and non Hilbert-Schmidt coefficients of
Nemitskii type.

The equations will be solved in weighted Lebesgue spaces L2
ρ(Θ) resp. L2ν

ρ (Θ)
over a Borel set Θ ⊂ Rd (for more details on the spaces see Section 1.2 and,
in particular, Section 3.1 below). Especially, we will be interseted in the
technically more difficult case of unbounded domains, e.g. Θ = Rd.

But before we describe the exact setting for equations (1.1) and (1.2), let us
give a general motivation for considering SDEs with jumps.

1.1 Motivation for SDEs with jumps

In recent years there has been large interest in SDEs with general, not nec-
essarily continuous, semimartingales as driving noises. This is reflected in a
growing number of papers going beyond the well-known framework of SDEs
with Wiener noise, e.g. by considering compensated Poisson random mea-
sures or Lévy processes as noise.
Monographs considering this topic with a focus on Lévy processes as driving
noise are, in finite dimensions, Applebaum [7] and, in infinite dimensions,
Peszat and Zabczyk [95].
In the preface of his book [7] on the subject (see p.ix there), Applebaum
presents the following list of reasons, why Lévy processes are important in
probability theory:

• Lévy processes are analogues of random walks in continuous time;

• Lévy processes form special subclasses of both semimartingales and
Markov processes, for which the analysis is, on the one hand, much
simpler and, on the other hand, provides valuable guidance for the
general case;
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• Lévy processes are the simplest examples of random motion whose
sample paths are right-continuous and have a number (at most count-
able) of random jump discontinuities occuring at random times, on
each finite interval;

• Lévy processes include a number of very important processes as special
cases, among them Brownian motion, Poisson process, stable and self-
decomposable processes and subordinated processes.

Concerning the properties of infinite-dimensional Lévy processes, see also
Section 2.4.

In general, stochastic evolution equations in infinite dimensions are often
used to describe complex models in natural sciences. Numerous examples
of SDEs with Wiener noise in infinite dimensions can be found e.g. in the
introductory chapter (Chapter 0) in the monograph [26] by DaPrato and
Zabczyk.
Stochastic evolution equations with Lévy noise, which constitute a large
class of Markov processes, are particularly important. In finite dimensions
there is a famous theorem by Courrège (cf. e.g. [23] and [52]), which states
that, under rather general assumptions, any Markov semigroup on Rd is a
Lévy-type semigroup, i.e. it can be represented as a transition semigroup
corresponding to a certain SDE driven by Lévy noise.
In general, SDEs with compensated Poisson random measures or Lévy processes
as driving random forces are candidates to model situations, where the sys-
tem does not develop in a time-continuous way. Typically, the theory of
SDEs with jumps in infinite-dimensional spaces plays a role in modelling
critical phenomena. Among areas of application let us mention neurophysi-
ology, environmental pollution and mathematical finance.
A prominent example of an application is the so-called FitzHugh-Nagumo
equation in neurophysics. This equation has been treated mathematically
e.g. by Bonnacorsi and collaborators in [16].
As an example from mathematical finance, let us mention the Heath-Jarrow-
Morton model. This model describing the development of interest rates was
originally proposed as an SDE driven by Wiener noise. In recent years, the
model has been refined as an SDE with Lévy noise e.g. by Jakubowski and
Zabczyk in [55] and by Marinelli in [78]. Furthermore, there have also been
attempts to introduce jumps in the Heath-Jarrow-Morton model by consid-
ering an SDE with both a Wiener and a jump noise, where the jump noise
is usually given by a compensated Poisson random measure. Such models
have e.g. been treated by Björk and collaborators (cf. [13]), by Carmona
and Tehranchi (cf. [19]) and by Filipovic, Tappe and Teichmann (cf. [38]).

Having motivated the use of SDEs with jumps, we continue with the in-
troduction of the setting we work in. Furthermore, we relate this setting to
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several important results from the literature.

1.2 The basic equations and their relation to the
existing literature

Let us describe now in detail the equations (1.1) and (1.2) of our interest.
We consider the two SDEs

(1.1) dX(t) = (A(t)X(t) + F (t, ·, X(t)))dt+MΣ(t,·,X(t))dW (t)
+
∫
L2

MΓ(t,·,X(t))x Ñ(dt, dx), t ∈ [ 0, T ],

and

(1.2) dX(t) = (A(t)X(t) + E(t, ·, X(t)))dt
+MΣ(t,·,X(t))dL(t), t ∈ [ 0, T ],

in weighted Lp-spaces over Rd, d ∈ N, which are defined as follows:

On Rd, we introduce the weight α: Rd → [ 1,∞ ) given by

α(θ) = (1 + |θ|2)
1
2 , θ ∈ Rd.

For ρ ∈ N ∪ {0}, let µρ be the (possibly infinite) measure on Rd given
by

(1.3) µρ(dθ) := α−ρ(θ) dθ,

where dθ denotes the Lebesgue measure on Rd.
Given a Borel-measurable set Θ ⊂ Rd, let L2ν

ρ (Θ), ν ≥ 1, be the Banach
space of 2ν-integrable functions w.r.t. the measure µρ on Θ. In what follows,
we will always choose ρ such that µρ is a finite measure on Θ. Note that
this family of weighted Lp-spaces is commonly used in the theory of (both
deterministic and stochastic) PDEs of parabolic type, see e.g. Appendix B.2
in the monograph [95] by Peszat and Zabczyk. For a closer look at these
spaces, see Section 3.1 below.

Concerning the terms in (1.1) and (1.2) we assume that:

• the family (A(t))t∈[ 0,T ] generates an almost strong evolution operator
U = (U(t, s))0≤s≤t≤T in L2

ρ(Θ) (for its definition see Section 2.1 below),

• E, F , Σ and Γ are Nemitskii-type nonlinear operators defined through
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predictable functions e, f , σ and γ: [ 0, T ]×Ω×R → R, e.g. we have

E(t, ϕ)(θ) := e(t, ϕ(θ)), θ ∈ Θ , t ∈ [ 0, T ], ϕ ∈ L2
ρ(Θ),

• MΣ resp. MΓ denotes the multiplication operator corresponding to Σ
resp. Γ, i.e. MΣ: L2(Θ) → L1

ρ(Θ) is defined through

MΣ(t,ω,ϕ)(ψ)(θ) := σ(t, ω, ϕ(θ))ψ(θ), ϕ ∈ L2
ρ(Θ), θ ∈ Θ , t ∈ [ 0, T ],

ϕ ∈ L2
ρ(Θ), ψ ∈ L2(Θ)

and MΓ analogously through γ.

• (W (t))t∈[ 0,T ] is a Q-Wiener process in L2(Θ) with the correlation op-
erator Q to be specified in Section 2.3 below,

• Ñ : [ 0, T ]×Ω×L2(Θ) → R is a compensated Poisson random measure
(see Section 2.4 below), and

• (L(t))t∈[ 0,T ] is a Lévy process in L2(Θ) (see Section 2.5 below).

The solutions to these equations will be constructed in the mild sense. More
precisely, given an L2

ρ(Θ)-valued initial condition ξ, we look for L2
ρ(Θ)-valued

predictable processes (X(t))t∈[ 0,T ] such that for each t ∈ [ 0, T ] we have,
P -almost surely,

X(t) = U(t, 0)ξ +
t∫
0

U(t, s)F (s,X(s)) ds

+
t∫
0

U(t, s)MΣ(s,X(s)) dW (s)

+
t∫
0

∫
L2(Θ)

U(t, s)MΓ(s,X(s))x Ñ(ds, dx)

resp.

X(t) = U(t, 0)ξ +
t∫
0

U(t, s)E(s,X(s)) ds

+
t∫
0

U(t, s)MΣ(s,X(s)) dL(s).

Let us stress that equations (1.1) and (1.2) are models of jump diffusions
with Nemitskii-type operators. In the particular case Γ = 0, such type of
infinite-dimensional diffusion equations was considered e.g. by Manthey and
Zausinger in [76]. Compared to [76], our equation (1.1) has an additional
multiplicative (i.e. solution-dependent) jump noise, which needs a careful
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analysis.
In the autonomous case, i.e. in the case A(t) = A, t ∈ [ 0, T ], with A being
the generator of a C0-semigroup, equation (1.2) describes a jump diffusion
driven by a Lévy process. In general separable Hilbert spaces, such equations
were considered e.g. by Knäble in [59]. As compared to [59], the novelity
of our work is that, restricting our consideration to the weighted L2 spaces
introduced above, we can cover the case of time-dependent operator coeffi-
cients (A(t))t∈[ 0,T ]. Furthermore, our multiplication operators MΣ are of
Nemitskii type and do not preserve the space L2(Θ) resp. L2

ρ(Θ) and hence
are not Hilbert-Schmidt. Moreover, the drift coefficients are not necessarily
(local) Lipschitz continuous.

Before we come to the main results and the structure of our work, let us
give a short overview on the results known so far for equations of the above
type:

Equation (1.1): This equation has two noise sources, a Wiener process
and a compensated Poisson random measure.

First, let us give some remarks on the Wiener noise term.

Recall that the standard type of stochastic evolution equations in infinite-
dimensional Hilbert spaces, which was considered in numerous papers on
S(P)DEs, is

(1.4) dX(t) = (AX(t) + F (t,X(t)))dt+ Σ(t,X(t))dW (t), t ∈ [ 0, T ].

Given separable Hilbert spaces G and H, one usually has the following
assumptions:

• A is the generator of a C0-semigroup (S(t))t∈[ 0,T ] on H,

• F : [ 0, T ] ×H → H is a drift term fulfilling proper regularity condi-
tions,

• Σ: [ 0, T ]×H → L2(G,H) (with L2(G,H) denoting the set of Hilbert-
Schmidt operators from G to H) is an operator diffusion coefficient,

• (W (t))t∈[ 0,T ] is a Wiener process taking values in G.

Existence and uniqueness of so-called mild solutions in the case of Lipschitz
coefficients, i.e. when we have, uniformly for t ∈ [ 0, T ] and x, y ∈ H,

(LD) ||F (t, x)− F (t, y)|| ≤ CF ||x− y||H
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resp.

(LHS) ||Σ(t, x)− Σ(t, y)||L2(G,H) ≤ CΣ||x− y||H

with some positive constant CF resp. CΣ, is a well-known result in the liter-
ature (see e.g. the widely cited monograph [26] by DaPrato and Zabczyk).
Recall that, given an initial condition ξ ∈ H, a mild solution to (1.4) is an
H-valued pathwise continuous process (X(t))t∈[ 0,T ] such that for each
t ∈ [ 0, T ] we have, P -almost surely,

X(t) = S(t)ξ +
t∫
0

S(t− s)F (s,X(s)) ds+
t∫
0

S(t− s)Σ(s,X(s)) dW (s).

Note that existence and uniqueness in the special case A = ∆ and
H = L2

ρ(Θ) was shown e.g. in the paper [66] by Kotelenez.

Nevertheless, in many interesting applications we cannot apply this stan-
dard framework. There has been a large activity in getting existence results
in the case of non-Lipschitz drift since the 1980’s. A popular example in
applications is the situation, where A is the Laplace operator and F is a
polynomial.

Without claiming to be complete, the following list of papers contains the
main achievements in removing the global Lipschitz condition (LD) on F in
the case of the Laplacian A = ∆ in (1.4):

• In 1971, Marcus in [77] in the case Σ = I (I denotes the identity
operator) and, in 1987, Iwata in [54] in the case of bounded, solution-
dependent Σ obeying (LHS) have showed existence and uniqueness
of mild resp. weak solutions in the case of F fulfilling the strong
monotonicity condition

(SM) < F (x)− F (y), x− y >H > c1||x− y||pH , x, y ∈ H

and the growth condition

(G) ||F (x)||qH ≤ c2(1 + ||x||pH)

with positive constants c1, c2 and p > 2, q = p
p−1 .

• In 1988, in [72] Manthey weakened the assumption (SM) on F to the
semi-dissipativity condition

(SD) < F (t, x)− F (t, y), x− y >H ≤ β||x− y||2H , x, y ∈ H,
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with some β ∈ R+.

• In 1995, in [27] Da Prato/Zabczyk assumed F to be the Nemitskii
operator corresponding to a polynomial of the form

(1.5) f(y) =
2n+1∑
k=0

bky
k, b2n+1 < 0, bk ∈ R, 0 ≤ k ≤ 2n, n ≥ 1,

and construct so-called generalized (mild) solutions in weighted L2-
spaces over Rd.
Similar results for stochastic reaction-diffusion equations with nonlin-
ear terms having polynomial growth and satisfying some dissipativity
conditions can also be found in [20], [42] or [57].

• In 1996, in [73] Manthey showed the existence of mild solutions in the
case of F being the Nemitskii operator corresponding to a function
f , which is continuous, has one-sided linear growth and is of at most
polynomial growth. The solutions take their values in weighted L2-
spaces with possibly unbounded domains (for applications to finance,
see e.g. [85]). Similar results are achieved by Gyöngy, Pardoux and
Bally in the series of papers [11], [49], [50], [47] for weak solutions on
bounded domains. Here (see also Section 3.2), one-sided linear growth
means that there is some positive constant cf (T ) such that uniformly
in t ∈ [ 0, T ] we have the estimates

f(t, u) ≥ −cf (T )(1− u) if u ≤ 0 and
(LG)

f(t, u) ≤ cf (T )(1 + u) if u ≥ 0,

whereas the polynomial growth property means that there is a ν ≥ 1
such that, again uniformly in t ∈ [ 0, T ],

(PG) |f(t, u)| ≤ cf (1 + |u|ν) if u ∈ R.

Let us note that polynomials of the form (1.5) obey these properties.

Another class of results relates to the case of a time-dependent operator fam-
ily (A(t))t∈[ 0,T ] replacing A in (1.4). In the case of Lipschitz coefficients the
equation (1.4) has been considered e.g. by Seidler in [103]. Among the con-
tributions extending to the case of a non-Lipschitz drift F we mention the
following, which both work on weighted L2-spaces with unbounded domains:

• In 1992, in [65] Kotelenez showed existence and uniqueness of mild
solutions in the case of W being a cylindrical Wiener process (in the
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sense that W is a Q-Wiener process with operator Q = I), F being a
polynomial of the form (1.5) and Σ obeying the local Lipschitz property
and having at most linear growth.

• In the late 1990’s, in [74] and [76], Manthey and his collaborators
showed existence of solutions in the case of F having at most polyno-
mial growth and obeying the one-sided linear growth condition. This
is a generalization of the previously mentioned paper.

All the papers mentioned above approximate the non-Lipschitz drifts by a
family of Lipschitz ones and then use comparison theorems for the solutions
to the equations corresponding to the Lipschitz drifts.
Generally speaking, the comparison method compensates the lack of a proper
version of Girsanov’s formula in the case of time-dependent A(t).
Manthey and Zausinger invented a new method to prove their compari-
son theorem in [76], (cf. Theorem 3.3.1 there), simplifying the earlier one
from Kotelenez’ paper [65]. We intend to adapt and extend the comparison
method from [76] to the case of additive, i.e. solution-indpendent, jump
resp. jump diffusion coefficients in equation (1.1) resp. (1.2).

Given Hilbert spacesG andH, the simplest example of an infinite-dimensional
SDE with jumps is

dX(t) = (AX(t) + F (t,X(t)))dt+
∫
G

Γ(t,X(t))xÑ(dt, dx), t ∈ [ 0, T ],

where A and F are as above, Ñ is a compensated Poisson random measure
and Γ is appropriate for stochastic integration (conditions for stochastic in-
tegration w.r.t. compensated Poisson random measures are presented in
Section 2.5 below).
This equation has been treated e.g. in the following papers:

• in 1998, in [5] Albeverio, Wu and Zhang showed existence and unique-
ness of càdlàg mild solutions in the case A = ∆ and H = L2

ρ(Θ). It
means that, given the initial conditon ξ and the semigroup S gener-
ated by A, there exists a unique H-valued càdlàg process (X(t))t∈[ 0,T ]

satisfying for any t ∈ [ 0, T ], P -almost surely

X(t) = S(t)ξ +
t∫
0

S(t− s)F (s,X(s)) ds+
t∫
0

∫
G

S(t− s)Γ(s,X(s−)) Ñ(ds, dx).

• In 2005, in [60] Knoche showed existence and uniqueness of mild càdlàg
solutions in the case of Lipschitz coefficients and A being the genera-
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tor of a C0-semigroup (S(t))t≥0 in an abstract Hilbert space.

• In 2008, in [37] Filipovic, Tappe and Teichmann showed existence and
uniqueness of predictable mild and weak solutions, taking values in
some Hilbert space H and being meansquare time-continuous in the
case of Lipschitz drift and diffusion coefficients and A being the gen-
erator of a C0-semigroup (S(t))t≥0.

• In 2009, Albeverio, Mandrekar and Rüdiger in [3] showed existence and
uniqueness of H-valued càdlàg mild (but non-Markovian) solutions in
the case of the Lipschitz coefficients F and Γ depending on the whole
solution path t 7→ X(t), t ∈ [ 0, T ].

The next step is to consider SDEs with both Wiener and jump noises (given
by compensated Poisson random measures)

dX(t) = (AX(t) + F (t,X(t)))dt+ Σ(t,X(t))dW (t)
+
∫
G

Γ(t,X(t))xÑ(dt, dx) , t ∈ [ 0, T ].

Given an H-valued initial condition ξ, a mild solution to this equation is
an H-valued predictable process (X(t))t∈[ 0,T ] such that for all t ∈ [ 0, T ],
P -almost surely,

X(t) = S(t)ξ +
t∫
0

S(t− s)F (s,X(s)) ds+
t∫
0

S(t− s)Σ(s,X(s)) dW (s)

+
t∫
0

∫
G

S(t− s)Γ(s,X(s))xÑ(ds, dx).

In 2008, in [79] Marinelli, Prévôt and Röckner showed existence, unique-
ness and regular dependence on the initial condition for mild solutions to
this equation in the case of Lipschitz coefficients. Let us list some further
results concerning certain special cases of this equation:

• In 2009, in [14] Bo and his collaborators showed existence of mild
solutions in the case of A being a positive self-adjoint operator on
some Hilbert space H.
Under Lipschitz assumptions on the coefficients, the solution takes
values in Sobolev spaces Hα constructed by means of the operator Aα.

• In 2010, in [81] Marinelli and Röckner proved existence and unique-
ness of càdlàg weak and mild solutions to the above equation with
dissipative drift and Lipschitz diffusion and jump coefficients.
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• The so-called variational approach to diffusions with jumps in Banach
spaces, including those driven by Lévy noise, was developed in [46],
[70] and [105].

Compared to our work, these papers impose stronger assumptions on the
operator coefficient Σ, namely that it is Hilbert-Schmidt. This is surely not
the case for the Nemitskii-type operator Σ in equation (1.1). In our con-
text, the absence of the Hilbert-Schmidt property will be compensated by
the smoothing properties of the evolution operator (U(t, s))0≤s≤t≤T , which
are nevertheless not as strong as the smoothing properties of C0-semigroups
(S(t))0≤t≤T (see conditions (A0)– (A8) in Section 3.1 below).

Equation (1.2): Recall that the standard class of stochastic evolution
equations with Lévy noise is

(1.6) dX(t) = (AX(t) + F (t,X(t)))dt+ Σ(t,X(t))dL(t), t ∈ [ 0, T ],

where

• A is the generator of a C0-semigroup (S(t))t∈[ 0,T ] on H;

• F : [ 0, T ]×H → H is a progressively measurable drift term;

• Σ: [ 0, T ]×H → L2(G,H) is a progressively measurable operator dif-
fusion coefficient;

• L: [ 0, T ] × Ω → G is a Lévy process taking values in some Hilbert
space G.

Of particular importance for our considerations are mild solutions to (1.6).
Given anH-valued initial condition ξ, a mild solution to (1.6) is anH-valued
predictable process X = (X(t))t∈[ 0,T ] obeying for any t ∈ [ 0, T ], P -almost
surely,

X(t) = S(t)ξ +
t∫
0

S(t− s)F (s,X(s)) ds+
t∫
0

S(t− s)Σ(s,X(s)) dL(s).

For example, equations of such kind in infinite dimensions are treated in
the recent monograph [95] by Peszat and Zabczyk. For a general theory of
Lévy processes in finite dimensions, see e.g. the monographs [12] by Bertoin
and [96] by Protter.
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Let us give an overview on the results known so far under the standard
assumptions, i.e. the conditions on A are the ones from above:

• In 1987, in [21] Chojnowska-Michalik constructed a weak solution to
(1.6) in the case F = 0 and Σ = I. The solution process is just the
Ornstein-Uhlenbeck process associated with Lévy noise. This is known
to be the first paper dealing with a Hilbert space-valued SDE with a
Levy process as noise.

• In 2000, in [41] Fuhrmann and Röckner show the existence of weak
solutions in the case F = 0 and Σ = I, which is a generalization to
the paper [15], where Bogachev, Röckner and Schmuland treat the
Wiener case. Both papers are mainly concerned with the so-called
Mehler semigroups.

• In 2004, in [7] Applebaum extended the result of Chojnowska-Michalik
to the case of F = 0 and Σ being a bounded, solution-independent
operator (not necessarily I).

• In 2005, the result of [7] was improved in [106] by Stolze by allowing for
Lipschitz drift coefficients F 6= 0 and bounded, solution-independent
Σ. Furthermore, existence and uniqueness of mild solutions was shown.

• In 2006, in [59] Knäble showed existence and uniqueness of mild solu-
tions to (1.6) in the case of Lipschitz coefficients and the Lévy measure
η corresponding to L obeying the square integrability property

(SI)
∫
G

||x||2Gη(dx) <∞.

(For the definition of a Lévy measure see Section 2.4 below.)

• In 2010, in [17] Brezniak and Hausenblas showed existence of a martin-
gale solution in the case of a second order uniformly elliptic operator A,
a dissipative drift coefficient F of polynomial growth, and a bounded
and continuous jump coefficient Σ.
A typical example, to which all this applies, is the case, where A = ∆
in H := L2(Θ) and f(u) = −u3 + u.

Analogously to the case of equation (1.1), the operator coefficient Σ in (1.2)
is not Hilbert-Schmidt and the absence of this property is compensated by
the smoothing property of the evolution operator (U(t, s))0≤s≤t≤T .
Let us now describe the main results of this thesis and the methods applied
to obtain them.
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1.3 The main results and the structure of the the-
sis

The thesis is devided into two parts. The first part, including Chapters 2–4,
collects technical preliminaries and supporting material.

• In Chapter 2, we recall some general properties of Banach space-valued
stochastic processes and evolution operators. This includes the defin-
ition and properties of Wiener processes, Lévy processes and Poisson
random measures in Hilbert spaces. Furthermore, we discuss the sto-
chastic integration w.r.t. Hilbert-space valued Wiener processes and
(compensated) Poisson random measures, which will play a crucial
role in the second part of the thesis.
In particular, we recall the Lévy-Itô decomposition, which is the key
tool to link the results for the two equations (1.1) and (1.2) in the
later chapters.

• In Chapter 3, we place ourselves in the framework of the weighted
Lebesgue spaces L2ν

ρ (Θ), ν ≥ 1.
In Sections 3.1 and 3.2, we specify the conditions on evolution opera-
tors and Nemitskii operators in the weighted Lebesgue spaces L2ν

ρ (Θ),
whereas, in Sections 3.3 and 3.4, we discuss the regularity properties of
Bochner integrals and stochastic convolutions w.r.t. Wiener processes
in the Banach spaces L2ν

ρ (Θ).

• In Chapter 4, we study the regularity properties of stochastic convo-
lutions w.r.t. compensated Poisson random measures in the spaces
L2ν
ρ (Θ).

The main new results in this part (besides that unbounded domains Θ are
allowed) are the continuity properties of the Bochner integrals and of the
stochastic convolutions, which we will describe more precisely in the con-
tents of Chapters 3 and 4 below.

In the second part, consisting of Chapters 5–8, we treat the following items:

• In Chapter 5, we prove the general existence and uniqueness results
for equation (1.1) resp. (1.2) in the case of Lipschitz coefficients F , Σ
and Γ resp. E and Σ.

• In Chapter 6, we establish comparison results for mild solutions to
equation (1.1) resp. (1.2) in the Lipschitz case with functions f resp.
e defining F resp. E in the Nemitskii sense being replaced by larger
resp. smaller ones and additive, i.e. solution-independent, jump resp.
jump diffusion coefficients in equation (1.1) resp. (1.2).
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• In Chapter 7, we show existence and (in some cases) uniqueness results
for equation (1.1) resp. (1.2) with the drift coefficients F resp. E
being of at most polynomial growth and the jump resp. jump diffusion
coefficients being additive.

• In Chapter 8, we extend the results of Chapters 6 and 7 to the case of
multiplicative jump resp. jump diffusion coefficients in equation (1.1)
resp. (1.2).
In Section 8.2, we establish comparison results for solutions to equa-
tions (1.1) and (1.2) in the case of Lipschitz coefficients with functions
f resp. e defining F resp. E in the Nemitskii sense being replaced by
larger resp. smaller ones.
In Sections 8.3 and 8.4, we prove existence results for equations (1.1)
and (1.2) in the most general setting of non-Lipschitz drifts and mul-
tiplicative diffusion, jump and jump diffusion coefficients.

Mainly, we have two classes of new results in this part. First, we prove
existence and uniqueness results in the case of nonautonomous, i.e. time-
dependent, generators of the evolution operator and non-Lipschitz drift co-
efficients, both in the case of additive (see Theorem 7.1.2 and 7.1.3 below)
and multiplicative (see Theorems 8.1.1 and 8.1.2) jump resp. jump diffusion
coefficients in equation (1.1) resp. (1.2). Second, we have a generalization
of the finite-dimensional comparison theory for SDEs with jumps (see e.g.
[92], [113], [67]) to the infinite-dimensional case (see Theorem 8.1.1).
In the main results, an explicit relation between the degree of polynomial
growth of the drift coefficients, integrability properties of the Lévy intensity
measure and the regularity properties of the evolution operator is estab-
lished.

In the following, we describe the content of our work chapter by chapter.

The contents of the chapters

In Chapter 2, we collect some technical preliminaries, the main of which
we shall briefly describe here.

First, we recall the general definitions of (almost strong) evolution operators
in Banach spaces B (Section 2.2) and of Q-Wiener processes (Section
2.3), Lévy processes (Section 2.4) and compensated Poisson random
measures (Section 2.4) in Hilbert spaces H.
A crucial issue to have a link between the two equations (1.1) and (1.2) later
is the so-called Lévy-Itô decomposition (see Lemma 2.4.10 below) and its re-
finement for square-integrable Lévy processes (cf. Lemma 2.4.13 below).
If the square-integrability property (SI) is fulfilled for the intensity measure
η corresponding to a Lèvy process (L(t))t≥0 in a Hilbert space G, the Lévy-
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Itô decomposition takes the form

L(t) = tm+W (t) +
∫
G

xÑ(t, dx)

with a drift vector m ∈ G, a Q-Wiener process W and a compensated
Poisson random measure Ñ .

With the help of this decomposition we can rewrite equation (1.2) as an
equation of form (1.1) with a new drift term F := E + MΣ(m). Never-
theless we will treat equation (1.2) separately, because, in our setting, the
singular drift term MΣ(m) is only in L1

ρ(Θ), and the general Q-Wiener
process (W (t))t∈[ 0,T ] does not obey the coordinate representation

W (t) =
∑
n∈N

√
anwn(t)en, t ∈ [ 0, T ], (cf. (2.5) below)

with an orthonormal basis (en)n∈N ⊂ L2(Θ) obeying

sup
n∈N

||en||L∞ <∞.

For technical simplicity only, in Chapters 5–8 below we only consider L2(Θ)-
valued Lévy processes L, whose intensity measures η obey the square-integrability
property (SI), but the corresponding results can be extended to general Lévy
processes in L2(Θ). Note that (SI) is equivalent to the finiteness of the sec-
ond moments of (L(t))t∈[ 0,T ] (see Proposition 2.4.14 below).

Then, in Section 2.5 resp. 2.6, we recall the properties of stochastic inte-
grals w.r.t. Q-Wiener processes resp. compensated Poisson ran-
dom measures in Hilbert spaces H.

The following analytic tools are of particular importance for the rest of
the thesis:

• the Burkholder-Davis-Gundy inequality for stochastic integrals w.r.t.
Q-Wiener processes (cf. Lemma 2.5.4/2.5.6 below);

• the (infinite-dimensional version of the) Bichteler-Jacod inequality for
the stochastic integration w.r.t. compensated Poisson random measure
Ñ from [80], [81](cf. Lemma 2.6.10 below);

• the Gronwall-Bellman lemma (see Lemma 2.7.3 below).

In Chapter 3, we introduce the special weighted spaces L2ν
ρ (Θ), ν ≥ 1,

where the weight µρ is defined by (1.3). We introduce some regularity con-
ditions on almost strong evolution operators and Nemitskii operators in these
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spaces. Furthermore, we present some preliminary facts on (stochastic) con-
volutions in L2

ρ(Θ).

In Section 3.1, we impose conditions on almost strong evolution operators
U = (U(t, s))0≤s≤t≤T in L2

ρ(Θ) (see (A0)–(A8) in that section). These
conditions later yield the well-definedness and regularity properties of the
stochastic convolutions w.r.t. Q-Wiener processes resp. compensated Pois-
son random measures (see IWϕ and IÑϕ below).

In Section 3.2, we recall the definition of (nonlinear) Nemitskii operators
and specify the conditions of Lipschitz continuity, linear boundedness, one-
sided linear growth and at most polynomial growth (see (LC), (LB), (LG)
and (PG) in that section) for their generating functions on R.

In Sections 3.3 and 3.4, we are concerned with the well-definedness of con-
volution Bochner integrals and the stochastic convolutions w.r.t. Q-Wiener
processes in L2

ρ(Θ). Similar problems have already been treated e.g. by Man-
they and Zausinger in [76]. As is typical in the literature, we consider two
basic cases. In the so-called nuclear case, we assume W = (W (t))t∈[ 0,T ]

to be a Q-Wiener process with a nuclear covariance operator Q in L2(Θ),
which yields a coordinate representation

W (t) =
∑
n∈N

√
anwn(t)en, t ∈ [ 0, T ].

Here, (an)n∈N is a summable family of positive numbers, (en)n∈N is a com-
plete orthonormal system in L2(Θ), consisting of eigenvectors of Q (corre-
sponding to the eigenvalues an) such that

sup
n∈N

||en||∞ <∞,

and (wn)n∈N is a family of independent real-valued Brownian motions.
The second case (the so-called cylindrical case) deals with the cylindrical
Wiener process, i.e.

W (t) =
∑
n∈N

wn(t)en, t ∈ [ 0, T ],

is a Q-Wiener process with Q = I.
Then, the assumptions imposed on the almost strong evolution operator
(U(t, s))0≤s≤t≤T guarantee the well-definedness of the so-called (Bochner
resp. Wiener) convolution processes

t 7→ Iϕ(t) :=
t∫
0

U(t, s)ϕ(s) ds,



1.3. THE MAIN RESULTS 17

t 7→ Iϕm(t) :=
t∫
0

U(t, s)Mϕ(s)mds, m ∈ L2(Θ)

and

t 7→ IWϕ (t) :=
t∫
0

U(t, s)Mϕ(s) dW (s), t ∈ [ 0, T ],

for predictable processes (ϕ(t))t∈[ 0,T ] taking values in L2
ρ(Θ) resp. L2ν

ρ (Θ).
A crucial role here is played by condition (A2), which assumes that there
exists a regularity constant ζ ∈ [ 0, 1 ) associated to the evolution operator
such that the following estimate for the Hilbert-Schmidt norm holds

(1.7) ||U(t, s)Mϕ||2L2(L2,L2
ρ) ≤ c(T )(t− s)−ζ ||ϕ||2L2

ρ
, 0 ≤ s < t ≤ T , ϕ ∈ L2

ρ(Θ).

This allows us to establish the continuity of the above convolutions, which
will imply similar properties of the solutions to equations (1.1) and (1.2).
Alternatively to (A2), (A5) (with ν = 1) from Section 3.1 below implies
the same.
The pathwise continuity of t 7→ Iϕ(t) and t 7→ IWϕ (t) was already known e.g.
from the paper [76] (see Theorem 3.1.1, p.56 there).
Furthermore, we also show the continuity of the above processes in the Ba-
nach spaces

Lq(Ω;L2
ρ(Θ)) := {f : Ω → L2

ρ |
∫
Ω

||f(ω)||q
L2

ρ
P (dω)}

resp.

L2ν(Ω;L2ν
ρ (Θ)) := {f : Ω → L2ν

ρ |
∫
Ω

||f(ω)||2νL2ν
ρ
P (dω)}

for q ≥ 2 and ν ≥ 1.

A technical problem is caused here by the fact that Mϕ(s) is not a Hilbert-
Schmidt operator in L2

ρ(Θ). Well-definedness and continuity properties of
the above convolutions are achieved by additional regularity assumptions on
U = (U(t, s))0≤s≤t≤T (see Section 3.1 below).
In particular, the regularity constant ζ ∈ [ 0, 1 ) corresponding to U (cf. (1.7)
above) plays an important role for the rest of this thesis. It determines the
possible choices of the parameter q resp. ν in the definition of the spaces
Lq(Ω;L2

ρ(Θ)) resp. L2ν(Ω;L2ν
ρ (Θ)) (Note that, for a given ζ, in Section 3.4

we need q > 2
1−ζ resp. ν > 1

1−ζ .).
In this thesis we will treat both the case of the Nemitskii drift operator be-
ing Lipschitz and obeying a one-sided linear growth condition (see (LG) in
Section 3.1 below). The latter is the most general class of drift coefficients
considered so far. In particular, it includes the case of semi-dissipative drifts,
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i.e. F resp. E in the equation (1.1) resp. (1.2) fulfills condition (SD) with
H = L2

ρ(Θ). The solvability of PDE’s similar to equation (1.1) with dissipa-
tive drifts was established both in an L2-setting (cf. Theorem 13 in [80]) and
for general Hilbert spaces (cf. Theorem 3 in [81]) by Marinelli and Röckner.

We note that we have to treat the convolutions in the scale of Banach
spaces L2ν

ρ (Θ) in view of the later considerations with drifts, which are
non-Lipschitz but have at most polynomial growth.

In Chapter 4, we study the properties of stochastic convolutions w.r.t.
compensated Poisson random measures. More precisely, given a compen-
sated Poisson random measure Ñ in [ 0, T ]× Ω× L2(Θ), we show the well-
definedness and continuity in Lq(Ω;L2

ρ) resp. L2ν(Ω;L2ν
ρ ) of the stochastic

convolution

t 7→ IÑϕ (t) :=
t∫
0

∫
L2

U(t, s)Mϕ(s)(x) Ñ(ds, dx)

for a predictable process ϕ = (ϕ(t))t∈[ 0,T ] obeying

(1.8) sup
t∈[ 0,T ]

E||ϕ(t)||q
L2

ρ
<∞

resp.

(1.9) sup
t∈[ 0,T ]

E||ϕ(t)||2νL2ν
ρ
<∞.

Later in Chapter 5, the classes of such processes will be denoted by Hq(T )
resp. Gν(T ).
Analogously to the stochastic convolutions w.r.t. Q-Wiener processes, we
here face the problem that, given any ϕ ∈ L2

ρ(Θ), Mϕ is not a Hilbert-
Schmidt operator from L2(Θ) to L2

ρ(Θ).
To overcome this problem, in the current chapter we have to impose an ad-
ditional assumption on U = (U(t, s))0≤s≤t≤T (cf. assumption (A5)/((A5)*
from Section 3.1), which generalizes (A2) for ν > 1. Namely, for a given
ν ≥ 1 and any ϕ ∈ L2ν

ρ (Θ) with its multiplication operator Mϕ, U(t, s)Mϕ

should be a Hilbert-Schmidt ((A5)) resp. bounded ((A5)*) operator map-
ping L2(Θ) to L2ν

ρ (Θ).
This leads to the restriction q < 2

ζ resp. ν < 1
ζ on the choice of the spaces

Hq(T ) resp. Gν(T ) in terms of the regularity constant ζ ∈ [ 0, 1 ).
Let us stress that this condition differs from that needed in the Wiener case
(q > 2

1−ζ resp. ν > 1
1−ζ ). Note that this is the case, since we apply the

Bichteler-Jacod inequality (cf. Theorem 2.6.10 below) for compensated Pois-
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son random measures instead of the Burkholder-Davis-Gundy inequality (cf.
Theorem 2.5.4 (nuclear case) resp. Theorem 2.5.6 (cylindrical case) below)
in the Wiener case.

Another crucial issue for the well-definedness of the stochastic convolution
w.r.t. a compensated Poisson random measure Ñ is the existence of higher
moments of the intensity measure η corresponding to Ñ . This is reflected
in the assumption

(1.10)
∫

L2(Θ)

(||x||L2 ∨ 1)r η(dx) +

( ∫
L2(Θ)

(||x||L2 ∧ 1)2 η(dx)

) r
2

<∞

both for r = q and r = 2ν.
It is well-known that the moment estimate (1.10) for the intensity measure
η implies the existence of the corresponding moments of the associated (via
the Lévy-Itô decomposition) Lévy process (L(t))t∈[ 0,T ], i.e. E||L(t)||rL2 <∞
for r = q resp. r = 2ν (see Proposition 2.4.14 below).

Finally, we show that in the case of (ϕ(t))t∈[ 0,T ] being uniformly bounded
in mean in the sense that

sup
t∈[ 0,T ]

E||ϕ(t)||L∞ <∞ (see Section 3.1 below)

and U being pseudo contractive, i.e. there exists a constant β such that
||U(t, s)||L(L2

ρ) < eβ(t−s) for any 0 ≤ s ≤ t ≤ T (cf. condition (A7) in Section

3.1 below), there exists a càdlàg version of the process t 7→ IÑϕ (t) ∈ L2
ρ(Θ)

both in the case of (ϕ(t))t∈[ 0,T ] being in Hq(T ) resp. Gν(T ) (see (1.8) and
(1.9)).

In Chapter 5, we prove the main existence and uniqueness results in the
case of Lipschitz coefficients.
The solutions will be constructed in the Banach spaces Hq(T ) and Gν(T )
of predictable L2

ρ(Θ) resp. L2ν
ρ (Θ)-valued processes (X(t))t∈[ 0,T ] obeying

(1.8) and (1.9). The parameters q ≥ 2 and ν ≥ 1 will be specified below.
We check that Nemitskii operators corresponding to functions fulfilling the
Lipschitz property preserve the spaces Hq(T ) resp. Gν(T ).
The spaces Hq(T ) will be used to study equations (1.1) and (1.2) in the case
of the drift coefficients having at most linear growth, whereas the spaces Gν
are needed in the case of the drift coefficients having at most polynomial
growth of order ν > 1.

We start our study of equations (1.1) and (1.2) with the case of Lipschitz
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continuous drift and diffusion coefficients. The main results of this chapter
are Theorems 5.2.1 and 5.2.2, where we establish the existence and unique-
ness of mild solutions to equations (1.1) and (1.2) in the spaces Hq(T ) and
Gν(T ).
Because of the singularity properties of the Hilbert-Schmidt norm ||U(t, s)||L2(L2,L2

ρ)

as t ↓ s resp. s ↑ t (cf. (1.7) above), we have to overcome some essential
technical difficulties to prove solvability even in the Lipschitz case.
Namely, to control the convergence of approximations in Banach’s fixed
point theorem resp. Picard’s iteration procedure, we have to apply the
Gronwall-Bellman lemma (see Lemma 2.7.2 resp. Remark 2.7.3 below) al-
lowing for the time-singularity (t− s)−ζ as s ↑ t resp. t ↓ s.
Furthermore, we prove continuity of t 7→ X(t) in Lq(Ω;L2

ρ(Θ)) resp. L2ν(Ω;L2ν
ρ (Θ))

both for the solutions to (1.1) and (1.2) in the case q ∈ [ 2, 2
ζ ) resp. ν ∈ [ 1, 1

ζ )
(with the regularity constant ζ from (1.7)). Crucial for the existence of
càdlàg versions is the restriction to evolution operators
U = (U(t, s))0≤s≤t≤T with regularity constants ζ < 1

2 . This assumption ex-
cludes the application to second order elliptic operators, but still allows for
differential operators of higher order (see Appendix D on this topic). The
restriction to the regularity constant ζ < 1

2 is necessary, since we need both
the (pathwise) theory for Wiener convolutions from Chapter 3 (requiring
q > 2

1−ζ resp. ν > 1
1−ζ ) and Poisson convolutions from Chapter 4 (requiring

q < 2
ζ resp. ν < 1

ζ ). To have both conditions, we have to assume that the
intervall ( 1

1−ζ ,
1
ζ ), where ν and q

2 take their values, is nonempty, which (by
setting 1

0 := ∞) gives us the condition ζ ∈ [ 0, 1
2 ).

Additionally assuming the boundedness of the jump resp. jump diffusion
coefficient and the pseudo contractivity of the evolution operator, we then
get the existence of càdlàg versions of the solutions.
Finally, let us mention the result of Remark 5.1.11 covering the continuity
properties of the Bochner integrals for polynomial drift. In Chapters 7 and
8, this result will allow us to prove time-continuity in Lq(Ω;L2

ρ(Θ)) if the
drift is polynomial of order 1, whereas for polynomials of order strictly big-
ger than 1 we have time-continuity in L2(Ω;L2

ρ(Θ)).

In Chapter 6, we extend the comparison theorems for SDEs with Wiener
noise and Lipschitz drift and diffusion coefficients shown by Kotelenez (cf.
[65]) resp. Manthey and Zausinger (cf. [76]) to the case of additive jump
resp. jump diffusions coefficients. The latter means that Γ in (1.1) (and
later Σ in (1.2)) is solution-independent.
Recall that, when considering (1.1), we assume the Q-Wiener process W to
be as in the nuclear resp. cylindrical case from Chapter 3.
The proof of such comparison theorems in infinite dimensions relies on a
suitable finite-dimensional approximation. This can be done similar to the
comparison theory for SDEs with Wiener noise by Ikeda and Watanabe (cf.
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Chapter VI in [53]) resp. Karatzas and Shreve (Chapter 5, Proposition 2.1.8
in [56]). It is crucial to have a family of bounded operators (AN (t))t∈[ 0,T ],
N ∈ N, approximating (A(t))t∈[ 0,T ] in a proper sense (cf. (A6) from
Section 3.1). Furthermore, we construct approximations (XN,M (t))t∈[ 0,T ],
N,M ∈ N, of the solutions (X(t))t∈[ 0,T ] to (1.1) resp. (1.2). These approx-
imations are mild solutions to equation (1.1) with A being replaced by AN
and W being replaced by the finite dimensional Wiener noises

WM (t) =
M∑
n=1

√
anwn(t)en, t ∈ [ 0, T ].

Thereafter, showing the convergence in L2(Ω;L2
ρ(Θ)) of the approximat-

ing solutions XN,M to the unique mild solution X to (1.1) resp. (1.2), we
conclude the required comparison for the initial equations.
According to Theorem 6.1.1, which is the main result of Chapter 6, the rela-
tion f (1) ≤ f (2) resp. e(1) ≤ e(2) for the generating function of the Nemitskii
drift operator F resp. E implies that

X(1)(t) ≤ X(2)(t) P -almost surely for all t ∈ [ 0, T ]

for the mild predictable solutions (X(t))t∈[ 0,T ] to (1.1) resp. (1.2) with
solution-independent Γ resp. Σ.

In Chapter 7, we show the main existence and uniqueness results in the
case of non-Lipschitz drift coefficients and additive jump resp. jump diffu-
sion coefficients in equation (1.1) resp. (1.2).

Instead of the Lipschitz property (LC), we assume that the function f
resp. e corresponding to the Nemitskii drift operator F resp. E is continu-
ous, satisfies the one-sided linear growth condition (LG) and is of at most
polynomial growth satisfying (PG) for some ν ≥ 1.
The proof of the existence result (cf. Section 7.2 ad 7.3 below) is based on
the comparison theorem established in Chapter 6. To this end, we adapt the
standard scheme of proof used e.g. by Kotelenez in [65] and by Manthey
and Zausinger in [76].
More precisely, in the case of equation (1.1) we consider monotone Lipschitz
approximations fN , fN,M , N,M ∈ N, of the function f obeying fN,M ↑ fN
as M →∞ and fN ↓ f as N →∞ (see (7.12) and (7.13) below).
We prove the convergence in Hq(T ) resp. Gν(T ) of the corresponding solu-
tions XN,M to a certain process X. Thereafter, we check that X is a mild
solution to equation (1.1). The proof in the case of equation (1.2) works
completely analogous with monotone Lipschitz approximations eN , eN,M ,
N,M ∈ N, of the function e.
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Recall that whether we consider the equations in Hq(T ) or Gν(T ) depends
on the drift coefficient. More precisely, the mild solutions X to (1.1) resp.
(1.2) take their values in Hq(T ) if the function f resp. e corresponding to
the Nemitskii drift coefficient F resp. E obeys the polynomial growth con-
dition (PG) with ν = 1, whereas the solutions are in Gν(T ) if the function
f resp. e corresponding to the Nemitskii drift coefficient F resp. E obeys
the polynomial growth condition (PG) with ν > 1.
As in Chapter 5, the possible values of q and ν depend on the behaviour
of the almost strong evolution operator U = (U(t, s))0≤s≤t≤T for s ↑ t resp.
t ↓ s. In the case ν > 1, we particularly need the integrability assumption
(1.10) on the intensity measure η with r = ν2, i.e.

∫
L2(Θ)

(||x||L2 ∨ 1)2ν
2
η(dx) +

(∫
L2

(||x||L2 ∧ 1)2 η(dx)

)ν2

<∞.

This condition seems to be quite natural in the case of higher order poly-
nomials as drifts in SDEs with jumps. In particular, a similar condition
was imposed in Marinelli’s and Röckner’s paper [80] dealing with the well-
posedness of stochastic reaction-diffusion equations with Poisson noise (see
Section 2.1, p.1531 there).
With the help of Remark 5.1.11 (i), in the case ν = 1 we prove the conti-
nuity of t 7→ X(t) in Lq(Ω;L2

ρ(Θ)) analogously to the claims in Chapter 5
(cf. Theorem 5.2.1 there). Furthermore, with the help of Remark 5.1.11 (ii)
we prove the continuity of t 7→ X(t) in L2(Ω;L2

ρ(Θ)) in the case ν > 1, i.e.,
compared to the Lipschitz case, we are no longer able to prove continuity
in L2ν(Ω;L2ν

ρ ) due to the polynomiality of the drift coefficient. Finally, we
show that there are càdlàg versions of the solutions if U obeys the pseudo
contractivity property and γ (in the case of equation (1.1)) resp. σ (in the
case of equation (1.2)) is uniformly bounded.
To this end, we apply the corresponding results on càdlàg properties of
stochastic convolutions w.r.t. Wiener processes resp. compensated Poisson
random measures established in Chapter 3 resp. 4. Thus, as in Chapter
5, we again restrict our consideration to evolution operators with regularity
constant ζ < 1

2 . Furthermore in the case of (PG) being fulfilled with ν = 1
we impose the condition q ∈ ( 2

1−ζ ,
2
ζ ), whereas in the case of (PG) being

fulfilled with ν > 1 we need that ν ∈ ( 1
1−ζ ,

1
ζ ).

Then, in the special case of a C0-semigroup (S(t))t∈[ 0,T ] replacing the evo-
lution operator (U(t, s))0≤s≤t≤T , we also show uniqueness of the solutions
to (1.1) with the help of Marinelli’s and Röckner’s uniqueness result (cf.
Proposition 7 in [80]) in the additive case. To this end, we restrict to the
case of a bounded Θ ⊂ Rd, a cylindrical Wiener process (W (t))t∈[ 0,T ] and
a uniformly maximal monotone drift f .
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In Chapter 8, we show the existence of mild solutions to equations (1.1)
resp. (1.2) in the case of non-Lipschitz drift coefficients and multiplicative
jumps resp. jump diffusions (see Theorems 8.1.1 and 8.1.2 below).

We intend to apply the same scheme of proof as in Chapter 7, which makes
it necessary to prove a comparison theorem in the case of Lipschitz drift
and diffusion coefficients (cf. Theorem 8.1.3 below). Therefore, we have to
extend the comparison results from Chapter 6 to the case of multilplicative
jump resp. jump diffusion coefficients.

In Section 8.2, we extend the finite-dimensional comparison theory for SDEs
with jumps (see e.g. the papers [92] / [113] resp. [67] by Peng and Zhu resp.
Krasin and Melnikov (and also Appendix C below)) to infinite dimensions.
Similarly to the scheme in Chapter 6, we first prove a comparison theo-
rem for finite-dimensional approximations of equations (1.1) and (1.2). To
this end, we consider the approximating equations in the Sobolev spaces
Wm,2(Θ) ⊂ L2(Θ). Here, m ∈ N is chosen big enough such that Wm,2(Θ) is
continuously embedded into the space Cb(Θ) of continuous bounded func-
tions on Θ. More precisely, we choose a domain Θ ⊂ Rd such that the weak
cone property is fulfilled. Then, by Sobolev’ s embedding theorem (cf. also
Appendix A, Theorem A.6 below), we can embed Wm,2(Θ) continuously
into Cb(Θ) for suitable m ∈ N.
We also need to assume that the family of operators (UN )N∈N approximat-
ing the almost strong evolution operator U (recall (A6) needed in Chapter
6) obeys certain regularity properties in Wm,2(Θ) (see condition (A8) in
Section 3.1 below). Finally, the jump coefficient Γ resp. the jump diffu-
sion coefficient Σ has to be monotonically increasing in the sense that it is
generated by a monotonically increasing function, and the intensity mea-
sure η corresponding to the compensated Poisson random measure Ñ resp.
the Lévy process L has to be concentrated on the set L2

≥0 of functions in
L2(Θ) that are almost everywhere nonnegative on Θ. Alternatively, we can
also treat the case of a monotonically decreasing jump resp. jump diffusion
coefficient (in the sense that it is generated by a monotonically decreasing
function), and an intensity measure η being concentrated on the set L2

≤0 of
functions in L2(Θ) that are almost everywhere nonpositive on Θ. For fields
of application for the latter family of processes see e.g. Chapter 7 in the
monograph [12] by Bertoin.
Showing the convergence in L2(Ω;L2

ρ(Θ)) of the approximating solutions
XN,M to the unique mild solution X to (1.1) resp. (1.2), we conclude the
required comparison for the initial equations.
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Having achieved a comparison result for Lipschitz coefficients, we apply the
scheme used in proving the existence results in Chapter 7 to get existence of
mild solutions in Hq(T ) resp. Gν(T ), which are continuous in Lq(Ω;L2

ρ(Θ))
resp. L2(Ω;L2

ρ(Θ)). Again there are càdlàg versions of the solutions if U
obeys the pseudo contractivity property and γ (in the case of the equation
(1.1)) resp. σ (in the case of the equation (1.2)) is uniformly bounded.
By the same reasoning as in Chapter 5, we need to restrict our considera-
tions to evolution operators with regularity constants ζ < 1

2 .
In comparison to Chapter 7, we are not able to prove uniqueness of the
solutions in the case of a C0-semigroup (S(t))t∈[ 0,T ] by directly applying the
uniqueness condition from [80] (cf. Remark 8.1.4 below and Theorem 13
in [80]). This needs a modification of the assumptions on the compensated
Poisson random measure Ñ resp. the Lévy process (L(t))t∈[ 0,T ], which we
will not discuss here (see also Remark 8.1.6 (v) below).

Finally, this thesis is completed by an Appendix consisting of five chap-
ters.
Appendix A deals with Sobolev spaces in general and the Sobolev em-
bedding theorem (cf. Theorem A.6 below) in particular. This theorem is
crucially used in proving the comparison theorem in Chapter 8, where we
construct approximations of the equations (1.1) and (1.2) in the Sobolev
spaces Wm,2(Θ) with Θ ⊂ Rd obeying the weak cone property.
Appendix B recalls the definition of Bochner integrals in Banach spaces
and is mainly needed to prove the existence of the Bochner convolution in-
tegrals in Chapter 3.
Appendix C collects comparison theorems known for finite-dimensional
SDEs with jump noise. Such comparison results are crucially used in Chap-
ter 8 to prove the comparison results for the finite-dimensional approxima-
tions of the equations (1.1) and (1.2) in Wm,2(Θ).
Appendix D presents an example of an almost strong evolution operator
obeying (most of) the properties (A0)–(A8) required in Section 3.1. A
large class of examples is constituted by all elliptic differential operators.
The results strongly depend on the space dimension d ≥ 1 and on the order
m ≥ 1 of the diffusion operators.
Finally, Appendix E presents a way of constructing measures, which obey
the properties (QI) and (P) required for the Lévy intensity measures in the
main results in Chapter 8.

Concerning the calculations appearing in the thesis, we note that we al-
ways add the constants, on which a constant in an estimate depends, in
brackets, and that, for simplicity, unessential constants are denoted by the
same symbol though they may have different values.



1.3. THE MAIN RESULTS 25

Acknowledgements

I would like to thank Prof. Dr Michael Röckner for motivating me to work in
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Chapter 2

General definitions and
supporting results

In this chapter, we recall some technical preliminaries needed in the thesis.
In particular, we present infinite-dimensional analogues of basic probabilis-
tic concepts.
The following results hold for Banach or Hilbert spaces in general, whereas
the results in Chapter 3 concern with the special case of the weighted L2-
spaces introduced in Section 1.1.

In Section 2.1, we recall some general facts on stochastic processes tak-
ing values in Banach spaces.

In Section 2.2, we introduce the notion of an almost strong evolution oper-
ator (A(t))t∈[ 0,T ] (with a fixed 0 < T <∞) taken from [76].

In Section 2.3, we recall the definition of the Q-Wiener process in a sep-
arable Hilbert space G. In particular, we make use of the representation of
a Q-Wiener process as an infinite sum, i.e.

W (t) :=
∑
n∈N

√
anwn(t)gn, t ∈ [ 0, T ],

where (an)n∈N resp. (gn)n∈N is the family of positive eigenvalues resp. eigen-
vectors of the covariance operator Q ≥ 0 in G and (wn)n∈N is a family of
independent real-valued Brownian motions.

In Section 2.4, we recall the definitions of Lévy processes, compensated
Poisson random measures and martingale measures in the Hilbert space G.
The most important facts from this section are the Lévy-Itô decomposi-
tion of a Lévy process L (cf. Lemma 2.4.10 below) and its refined form for
square-integrable Lévy processes (cf. Lemma 2.4.13 below). Note that the

27
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refined form of the decomposition will be used later to rewrite the equation
(1.2) as an equation of the form (1.1).

In Section 2.5, we collect basic facts on stochastic integration w.r.t. Wiener
processes in Hilbert spaces. In particular, we recall the Burkholder-Davis-
Gundy inequality for stochastic integrals w.r.t. Wiener processes (cf. Lemma
2.5.4/2.5.6 below), which will play an important role in the existence (and
uniqueness) proofs in Chapters 5, 7, and 8.

In Section 2.6, we recall basic facts on stochastic integration w.r.t. compen-
sated Poisson random measures. The most important result of this section
is the Bichteler-Jacod inequality for stochastic integrals w.r.t. compensated
Poisson random measures (cf. Lemma 2.6.10 below). This inequality will
be the key tool to establish the well-definedness of stochastic convolutions
w.r.t. compensated Poisson random measures in Chapter 4. Furthermore,
it will also play an important role in the existence (and uniqueness) proofs
in Chapters 5, 7, and 8.

In Section 2.7, we collect auxiliary analytic results, among them the Gronwall-
Bellman lemma (cf. Lemma 2.7.2 and Remark 2.7.3 below), which will play
a crucial role in the existence (and uniqueness) proofs in Chapters 5, 7 and
8.

2.1 Some general facts on stochastic processes

In this section, we collect some basic facts on stochastic processes taking
values in Banach spaces, which can be found e.g. in the monographs [26],
[29], [34], [53] and [96]; see also Sections 1.2 and 1.3 in [61]. To be more
precise, we fix the time-intervall I := R+ := [ 0,+∞ ) or I := [ 0, T ] for some
fixed 0 < T <∞.

Let (Ω,F , P ) be a probability space with complete filtration (Ft)t∈I . The
latter means that F0 contains all sets of P -measure zero. A filtration (Ft)t∈I
is called right-continuous if Ft = Ft+ := ∩s>tFs. Furthermore, let E be
a separable Banach space with norm || · ||E and the Borel σ-algebra B(E).

Definition 2.1.1: Let X = (X(t))t∈I and Y = (Y (t))t∈I be two E-
valued stochastic processes.
X is called a modification or version of Y if P [X(t) = Y (t)] = 1 for each
t ∈ I. In this case, we say that X and Y are stochastically equivalent.
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X and Y are said to be indistinguishable or P -equal if there exists a
P -zero set N ∈ F such that we have

X(t, ω) = Y (t, ω), for all t ∈ I and ω ∈ N c.

We say that a process X is defined P -uniquely by certain properties if any
further process fulfilling these properties and the process X are P -equal.

Definition 2.1.2:
(i) An E-valued process (X(t))t∈I is said to have left resp. right limits if,
for P -almost all ω ∈ Ω, the path I 3 t 7→ X(t, ω) ∈ E has left resp. right
limits.

(ii) An E-valued process (X(t))t∈I is called continuous (right-continuous
resp. left-continuous) if, for P -almost all ω ∈ Ω, I 3 t 7→ X(t, ω) ∈ E is
continuous (right-continuous resp. left-continuous).

(iii) An E-valued right-continuous process with paths having left limits
is called càdlàg.

(iv) An E-valued left-continuous process with paths having right limits is
called càglàd.

Definition 2.1.3:
(i) An E-valued process (X(t))t∈I is called adapted to the filtration
(Ft)t∈I if the random variable X(t) is Ft-measurable for any t ∈ I.

(ii) The process (X(t))t∈I is measurable if it is a measurable mapping
from I×Ω to E, where I×Ω is equipped with the product σ-field B(I)⊗F .

(iii) Let PI denote the σ-field of predictable sets, that is, the smallest
σ-field on I×Ω containing all sets of the form {0}×A, ( s, t ]∩ I×B, where
s, t ∈ I, s < t, A ∈ F0 and B ∈ Ft. Equivalently, PI is the minimal σ-field
such that all left-continuous, adapted processes (X(t))t∈I are measurable.
In particular, by PT we denote the σ-field of predictable sets on [ 0, T ]×Ω.
An E-valued process (X(t))t∈I is called predictable if it is a measurable
mapping from I × Ω to E, where I × Ω is equipped with the σ-field PI .
A predictable process is not only adapted to the original filtration (Ft)t≥0,
but also to the smaller filtration (Ft−)t≥0, where Ft− := ∩s<tFs.

(iv) Given p ≥ 1, an E-valued process (X(t))t∈I is called p-integrable
if
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E||X(t)||pE <∞, for all t ∈ I.

The space of all such X will be denoted by Lp(Ω;E). For X ∈ Lp(Ω;E),
one can define the Bochner integral in E∫

Ω

X(t) dP , cf. [95], p.24 or Appendix B.

In the special cases p = 1 resp. p = 2, we also say that (X(t))t∈I is in-
tegrable resp. square-integrable.

Definition 2.1.4: Let (X(t))t∈I be an E-valued process with left limits.
For 0 < t ∈ I, we denote X(t−) := lim

s↑t
s∈I

X(s). For t = 0, we make the

convention X(0−) := X(0).
We define a jump at t by ∆X(t) := X(t)−X(t−).

Clearly, a càdlàg process (X(t))t∈I can only have jump discontinuities. By
Theorem 2.8.1 in [7], for almost all ω, the set of all t ∈ I such that
∆X(t, ω) 6= 0 is at most countable.
By Proposition 3.17 from [95], if (X(t))t∈I and (Y (t))t∈I are càdlàg processes
on (Ω,F , P ) andX is a modification of Y , thenX and Y are indistinguish-
able, i.e. there is a set N ∈ F of P -measure zero such that X(t, ω) = Y (t, ω)
for all (t, ω) ∈ I ×N c.

Definition 2.1.5:
(i) An E-valued stochastic process (M(t))t∈I is called an (Ft)-martingale
if it is an integrable Ft-adapted process such that

E[M(t)|Fs] = M(s) P -a.s., for all t ≥ s.

For the notion of conditional expectation in Banach spaces, see e.g. p.
24 in [95].

(ii) An R-valued stochastic process (M(t))t∈I is called an (Ft)-submartingale
if it is an integrable Ft-adapted process such that

E[M(t)|Fs] ≥M(s) P -a.s., for all t ≥ s.

(iii) An R-valued stochastic process (M(t))t∈I is called an (Ft)-supermartingale
if (−M(t))t∈I is a (Ft)-submartingale.



2.1. SOME GENERAL FACTS ON STOCHASTIC PROCESSES 31

By Theorem 3.35 from [26], if (M(t))t∈I is an E-valued martingale, then
(||M(t)||pE)t∈I is an R+-valued submartingale, for each p ≥ 1.

Proposition 2.1.6: (Doob’s submartingale inequality, see e.g. [34],
p.63)
Given T > 0, any right-continuous R+-valued (Ft)t∈[ 0,T ]-submartingale M
obeys for all 1 < p <∞ and r > 0

E

[
sup

0≤t≤T
M(t)p

]
≤
(

p
p−1

)p
EM(T )p,

P

({
sup

0≤t≤T
M(t) ≥ r

})
≤ 1

rE[M(T )],

P

({
sup

0≤t≤T
M(t) ≥ r

})
≤ 1

rp E[M(T )]p.

As a sequel, we have Doob’s inequality for E-valued càdlàg martingales.
Namely, for all 1 < p <∞ and r > 0

E

[
sup

0≤t≤T
||M(t)||pE

]
≤
(

p
p−1

)p
E||M(T )||pE ,

(2.1) P

({
sup

0≤t≤T
||M(t)||E ≥ r

})
≤ 1

rE||M(T )||E ,

P

({
sup

0≤t≤T
||M(t)||E ≥ r

})
≤ 1

rp E||M(T )||pE .

Definition 2.1.7: (i) An E-valued process (X(t))t∈I is called pathwise
continuous if the mapping I 3 t 7→ X(t, ω) ∈ E is continuous for any
ω ∈ Ω.
(ii) The process (X(t))t∈I ⊂ E is called stochastically continuous or
continuous in probability if we have, for any t ∈ I,

lim
s→t
s∈I

P [|X(t)−X(s)| > ε] = 0 for any ε > 0.

(iii) Given p ≥ 1, the process (X(t))t∈I ⊂ E is Lp continuous if it is
p-integrable and obeys, for any t ∈ I,

lim
s→t
s∈I

E||X(s)−X(t)||pE = 0.

If p = 2, the process (X(t))t∈I is called meansquare continuous.
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Lemma 2.1.8: (cf. e.g. Proposition 3.21 in [95])
Any measurable stochastically continuous (Ft)-adapted E-valued process
(X(t))t∈I has a predictable modification.

An adapted càdlàg process (X(t))t∈I need not be predictable. But its left
limit (X(t−))t∈I will surely be predictable, see definition of the σ-field PI .

Suppose that G is a separable Hilbert space. Then, by Doob’ s regularity
theorem (see e.g. Theorem 3.40 in [95]), every stochastically continuous
square-integrable martingale M = (M(t))t∈I in G has a càdlàg modification,
which will be again denoted by M .
Recall that this modification obeys the Doob inequalities (2.1).

Given T > 0 and I := [ 0, T ], the space of all càdlàg square-integrable
G-valued martingales M = (M(t))t∈[ 0,T ] w.r.t. the filtration (Ft)t∈[ 0,T ]

is denoted by M2
G(T ).

As usual, indistinguishable processes M : [ 0, T ] × Ω → G are identified.
Endowed with the inner product

(M,N) → E < M(T ), N(T ) >G,

M2
G(T ) is a Hilbert space. We denote by M2,c

G (T ) resp. M2,0
G (T ) the sub-

space of continuous martingales M resp. those M such that M0 = 0. Both
M2,c

T (G) and M2,0
T (G) are closed in M2

T (G).

Given any M ∈ M2
T (G), by the Doob-Meyer decomposition (see e.g.

Theorem 3.43 in [95]) there exists a unique increasing predictable process
< M >:= (< M,M >t)t∈[ 0,T ], called the predictable quadratic varia-
tion or the Meyer process of M , such that < M,M >0= 0 and
||M(t)||2G− < M,M >t, t ∈ [ 0, T ], is a martingale.
The predictable quadratic variation < M,M >t is used e.g. to construct
(via the Itô isometry) the stochastic integrals w.r.t. dM(t).

An alternative process is the so-called adapted quadratic variation
[M ] := ([M,M ]t)t∈[ 0,T ].
Namely, for any M ∈ M2

T (G), there exists a unique increasing adapted
càdlàg process [M ] := ([M,M ]t)t∈[ 0,T ] such that [M,M ]0 = 0 and
||Mt||2G − [M,M ]t, t ∈ [ 0, T ], is a càdlàg martingale. Note that, for any
sequence of partitions of [ 0, T ]

Πn := {0 = tn0 < tn1 < .... < tnJn
:= T}
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such that

mesh Πn := sup
j

(tnj+1 − tnj ) → 0 as n→∞,

one has

[M,M ]t = lim
n→∞

Jn−1∑
j=0

||Mtnj+1
−Mtnj

||2G,

where the limit is in L1(Ω,F , P ). Note that

E[M,M ]t = E||M(t)||2G −E||M(0)||2G.

If M has stationary independent increments, i.e. for all t ≥ s, M(t)−M(s)
is independent of Fs and has the same distribution as M(t−s)−M(0), then

< M,M >t= t E[||M(1)||2G − ||M(0)||2G].

Furthermore, if M ∈ M2,c
T (G), then [M,M ] =< M,M >. For discon-

tinuous martingales, [M,M ]t and < M,M >t need not to coincide.

Note that E[M,M ]t = E||M(t)||2G −E||M(0)||2G.
The quadratic variation [M,M ] is also involved in the following inequality
for real-valued martingales M ∈M2,0

T (R) with G = R:

Theorem 2.1.9: (Burkholder-Davis-Gundy, cf. e.g. Theorem 3.50
in the monograph [95] by Peszat and Zabczyk)
For every p ≥ 1, there exists a universal positive constant Cp such that, for
any T > 0 and any M ∈M2,0

T (R),

(2.2) 1
Cp

E[M,M ]
p
2
T ≤ E

(
sup

t∈[ 0,T ]
|Mt|p

)
≤ CpE[M,M ]

p
2
T .

Another important issue, where one needs the quadratic variation [M ], is
the Itô formula for càdlàg semimartingales (see e.g. [95], Appendix D).

2.2 Strong evolution operators in Banach spaces

For this section, let B be a Banach space. Let L(B) denote the space of
linear, bounded operators A: B → B with the usual operator norm || · ||.
We present the definition of an almost strong evolution operator from [111]:

Definition 2.2.1: Let us fix some T ∈ ( 0,∞ ).
A family U = U(t, s)0≤s≤t≤T ⊂ L(B) is called an almost strong evolu-
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tion operator if the following holds:

(i) U(t, t) = I, t ∈ [ 0, T ], where I denotes the identity operator in B;

(ii) U(t, r)U(r, s) = U(t, s), 0 ≤ s ≤ r ≤ t ≤ T ;

(iii) U is strongly continuous, i.e. the map
U(·, ·)x: {(t, s) | 0 ≤ s ≤ t ≤ T} → B is continuous for any x ∈ B and

sup
0≤s≤t≤T

||U(t, s)|| ≤ c(T ) <∞;

(iv) For any t ∈ [ 0, T ], there exists a closed linear operator A(t) on B such
that U(t, s): D(A(s)) → D(A(t)) for all s < t and

t∫
s
A(r)U(r, s)ϕdr = (U(t, s)− I)ϕ

for any ϕ ∈ Dt,s(A) := {ϕ ∈ B | U(r, s)ϕ ∈ D(A(r)) for all r ∈ [ s, t ]}.

Obviously (iv) implies that for every ϕ ∈ Dt,s(A)

(v) ∂
∂tU(t, s)ϕ = A(t)U(t, s)ϕ

for Lebesgue-almost all t ∈ [ 0, T ], which justifies the terminology.

Analogously to the theory of one-parameter semigroups, (A(t))t∈[ 0,T ] is
called the generator of U . If (v) even holds for all t ∈ [ 0, T ], U is called
a strong evolution operator.

Remark 2.2.2: (i) For U being an almost strong evolution operator in
the sense of 2.2.1, by (iii) we have in particular that

[ s, T ] 3 t 7→ U(t, s)x ∈ B

is a continuous mapping for any fixed s ∈ [ 0, T ] and x ∈ B, and respectively

[ 0, t ] 3 s 7→ U(t, s)x ∈ B

is a continuous mapping for any t ∈ [ 0, T ] and x ∈ B.

(ii) It is instructive to compare 2.2.1 (iii) with the strong continuity prop-
erty of operator semigroups.
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Recall that the C0-continuity of a semigroup (S(t))t≥0 in B means that

lim
t↓0

S(t)x = x

for each x ∈ B, which readily implies the continuity of the map

[ 0, T ] 3 t 7→ S(t)x ∈ B

for all x ∈ B.
Instead of 2.2.1 (iii), let us assume the weaker property

lim
t↓s

U(t, s)x = x

for any x ∈ B and any s ∈ [ 0, T ] resp.

lim
s↑t

U(t, s)x = x

for any x ∈ B and any t ∈ [ 0, T ].
Herefrom, by 2.2.1 (ii) we get

lim
t↓r

U(t, s)x = U(r, s)x

resp.

lim
s↑r

U(t, s)x = U(t, r)x

for all x ∈ B and 0 ≤ s ≤ r ≤ t ≤ T .

In contrast to the semigroup (S(t))t≥0, these properties of right- resp. left-
continuity do not imply each other and are weaker than those in 2.2.1 (iii).
Further assumptions on the evolution operator U(t, s), 0 ≤ s ≤ t ≤ T , will
be imposed in Section 3.1.

2.3 Q-Wiener processes in Hilbert spaces

The presentation in this subsection is based on [26], Chapter 4 there, and
[97], Chapter 2.

Let (Ω,F , P ) be a probability space, and let (Ft)t≥0 be a complete right-
continuous filtration in F .
Let G be a separable Hilbert space with inner product < ·, · >G and corre-
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sponding Borel σ-algebra B(G).

Definition 2.3.1: (cf. e.g. [97], Definition 2.1.1, p. 9)
A probability measure µ on (G,B(G)) is called Gaussian if all bounded
linear mappings

v: G→ R
G 3 g 7→< g, v >G∈ R

have Gaussian laws, i.e. for any v ∈ G there exist m = m(v) ∈ R and
σ := σ(v) > 0 such that

µ(v ∈ A) = 1√
2πσ2

∫
A

e−
(x−m)2

2σ2 dx, A ∈ B(R),

or

µ = δg for some g ∈ G, where δg is the Dirac measure placed in g.

Theorem 2.3.2: (cf. e.g. [97], Theorem 2.1.2, p. 10)
A measure µ on (G,B(G)) is Gaussian if and only if its characteristic func-
tional has the form

µ̂(g) :=
∫
G

ei<g,x>G µ(dx) = ei<m,g>G− 1
2
<Qg,g>G, g ∈ G,

where m ∈ G and Q ∈ L(G) is nonnegative, symmetric, with finite trace.
The above µ will be denoted by N(m,Q), where m is called mean and Q is
called the covariance operator. Furthermore, µ is uniquely defined by m and
Q.

In what follows, we denote the set of nonnegative, symmetric linear op-
erators Q ∈ L(G) with finite trace by T +(G).
Recall that 0 ≤ Q ∈ L(G) has finite trace if

(2.3) tr Q :=
∑
n∈N

< Qgn, gn >G<∞

for some (and thus for any) orthonormal basis (gn)n∈N ⊂ G.

Proposition 2.3.3: (cf. e.g. [98], Theorem VI.21 and Theorem VI.16)
For any Q ∈ T +(G), there exists an orthonormal basis (gn)n∈N of G such
that

(2.4) Qgn = angn, an ≥ 0, n ∈ N.

Hence, by (2.3) we have
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tr Q =
∑
n∈N

an <∞,

and thus 0 is the only accumulation point of the sequence (an)n∈N.

Without loss of generality, we may assume (an)n∈N from 2.3.3 to be in
decreasing order.
Then, there is a canonical form of Gaussian random variables.

Proposition 2.3.4: (cf. e.g. [97], Proposition 2.1.6, p. 13)
Let m ∈ G and Q ∈ T +(G) obey the eigenvector expansion (2.4).
A G-valued random variable X is Gaussian with law
P ◦X−1 = N(m,Q) if and only if

X =
∑
n∈N

√
anwn(t)gn +m,

where wn are independent real-valued random variables with
P ◦ w−1

n = N(0, 1) for all n ∈ N with an > 0. The series converges in
L2(Ω,F , P ;G).

In particular, we have the following statement, which is the inverse to The-
orem 2.3.2.

Corollary 2.3.5: (cf. e.g. [97], Proposition 2.1.7, p.15)
Let Q ∈ T +(G) and m ∈ G.
Then, there exists a Gaussian measure µ = N(m,Q) on (G,B(G)).

Now, we will give the definition of a Q-Wiener process in the case of
Q ∈ T +(G).

Definition 2.3.6: AG-valued (Ft)t≥0-adapted stochastic process (W (t))t≥0

is called a (standard) Q-Wiener process (w.r.t. the filtration (Ft)t≥0)
if:

1. W (0) = 0 (P -almost surely);

2. W has independent increments, i.e. W (t) −W (s) is independent
of Fs for all 0 ≤ s < t;

3. W has stationary increments and for all 0 ≤ s < t the random
varaiables W (t) − W (s) are normally distributed with mean 0 and
covariance operator (t− s)Q;

4. W is a pathwise continuous process.
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There is a canonical representation of a Q-Wiener process given as fol-
lows.

Proposition 2.3.7: (cf. e.g. [97], Proposition 2.1.10, p. 17)
Let (gn)n∈N be an orthonormal basis of G consisting of eigenvectors of
Q ∈ T +(G) with the corresponding eigenvalues an ≥ 0, n ∈ N.
Then, a G-valued stochastic process (W (t))t≥0 is a Q-Wiener process if and
only if

(2.5) W (t) :=
∑
n∈N

√
anwn(t)gn, t ≥ 0,

where wn, n ∈ {n ∈ N | an > 0}, are independent real-valued Brownian mo-
tions.
The series is convergent in L2(Ω,F , P ;C([ 0, T ], G)) and thus has a P -
almost surely time-continuous modification.

So, by Corollary 2.3.5 and Proposition 2.3.7, for any operator Q ∈ T +(G)
there is a Q-Wiener process and it is of the form (2.5).

There is an equivalent coordinate representation of W using an orthonormal
basis in the so-called reproducing kernel Hilbert space(in short RKHS,
see e.g. Section 7.1, Definition 7.2 in [95]).
Given Q ∈ T +(G) obeying (2.4), the corresponding RKHS is given by
G := Q

1
2G. This is a Hilbert space with the inner product

< ϕ,ψ >G :=
∑
n∈N

an 6=0

a−1
n < ϕ, gn >G< ψ, gn >G, ϕ, ψ ∈ G,

where < ·, · >G denotes the inner product in G. Since this space is gen-
erated by the orthonormal basis (g̃n)n∈N defined by

g̃n := Q
1
2 gn = a

1
2
ngn, n ∈ N,

we have the Hilbert-Schmidt embedding G⊂−→G.
This leads to the representation

(2.6) W (t) :=
∑
n∈N

wn(t)g̃n, t ∈ [ 0, T ],

whereby the series is convergent in L2(Ω,F , P ;C([ 0, T ], G)) by 2.3.7 (cf.
equation (2.5) there).

In general, an operator Q ≥ 0 need not to have finite trace. Given such
situation, we write Q /∈ T +(G). This leads to the class of so-called cylin-
drical Wiener processes.
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In the following, we construct such a Wiener process in the important case
Q = I 6∈ T +(G). This is done by establishing a representation similar to
(2.6), but converging in an appropriately large space.
More precisely, a cylindrical Wiener process can be defined in the following
way (cf. [97], Section 2.5.1, pp 39–41):
We need a further Hilbert space (G1, < ·, · >G1), G ⊂ G1, such that
G = Q

1
2 (G1) with Q ∈ T +(G1). By Remark 2.5.1 from [97], such G1 and

Q always exist. To this end, we just take a sequence (bn)n∈N of nonnegative
real numbers such that ∑

n∈N
b2n <∞.

Let (gn)n∈N be an orthonormal basis of G. Then, we define G1 as a comple-
tion of G w.r.t. the inner product

< g, h,>G1 :=
∑
n∈N

b2n < gn, g >G< gn, h >G.

Obviously, the orthonormal basis in G1 consists of the vectors g̃n := b−1
n gn,

n ∈ N.
Let J : G⊂−→G1 be the embedding operator and J∗: G1 → G its adjoint.
Then, Q1 := JJ∗ ∈ T +(G1) with

tr(Q1) =
∑
n∈N

b2n <∞.

Furthermore, Q
1
2
1 (G1) = G and Q

1
2
1 : G1 → G is an isometry. Now, the

previous scheme runs with the RKHS G and the covariance operator
Q1 ∈ T +(G1). We get (see also [97], Proposition 2.5.2, p. 47):

Theorem 2.3.8: Given an orthonormal basis (gn)n∈N of G and a family
(wn)n∈N of independent real-valued Brownian motions, define
Q1 := JJ∗ ∈ T +(G1) with J as above.
Then, the series

(2.7) W (t) :=
∑
n∈N

wn(t)Jgn, t ≥ 0,

converges in L2(Ω,F , P ;G1) and defines a continuous, square-integrable
martingale. Moreover, (W (t))t≥0 is a Q1-Wiener process in G1.

When we talk about cylindrical I-Wiener process in the following, we al-
ways mean the process (2.7) from the theorem above.
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2.4 Lévy processes, compensated Poisson random
measures and martingale measures

In this section, we recall the definition of Hilbert space valued Lévy processes,
compensated Poisson random measures and martingale measures.

Lévy processes and their path properties

First, we introduce the notion of Lévy processes in Hilbert spaces and dis-
cuss some basic results. This topic is treated e.g. in the monograph [95]
by Peszat and Zabczyk as well as in the monograph [7] by Applebaum and
the paper [8] by the same author. We also refer to the papers of Albeverio,
Mandrekar, Rüdiger and Ziglio ([3], [4], and [102]), which cover the more
general case of Lévy processes in Banach spaces.
For a concise review, see also the manuscripts [58] and [60].

We assume G to be a separable Hilbert space (again denoting its inner
product by < ·, ·, >G and the corresponding σ-algebra by B(G)).
Let (Ω,F , P ) be a probability space and let (Ft)t≥0 be a complete right-
continuous filtration.

Definition 2.4.1: A G-valued, (Ft)t≥0 adapted process (L(t))t≥0 is called
a Lévy process if:

1. L(0) = 0 (P -almost surely);

2. L has independent increments, i.e. L(t) − L(s) is independent of
Fs for all 0 ≤ s < t;

3. L has stationary increments, i.e. for all 0 ≤ s < t the random
variables L(t)− L(s) and L(t− s) have the same distribution;

4. L is stochastically continuous.

A principal difference between Lévy processes and Q-Wiener processes
is that Lévy processes in general do not have continuous paths.

Remark 2.4.2: (i) By Theorem 2.17 from [8] every Lévy process has
a càdlàg modification, which is itself a Lévy process.
Thus, concerning the path structure of Lévy processes, it is clear that all
possible discontinuities could only be of jump type.
In what follows, we always assume a Lévy process L to be càdlàg.

(ii) Given a G-valued Lévy process (L(t))t≥0, for any ω ∈ Ω, the path
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(L(t, ω))t≥0 only has finitely many jumps of norm ≥ 1. Otherwise we
could find an accumulation point t̄ ≥ 0 such that t 7→ L(t, ω) does not have
a left limit at t̄. This would contradict the càdlàg property!

(iii) Given a G-valued Lévy process (L(t))t≥0, the process
(< L(t), g >G)t≥0 is a real-valued càdlàg Lévy process for any fixed g ∈ G
(cf. Lemma 2.7 from [58]). Let us take an orthonormal basis (gn)n∈N in G
and set ln(t) :=< L(t), gn >G, t ≥ 0.
Then, by Theorem 4.39 in [95], we have the expansion

(2.8) L(t) =
∑
n∈N

ln(t)gn,

where the series is convergent in probability uniformly on any compact time-
intervall.
In particular, if L is square-integrable, i.e.

E||L(t)||2G <∞ for any t ≥ 0,

the right hand side in (2.8) converges in L2(Ω,F , P ;G) (cf. e.g. [88], Propo-
sition 2.1).

(iv) Basic examples of Lévy processes are Poisson processes and Q-Wiener
processes.
In fact, any Lévy process can be built from Poisson processes and Q-Wiener
processes in a constructive way by the Lévy-Itô decomposition, see Theorem
2.4.9 below.

(v) In this manuscript, we do not consider the so-called cylindrical Lévy
or Poisson processes with the corresponding RKHS equal to G.
Such processes are represented as

L(t) =
∑
n∈N

ln(t)gn, t ≥ 0,

with (gn)n∈N being an orthonormal basis in G and (ln)n∈N a family of inde-
pendent, identically distributed real-valued Lévy processes on (Ω,F , P ). The
above series converges P -a.s. uniformly on compact time-intervalls, but in
a larger Hilbert space G1 with the Hilbert-Schmidt embedding G⊂G1. If the
Lévy processes ln, n ∈ N, are themselves square-integrable, then the conver-
gence is also in L2(Ω,F , P ;G1) (see Section 4.8 in [95] or the paper [99]).

Next, we are going to describe the discontinuities of a Lévy process. So
let (L(t))t≥0 be a Lévy process as in 2.4.1:

Definition 2.4.3: (i) Set
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∆L(t, ω) := L(t, ω)− L(t−, ω), t ≥ 0, ω ∈ Ω.

By definition, ∆L(t, ω) is the jump size of the path L(ω) at time t.
Note that by Lemma 2.3.2 in [8], for a fixed t ≥ 0, ∆L(t) = 0, P -a.s.

(ii) Introduce a random variable

(2.9) N(t, A, ω) := card({0 < s ≤ t : ∆L(s, ω) ∈ A}) =
∑

0<s≤t
1A(∆L(s, ω)),

t ∈ [ 0, T ], A ∈ B(G), ω ∈ Ω,

with card(·) denoting the set cardinality. In other words,
N(t, A, ω) ∈ Z+ ∪ {∞} counts the jumps of a path L(ω) that take values in
A ∈ B(G).
Concerning well-definedness of N(t, A, ω), see Lemma 2.4.4 below.

(iii) A (possibly infinite) measure η on (G,B(G)) is called a Lévy measure
if

(2.10)
∫

G\{0}
(||x||2G ∧ 1)η(dx) <∞.

We will see below that for each Lévy process L there is a Lévy measure
η giving information about size and likelihood of jumps of L.

Let us denote by A0 the family of all A ∈ B(G) such that 0 6∈ Ā.
Such sets are called bounded below, whereas 0 is called the forbidden
point.
It is easy to see (cf. e.g. Lemma 2.18 in [58]) that A0 is a ring in G\{0}, i.e,
(i) ∅ ∈ A0, (ii) A,B ∈ A0 ⇒ A\B ∈ A0 and (iii) A,B ∈ A0 ⇒ A ∪B ∈ A0.

Now, let us qoute some results on the notations introduced above.

Lemma 2.4.4: (cf. Theorem 2.7 in [4])
Suppose that A ∈ A0.
Then, N(t, A) is finite for each t ≥ 0 P -a.s..

Let us introduce

B(G \ {0}) := σ(A0) = {A ∈ B(G) | 0 6∈ A},

which is the minimal σ-algebra containing the ring A0. It is easy to check
that σ(A0) = {A := B \ {0} |B ∈ B(G)}.
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Lemma 2.4.5: (i) (cf. Proposition 2.3.5 from [106] resp. Theorem
2.13 from [4])
For each 0 ≤ t ≤ T and ω ∈ Ω, we get a mapping

N(t, ·, ω): A0 7→ R+ ∪ {0}
A 7→ N(t, A, ω).

For all 0 ≤ t ≤ T and P -almost all ω ∈ Ω (cf. Proposition 2.4.4), this
is a σ-finite pre-measure, i.e.:

• N(t, ∅, ω) = 0;

• For any family (An)n∈N of pairwise disjoint sets from A0, we have

N

(
t,

∞⊔
n=1

An, ω

)
=

∞∑
n=1

N(t, An, ω);

• There is a sequence (An)n∈N ⊂ A0 exhausting G \ {0} such that

N(t, An, ω) <∞ for any n ∈ N.

In particular, one can take here An := {x ∈ G | 1
n < ||x||G}, n ∈ N.

(ii) (cf. Corollary 2.14 from [4])
Given 0 ≤ t ≤ T and ω ∈ Ω, there is a unique σ-finite measure N(t, dx, ω)
on B(G \ {0}) extending N(t, ·, ω) from part (i).

(iii) (cf. Theorem 2.17 from [4])
The mapping η given by

η(A) := E[N(1, A)], A ∈ A0,

is a σ-finite pre-measure on A0.

(iv) (cf. Corollary 2.18 from [4])
There is a unique σ-finite measure η on B(G \ {0}) extending η from part
(iii).
By Theorem 2.21 from [4], η is a Lévy measure, i.e. it fulfills (2.10).
In the following we call η the intensity measure corresponding to L.
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To describe the properties of the random variables N(t, ·), let us recall the
following general definition.

Definition 2.4.6: Given a measurable space (S,S), a family (N(S))S∈S
of random variables on a common probability space (Ω,F , P ) is called a
Poisson random measure if:

• For almost all ω, N(·, ω) is a measure on (S,S);

• The random variables N(A1), N(A2), ..., N(An) are mutually inde-
pendent for any finite family of mutually disjoint A1, A2, ..., An ∈ S
and n ∈ N;

• Each N(A) has a Poisson distribution whenever EN(A) < ∞, i.e.
there is a λA > 0 such that

P (N(A) = k) = λk
Aexp{−λA}

k! , k ∈ N ∪ {0}.

Indeed, here λA = EN(A).

Proposition 2.4.7: Setting S := G\{0} and S := B(G\{0}) as above
and fixing t ≥ 0, N(t, ·) from Definition 2.4.3 (ii) is a Poisson random
measure.

Proof: Note that N(t, ω, ·) is a measure on (S,S) for all t ≥ 0 and
almost all ω ∈ Ω by 2.4.5 (ii).
The two remaining properties from Definition 2.4.6 follow from Theorem 2.7
from [4] and its proof. �

The so-called compensated Poisson random measure Ñ(t, ·) corre-
sponding to N(t, ·) is defined on (G \ {0},B(G \ {0})) by

(2.11) Ñ(t, dx) := N(t, dx)− tη(dx), t ≥ 0,

where η is the same as in Lemma 2.4.5 (iv).

Actually, one starts from the definition Ñ(t, A) = N(t, A) − tη(A) ∈ R
for all A ∈ A0.

By Lemma 2.4.5, Ñ(t, dx) then extends to a random measure on G with
the forbidden set {0}.

Lemma 2.4.8: (cf. e.g. Example 2.3.7(3) from [8])
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For any A ∈ A0, t 7→ Ñ(t, A) is an (Ft)t≥0-martingale.

Remark 2.4.9: Recall from Remark 2.4.2 that, given a G-valued Lévy
process (L(t))t∈[ 0,T ] and a vector g ∈ G, the process Lg(t) :=< L(t), g >G,
t ∈ [ 0, T ], is a real-valued Lévy process.
Analogously to Definition 2.4.3, Lemma 2.4.5 (iii) and (2.11), we define

Ng(t, A, ω) := card({0 < s ≤ t : ∆Lg(s, ω) ∈ A})
=

∑
0<s≤t

1A(∆Lg(s, ω)), t ∈ [ 0, T ], A ∈ B(R \ {0}), ω ∈ Ω,

ηg(A) := E[Ng(1, A)], A ∈ B(R \ {0})

and

Ñg(t, dx) := Ng(t, dx)− tηg(dx), t ≥ 0.

Then, Ng is a Poisson random measure, ηg a σ-finite premeasure and Ñg a
compensated Poisson random measure with compensator ηg⊗dt. Obviously,
for a given g ∈ G Ng can be seen as a projection of N to the one-dimensional
subspace

Gg := {< x, g >G g |x ∈ G} ⊂ G,

whereas ηg and Ñg are the projections of η resp. Ñ to Gg.

The Lévy-Itô decomposition

There is a canonical representation for Lévy processes, which is given by
the celebrated Lévy-Itô decomposition.

Theorem 2.4.10: (cf. e.g. [7], Theorem 2.4.16 or [8], Theorem 1)
For any G-valued Lévy process (L(t))t≥0, there exist a drift vector b ∈ G
and a Q-Wiener process W with Q ∈ T +(G) such that, for all t ≥ 0,

(2.12) L(t) = tb+W (t) +
∫

{||x||G<1}
xÑ(t, dx) +

∫
{||x||G≥1}

xN(t, dx).

Furthermore, W is independent of N(·, A) for all A ∈ A0, where N(t, dx),
t ≥ 0, are Poisson random measures defined by (2.9).
The compensated Poisson random measure Ñ(t, dx) is defined by (2.11) and
the intensity measure η respectively by Lemma 2.4.5.
The triple (b,Q, η) is called the characteristics of L. It is uniquely deter-
mined by the Lévy process L.
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The integrals in (2.12) are understood in the Bochner sense (cf. Appen-
dix B for the general definition of Bochner integrals in Banach spaces).
Concerning the random Bochner integral w.r.t. N , we note the following:

Remark 2.4.11: Since, by Remark 2.4.2 (ii), for each ω ∈ Ω, there
is only a finite number of jumps obeying ||∆L(s, ω)||G ≥ 1, the Bochner in-
tegral w.r.t. N in (2.12) can be calculated as a random finite sum∫

{||x||G≥1}
xN(t, dx) =

∑
0<s≤t

∆L(s)1{||x||G≥1}(∆L(s)).

Clearly, ∫
{||x||≥1}

xN(t, dx)

gives rise to a càdlàg stochastic process in G as we vary t ≥ 0.
Next, we define the compensated sum of small jumps∫

{||x||G<1}
xÑ(t, dx).

For deterministic integrands, the construction of the compensated
Poisson integrals is described in Chapter 3 of [4] in the most general
case of Banach spaces and in Section 2.3 of [8] in the case of Hilbert spaces.

To define the above integral for G-valued functions w.r.t. the compensated
Poisson random measure Ñ(t, dx), we first need the Bochner integral w.r.t.
the Lévy intensity measure η from 2.4.5 (iv).
We call a mapping f : G \ {0} → G elementary if it can be written as

(2.13) f(x) =
K∑
k=1

ak1Ak
(x)

with some ak ∈ G, Ak ∈ A0, k ∈ {1, 2, . . . ,K}, and K ∈ N.

Given A ∈ σ(A0) = B(G \ {0}) and an elementary f as in (2.13), we define
the Bochner integral of f w.r.t. η on A by

∫
A

f(x) η(dx) :=
K∑
k=1

akη(Ak ∩A).

The notion of integral will be extended to general f by a limit procedure.
Given p ≥ 1, a B(G \ {0})/B(G)-measurable f : G \ {0} → G is said to be
Bochner p-integrable w.r.t. η on A ∈ B(G\{0}) if there exists a sequence
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(fn)n∈N of elementary functions such that fn → f η-almost surely on A and

(2.14) lim
n→∞

∫
A

||fn(x)− f(x)||pG η(dx) = 0.

Such sequences will be called Lp-approximating f on A.
Then, the Bochner p-integral of f on A ∈ B(G \ {0}) is defined as∫

A

f(x) η(dx) = lim
n→∞

∫
A

fn(x) η(dx),

and this definition is independent of the Lp-approximating sequence fn → f
we choose in (2.14).

By Remark 3.7 from [4], a B(G \ {0})/B(G)-measurable mapping
f : G \ {0} → G is Bochner p-integrable w.r.t. η on G \ {0} if and only if it
fulfills

(2.15)
∫

G\{0}
||f(x)||pG η(dx) <∞.

In this case, f is also Bochner p-integrable w.r.t. η on any A ∈ B(G\{0}) and∫
A

f(x) η(dx) =
∫

G\{0}
1A(x)f(x) η(dx).

We assume that t ≥ 0, p ≥ 1 and f : G \ {0} → G fulfills (2.15).
Our aim is to define the integral w.r.t. the compensated Poisson random
measure Ñ(t, dx) from Lemma 2.4.8.
For elementary f of the form (2.13) and A ∈ B(G \ {0}), we define

∫
A

f(x) Ñ(t, dx) :=
K∑
k=1

akÑ(t, Ak ∩A).

We say that a B(G \ {0})/B(G)-measurable f : G \ {0} → G is strong
p-integrable on A ∈ B(G \ {0}) w.r.t. Ñ(t, dx) if∫

A

fn(x) Ñ(t, dx)

converges in Lp(Ω,F , P ;G) for any sequence (fn)n∈N of simple functions
Lp-approximating f on A in the sense of (2.14), and the limit does not de-
pend on the choice of such sequence.
The integral

∫
A f(x)Ñ(t, dx) is called the strong 2-integral of f w.r.t.

Ñ(t, dx) on A.

In [4], cf. Theorems 3.21 and 3.24 there, it was proven that the integrability
condition (2.15) with p = 1 resp. p = 2 implies the strong 1-integrability
resp. the strong 2-integrability of f w.r.t. Ñ(t, dx).
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In this case, for any t ≥ 0 and A ∈ B(G \ {0}),∫
A

f(x) Ñ(t, dx) =
∫

G\{0}
1A(x)f(x) Ñ(t, dx), P -almost surely.

If not pointed out explicitly, below we restrict ourselves to the case p = 2.

Proposition 2.4.12: (cf. Proposition 3.26 from [4])
Let f fulfill (2.15) with p = 2.
For all A ∈ A0, the strong 2-integral of f coincides with the natural integral
of f , i.e.∫
A

f(x) Ñ(t, dx) =
∑

0<s≤t≤T
f(∆L(s))1A(∆(L(s)))− t

∫
A

f(x) η(dx), P -a.s.

By standard arguments (see e.g. [7], Chapter 2 or [8]), we can see that
for each A ∈ B(G \ {0}) ∫

A

f(x) Ñ(t, dx), t ≥ 0,

is a centered, square-integrable martingale with

E
∣∣∣∣∣∣∣∣∫
A

f(x) Ñ(t, dx)
∣∣∣∣∣∣∣∣2
G

= t
∫
A

||f(x)||2G η(dx),

provided f satisfies (2.15) with p = 2.
In particular, since ∫

G\{0}
(||x||2G ∧ 1) η(dx) <∞,

the strong 2-integral ∫
{0<||x||G<1}

x Ñ(t, dx)

is correctly defined. For notational simplicity, we will denote it just by∫
||x||G<1

x Ñ(t, dx).

Furthermore, see e.g. [8], Section 2.3., p.179,∫
{||x||G<1}

x Ñ(t, dx) = lim
n→∞

∫
{ 1

n
<||x||G<1}

x Ñ(t, dx),

where the limit is taken in L2(Ω,F , P ;G).
Having explained the terms in the decomposition 2.4.10, we continue with a
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special form of the Lévy-Itô decomposition needed in the subsequent chap-
ters. To this end, we impose the square-integrability assumption (SI) al-
ready mentioned in the Introduction.

Theorem 2.4.13: (cf. Lemma 1.1 from [59] )
Let L be a Lévy process with characteristics (b,Q, η) such that η fulfills (SI),
i.e. ∫

G

||x||2Gη(dx) <∞.

Then, the Lévy-Itô decomposition can be written as

(2.16) L(t) = tm+W (t) +
∫
G

xÑ(t, dx)

with a drift vector m ∈ G given by m = b+
∫
{||x||G≥1} xη(dx).

Let us note the following equivalence relation between a Lévy process and
its intensity measure.

Proposition 2.4.14: (cf. [95], Theorem 4.47, p.67)
A Lévy process L on a Hilbert space G is square-integrable, i.e.

E||L(t)||2G <∞ for any t ≥ 0,

if and only if its intensity measure satisfies (SI).
Furthermore the assumption

(PI)
∫

G\{0}
||x||pG η(dx) <∞ for some p ≥ 1

implies by Proposition 6.9 in [95] that

E||L(t)||pG <∞ for all t ≥ 0.

Martingale measures

It is an important observation that the third term on the right hand side of
the Lévy-Itô decomposition (2.16) is a martingale measure. The notion
of the martingale measure combines the two important concepts of random
measure and martingale.
In particular, there is a well-developed L2-theory of stochastic integration
w.r.t. martingale measures in Hilbert spaces, which is presented e.g. in
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the monograph [7] by Applebaum (for some basic facts see also Section 2.6
below).

The notion of martingale measure for G = R was first introduced by Walsh
in Chapter 2 of [110]. For the corresponding extension to the case of Hilbert
spaces, see e.g. [7] or [8], Section 2.2. Below, we give a short account adapted
to our purposes.
So, let G be a separable Hilbert space with the forbidden point 0. Let us
define the family A0 of sets A ∈ B(G) bounded below (i.e. such that 0 /∈ Ā).
Next, let S := {x ∈ G | 0 < ||x||G < 1}, Sn := {x ∈ G | 1

n < ||x||G < 1},
S0 := A0 ∩ S, B(S) = σ(S0) = S ∩ B(G), and B(Sn) = Sn ∩ B(G), n ∈ N.
Obvously, S =

⋃
n∈N

Sn and S0 is a ring in S.

Definition 2.4.15: A family of G-valued random variables M(t, A), in-
dexed by t ∈ R+ and A ∈ S0, is called a martingale-valued measure if
it has the following properties:

1. M(0, A) = M(t, ∅) = 0 P -a.s. for all t ≥ 0, A ∈ S0;

2. Finite additivity: M(t, A t B) = M(t, A) +M(t, B) P -a.s. for all
disjoint A,B ∈ A and t ∈ [ 0, T ];

3. σ-finedness: sup{E||M(t, A)||2G |A ∈ B(Sn)} <∞ for all n ∈ N,
t ∈ [ 0, T ];

4. σ-additivity on each B(Sn), n ∈ N:
lim
j→∞

E||M(t, Aj)||2G = 0 for any sequence (Aj)j∈N ⊂ B(Sn) decreasing

to the empty set;

5. R+ 3 t 7→M(t, A) is a square integrable martingale for each
A ∈ S0.

M is called orthogonal if

[ 0, T ] 3 t 7→ (M(t, A), gn >G< M(t, B), gm >G),

is a martingale for all disjoint A,B ∈ A, all n,m ∈ N and an orthonor-
mal basis (gn)n∈N of G.

To continue, let us recall that a family T = {TA |A ∈ S0} of nonnegative
bounded symmetric operators in G is called a positive operator-valued
measure if:

• T∅ = 0;
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• TAtB = TA + TB for all disjoint A,B ∈ S0.

T is said to be of trace class if TA ∈ T +(G) for every A ∈ S0.

Let T be a trace class positive operator-valued measure and let ρ be a
Radon measure on (0,∞).

The martingale measure M is called nuclear with (T, ρ) if

E[< M((s, t], A), g >G< M((s, t], A), h >G] =< g,TAh >G ρ((s, t])

for all 0 ≤ s ≤ t <∞, A ∈ S0 and g, h,∈ G.

M is called decomposable if T is decomposable, i.e. there exist a σ-finite
measure η on B(S) and a family (Tx)x∈S of nonnegative bounded symmetric
operators in G such that S 3 x 7→ Txg ∈ G is measurable for all g ∈ G and

TAg =
∫
A

Txg η(dx)

for all A ∈ A and g ∈ G.
Again, the integral is understood in the Bochner-sense in G (with p = 1).

Next, we note the following relation between martingale measures and com-
pensated Poisson random measures.

Theorem 2.4.16: (cf. e.g. Theorem 2 in [8] or Theorem 2.5.2 and Propo-
sition 2.5.4 in [106])
Let Ñ(t, dx) be a compensated Poisson random measure corresponding to a
Lévy process L(t), t ≥ 0, in G.
Then,

M(t, A) :=
∫
A

x Ñ(t, dx), t ≥ 0, A ∈ B(S),

is an orthogonal martingale-valued measure with independent increments.
It is nuclear with (T, dt), where dt denotes the Lebesgue measure on R+ and
T = {TA |A ∈ S0} is given by

TAg :=
∫
A

(x, g)Gx η(dx), for A ∈ S0, g ∈ G.

Here, η is the Lévy intensity measure defined in Lemma 2.4.5 (iv). Each
TA ∈ T +(G) and

tr(TA) =
∫
A

||x||2G η(dx) <∞, A ∈ S0.
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Furthermore, T is decomposable with the measure η and the operator family

(2.17) G 3 g 7→ Txg :=< x, g >G x ∈ G.

We close this section by taking a closer look at the operators Tx, x ∈ S.
Let us recall the following definition:

Definition 2.4.17: Given two separable Hilbert spaces G and H, a
bounded linear operator T : G → H is said to be a Hilbert-Schmidt
operator if

||T ||2L2(G,H) := trG(T ∗T ) =
∑
n∈N

||Tgn||2H <∞,

where (gn)n∈N is an orthonormal basis of G.

We denote the space of all Hilbert-Schmidt operators from G to H by
L2(G,H).
It is a separable Hilbert space with inner product

< T1, T2 >L2(G,H)= trG(T ∗1 T2)

and induced norm ||T ||L2(G,H). Actually the above definition does not de-
pend on the choice of the orthonormal basis (gn)n∈N. Furthermore, L2(G,H)
is a two-sided ideal in the Banach space L(G,H) of all bounded linear oper-
ators from G to H, i.e., for any T ∈ L2(G,H) and R1 ∈ L(G), R2 ∈ L(H),
we have R2TR1 ∈ L2(G,H) and

(2.18) ||R2TR1||L(G,H) ≤ ||R2TR1||L2(G,H) ≤ ||R2||L(H)||T ||L2(G,H)||R1||L(G).

The spaces L(G,H) and L2(G,H) will be equipped by the corresponding
σ-algebras B(L(G,H)) and B(L2(G,H)).
Because of the continuous embedding L2(G,H)⊂−→L(G,H), a general argu-

ment based on Kuratowski’s theorem (see Theorem 3.9, p.21 in [91])
yields that L2(G,H) is a measurable subset of L(G,H) and

B(L2(G,H)) = L2(G,H)
⋂
B(L(G,H)).

Remark 2.4.18: It is easy to check that each Tx, x ∈ S, defined in
(2.17) is a bounded, nonnegative and symmetric operator in G. Its square-
root operator has an explicit form as

G 3 g 7→ T
1
2
x g := <x,g>G

||x||G x ∈ G, x ∈ S.
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Furthermore, Tx ∈ T +(G), T
1
2
x ∈ L2(G) and

||T
1
2
x ||2L2(G) = tr(Tx) = ||Tx|| = ||x||2G.

Assuming the global integrability condition (SI), one can prove the same
results for S := G \ {0} and S0 = A0.

2.5 Stochastic integration w.r.t. Wiener processes

In this section, we briefly recall the standard construction of stochastic in-
tegrals w.r.t. Wiener processes in Hilbert spaces.
For more details, see e.g. the monographs [26] and [97].

Let G and H be separable Hilbert spaces.
We have to distinguish two main cases:

• Nuclear case: stochastic integration w.r.t. Q-Wiener processes with
Q ∈ T +(G).

• Cylindrical case: stochastic integration w.r.t. cylindrical I-Wiener
processes.

As in the previous sections, let (Ω,F , P ) be a probability space and let
(Ft)t∈[ 0,T ] be a complete right-continuous filtration in F .

Nuclear case
Given Q ∈ T +(G), the integration w.r.t. Q-Wiener process (W (t))t≥0 tak-
ing values in G is defined as follows.

Recall that we write G for the Hilbert space Q
1
2 (G) defined in Section 2.3:

For the rest of this section, we fix 0 < T < ∞. First, we introduce the
class of elementary processes.

Definition 2.5.1: (cf.[97], Section 2.3, Definition 2.3.1 resp. Propositions
2.3.5 and 2.3.6)
(i) An L(G,H)-valued process (Φ(t))t∈[ 0,T ] is called an elementary (or
simple) process if there exists a partition of [ 0, T ],
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0 =: t0 < t1 < . . . < tM := T , M ∈ N,

such that

Φ(t) :=
M−1∑
m=0

Φm1( tm,tm+1 ](t),

where for each 0 ≤ m ≤M − 1:

• Φm is Ftm-measurable;

• Φm only takes a finite number of values in L(G,H).

(ii) Given such a process, for each t ∈ [ 0, T ] the stochastic integral is
defined by(
t∫
0

Φ(s) dW (s)
)

(ω) :=
M−1∑
m=0

Φm(ω)(W (tm+1 ∧ t)(ω)−W (tm ∧ t)(ω)), ω ∈ Ω.

Furthermore, we have the Itô-isometry

(2.19) E
∣∣∣∣∣∣∣∣ t∫

0

Φ(s) dW (s)
∣∣∣∣∣∣∣∣2
H

= E
t∫
0

||Φ(s)||2L2(G,H) ds

and the mapping

[ 0, T ] 3 t 7→
t∫
0

Φ(s) dW (s) ∈ H

is a continuous, square-integrable martingale w.r.t. (Ft)t∈[ 0,T ].

Note that the Hilbert-Schmidt norm in the right hand side of (2.19) is finite
due to the elementary estimate

||Φ||L2(G,H) ≤ (tr Q)
1
2 ||Φ||L(G,H)

valid for any operator Φ ∈ L(G,H).

By the Itô-isometry, the notion of stochastic integrals is extended to a larger
class of integrands Φ:

Proposition 2.5.2: (cf. [97], Section 2.3, Proposition 2.3.8)
For any L2(G,H)-valued, predictable process Φ obeying
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(2.20) E
T∫
0

||Φ(s)||2L2(G,H) ds <∞,

there exists a sequence of elementary processes (Φn)n∈N such that

lim
n→∞

E
T∫
0

||Φ(s)− Φn(s)||2L2(G,H) ds = 0.

Then, one defines the stochastic integral for Φ as the L2-limit of the sto-
chastic integrals corresponding to Φn that were constructed by 2.5.1, i.e.

t∫
0

Φ(s) dW (s) := lim
n→∞

t∫
0

Φn(s) dW (s), t ∈ [ 0, T ],

in L2(Ω,F , P ;H).
Obviously, the limit does not depend on the choice of the approximating
sequence (Φn)n∈N. Furthermore, Itô’s isometry (2.19) holds true for this
stochastic integral and

[ 0, T ] 3 t 7→
t∫
0

Φ(s) dW (s) =: M(t) ∈ H

is a continuous square integrable martingale as well. Its quadratic varia-
tion equals

< M,M >t= [M,M ]t =
t∫
0

||Φ(s)||2L2(G,H) ds, t ∈ [ 0, T ].

The Wiener stochastic integral has the following continuity property.

Proposition 2.5.3: (cf. [97], Lemma 2.4.1, p.35)
Let Φ be as in 2.5.2, let L ∈ L(H, H̃), where H̃ is another separable Hilbert
space. Then, (L(Φ(t)))t∈[ 0,T ] ⊂ L2(G, H̃) and, for any t ∈ [ 0, T ],

L

(
t∫
0

Φ(s) dW (s)
)

=
t∫
0

L(Φ(t)) dW (s), P -a.s..

We finish our consideration of the nuclear case with the following funda-
mental inequality due to Burkholder, Davies and Gundy.

Proposition 2.5.4: (cf. [26], Chapter 7, Lemma 7.2)
Let r ≥ 1 and define positive constants

cr :=
(

2r
2r−1

)2r

and
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Cr := (r(2r − 1))r
(

2r
2r−1

)2r2

.

Then, for any L2(G,H)-valued, predictable process (Φ(t))t∈[ 0,T ] obeying (2.20),
we have

E

(
sup
s∈[ 0,t ]

∣∣∣∣∣∣∣∣ s∫
0

Φ(u) dW (u)
∣∣∣∣∣∣∣∣2r
H

)
≤ cr sup

s∈[ 0,t ]
E

(∣∣∣∣∣∣∣∣ s∫
0

Φ(u) dW (u)
∣∣∣∣∣∣∣∣2r
H

)
≤ CrE

(
t∫
0

||Φ(s)||2L2(G,H) ds

)r
, t ∈ [ 0, T ].

Cylindrical case
Let Q = I and W be the corresponding cylindrical Wiener process defined
in Section 2.3.
Recall that to construct this process, we need an auxiliary Hilbert space G1

with the Hilbert-Schmidt embedding J : G⊂−→G1.
To this end, let (bn)n∈N be a sequence of nonnegative real numbers such that∑

n∈N
b2n <∞,

and let (gn)n∈N be an orthonormal basis of G.
Then, G1 is defined as a completion of G w.r.t. the inner product

< g, h >G1 :=
∑
n∈N

b2n < gn, g >G< gn, h >G.

By the above construction, we get the Hilbert-Schmidt embedding oper-
ator J ∈ L2(G,G1)

G 3 g 7→ Jg :=
∑
n∈N

bn < g, gn >G gn ∈ G1.

Now, the idea is to define the stochastic integral w.r.t. the cylindrical Wiener
process as the stochastic integral w.r.t. to the Q1-Wiener process introduced

in 2.3.8. Its correlation operator is Q1 := JJ∗ ∈ T +(G1) with G = Q
1
2
1 (G1).

Now the previuos construction runs for G := G1 and G := Q
1
2
1 (G1) = G.

By Theorem 2.5.2, the stochastic integral w.r.t. the cylindrical Wiener

process W exists for all predictable L2(Q
1
2
1 (G1),H)-valued processes

(Ψ(t))t∈[ 0,T ] fulfilling

E
T∫
0

||Ψ(t)||2
L2(Q

1
2
1 G1,H)

dt <∞.
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It is clear that a predictable process (Φ(t))t∈[ 0,T ] is L2(G,H)-valued if and

only if (Ψ(t) := Φ(t) ◦ J−1)t∈[ 0,T ] is L2(Q
1
2
1G1,H)-valued. This leads to the

following:

Definition 2.5.5: Let W be a cylindrical I-Wiener process in the sense of
Section 2.3. Let J be as defined above.

Given a predictable L2(G,H)-valued process (Φ(t))t∈[ 0,T ] such that

E
T∫
0

||Φ(s)||2L2(G,H) ds <∞,

its stochastic integral w.r.t. W is defined by

(2.21)
t∫
0

Φ(s) dW (s) :=
t∫
0

Φ(s) ◦ J−1 dW (s) ∈ H, t ∈ [ 0, T ].

Here, Itô’s isometry takes the form

E
∣∣∣∣∣∣∣∣ t∫

0

Φ(s) dW (s)
∣∣∣∣∣∣∣∣2
H

= E
T∫
0

||Φ(s)||2L2(G,H) ds, t ∈ [ 0, T ].

Let us note (cf. [97], Remark 2.5.3, p.42) that the integral in (2.21) is
independent of the choice of (bn)n∈N and (gn)n∈N.

Furthermore, we have the following version of the Burkholder-Davis-
Gundy inequality for the cylindrical I-Wiener process:

Proposition 2.5.6: (cf. [26], Chapter 7, Lemma 7.7)
Given an L2(G,H)-valued, predictable process (Φ(t))t∈[ 0,T ], for each r ≥ 1
and t ∈ [ 0, T ], the following estimate holds

sup
s∈[ 0,t ]

E
∣∣∣∣∣∣∣∣ s∫

0

Φ(u) dW (u)
∣∣∣∣∣∣∣∣2r
H

≤ (r(2r − 1))r
(

t∫
0

(E||Φ(s)||2rL2(G,H))
1
r ds

)r
.

We finish this section with the following notation convention:

Definition 2.5.7: If it does not lead to misunderstandings, we use the
notation L2 for L2(Q

1
2L2, L2

ρ) both in the case of Q ∈ T +(G) and in the
case of Q = I 6∈ T +(G).

Definition 2.5.8: For a given T > 0, we denote by SW (T ) the set of ele-
mentary (or simple) processes (Φ(t))t∈[ 0,T ] with values in L2 and by NW (T )
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the set of all predictable processes (Φ(t))t∈[ 0,T ] with values in L2 such that

E
T∫
0

||Φ(s)||2L2
ds <∞.

Remark 2.5.9: Actually, the predictability of the integrand process Φ is
not necessary to define

t∫
0

Φ(s) dW (s).

Using Itô’s isometry, by the previous scheme one can extend the definition
of stochastic integral to all measurable, adapted processes Φ such that

||Φ||2L2([ 0,T ]×Ω;L2) =
∫

[ 0,T ]×Ω

||Φ(t, ω)||2L2
dt dP <∞.

2.6 Stochastic integration w.r.t. compensated Pois-
son random measures

The main ingredient of equations (1.1) and (1.2) is the stochastic integral
w.r.t. compensated Poisson random measures and orthogonal martingale
measures.

Here, we briefly present the Lp-theory of stochastic integration w.r.t. that
kind of measures. For a more detailed exposition for p = 2 resp. p = 1 see
[7] resp. [102].
Furthermore, we discuss the so-called Bichteler-Jacod inequality and path
properties of stochastic integrals w.r.t. compensated Poisson random mea-
sures.

Analogously to Section 2.5, we fix some 0 < T <∞.

Let (Ω,F , P ) be a probability space and let (Ft)t∈[ 0,T ] be a complete right-
continuous filtration in F .

Stochastic integration w.r.t. a compensated Poisson random mea-
sure

Let G, H be two separable Hilbert spaces as in Section 2.5. As in Sec-
tion 2.4, let Ñ be a compensated Poisson random measure on [ 0, T ] × G
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with compensator η(dx)⊗ dt, where η is a Lévy measure.

The following presentation is based on Section 3 of [102], where Rüdiger
and Ziglio elaborate an Lp-theory (with p ≥ 1) of stochastic integration
w.r.t. Poisson random measures on separable Banach spaces. We restrict
ourselves to the case of separable Hilbert spaces, which will be sufficient for
our purposes.

Recall from Section 2.4 that N(t, A) is P -a.s. finite for any t ∈ [ 0, T ]
and A ∈ A0. Here,

A0 := {A ∈ B(G) | 0 /∈ Ā}

is the ring of the so-called bounded below sets in G. Furthermore (cf. (7),
(8) from [102], p. 5 there), for any 0 ≤ t1 < t2 ≤ T ,

(2.22) N((t1, t2]×A)(ω) =
∑

t1<s≤t2
1A(∆L(s))(ω), ω ∈ Ω.

Herefrom, by the definition (2.11) of Ñ(t, dx),

(2.23) Ñ((t1, t2]×A)(ω) = N((t1, t2]×A)(ω)− (t2 − t1)η(A), ω ∈ Ω.

We define the stochastic integration w.r.t. the compensated Poisson ran-
dom measure Ñ for vector-valued integrands f : [ 0, T ]× Ω×G \ {0} → H.

First, we need the proper notion of measurability for the integrand func-
tions.
By PT,A0 we denote the σ-algebra on [ 0, T ] × Ω × G \ {0} generated by
product sets of the form {0}×B×A and (s, t]×C ×A with 0 < s < t ≤ T ,
A ∈ A0, B ∈ F0 and C ∈ Fs.
The integrand functions f are assumed to be PT,A0/B(H)-measurable and
hence such that t 7→ f(t, ω, x) is Ft-adapted for any fixed x ∈ G \ {0}. We
will call such f predictable and denote their set by NG/H(T ).

As in the Wiener case, we start with the definition of the integral for simple
functions.

Definition 2.6.1: (cf. Definition 3.3 from [102])
(i) A function f ∈ NG/H(T ) belongs to the set SG/H(T ) of elementary
(or simple) functions if it can be represented as
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(2.24) f(t, ω, x) =
M∑
m=1

1{0}(t)1A0,m(x)1B0,m(ω)a0,m

+
K−1∑
k=1

M∑
m=1

1(tk,tk+1](t)1Ak,m
(x)1Bk,m

(ω)ak,m,

where K,M ∈ N, Ak,m ∈ A0, Bk,m ∈ Ftk , ak,m ∈ H and
0 =: t0 < t1 < ... < tM = T . For each k ∈ {1, 2, ...,K} fixed, we assume

(Ak,m1 ×Bk,m1) ∩ (Ak,m2 ×Bk,m2) = ∅ if m1 6= m2.

(ii) Given t ∈ [ 0, T ], A ∈ B(G \ {0}) and f ∈ SG/H(T ), we define the
Poisson stochastic integral as a random variable

(2.25)
t∫
0

∫
A

f(t, ω, x) Ñ(ds, dx)(ω)

:=
∫

( 0,t ]

∫
A

f(t, ω, x) Ñ(ds, dx)(ω)

:=
K−1∑
k=0

M∑
m=0

ak,m1Bk,m
(ω)Ñ((tk, tk+1] ∩ (0, t]×Ak,m ∩A)(ω), ω ∈ Ω.

Moreover, for 0 ≤ t1 ≤ t2 ≤ T , we set

t2∫
t1

∫
A

f(s, ω, x) Ñ(ds, dx)(ω)

:=
∫

(t1,t2 ]

∫
A

f(s, ω, x) Ñ(ds, dx)(ω)

:=
∫

(0,t2 ]

∫
A

f(s, ω, x) Ñ(ds, dx)(ω)−
∫

(0,t1 ]

∫
A

f(s, ω, x) Ñ(ds, dx)(ω)

=
t2∫
0

∫
A

f(s, ω, x) Ñ(ds, dx)(ω)−
t1∫
0

∫
A

f(s, ω, x) Ñ(ds, dx)(ω).

Remark 2.6.2: We set t0 = t1 = 0 in (2.24) in order to include the
value of f ∈ SG/H(T ) at t0 = 0 and hence to define the integrand function
on the whole intervall [ 0, T ]. However, (2.25) shows that the concrete value
of f at t = 0 does not influence the integral. For this reason, it is more
accurate to use the notation∫

( 0,t ]

∫
A

f(s, x) Ñ(ds, dx).

For p ≥ 1, we denote by Np,η
G/H(T ) the set of functions f ∈ NG/H(T ) such

that
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T∫
0

∫
G

E||f(t, x)||pH η(dx) dt <∞.

Definition 2.6.3: (cf. Definition 3.5 from [102])
Let p ≥ 1, A ∈ B(G \ {0}) and f ∈ NG/H(T ).
A sequence (fn)n∈N ⊂ SG/H(T ) is called Lp-approximating f on
( 0, T ]×Ω×A w.r.t. dt×P × η if fn is dt×P × η-almost surely converging
to f as n→∞, and

lim
n→∞

T∫
0

∫
A

E[||fn(t, x)− f(t, x)||pH ] η(dx) dt = 0.

Theorem 2.6.4: (cf. Theorem 3.6 from [102])
Let p ≥ 1, T > 0. Then, for each f ∈ Np,η

G/H(T ), there is a sequence
(fn)n∈N ⊂ Sp,ηG/H(T ), which is Lp-approximating f on ( 0, T ]×Ω×A for all
A ∈ B(G \ {0}).

Now, we describe the class of admissible integrands.

Definition 2.6.5: (cf. Definition 3.9 from [102])
(i) Let p ≥ 1, T > 0 and A ∈ B(G \ {0}). We say that f ∈ NG/H(T ) is

strong-p-integrable on ( 0, T ]×Ω×A w.r.t. Ñ if there exists a sequence
(fn)n∈N of simple functions Lp-approximating f on ( 0, T ]× Ω×A.
(ii) For any such sequence and any t ∈ [ 0, T ], the limit of the integrals of
fn w.r.t. Ñ exists, i.e.

(2.26)
t∫
0

∫
A

f(s, ω, x) Ñ(ds, dx)(ω) :=
T∫
0

∫
A

1[ 0,t ](s)f(s, ω, x) Ñ(ds, dx)(ω)

:= lim
n→∞

T∫
0

∫
A

1[ 0,t ](s)fn(s, ω, x) Ñ(ds, dx)(ω)

= lim
n→∞

t∫
0

∫
A

fn(s, ω, x) Ñ(ds, dx)(ω),

and the limit does not depend on the choice of the Lp-approximating se-
quence (fn)n∈N.
The limit in (2.26) will be called the strong-p-integral of f w.r.t. Ñ on
( 0, t ]×A.
Moreover, given 0 ≤ t1 ≤ t2 ≤ T , we set

t2∫
t1

∫
A

f(s, ω, x) Ñ(ds, dx)(ω) :=
t2∫
0

∫
A

f(s, ω, x) Ñ(ds, dx)(ω)

−
t2∫
0

∫
A

f(s, ω, x) Ñ(ds, dx)(ω).

In the special case p = 2, there is a constructive description of the pos-
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sible integrands.

Theorem 2.6.6: (cf. Theorem 3.13 from [102], Proposition 3.15 from
[71] and Proposition 3.6. in [61])
Let f ∈ N2,η

G/H(T ). Then, f is strong-2-integrable w.r.t. Ñ(dt, dx) on
( 0, t ]×A for any 0 ≤ t ≤ T , A ∈ B(G \ {0}) and

t∫
0

∫
A

f(s, x) Ñ(ds, dx) =
T∫
0

∫
G\{0}

1[ 0,t ](s)1A(x)f(s, x) Ñ(ds, dx).

Moreover, we have the isometry

(2.27) E

[∣∣∣∣∣∣∣∣ t∫
0

∫
A

f(s, x) Ñ(ds, dx)
∣∣∣∣∣∣∣∣2
H

]
=

t∫
0

∫
A

E||f(s, x)||2H η(dx) ds.

The process

(2.28) M(t) :=
t∫
0

∫
G\{0}

f(s, x) Ñ(ds, dx), t ∈ [ 0, T ]

is a square-integrable Ft-martingale with mean zero.
Its predictable quadratic variation (i.e. the Meyer process) is given by

< M,M >t=
t∫
0

∫
G\{0}

||f(s, x)||2H η(dx) ds,

whereas for its adpted quadratic variation we have

[M,M ]t =
t∫
0

∫
G\{0}

||f(s, x)||2H N(ds, dx).

Furthermore, M is càdlàg and M(t) = M(t−), P -a.s. for all t ∈ [ 0, T ].

Remark 2.6.7: From Itô’s isometry we see that

t∫
0

∫
G\{0}

f1(s, x) Ñ(ds, dx) =
t∫
0

∫
G\{0}

f2(s, x) Ñ(ds, dx)

for any two predictable processes f1, f2 ∈ N 2,η
G/H satisfying

t∫
0

∫
G\{0}

E||f1(s, x)− f2(s, x)||2H η(dx) ds = 0.

In particular, except for a zeroset, the value of f at t0 = 0 does not in-
fluence the integral
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t∫
0

∫
A

f(s, x) Ñ(ds, dx),

since the process 1{0}(s)f(s, x) is P ⊗ dt⊗ η-equivalent to the indentity zero
process. Again it would be more accurate to use the notation∫

( 0,t ]

∫
A

f(s, x) Ñ(ds, dx).

Recall that by the definition

M(t) :=
t∫
0

∫
G\{0}

f(s, x) Ñ(ds, dx), t ∈ [ 0, T ],

is a càdlàg process, and hence it obeys a predictable modification M(t−),
t ∈ [ 0, T ]. To distinguish between the càdlàg and the predictable versions
some authors use respectively the notation

t+∫
0

∫
G\{0}

f(s, x) Ñ(ds, dx)

and

t−∫
0

∫
G\{0}

f(s, x) Ñ(ds, dx).

We have an anlogous proposition to 2.5.3.

Proposition 2.6.8: (cf. [60], Proposition 3.7, p.58)
Let f ∈ N 2,η

G/H(T ) and let L ∈ L(H, H̃), where H̃ is another separable Hilbert

space. Then, Lf ∈ N 2,η

G/H̃
(T ) and, for each t ∈ [ 0, T ],

L

(
t∫
0

∫
G\{0}

f(s, x) Ñ(ds, dx)

)
=

t∫
0

Lf(s, x) Ñ(ds, dx), P -a.s..

Remark 2.6.9: Let us apply the Theorem 2.6.6 to the concrete func-
tion f ∈ N2,η

G/H(T ) given by

(2.29) f(t, ω, x) = 1S(x)g(t, ω)x, (t, ω, x) ∈ [ 0, T ]× Ω×G,

with S = {x ∈ G | 0 < ||x||G < 1}. Under the assumption (2.10), i.e.∫
G

(||x||2G ∧ 1) η(dx) <∞,

a sufficient condition for the above f to belong to N 2,η
G/H(T ) is that
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[ 0, T ]× Ω 3 (t, ω) 7→ g(t, ω) ∈ L(G,H)

is predictable and obeys

E
T∫
0

||g(t, ω)||2L(G,H) ds <∞.

Note that if g1, g2 ∈ L2([ 0, T ] × Ω;L(G,H)) are predictable and stochasti-
cally equivalent in the sense of Definition 2.1.1, then by Itô’s isometry

E

[∣∣∣∣∣∣∣∣ t∫
0

∫
G

f1(s, x) Ñ(ds, dx)−
t∫
0

∫
G

f2(s, x) Ñ(ds, dx)
∣∣∣∣∣∣∣∣2
H

]
≤
(∫
G

||x||2G η(dx)
)

E
T∫
0

||g1(s)− g2(s)||2L2(G,H) ds = 0, 0 ≤ t ≤ T ,

i.e. the integrals are also stochastically equivalent.

The integrands of such form naturally appear in the theory of SDEs driven
by Lévy processes.
For notational simplicity, for f ∈ N 2,η

G/H(T ) such that f(x) = 0 if x = 0, we
shall write

t∫
0

∫
G

f(s, x) Ñ(ds, dx) =
t∫
0

∫
G\{0}

f(s, x) Ñ(ds, dx).

We finish this section by recalling Lp-properties of the Poisson stochastic
integral.

We state the important Bichteler-Jacod inequality, which e.g. can be
found in [18] (cf. Lemma 3.1 there) and [79] (cf. Lemma 3.1 , p.7 there).

To this end, for p ≥ 2, we consider the space of integrands f ∈ Np,η
G/H(T ),

where the functions f are predictable, i.e. f ∈ NG/H(T ), and fulfill

(2.30) E
T∫
0

[∫
G

||f(s, x)||pH η(dx) +
(∫
G

||f(s, x)||2H η(dx)
) p

2

]
ds <∞.

Obviously Np,η
G/H(T ) ⊂ N2,η

G/H(T ) and hence the integral (2.28) is well-defined
for such f .

Theorem 2.6.10: For p ≥ 2 and f ∈ Np,η
G/H(T ), the process
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M(t) :=
t∫
0

∫
G

f(s, x) Ñ(ds, dx), t ∈ [ 0, T ],

obeys the supremum bound

(2.31) sup
t∈[ 0,T ]

E||M(t)||pH ≤ E

(
sup

t∈[ 0,T ]
||M(t)||pH

)

≤ Kp,TE
T∫
0

[( ∫
G\{0}

||f(s, x)||pH η(dx)

)

+E

( ∫
G\{0}

||f(s, x)||2H η(dx)

) p
2

 ds,
where (p, T ) 7→ Kp,T ∈ R+ is continuous.

An advantage of the Bichteler-Jacod inequality (2.31) (as compared with
the Doob-Meyer decomposition and Burkholder-Davies-Gundy inequality)
is that we do not need to calculate the corresponding quadratic variation
processes.
A lower bound for the left hand side in (2.31) was established in the recent
work [31] by Dirksen, see also Remark 4.5 below.

Remark 2.6.11: Note that, for f ∈ Np,η
G/H(T ) of the form (2.22), to

have (2.31) it is sufficient to assume that

T∫
0

E||g(t, ω)||pL(G,H) ds <∞.

Stochastic integration w.r.t. martingale measures

In Hilbert spaces there is a unified L2-theory for stochastic integration,
which includes both integration w.r.t. Wiener and Poisson processes.
This theory, which is based on the concept of a martingale-valued measure
(see Section 2.4 above), was developed by Walsh in finite dimensions (cf.
the monograph [110]) and by Applebaum (cf. [7]) in general Hilbert spaces.
We will briefly explain the basic issues of this theory adapted to our frame-
work.
Let again G and H be two separable Hilbert spaces. As before, let

S = {x ∈ G | 0 < ||x||G < 1}

and
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S0 = {A ∈ B(G) |A ⊂ S, 0 /∈ Ā}.

Furthermore, let N(t, dx) be a G-valued orthogonal martingale measure,
which is nuclear with (T, dt) and decomposable with intensity measure η.

Definition 2.6.12 : We denote by N 2
M (T ) the set of all mappings

F : [ 0, T ]× S × Ω 7→ L(G,H) obeying the following properties:

• Predictability: (t, x) 7→ F (t, x)g is PT ⊗ B(S)-measurable for each
g ∈ G;

• For any (t, x, ω) ∈ [ 0, T ]×S×Ω, F (t, x)(ω)T
1
2
x : G→ H is a Hilbert-

Schmidt operator, i.e. it belongs to L2(G,H), and we have

(2.32) ||F ||N 2
M (T ) :=

(
E

T∫
0

∫
S

||F (s, x)T
1
2
x ||2L2(G,H) η(dx) ds

) 1
2

<∞.

As usual, the construction of the integral is started by considering simple
integrands.

Definition 2.6.13: The subspace S2
M (T ) ∈ N 2

M (T ) consists of all ele-
mentary processes F : [ 0, T ]× S × Ω 7→ L(G,H) having the form

F =
M∑
m=1

1{0}1AmF0m

+
K−1∑
k=0

M∑
m=1

1( tk,tk+1 ]1AmFkm

with K,M ∈ N, 0 := t0 = t1 < t2 < . . . < tK := T , pairwise disjoint
Am ∈ S0, and random variables Fkm ∈ L(G,H) such that Fkmg ∈ H is
Ftk -measurable for all g ∈ G.

It can be checked that N 2
M (T ) is a Banach space and S2

M (T ) is dense in
N 2
M (T ) w.r.t. the norm (2.32) (cf. e.g. Lemma 3.1.2 in [106]).

For each F ∈ S2
M (T ), we define

t∫
0

∫
S

F (s, x)M(ds, dx) :=
∫

(0,t]

∫
S

F (s, x)M(ds, dx)

:=
K−1∑
k=0

M∑
m=1

FkmM((t ∧ tk, t ∧ tk+1], Am).

Analogously to Definition 2.6.5, given 0 ≤ t1 ≤ t2 ≤ T , we set



2.6. POISSON STOCHASTIC INTEGRATION 67

t2∫
t1

∫
S

F (s, x)M(ds, dx) :=
∫

(t1,t2]

∫
S

F (s, x)M(ds, dx)

:=
∫

(0,t2]

∫
S

F (s, x)M(ds, dx)−
∫

(0,t1]

∫
S

F (s, x)M(ds, dx)

=
t2∫
0

∫
S

F (s, x)M(ds, dx)−
t1∫
0

∫
S

F (s, x)M(ds, dx).

A crucial issue is the Itô-isometry

(2.33) E
∣∣∣∣∣∣∣∣ t∫

0

∫
S

F (s, x)M(ds, dx)
∣∣∣∣∣∣∣∣2
H

= E
t∫
0

∫
S

||F (s, x)T
1
2
x ||L2(G,H) η(dx) ds.

Lemma 2.6.14 : For each F ∈ N 2
M (T ), there exists a sequence

(Fn)n∈N ⊂ S2
M (T ) such that

||Fn − F ||2N 2
M (T )

= E
T∫
0

∫
S

||(Fn(t, x)− F (t, x))T
1
2
x ||2L2(G,H)η(dx) dt→ 0.

Then,
∫ t
0

∫
S F (s, x)M(ds, dx) is defined as the L2(Ω,F , P ;H)-limit of the

integrals corresponding to any approximating sequence (Fn)n∈N ⊂ S2
M (T ).

In particular, by Itô’s isometry the limit does not depend on the concrete
choice of such sequence.
Respectively for A ∈ B(S), we call

t∫
0

∫
A

F (s, x)M(ds, dx) :=
t∫
0

∫
S

1A(x)F (s, x)M(ds, dx)

:=
∫

( 0,t ]

∫
A

F (s, x)M(ds, dx)

the strong integral w.r.t the martingale measure.

The properties of the integral defined above are described by

Theorem 2.6.15:(cf. f.e. [106],Theorem 3.1.5)
The process (

∫ t
0

∫
S F (s, x)M(ds, dx))t∈[ 0,T ] is an H-valued square integrable

martingale with càdlàg paths. Furthermore, for all t ∈ [ 0, T ],

E
∣∣∣∣∣∣∣∣ t∫

0

∫
S

F (s, x)M(ds, dx)
∣∣∣∣∣∣∣∣2
H

= E
t∫
0

∫
S

||F (s, x)T
1
2
x ||2L2(G,H) η(dx) ds.

To complete the discussion, let us compare the definitions of stochastic inte-
grals given in this section. Having in mind applications to SDEs with Lévy
processes, we are interested in the stochastic integral
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(2.34)
t∫
0

∫
{0<||x||<1}

g(s)x Ñ(ds, dx)

with predictable

[ 0, T ]× Ω 3 (t, ω) 7→ g(t, ω) ∈ L(G,H)

obeying

(2.35) E
T∫
0

||g(t)||2L(G,H) dt <∞.

(2.34) is correctly defined in the L2-sense, see Remark 2.6.6. On the other
hand, (2.34) can be seen as the stochastic integral w.r.t. the Lévy martin-
gale measure

M(t, A) :=
∫
A

x Ñ(ds, dx), A ∈ S0.

By Theorem 2.4.15, M is decomposable with (Tx)x∈S ⊂ T +(G) given by

G 3 g 7→ Txg :=< x, g >G x ∈ G.

Obviously, for x ∈ S := {x ∈ G | 0 < ||x||G < 1} we have

T
1
2
x g := <x,g>G

||x||G x, g ∈ G.

Then, by considering elementary processes g(t), t ∈ [ 0, T ], and using Itô’s
isometry, one can check that these two integrals coincide, i.e.

t∫
0

∫
{0<||x||<1}

g(s)x Ñ(ds, dx) =
t∫
0

∫
{0<||x||<1}

g(s)M(ds, dx).

Moreover, under the assumption (2.35)
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||g||2N 2
M (T )

= E
T∫
0

∫
S

||g(t)T
1
2
x ||2L2(G,H) η(dx) dt

= E
T∫
0

∫
S

∑
n∈N

||g(t)T
1
2
x gn||2H η(dx) dt

= E
T∫
0

∫
S

∑
n∈N

∣∣∣∣∣∣g(t)<x,gn>Gx
||x||G x

∣∣∣∣∣∣2
H
η(dx) dt

= E
T∫
0

∫
S

||g(t)x||2H η(dx) dt

≤

(
E

T∫
0

||g(t)||2L(G,H) dt

)( ∫
{0<||x||<1}

||x||2H η(dx)

)
< ∞,

where (gn)n∈N is an orthonormal basis in G.

2.7 Supporting analytical results

We finish this chapter by collecting some lemmata, which shall be needed in
the manuscript. All these results are more or less known in the literature,
so we restrict ourselves to just quoting and giving references.

Our first result is a discrete analogon of Lebesgue’s dominated convergence
theorem.

Lemma 2.7.1: (cf. Lemma 2.5 from [59])
Let (xn,m)m∈N, n ∈ N, be sequences of real numbers such that, for each
n ∈ N, there exists

lim
m→∞

xn,m =: xn ∈ R.

If there exists a majorizing sequence (yn)n∈N ⊂ R+ such that |xn,m| ≤ yn
for all m ∈ N and

∑
n∈N yn <∞, then

lim
m→∞

∑
n∈N

xn,m =
∑
n∈N

xn.

Next, we give a generalization of Gronwall’s lemma, which will be used
to prove the existence and uniqueness result for the stochastic convolutions
under consideration. Generalized versions of the Gronwall inequality have
been given e.g. in [110] (cf. Theorem 3.3 there) or in [66]. We will use the
following version of it, the so-called Gronwall-Bellman lemma:

Lemma 2.7.2: (cf. [75], Appendix, Lemma A1 or [112])
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Let (gn)n∈N be a sequence of measurable functions gn: R+ → R+ obeying

gn(t) ≤ q + b
t∫
0

(t− s)−δgn−1(s) ds, t ∈ [ 0, T ], n ∈ N,

with some δ ∈ [ 0, 1 ), b > 0, q ≥ 0. Then,

gn(t) ≤ q
n−1∑
k=0

qk t
k(1−δ) + qn t

n(1−δ) sup
s∈[ 0,T ]

g0(s)

with

q0 = 1, q1 = b
1−δ , qk = ck(b,δ)

Γ(k(1−δ)+1) for k > 1,

where Γ is the Gamma-function defined by

Γ(t) :=
∞∫
0

xt−1e−x dx, t > 0.

Furthermore, one has the following summability property

∞∑
k=0

qk T
k(1−δ) <∞,

and in particular

lim
k→∞

qk = 0.

Remark 2.7.3: (cf. [76], Remark 3.2.5, p. 59)
In the special case of gn = g for all n ∈ N with a bounded g: R+ → R+,
2.6.3 implies

g(t) ≤ q lim
n→∞

(
n−1∑
k=0

qk T
k(1−δ)

)
+
(

lim
n→∞

qn T
n(1−δ)

)
sup

r∈[ 0,T ]
g(r)

= q
∞∑
k=0

qkT
k(1−δ) =: q c(T, b, δ)

with a proper constant c(T, b, δ) > 0.
In particular, the case δ = 0 here corresponds to the usual Gronwall’s lemma
widely used in the literature on SDEs.



Chapter 3

Introduction to Stochastic
Analysis in weighted
L2-spaces

In this chapter, we concentrate on the case the weighted Lebesgue spaces
L2ν
ρ (Θ), ν ≥ 1, as underlying Banach spaces for equation (1.1) and equation

(1.2). The weight µρ is the same as in the Introduction (cf. equation (1.3),
p. 7 there). We start with elements of functional analysis in these spaces,
namely we introduce some conditions on almost strong evolution operators
and Nemitskii operators in L2ν

ρ (Θ).
The main issue of this chapter is to define Bochner integrals and stochastic
convolutions w.r.t. Wiener processes in L2

ρ(Θ) resp. L2ν
ρ (Θ) needed for the

existence of mild solutions to our basic equations (1.1) and (1.2).
We stress that in this chapter we have time-continuity of the Bochner in-
tegrals and the stochastic convolutions w.r.t. Wiener processes not only in
the pathwise sense (a result, which is already well-known) but also in the
meansquare sense, i.e. in the spaces

Lq(Ω;L2
ρ(Θ)) := {f : Ω → L2

ρ(Θ) |
∫
Ω

||f(ω)||q
L2

ρ
P (dω) <∞}

resp.

L2ν(Ω;L2ν
ρ (Θ)) := {f : Ω → L2ν

ρ (Θ) |
∫
Ω

||f(ω)||2νL2ν
ρ
P (dω) <∞}

(for the precise conditions on q ≥ 2 and ν ≥ 1 see Sections 3.3 and 3.4
below) .

Recall that, for a given Borel domain Θ ⊂ Rd, we assume ρ to be such
that µρ(Θ) <∞. Respectively, we consider the two basic cases:

71
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• ρ > d for unbounded Θ and

• ρ = 0 for bounded Θ.

Under these assumptions, our results hold true for arbitrary Θ ∈ B(Rd).
Thus, to shorten notation, we write L2

ρ resp. L2ν
ρ instead of L2

ρ(Θ) resp.
L2ν
ρ (Θ).

Let us briefly describe the content of this chapter.
First, in Section 3.1 we take a closer look at the Banach spaces L2ν

ρ and
impose conditions on the evolution operators U(t, s), 0 ≤ s ≤ t ≤ T , in
L2
ρ (see (A0)–(A8) there). Most of the conditions are taken from [76],

but there are some additional conditions caused by the jump property of
the noise in equation (1.1) resp. equation (1.2) (see Remark 3.1.1 below).
These conditions later yield the well-definedness and regularity properties
of the stochastic convolutions w.r.t. Q-Wiener processes and compensated
Poisson random measures.
More precisely, we need these assumptions on the evolution operator in order
to overcome the problem that the multiplication operators Mϕ correspond-
ing to L2

ρ-valued functions ϕ are in general no Hilbert-Schmidt operators.
By these conditions (cf. e.g. (A2) in Section 3.1 below) there is a con-
stant ξ ∈ [ 0, 1 ) associated to the evolution operator describing singularity
behaviour allowed for ||U(t, s)||L2(L2,L2

ρ) at the diagonal t = s, which plays a
crucial role for the regularity properties of the stochastic convolution w.r.t.
Q-Wiener processes and compensated Poisson random measures.
In Section 3.2 we take a closer look at the Nemitskii-type operators and
recall some notation from [76].
After these preparations, in Section 3.3 we consider the well-definedness,
moment estimates and regularity properties of Bochner integrals both in L2

ρ

and L2ν
ρ . The integrands will be convolutions of an evolution operator and

a predictable process (ϕ(t))t∈[ 0,T ] ⊂ L2
ρ resp. ⊂ L2ν

ρ for some fixed T > 0.
Finally, in Section 3.4 we consider the well-definedness, moment estimates
and regularity properties of stochastic convolutions w.r.t. Wiener processes.
A part of these results has already been proven by Manthey and Zausinger
in [76], but for convenience of the reader we will present all necessary details.
A crucial fact for the theory of SPDEs in L2ν

ρ is that there exists a special
orthonormal basis (en)n∈N ⊂ L2, which additionally is uniformly bounded
in the supremum norm (see Section 3.1). Thus, we have

(3.1) sup
n∈N

||en||∞ <∞.

For the Q-Wiener process W , we consider the following two cases:
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• Nuclear case: W is a Q-Wiener process with the covariance operator
Q ∈ T +(L2), i.e. Q is a nonnegative, symmetric operator with finite
trace.
Furthermore, the elements of the above orthonormal basis (en)n∈N
constitute a complete system of eigenvectors of the operator Q, i.e.
Qen = anen with an ≥ 0, (3.1) and

tr Q =
∑
n∈N

an <∞.

The Q-Wiener process is represented by the convergent series in L2

W (t) =
∑
n∈N

√
anwn(t)en, t ≥ 0,

where (wn)n∈N are independent Brownian motions in R.

• Cylindrical case: W is a cylindrical I-Wiener process.
In other words, it obeys the coordinate representation

W (t) =
∑
n∈N

wn(t)en, t ≥ 0,

with some (not necessarily uniformly bounded) basis (en)n∈N in L2

and a system (wn)n∈N of independent scalar Brownian motions.

Remark 3.1: Another two possible cases, which however will be briefly
touched upon in this manuscript, are the following:

• General nuclear case: The covariance operator Q is of trace class,
i.e. Q ∈ T +(L2), but it does not need to posess a complete system of
eigenvectors (en)n∈N that is uniformly bounded in the supremum norm,
i.e. (3.1) possibly fails.

• General cylindrical case: Q is a nonnegative, symmetric bounded
operator in L2, but it need not to have finite trace, i.e. Q /∈ T +(L2).

Note that the general nuclear case typically occurs in the Wiener term of the
Lévy-Itô decomposition (2.16). The general cylindrical case is not relevant
for our work. The nuclear and the cylindrical case have been treated in [76].
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3.1 Some facts on the spaces L2ν
ρ and conditions

for evolution operators in L2
ρ

3.1.1 The spaces L2ν
ρ

Consider Rd, d ∈ N, with Euclidean norm | · |, Borel σ-algebra B(Rd) and
Lebesgue measure dθ. Let α: Rd → [ 1,∞ ) be a weight function given by

α(θ) = (1 + |θ|2)
1
2 , θ ∈ Rd.

For ρ ∈ N ∪ {0}, let us define a measure µρ on (Rd,B(Rd) by

µρ(dθ) := α−ρ(θ) dθ.

Note that, by definition, we have µ0(dθ) = dθ.

Let us fix some (possibly unbounded) Borel subset Θ of Rd.

As already said in the beginning of the chapter, we choose ρ ∈ N ∪ {0}
in such a way that µρ(Θ) <∞. This allows us to consider the two cases of
Θ = Rd and Θ ⊂ Rd bounded simultaneously (in a similar way as Manthey
and Zausinger did in [76]).

Note that there is the following relation between the Borel σ-algebras:

B(Θ) = B(Rd) ∩Θ.

For ν ≥ 1 and ρ ∈ N ∪ {0}, by L2ν
ρ (Θ) we denote the set of all Borel-

measurable mappings ϕ : Θ → R such that∫
Θ

|ϕ|2ν(θ)µρ(dθ) <∞.

L2ν
ρ (Θ) is a Banach space with norm

||ϕ||L2ν
ρ

:=
(∫

Θ

|ϕ|2ν(θ)µρ(dθ)
) 1

2ν

.

In the special case ν = 1, we get a Hilbert space L2
ρ(Θ) with inner product

< ϕ1, ϕ2 >L2
ρ
=
∫
Θ

ϕ1(θ)ϕ2(θ)µρ(dθ)

and norm
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||ϕ||L2
ρ

=
(∫

Θ

ϕ2(θ)µρ(dθ)
) 1

2

.

Denoting by Lp(Θ) the usual Lp-space on (Θ,B(Θ)), we obviously have
L2ν

0 (Θ) = L2ν(Θ).

A crucial fact (pointed out in [76]) is the existence of an orthonormal basis
(en)n∈N of L2(Θ) obeying (3.1).
Manthey and Zausinger prove the existence of such an orthonormal basis
with the help of general arguments from [87] (cf. Section 2, p.41 in [76]).
We will often use this fact in the following.

3.1.2 Conditions for evolution operators in L2
ρ

Let U = {U(t, s) | (t, s) ∈ R2
+, 0 ≤ s ≤ t ≤ T} be an almost strong evolution

operator in the sense of Definition 2.2.1 with B := L2
ρ there.

Recall that each U(t, s) is a closed linear operator in L2
ρ, see item (iv) in

Definition 2.2.1. The generator of U is denoted by (A(t))t∈[ 0,T ].
Depending on the problems under consideration, for the evolution operator
U in L2

ρ we introduce the following additional conditions:

(A0) The domain

D(A) :=
⋂

0≤t≤T
D(A(t))

is dense in L2
ρ.

(A1) The evolution operator U on L2
ρ is positivity preserving, i.e., for all

ϕ ∈ L2
ρ and 0 ≤ s ≤ t ≤ T ,

ϕ ≥ 0 ⇒ U(t, s)ϕ ≥ 0 (dθ-a.s.).

(A2) For a given ϕ ∈ L2
ρ, let us define the multiplication operator

L2 3 ψ 7→ Mϕ(ψ) := ϕψ ∈ L1
ρ.

We suppose that, for 0 ≤ s < t ≤ T , there exists an extension of
U(t, s) to the domain
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M := {h ∈ L1
ρ | h = Mϕ(ψ), ϕ ∈ L2

ρ, ψ ∈ L2}

(again denoted by U(t, s)) such that U(t, s)Mϕ ∈ L2(L2, L2
ρ) for any

ϕ ∈ L2
ρ. Furthermore, there exist ζ ∈ [ 0, 1 ) and c(T ) > 0 such that

(3.2) ||U(t, s)Mϕ||2L2(L2,L2
ρ) ≤ c(T )(t− s)−ζ ||ϕ||2L2

ρ

is fulfilled for any ϕ ∈ L2
ρ and 0 ≤ s < t ≤ T .

Taking in particular ϕ ≡ 1, we get

||U(t, s)||2L2(L2,L2
ρ) ≤ c(T )(t− s)−ζ ||1||2L2

ρ
,

i.e. U(t, s): L2 → L2
ρ is Hilbert-Schmidt whenever s < t.

(A3) For a given ν ≥ 1, there exists a constant c(ν, T ) > 0 such that for
any ϕ ∈ L2ν

ρ and 0 ≤ s ≤ t ≤ T

(U(t, s)|ϕ|)ν ≤ c(ν, T )U(t, s)|ϕ|ν (dθ-a.s.).

This implies that U(t, s)|ϕ| ∈ L2ν
ρ and

(3.3) ||U(t, s)|ϕ|||2νL2ν
ρ
≤ c(ν, T, c(T ))||ϕ||2νL2ν

ρ
.

Furthermore, we assume that U is strongly continuous in L2ν
ρ , i.e.

the mapping U(·, ·)ϕ: {(t, s) | 0 ≤ s ≤ t ≤ T} → L2ν
ρ is continuous for

each ϕ ∈ L2ν
ρ .

Since U is positivity preserving (cf. (A1)), a sufficient condition for
the strong continuity in L2ν

ρ is that U(t, s)1 = 1 for each (t, s).
By (A1) and (3.3), we have U(t, s) ∈ L(L2ν

ρ ) with

(3.4) ||U(t, s)||L(L2ν
ρ ) ≤ [c(ν, T, c(T ))]

1
2ν .

(A4) For a given ν ≥ 1, there exist ζ ∈ [ 0, 1 ) and a constant c(ν, T ) > 0
such that for each L2ν

ρ -valued predictable process ϕ = (ϕ(t))t∈[ 0,T ]

E
∫
Θ

[
t∫
0

∑
n∈N

[U(t, s)Mϕ(s)(Q
1
2 en)]2(θ) ds

]ν
µρ(dθ)

≤ c(ν, T )
t∫
0

(t− s)−ζE||ϕ(s)||2νL2ν
ρ
ds.

In the nuclear case, i.e. if Q ∈ T +(L2), we have ζ = 0, whereas
in the cylindrical case, i.e. if Q = I, we have ζ ∈ [ 0, 1 ) as in (A2).
Here, (en)n∈N denotes an orthonormal basis in L2 consisting of the



3.1. THE SPACES L2ν
ρ AND EVOLUTION OPERATORS IN L2

ρ 77

eigenvectors of Q and obeying (3.1).
The integral and the infinite sum in the left hand side are understood
in the Bochner sense in L1

ρ, see Remark 3.1.1 (ii).

Note that (A2) is equivalent to (A4) with Q = I and ν = 1.
At first sight, condition (A4) seems to be not transparent enough.
Below we formulate the next condition (A5), which generalizes (A2)
to all ν ≥ 1 and readily implies (A4), see Remark 3.1.1 (iv).

(A5) For a given ν ≥ 1 and any ϕ ∈ L2ν
ρ , let Mϕ be the multiplication

operator as defined in (A2). We suppose that, for 0 ≤ s < t ≤ T , the
operator U(t, s) extends to the domain

Mν := {h ∈ Lνρ | h = Mϕ(ψ), ϕ ∈ L2ν
ρ , ψ ∈ L2}.

Furthermore, for any ϕ ∈ L2ν
ρ we have U(t, s)Mϕ ∈ L2(L2, L2ν

ρ ), and
there exist ζ ∈ [ 0, 1 ) and c(T ) > 0 such that

(3.5) ||U(t, s)Mϕ||2L2(L2,L2ν
ρ ) ≤ c(ν, T )(t− s)−ζ ||ϕ||2L2ν

ρ
.

In some cases it will be enough to assume the following version of
(A5):

(A5)* For a given ν ≥ 1, the estimate (3.5) in (A5) holds with the usual
operator norm in L(L2, L2

ρ), i.e. there exist ζ ∈ [ 0, 1 ) and c(T ) > 0
such that

(3.6) ||U(t, s)Mϕψ||2L2ν
ρ
≤ c(ν, T )(t− s)−ζ ||ψ||2L2 ||ϕ||2L2ν

ρ
,

for any ϕ ∈ L2ν
ρ , ψ ∈ L2 snd 0 ≤ s < t ≤ T .

(A6) There exists a family of bounded operators
((AN (t))t∈[ 0,T ])N∈N ⊂ L(L2

ρ) with the following properties:

(i) Denoting the operator norm in L2
ρ by || · ||, we have

sup
t∈[ 0,T ]

||AN (t)|| ≤ c(N), N ∈ N.

(ii) For each N ∈ N, the family (AN (t))t∈[ 0,T ] generates an almost
strong evolution operator UN in L2

ρ, which is positivity preserving and
fulfills

sup
0≤s≤t≤T

||(UN (t, s)− U(t, s))ϕ||2L2
ρ
→ 0, N →∞,
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for any ϕ ∈ L2
ρ. Furthermore, there is a uniform bound

K(T ) := sup
N∈N

sup
0≤s≤t≤T

||UN (t, s)|| <∞.

(A7) U is pseudo contractive in L2
ρ, i.e. there is a nonnegative constant

β such that

||U(t, s)||L(L2
ρ) ≤ eβ(t−s), 0 ≤ s ≤ t ≤ T .

(A8) The family (AN (t))t∈[ 0,T ] from (A6) is such that, for any N ∈ N, we
have (AN (t))t∈[ 0,T ] ⊂ L(Wm,2(Θ)) and, for the corresponding evolu-
tion operators UN ,

||UN (t, s)||L(Wm,2) < c̄N (T ), 0 ≤ s ≤ t ≤ T .

Here, for a given m > d
2 , Wm,2(Θ) is the Sobolev space of order m

defined in Appendix A

Remark 3.1.2.1: Conditions (A0)–(A4) and (A6) have been introduced
in the paper [76], dealing with SPDEs driven by a Wiener noise.
The rest of the conditions is new and appears first in the context of Poisson
and Lévy integration.
Let us comment in more detail on the above assumptions.

(i) Conditions (A0)–(A2) are needed to study the stochastic convolution
w.r.t. Q-Wiener processes in L2

ρ. Note that we make use of (A2) only in the
case Q = I. In the case of a nuclear Wiener process, it suffices to assume
just (A0) and (A1) (cf. the discussion in [76], Section 2).
For the corresponding Q ∈ T +(L2) we always have the following modifica-
tion of (A2) with ζ = 0

(3.7) ||U(t, s)Mϕ||2
L2(Q

1
2L2,L2

ρ)
≤ ||U(t, s)||2L(L2

ρ)||Mϕ||2
L2(Q

1
2L2,L2

ρ)

≤ c(T ) tr Q
(

sup
n∈N

||en||2∞
)
||ϕ||2L2

ρ
.

(ii) Conditions (A3) and (A4) are needed to show that taking the stochas-
tic convolution w.r.t. the Wiener process preserves the space of L2ν

ρ -valued
predictable processes with ν ≥ 1 (see Proposition 3.4.3 below).
In (A4), we understand

t∫
0

∑
n∈N

(U(t, s)Mϕ(s)Q
1
2 en)2 ds



3.1. THE SPACES L2ν
ρ AND EVOLUTION OPERATORS IN L2

ρ 79

as a Bochner integral in L1
ρ. Concerning well-definedness of the above inte-

gral, see Section 3.4, proof of Lemma 3.4.3, Step 1, below.

(iii) In the nuclear case, we get (A4) with ζ = 0 directly from (A1) and
(A3)(see also Remark 2.3 (ii) in [76]).

(iv) In the general nuclear case (A5)* implies (A4) with the same
ζ ∈ [ 0, 1 ).
Indeed, considering any orthonormal basis (en)n∈N of L2 consisting of eigen-
vectors of Q, assuming (A5)* we can estimate the left hand side of (A4)
as follows

(3.8) E
∫
Θ

[
t∫
0

∑
n∈N

[U(t, s)Mϕ(s)Q
1
2 en]2(θ) ds

]ν
µρ(dθ)

≤ E

[
t∫
0

∑
n∈N

[∫
Θ

[U(t, s)Mϕ(s)Q
1
2 en]2ν(θ)µρ(dθ)

] 1
ν

ds

]ν
= E

[
t∫
0

∑
n∈N

||U(t, s)Mϕ(s)Q
1
2 en||2L2ν

ρ
ds

]ν
= E

[
t∫
0

||U(t, s)Mϕ(s)Q
1
2 ||2L2(L2,L2ν

ρ ) ds

]ν
≤ ||Q

1
2 ||2νL2(L2)E

[
t∫
0

||U(t, s)Mϕ(s)||2L(L2,L2ν
ρ ) ds

]ν
≤ (tr Q)νc(ν, T )E

[
t∫
0

(t− s)−ζ ||ϕ(s)||2L2ν
ρ
ds

]ν
= (tr Q)νc(ν, T, c(T ))E

[
t∫
0

(t− s)−
ζ(ν−1)

ν (t− s)−
ζ
ν ||ϕ(s)||2L2ν

ρ
ds

]ν
≤ (tr Q)νc(ν, T )

(
T∫
0

s−ζ ds

)ν−1

E
t∫
0

(t− s)−ζ ||ϕ(s)||2νL2ν
ρ
ds.

Here, in the first step, we used Minkowski’s inequality (4.25). To be rig-
orous, one has to take here B([ 0, T ])⊗F ⊗B(Θ)-measurable realizations of
U(t, s)Mϕ(s)Q

1
2 en (see Section 3.4).

(v) Respectively in the cylindrical case, i.e. Q = I, (A4) is always im-
plied by (A5). This is obvious from the following modification of (3.8)
(with Q = I)

E
∫
Θ

[
t∫
0

∑
n∈N

[U(t, s)Mϕ(s)en]2(θ) ds
]ν

µρ(dθ)

≤ E
[
t∫
0

||U(t, s)Mϕ(s)||2L2(L2,L2ν
ρ ) ds

]ν
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≤ c(ν, T )E
[
t∫
0

(t− s)−ζ ||ϕ(s)||2L2ν
ρ
ds

]ν
≤ c(ν, T )

(
T∫
0

s−ζ ds

)ν−1

E
t∫
0

(t− s)−ζ ||ϕ(s)||2νL2ν
ρ
ds.

(vi) (A6) is needed to prove the comparison result by the approximation
method of Manthey and Zausinger (see proof of Theorem 3.3.1 in [76]).

(vii) (A7) is the generalization of the contraction property
||U(t, s)||L(L2

ρ) ≤ 1 resp. ||U(t, s)||L(L2) ≤ 1, 0 ≤ s ≤ t ≤ T . In the case
of a semigroup U(t, s) := e(t−s)A, 0 ≤ s ≤ t < ∞, a sufficient condition
of pseudo-contraction is that (A+ βI) is a nonnegative self-adjoint operator
in L2

ρ resp. L2. On the other hand, by the Hille-Yosida theorem, any C0-
semigroup e−tA, t ≥ 0, obeys the bound

||etA||L(L2
ρ) ≤ Ceβt, t ≥ 0,

with proper constants C, β ∈ R+. In the case of pseudo-contractivity, we
have C = 1 in the later estimate.
A big class of elliptic differential operators satisfying (A7) in L2 will be
constructed in Appendix D.

The above conditions (A0)–(A8) are satisfied for a large class of elliptic
differential operators A(t) in L2

ρ, see Appendix D.
The constant ζ depends on the dimension of the underlying space Rd and
on the order of the differential operators A(t).
Depending on the problems under consideration, we will assume that some
or even all of the above conditions (A0)–(A8) are satisfied.

3.2 Nemitskii operators

As already discussed in the Introduction, our coefficients F and E in (1.1)
resp. (1.2) will be nonlinear operators of Nemitskii-type.
Let (Ω,F , P ) be a probability space and let λ: [ 0, T ] × Ω × R → R be a
measurable mapping.
Pointwise, for ϕ ∈ L2

ρ we define a Nemitskii-type-operator Λ by

(NEM) Λ(t, ω, ϕ)(θ) := λ(t, ω, ϕ(θ)), θ ∈ Θ , (t, ω) ∈ [ 0, T ]× Ω.

Below, we discuss the conditions needed to make Λ a mapping in L2
ρ.

We recall some standard notation from [76] to describe the regularity prop-
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erties of λ: [ 0, T ]× Ω× R → R:

(LC) (Lipschitz continuity) There is an L(T ) > 0 such that

|λ(t, ω, u)− λ(t, ω, v)| ≤ L(T )|u− v|,

for all (t, ω) ∈ [ 0, T ]× Ω and u, v ∈ R× R.

(LB) (Local boundedness) There is an L(T ) > 0 such that

|λ(t, ω, 0)| ≤ L(T ),

for all (t, ω) ∈ [ 0, T ]× Ω.

(PG) (Polynomial growth) There exist ν ∈ N and L(T ) > 0 such that

|λ(t, ω, u)| ≤ L(T )(1 + |u|ν)

for all (t, ω) ∈ [ 0, T ]× Ω and u ∈ R.

(LG) (One-sided linear growth) There exists L(T ) > 0 such that

λ(t, ω, u) ≥ −L(T )(1− u) if u ≤ 0,
λ(t, ω, u) ≤ L(T )(1 + u) if u ≥ 0,

for all (t, ω) ∈ [ 0, T ]× Ω.

Remark 3.2.1: Obviously, each λ fulfilling (LC) and (LB) also fulfills
(PG) with exponent ν = 1. It is easy to see that (LG) is equivalent to
claiming that

λ(t, ω, u)u ≤ L(T )(1 + u2), u ∈ R.

In particular, the class of functions with one-sided linear growth includes
all semi-dissipative functions, i.e. those λ, which obey

(λ(t, ω, u)− λ(t, ω, v))(u− v) ≤ L(T )(u− v)2

with some c(T ) ≥ 0 that is uniform for all (t, ω) ∈ [ 0, T ]× Ω and u, v ∈ R.

The following simple lemma is crucial for our further considerations.

Lemma 3.2.2: Suppose λ obeys (PG) with exponent ν ∈ N.
Then, the corresponding Nemitskii-operator Λ defined by (NEM) maps L2ν

ρ

into L2
ρ. Furthermore, Λ is locally bounded.
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Proof: By direct calculations∫
Θ

(Λ(t, ω, ϕ))2(θ)µρ(dθ) =
∫
Θ

(λ(t, ω, ϕ(θ)))2 µρ(dθ)

≤
∫
Θ

(L(T )(1 + |ϕ(θ)|ν))2 µρ(dθ)

≤ 2L(T )2µρ(Θ) + 2L(T )2
∫
Θ

(|ϕ(θ)|ν)2 µρ(dθ)

= 2L(T )2µρ(Θ) + 2L(T )2||ϕ||2νL2ν
ρ

< ∞.

Here, we used (PG) with exponent ν in the second step and the assumption
on ρ that

µρ(Θ) =
∫
Θ

µρ(dθ) <∞

in the last step, respectively.
From the above calculation, it is obvious that Λ maps L2ν

ρ into L2
ρ and is

locally bounded there, which completes the proof. �

In Chapters 5–7, given measurable e, f : [ 0, T ] × Ω × R → R, the drifts
E and F in (1.2) and (1.1) will be defined through e and f by (NEM).
Furthermore, Σ and Γ in the multiplication operators MΣ and MΓ in (1.2)
and (1.1) will be defined through measurable σ, γ: [ 0, T ]× Ω× R → R by
(NEM).

3.3 Bochner integrals depending on parameters

In this section we consider the Bochner integrals

(3.9) Iϕ(t) :=
t∫
0

U(t, s)ϕ(s) ds, t ∈ [ 0, T ],

and

(3.10) Iϕm(t) :=
t∫
0

U(t, s)Mϕ(s)mds, t ∈ [ 0, T ],

in L2
ρ resp. L2ν

ρ , where ϕ = (ϕ(t))t∈[ 0,T ] is a predictable process in L2
ρ

resp. L2ν
ρ and m ∈ L2.

First, we consider the case ν = 1, i.e. L2
ρ, which only requires the assump-

tions (A0)–(A2). The above integrals will be defined pathwise, i.e. for
P -almost all ω ∈ Ω. Especially, we will be interested in the meansquare and
time-continuity properties of the Bochner convolution processes (3.9) and
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(3.10). It is convinient to fix the concrete representation for the integrand
mappings as

[ 0, T ]× Ω 3 (s, ω) 7→ 1[ 0,t )(s)U(t, s)ϕ(s) ∈ L2
ρ

resp.

[ 0, T ]× Ω 3 (s, ω) 7→ 1[ 0,t )(s)U(t, s)Mϕ(s)m ∈ L2
ρ.

For each fixed t ∈ [ 0, T ], the integral is well-defined P -a.s. if

t∫
0

||U(t, s)ϕ(s)||L2
ρ
ds <∞,

t∫
0

||U(t, s)Mϕ(s)m||L2
ρ
ds <∞.

To proceed, we need the following general measurability result, which will
also be used later for constructing Wiener and Poisson stochastic convolu-
tions.

Lemma 3.3.1: For any fixed t ∈ [ 0, T ] and any PT -measurable process
(ϕ(s))s∈[ 0,T ] ∈ L2

ρ, the mapping

(3.11) [ 0, T ]× Ω 3 (s, ω) 7→ 1[ 0,t )(s)U(t, s)ϕ(s) ∈ L2
ρ

is PT /B(L2
ρ)-measurable, i.e. predictable.

Proof: We extend the method used in [62] for proving Lemma 3.5 there.
The proof involves the following two steps:

(i) We show PT -measurability of (3.11) for simple (elementary) predictable
processes (ϕ(s))s∈[ 0,T ] ∈ L2

ρ having the form

(3.12) ϕ(s) :=
K∑
k=1

ϕk1Ak
(s), s ∈ [ 0, T ],

where ϕk ∈ L2
ρ, Ak ∈ PT , 1 ≤ k ≤ K ∈ N.

(ii) We show PT -measurability of (3.11) for general predictable processes
(ϕ(s))s∈[ 0,T ] ⊂ L2

ρ by approximating them by simple processes.

Concerning (i), note that for any simple predictable process of form (3.12)
and any B ∈ B(L2

ρ)

(1[ 0,t )(s)U(t, s)ϕ(s))−1(B) =
K⋃
k=1

({s ∈ [ 0, t ) |1[ 0,t )(s)U(t, s)ϕk ∈ B}︸ ︷︷ ︸
∈B([ 0,t ))

)× Ω

︸ ︷︷ ︸
∈PT

⋂
Ak,
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because of the strong continuity of s 7→ U(t, s) in L2
ρ.

Note that for any predictable process (ϕ(s))s∈[ 0,T ] there exists a sequence
of simple predictable processes of form (3.12) such that in L2

ρ

ϕN (s, ω) → ϕ(s, ω), as N →∞

for all (s, ω) ∈ [ 0, T ]×Ω (see e.g. Lemma A.4 in [62]). Since U(t, s) ∈ L(L2
ρ),

we have U(t, s)ϕN (s) → U(t, s)ϕ(s) in L2
ρ as N →∞.

Thus, 1[ 0,t )(s)U(t, s)ϕ(s) is predictable as a pointwise limit of predictable
processes, which shows (ii). �

The main results of this section are Propositions 3.3.2/3.3.3 resp. Propo-
sitions 3.3.4/3.3.5, which state the time-continuity of the Bochner integrals
(3.9) and (3.10) both pathwise and in Lq(Ω;L2

ρ) resp. L2ν(Ω;L2ν
ρ ).

Actually, instead of the predictability of ϕ it would be enough to assume
B([ 0, T ])⊗F-measurability.

Proposition 3.3.2: Let U be an almost strong evolution operator in the
sense of Definition 2.2.1. Let ϕ = (ϕ(t))t∈[ 0,T ] be an L2

ρ-valued predictable
process obeying

(3.13)
T∫
0

E||ϕ(t)||q
L2

ρ
dt <∞

for some q ≥ 2. Then, for each t ∈ [ 0, T ], the convolution Iϕ(t) is well-
defined in L2

ρ. Furthermore,

(3.14) E||Iϕ(t)||q
L2

ρ
ds ≤ c(q, c(T ))

t∫
0

E||ϕ(s)||q
L2

ρ
ds

and hence

(3.15) sup
t∈[ 0,T ]

E||Iϕ(t)||q
L2

ρ
<∞.

The process [ 0, T ] 3 t 7→ Iϕ(t) ∈ L2
ρ is pathwise continuous, as well as

continuous in Lq(Ω;L2
ρ).

Proof: The integral (3.9) will be defined, for P -almost all ω ∈ Ω, as
a Bochner integral in L2

ρ.
For each t ∈ [ 0, T ], the integrand function
[ 0, T ] 3 s 7→ 1[ 0,t )(s)U(t, s)ϕ(s) ∈ L2

ρ is PT -measurable by Lemma 3.3.1.
By (3.13) we have
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E
T∫
0

||ϕ(t)||L2
ρ
dt <∞,

and hence there exists a subset Ω0 ⊂ Ω of full P -measure such that

(3.16)
t∫
0

||U(t, s)ϕ(s)||L2
ρ
ds ≤ c(T )

t∫
0

||ϕ(s)||L2
ρ
ds <∞

for all t ∈ [ 0, T ] and ω ∈ Ω0. Therefore, Iϕ(t) is well-defined for all t ∈ [ 0, T ]
and ω ∈ Ω0.
Let us assume that q ≥ 2. By Bochner’s and Hölder’s inequalities we get
the following chain of estimates

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)ϕ(s) ds
∣∣∣∣∣∣∣∣q
L2

ρ

≤ E
[
t∫
0

||U(t, s)ϕ(s)||L2
ρ
ds

]q
≤ cq(T )T q−1

t∫
0

E||ϕ(s)||q
L2

ρ
ds,

which is just (3.14), (3.15).
To prove the continuity result, let us consider 0 ≤ r ≤ t ≤ T and ω ∈ Ω0.
In this case, we have

(3.17) ||Iϕ(t)− Iϕ(r)||L2
ρ
≤

r∫
0

||[U(t, s)− U(r, s)]ϕ(s)||L2
ρ
ds

+
t∫
r
||U(t, s)ϕ(s)||L2

ρ
ds.

By Lebesgue’s dominated convergence theorem, the first integral on the
right hand side tends to 0 as t ↓ r resp. r ↑ t due to the strong continuity of
U(t, s) and the uniform bound

sup
0≤r≤t≤T

||[U(t, s)− U(r, s)]ϕ(s)||L2
ρ
≤ 2c(T )||ϕ(s)||L2

ρ
,

whereby by (3.16)

T∫
0

||ϕ(s)||L2
ρ
ds <∞ for all ω ∈ Ω0.

Since the second integral on the right hand side in (3.17) obviously tends to
0 as r ↑ t resp. t ↓ r due to the uniform bound

sup
0≤s≤t≤T

||U(t, s)ϕ(s)||L2
ρ
≤ c(T )||ϕ(s)||L2

ρ
,

we get the continuity of the map t 7→ Iϕ(t) for P -almost all ω ∈ Ω.

By the same arguments based on Lebesgue’s theorem and (3.13), the path-
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wise continuity of t 7→ Iϕ(t) implies the Lq(Ω;L2
ρ)-continuity, which finishes

the proof. �

Proposition 3.3.3: Suppose (A2) (or the weaker assumption (A5)*
with ν = 1) holds for the almost strong evolution operator U .
Let ϕ = (ϕ(t))t∈[ 0,T ] be an L2

ρ-valued predictable process obeying (3.13) for
some q ≥ 2.

Then, for each t ∈ [ 0, T ], the convolution Iϕ,m is well-defined in L2
ρ.

Furthermore,

(3.18) E||Iϕ,m(t)||q
L2

ρ
ds ≤ c(q, ζ,m, T )

t∫
0

E||ϕ(s)||q
L2

ρ
ds,

where ζ ∈ [ 0, 1 ) is the same as in (A2).
Furthermore, the process t 7→ Iϕ,m(t) is, on the one hand, pathwise contin-
uous in L2

ρ and, on the other hand, continuous in Lq(Ω;L2
ρ).

Proof: A technical problem is that, for general m ∈ L2, Mϕ(t)m does
not belong to L2

ρ. Thus, a proper approximation is needed.
Let us first consider m ∈ L∞. Then, Y(t) := Mϕ(t)m, t ∈ [ 0, T ], is
PT /B(L2

ρ)-measurable and, by (3.13), is surely such that

T∫
0

E||Y(t)||q
L2

ρ
dt < ||m||qL∞

T∫
0

E||ϕ(t)||q
L2

ρ
dt <∞.

Hence, Proposition 3.3.2 applies, which yields the well-definedness of
Iϕ,m(t) = IY(t), the moment estimates and the required continuity proper-
ties in this case.

In the general case m ∈ L2, let us take a sequence (mN )N∈N ⊂ L∞ such that

||mN −m||L2 → 0 as n→∞.

Then, by (A2) and Hölder’s inequality, for each s ∈ [ 0, t ) and ω ∈ Ω,
we have

||U(t, s)Mϕ(s)(mN −m)||2L2
ρ
≤ c(T )(t− s)−ζ ||mN −m||2L2 ||ϕ(s)||2L2

ρ

−→ 0 as N →∞.

Thus, [ 0, T ] 3 s 7→ 1[ 0,t )(s)U(t, s)Mϕ(s)m ∈ L2
ρ is PT /B(L2

ρ)-measurable
as a pointwise limit of predictable functions (see Lemma 3.3.1).

Therefore, Iϕ,m(t) is well-defined as a Bochner integral in L2
ρ provided



3.3. BOCHNER CONVOLUTION INTEGRALS 87

(3.19)
t∫
0

||U(t, s)Mϕ(s)m||L2
ρ
ds

≤ c(T )||m||L2

t∫
0

(t− s)−
ζ
2 ||ϕ(s)||L2

ρ
ds

≤ c(T )||m||L2

(
T∫
0

s
− ζq

2(q−1) ds

) q−1
q
(
T∫
0

||ϕ(s)||q
L2

ρ
ds

) 1
q

<∞, P -a.s.,

which holds by assumption (3.13) and the relation

ζq
2(q−1) < 1 for q ≥ 2.

Here, we used (A2) with ζ ∈ [ 0, 1 ) .
Similarly, by Bochner’s inequality (cf. Appendix B) we have

(3.20) E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)Mϕ(s)mds

∣∣∣∣∣∣∣∣q
L2

ρ

≤ c
q
2 (T )||m||q

L2c(q, ζ, T )
T∫
0

E||ϕ(s)||q
L2

ρ
ds,

which proves (3.18).
Let Ω0 ∈ B(Ω) be a subset of full P -measure such that

T∫
0

||ϕ(t, ω)||2L2
ρ
dt <∞, ω ∈ Ω0.

Such a subset exists by (3.19).
To check the continuity of [ 0, T ] 3 t 7→ Iϕ,m(t) ∈ L2

ρ, we again use the
approximation of m by (mN )N∈N ⊂ L∞. Thus (see the proof of Proposition
3.3.2), all Iϕ,mN , N ∈ N, ω ∈ Ω0, are well-defined and time-continuous on
[ 0, T ]. But, for each ω ∈ Ω0,

sup
t∈[ 0,T ]

||Iϕ,mN (t, ω)− Iϕ,m(t, ω)||L2
ρ

= sup
t∈[ 0,T ]

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)Mϕ(s,ω)(mN −m)
∣∣∣∣∣∣∣∣
L2

ρ

≤ sup
t∈[ 0,T ]

t∫
0

||U(t, s)Mϕ(s,ω)(mN −m)||L2
ρ
ds

≤ ||mN −m||L2 sup
t∈[ 0,T ]

t∫
0

||U(t, s)Mϕ(s,ω)||L(L2,L2
ρ) ds

≤ ||mN −m||L2c
1
2 (T ) sup

t∈[ 0,T ]

t∫
0

(t− s)−
ζ
2 ||ϕ(s, ω)||L2

ρ
ds
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≤ ||mN −m||L2c
1
2 (T )

(
T∫
0

s−ζ ds

) 1
2
(
T∫
0

||ϕ(s, ω)||2L2
ρ
ds

) 1
2

→ 0 as N →∞,

where we need (A2) (or the weaker assumption (A5)* with ν = 1).
Thus, for each ω ∈ Ω0, Iϕ,m(t, ω) is continuous in L2

ρ as a uniform limit
of continuous functions. Herefrom, by Lebesgue’s dominated convergence
theorem, we also get

sup
t∈[ 0,T ]

E||Iϕ,mN (t)− Iϕ,m(t)||q
L2

ρ
→ 0 as N →∞,

which in turn implies the continuity of Iϕ,m in Lq(Ω;L2
ρ). �

To control the properties of the (stochastic) Bochner convolutions (3.9)/(3.10)
in the Banach spaces L2ν

ρ , ν ≥ 1, one needs regularity properties of the evo-
lution family U = (U(t, s))0≤s≤t≤T in these spaces. To this end, we have to
additionally assume (A3) and (A4).
The properties of the convolutions in L2ν

ρ are described by the following two
propositions (generalizing Propositions 3.3.2 and 3.3.3).

Proposition 3.3.4: Let ν ≥ 1 and suppose that (A3) holds.
Let ϕ = (ϕ(t))t∈[ 0,T ] be an L2ν

ρ -valued predictable process obeying

(3.21)
T∫
0

E||ϕ(t)||2νL2ν
ρ
<∞.

Then, for each t ∈ [ 0, T ], one has

Iϕ(t) =
t∫
0

U(t, s)ϕ(s) ds ∈ L2ν
ρ (P -a.s.).

Furthermore, there exists a positive constant c(ν, T ) such that

(3.22) E||Iϕ(t)||2νL2ν
ρ
≤ c(ν, T )

t∫
0

E||ϕ(s)||2νL2ν
ρ
ds <∞,

and hence

(3.23) sup
t∈[ 0,T ]

E||Iϕ(t)||2νL2ν
ρ
<∞.

Finally, the mapping t 7→ Iϕ(t) is continuous both pathwise in L2ν
ρ and in

L2ν(Ω;L2ν
ρ ).

Proof: For any t ∈ [ 0, T ], the integrand function
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[ 0, T ] 3 s 7→ 1[ 0,t )(s)U(t, s)ϕ(s) ∈ L2ν
ρ is PT -measurable by Lemma 3.3.1.

Furthermore, by (3.21) there exists a subset Ω0 ∈ B(Ω) with P (Ω0) = 1
such that for all ω ∈ Ω0

T∫
0

||ϕ(t, ω)||L2ν
ρ
dt <∞.

Since by (A3)

t∫
0

||U(t, s)ϕ(s, ω)||L2ν
ρ
ds ≤ (c(κ, T ))

1
2ν

t∫
0

||ϕ(s, ω)||L2ν
ρ
ds,

Iϕ(t, ω) is well-defined as a Bochner integral in L2ν
ρ for all t ∈ [ 0, T ] and

ω ∈ Ω0.
As L2ν

ρ is continuously embedded in L2
ρ, Proposition B.2.2 says that Iϕ(t)

coincides with the Bochner integral in L2
ρ defined by Proposition 3.3.3.

By (A3), together with Bochner’s and Hölder’s inequalities, we have

E||Iϕ(t)||2νL2ν
ρ
≤ E

[
t∫
0

||U(t, s)ϕ(s)||L2ν
ρ
ds

]2ν

≤ c(ν, T )
t∫
0

E||ϕ(s)||2νL2ν
ρ
ds,

which proves (3.22) and (3.23).

To check the continuty properties, we proceed analogously to the proof of
Proposition 3.3.2. We have for 0 ≤ r ≤ t ≤ T and ω ∈ Ω0

||Iϕ(t, ω)− Iϕ(r, ω)||L2ν
ρ
≤

r∫
0

||[U(t, s)− U(r, s)]ϕ(s, ω)||L2ν
ρ
ds

+
t∫
r
||U(t, s)ϕ(s, ω)||L2ν

ρ
ds.

By the strong continuity of U in L2ν
ρ (cf. (A3)), we can literally repeat

the previous arguments to get the pathwise continuity of

[ 0, T ] 3 t 7→ Iϕ(t) ∈ L2ν
ρ .

Finally, by (3.23) and the pathwise continuity shown before, Lebesgue’s
convergence theorem yields the time-continuity of Iϕ in L2ν(Ω;L2ν

ρ ). �

Proposition 3.3.5: Suppose that (A3) and (A5) (or even the weaker
assumption (A5)*) with ν ≥ 1 and ζ ∈ [ 0, 1 ) hold.
Let ϕ = (ϕ(t))t∈[ 0,T ] be an L2ν

ρ -valued predictable process obeying
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(3.24)
T∫
0

E||ϕ(t)||2νL2ν
ρ
dt <∞.

Then, for each m ∈ L2 and t ∈ [ 0, T ], one has

Iϕ,m(t) =
t∫
0

U(t, s)Mϕ(s)mds ∈ L2ν
ρ (P -a.s.).

Furthermore, there exists a positive constant c(ν, T, c(T )) such that

(3.25) E||Iϕ,m(t)||2νL2ν
ρ
≤ c(ν,m, T, c(T ))

t∫
0

(t− s)−ζνE||ϕ(s)||2νL2ν
ρ
ds <∞.

Finally, the mapping t 7→ Iϕ,m(t) is continuous both pathwise and in L2ν(Ω;L2ν
ρ ).

Proof: By (A5)* (cf. (3.6)) and Hölder’s inequality we have the fol-
lowing chain of estimates

E||Iϕ,m(t)||2νL2ν
ρ
≤

[
t∫
0

E||U(t, s)Mϕ(s)m||L2ν
ρ
ds

]2ν

≤ c(ν, T )||m||2νL2

[
t∫
0

√
c(T )(t− s)−

ζ
2 E||ϕ(s)||L2ν

ρ
ds

]2ν

≤ c(ν, T )c(T )ν ||m||2νL2

[
t∫
0

(t− s)−
ζ
2 E||ϕ(s)||L2ν

ρ
ds

]2ν

≤ c(ν, T )c(T )ν ||m||2νL2T
2ν−1

t∫
0

(t− s)−ζνE||ϕ(s)||2νL2ν
ρ
ds

=: c(ν,m, T, c(T ))
t∫
0

(t− s)−ζνE||ϕ(s)||2νL2ν
ρ
ds,

which yields (3.25).
Concerning the required continuity property, analogously to the proof of
Proposition 3.3.3, let us start with the special case m ∈ L∞. This gives us a
predictable mapping [ 0, T ] 3 t 7→ Mϕ(t)m ∈ L2ν

ρ , for which, by Proposition
3.3.4, we have the well-definedness and continuity of Iϕ,m(t, ω) ∈ L2ν

ρ for all
t ∈ [ 0, T ] and ω ∈ Ω0.
Here, Ω0 is the set of full P -measure such that

T∫
0

||ϕ(t, ω)||L2ν
ρ
dt <∞ for all ω ∈ Ω0.

Such Ω0 exists by (3.24).
Next, we consider the general case m ∈ L2. There exists a sequence
(mN )N∈N ⊂ L∞ such that

lim
N→∞

||mN −m||L2 = 0.
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Now, by (A5)/ (A5)* we have, for each ω ∈ Ω0,

sup
t∈[ 0,T ]

||Iϕ,mN (t, ω)− Iϕ,m(t, ω)||L2ν
ρ

= sup
t∈[ 0,T ]

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)Mϕ(s,ω)(mN −m)
∣∣∣∣∣∣∣∣
L2ν

ρ

≤ sup
t∈[ 0,T ]

t∫
0

||U(t, s)Mϕ(s,ω)(mN −m)||L2ν
ρ
ds

≤ ||mN −m||L2 sup
t∈[ 0,T ]

t∫
0

||U(t, s)Mϕ(s,ω)||L(L2,L2ν
ρ ) ds

≤ ||mN −m||L2(c(ν, T ))
1
2ν sup

t∈[ 0,T ]

t∫
0

(t− s)−
ζ
2 ||ϕ(s, ω)||L2ν

ρ
ds

≤ ||mN −m||L2(c(ν, T ))
1
2ν

(
T∫
0

s
− ζ(2ν)

2(2ν−1) ds

) 2ν−1
2ν
(
T∫
0

||ϕ(s, ω)||2νL2ν
ρ
ds

) 1
2ν

→ 0 as N →∞.

Thus, t 7→ Iϕ,m(t, ω) is continuous as the uniform limit of continuous map-
pings t 7→ Iϕ,mN (t, ω).
Finally, by the finiteness of the right hand side in (3.25) and the pathwise
continuity shown before, Lebesgue’s dominated convergence theorem gives
us the time-continuity of Iϕ,m in L2ν(Ω;L2ν

ρ ). �

3.4 Stochastic convolution w.r.t. Q-Wiener process
in weighted L2-spaces

In this section, we present results on the stochastic convolution w.r.t. Wiener
processes in L2

ρ resp. L2ν
ρ (see e.g. [76]).

An emphasis is put on the well-definedness (Proposition 3.4.1 resp. Proposi-
tion 3.4.3) and on the (pathwise (see Proposition 3.4.4) and meansquare (see
Proposition 3.4.5–3.4.7)) continuity properties of Wiener stochastic convolu-
tions in L2

ρ resp. L2ν
ρ , ν ≥ 1. A new result of this section is Proposition 3.4.7,

where we prove the time-continuity in L2ν(Ω;L2ν
ρ ). This will be important

later for establishing similar continuity properties of the mild solutions to
(1.1) resp. (1.2). Furthermore, unlike Manthey and Zausinger in [76], we
also consider the general nuclear case, which is of importance for the later
considerations of equation (1.2), since theQ-Wiener process appearing in the
Lévy-Itô decomposition of a Lévy process in general does not fit to the nu-
clear case introduced above. We emphasize that, in the general nuclear case
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of this section, we apply the assumption (A5)* to get the well-definedness
of the stochastic convolution in L2ν

ρ .

The other results mentioned before are more or less known. Nevertheless, we
include detailed proofs of them, especially of Proposition 3.4.3, since later
we will adapt them to the case of compensated Poisson random measures in
Chapter 4. In doing so, we will fill some gaps in the original proof in [76].

In the whole section, we assume that (A0)–(A2) hold.

First, we consider the case ν = 1.
Given a predictable process (ϕ(t))t∈[ 0,T ] taking values in L2

ρ, we consider
the following stochastic integral, which is called Wiener stochastic con-
volution,

(3.26) IWϕ (t) :=
t∫
0

U(t, s)Mϕ(s) dW (s).

A technical problem is caused by the singularity of the integrand function
at s = t.
In particular, we will show that the simplest condition for (3.26) to be well-
defined is

(3.27) sup
t∈[ 0,T ]

E||ϕ(t)||2L2
ρ
<∞.

The Banach space of all predictable processes ϕ obeying this property will
be denoted byH2(T ) (for an exact definition of this space, see in Section 5.1).

Proposition 3.4.1: Let ϕ = (ϕ(t))t∈[ 0,T ] be an L2
ρ-valued predictable

process obeying

(3.28) sup
t∈[ 0,T ]

t∫
0

(t− s)−ζE||ϕ(s)||2L2
ρ
ds <∞,

where ζ = 0 in the nuclear case and ζ ∈ [ 0, 1 ) as in (A2) in the gen-
eral nuclear and in the cylindrical case.
Then, for each t ∈ [ 0, T ], the stochastic convolution IWϕ is well-defined in
L2
ρ in both the nuclear and the cylindrical case.

In particular, (3.28) is fulfilled in case of (3.27) being fulfilled. In this case,
we even have well-definedness of the stochastic convolution in the general
nuclear case.

Furthermore, if for some q ≥ 2



3.4. WIENER CONVOLUTION INTEGRALS 93

(3.29) sup
t∈[ 0,T ]

t∫
0

(t− s)−ζE||ϕ(s)||q
L2

ρ
ds <∞,

then also

(3.30) E||IWϕ (t)||q
L2

ρ
ds ≤ c(q, ζ, T )

t∫
0

(t− s)−ζE||ϕ(s)||q
L2

ρ
ds <∞.

In particular,

sup
t∈[ 0,T ]

E||ϕ(t)||q
L2

ρ
<∞

implies

sup
t∈[ 0,T ]

E||IWϕ (t)||q
L2

ρ
<∞.

Proof: As in the Bochner case, let us first fix some t ∈ [ 0, T ].
We fix the representative of the integrand process as

(3.31) [ 0, T ]× Ω 3 (s, ω) 7→ χ(s, ω) := 1[ 0,t )(s)U(t, s)Mϕ(s,ω) ∈ L2.

First, we show that it is PT /B(L2)-measurable, where L2 stands for L2(Q
1
2L2, L2

ρ).
By the arguments used in proving Lemma 3.6 in [62], this is equivalent to
the PT /L2

ρ-measurability of the mappings

[ 0, T ]× Ω 3 (s, ω) 7→ χ(s, ω)Q
1
2 en ∈ L2

ρ, n ∈ N,

where (en)n∈N ⊂ L2 is an orthonormal basis in L2 of eigenvectors of Q,
which always exists by 2.3.3.

The statement will be a corollary of the general fact that
[ 0, T ] × Ω 3 (s, ω) 7→ 1[ 0,t )(s)U(t, s)Y(s) is PT -measurable for each PT -
measurable process (Y(t))t∈[ 0,T ] ⊂ L2

ρ, which has already been proved in
Proposition 3.3.1.

In both the nuclear and the cylindrical case we take Y(s) := ϕ(s)Q
1
2 en ∈ L2

ρ

(recall that Q
1
2 en ∈ L∞ for any n ∈ N in both cases).

In the general nuclear case, given any n ∈ N, we set Y(s) := ϕ(s)hn,M ∈ L2
ρ

for any s ∈ [ 0, T ] and a sequence (hn,M )M∈N ⊂ L∞ approximating Q
1
2 en in

the L2-norm. Then, by (A2) we have, for each (s, ω) ∈ [ 0, T ]× Ω,

lim
M→∞

||χ(s, ω)hn,M − χ(s, ω)Q
1
2 en||2L2

ρ
= 0,
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which implies the required measurability in the general nuclear case.

Now, as was discussed in Section 2.5 (cf. Definitions 2.5.2 and 2.5.5 there),
the stochastic integral

IWϕ (t) :=
t∫
0

U(t, s)Mϕ(s) dW (s)

:=
t∫
0

χ(s) dW (s)

is well-defined in all three cases provided

(3.33) E
t∫
0

||U(t, s)Mϕ(s)||2L2
ds <∞, t ∈ [ 0, T ].

It is easy to see that, combined with (3.1) and (A2), (3.33) follows from
(3.28). Indeed, we have

(3.34) E
t∫
0

||U(t, s)Mϕ(s)||2L2
ds = E

t∫
0

∑
n∈N

||U(t, s)Mϕ(s)(Q
1
2 en)||2L2

ρ
ds

≤ c(T )
(∑
n∈N

an

)(
sup
n∈N

||en||2∞
)

t∫
0

E||ϕ(s)||2L2
ρ
ds

< ∞ (by (3.28) with ζ = 0 and (3.1))

in the nuclear case, respectively,

(3.35) E
t∫
0

||U(t, s)Mϕ(s)||2L2(L2,L2
ρ) ds ≤ c(T )

t∫
0

(t− s)−ζE||ϕ(s)||2L2
ρ
ds

< ∞ (by (3.28) and (A2))

in the cylindrical case, respectively

(3.36) E
t∫
0

||U(t, s)Mϕ(s)||2L2
ds ≤ tr QE

t∫
0

||U(t, s)Mϕ(s)||2L2(L2,L2
ρ) ds

≤ c(T )tr QE
t∫
0

(t− s)−ζ ||ϕ(s)||2L2
ρ
ds

< ∞ (by (3.28) and (A2))

in the general nuclear case.
It remains to prove the estimate (3.30) for q ≥ 2.
By the Burkholder-Davis-Gundy inequalities 2.5.4/2.5.6, estimate (3.2) from
(A2) and Hölder’s inequality, we have
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E||IWϕ (t)||q
L2

ρ
≤ c(q, T )E

(
t∫
0

||U(t, s)Mϕ(s)||2L2
ds

) q
2

≤ c(q, T )E
(

t∫
0

(t− s)−ζ ||ϕ(s)||2L2
ρ
ds

) q
2

= c(q, T )E
(

t∫
0

(t− s)−
(q−2)ζ

q (t− s)−
2ζ
q ||ϕ(s)||2L2

ρ
ds

) q
2

≤ c(q, T )

(
T∫
0

s−ζ ds

) q−2
2 t∫

0

(t− s)−ζE||ϕ(s)||q
L2

ρ
ds

=: c(q, ζ, T )
t∫
0

(t− s)−ζE||ϕ(s)||q
L2

ρ
ds,

which proves the claim. �

Remark 3.4.2: (i) As one can see from (3.34)–(3.36), the stochastic
convolution is well-defined in L2

ρ even under the sufficient conditions

(3.37)
T∫
0

E||ϕ(s)||2L2
ρ
ds <∞

in the nuclear case and, respectively,

(3.38)
T∫
0

(E||ϕ(t)||2L2
ρ
)r dt <∞ for some r > 1

1−ζ

in the general nuclear and the cylindrical case. The latter condition comes
from the following estimate of the integral, appearing on the right hand side
of (3.35) and (3.36),

t∫
0

(t− s)−ζE||ϕ(s)||2L2
ρ
ds

≤
(

t∫
0

s−ζ(1+δ) ds

) 1
1+δ
(

t∫
0

(E||ϕ(s)||2L2
ρ
)

δ+1
δ ds

) δ
δ+1

,

where we used Hölder’s inequality and choose some δ > 0 such that
ζ(1 + δ) < 1.
The last integral is finite for δ = 1

r−1 > 0 under the assumption (3.38).
Besides the process ϕ being in H2(T ), a sufficient condition for (3.38) is also

T∫
0

E||ϕ(t)||2rL2r
ρ
dt <∞ for some r > 1

1−ζ .

(ii) As we have seen, (A2) allows to consider all three cases from 3.4.1 si-
multaneously. In the cylindrical case, we could also apply (A5) with ν = 1,
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whereas in the general nuclear case we could assume (A5)* with ν = 1 in-
stead of (A2).

(iii) Actually, the results of this section remain true if we just assume that
the integrand process ϕ is measurable and (Ft)t∈[ 0,T ]-adapted.

Let us stress that the stochastic convolution process (3.26) is not a mar-
tingale, and thus one needs more comprehensive methods to study its regu-
larity properties.

Now, we consider the general case ν ≥ 1.
A key idea is to control the well-definedness of the stochastic convolution
(3.26) in the Banach spaces L2ν

ρ , ν ≥ 1, by additional regularity properties
of the evolution family U = (U(t, s))0≤s≤t≤T in these spaces.
The properties of the stochastic convolution in L2ν

ρ are described by

Proposition 3.4.3: (cf. [76], Chapter 2, Remark 2.3(iii))
Let ν ≥ 1. Suppose that, additionally to the previous assumptions, U obeys
(A3) and (A4) (In the nuclear case, (A4) certainly holds with ζ = 0, cf.
Remark 3.1.2.1 (iii), in the cylindrical case (A4) is implied by (A5) with
the same ζ ∈ [ 0, 1 ), cf. Remark 3.1.2.1 (v), whereas in the general nu-
clear case, (A4) is implied by (A5)* with the same ζ ∈ [ 0, 1 ), cf. Remark
3.1.2.1 (iv)).
Let ϕ = (ϕ(t))t∈[ 0,T ] be an L2ν

ρ -valued, predictable process obeying

(3.39) sup
t∈[ 0,T ]

t∫
0

(t− s)−ζE||ϕ(s)||2νL2ν
ρ
ds <∞,

where ζ = 0 in the nuclear case and ζ ∈ [ 0, 1 ) as in (A2) in the gen-
eral nuclear and the cylindrical case. Then, in all cases we have, for each
t ∈ [ 0, T ],

IWϕ (t) =
t∫
0

U(t, s)Mϕ(s) dW (s) ∈ L2ν
ρ (P -a.s.).

Furthermore, there exists a positive constant c(ν, T ) such that

(3.40) E||IWϕ (t)||2νL2ν
ρ
≤ c(ν, T )

t∫
0

(t− s)−ζE||ϕ(s)||2νL2ν
ρ
ds <∞.

In particular,

sup
t∈[ 0,T ]

E||ϕ(t)||2νL2ν
ρ
<∞

is sufficient for (3.39) and implies
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sup
t∈[ 0,T ]

E||IWϕ (t)||2νL2ν
ρ
<∞.

Proof: We follow the original proof from [76], but give more explana-
tion to some of the key steps.

Let us fix an arbitrary t ∈ [ 0, T ] and define the predictable integrand
process, cf. (3.31),

[ 0, T ] 3 s 7→ χ(s) := 1[ 0,t )(s)U(t, s)Mϕ(s) ∈ L2.

Note that we have already shown the well-definedness in L2
ρ of

IWϕ (t) :=
t∫
0

χ(s) dW (s).

Recalling the coordinate structure of the Q-Wiener process from Section
2.3, heuristically we could also consider the infinite series of stochastic inte-
grals

(3.41)
∑
n∈N

t∫
0

χ(s)(Q
1
2 en) dwn(s)

constructed by means of the family (wn)n∈N of independent scalar Brownian
motions as in Section 2.3. Our aim is to identify (3.41) with the L2

ρ-valued
stochastic integral (3.26). Then, we will examine the L2ν

ρ -properties of each
term and establish the convergence of the above expansion in L2ν(Ω;L2ν

ρ ).

The proof works in the following way:

Step 1 We find a family (ψ(n))n∈N of PT⊗B(Θ)−B(R)-measurable represen-
tatives for the L2

ρ-valued functions (χQ
1
2 en)n∈N (for their definition

see below).

Step 2 In L2(Ω;L2
ρ) we check the identity

t∫
0

χ(s) dW (s) =
∑
n∈N

t∫
0

ψ(n)(s, ·) dwn(s)

with χ as in (3.31).

Step 3 We show the required inclusion

∑
n∈N

t∫
0

ψ(n)(s, ·) dwn(s) ∈ L2ν
ρ (P -a.s.).
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Step 1 is done by the following claim.

Claim 1: There are representatives ψ(n) for the functions

[ 0, T ] 3 s 7→ 1[ 0,t )(s)U(t, s)Mϕ(s)Q
1
2 en ∈ L2

ρ,

i.e. PT ⊗ B(Θ)− B(R)-measurable functions
ψ(n): Ω× [ 0, T ]×Θ → R such that

(3.42) E
∑
n∈N

T∫
0

||U(t, s)Mϕ(s)Q
1
2 en − ψ(n)(s, ·)||2L2

ρ
ds = 0.

Proof: In order to find such measurable representatives, we need to ”eval-
uate” U(t, s)Mϕ(s)Q

1
2 en at any point θ ∈ Θ.

To this end, we exploit the smoothing properties of a standard convolution
operator for real-valued functions.

Let us first recall the following:

Definition:
(i) A sequence (δk)k∈N ⊂ L1(Rd) is called a (general-) Dirac sequence if

δk ≥ 0 (dx-a.s.),
∫

Rd

δk(θ) dθ = 1 and

(3.43)
lim
k→∞

∫
Rd\Bρ(0)

δk(θ) dθ = 0 for any ρ > 0,

where Bρ(0) is the ball of radius ρ > 0 around 0.

(ii) If ψ1: Rd → R is measurable and ψ2 ∈ Lp(Rd) for some 1 ≤ p ≤ ∞, the
standard convolution mapping conv is given by

(conv(ψ1, ψ2))(θ) :=
∫

Rd

ψ1(ξ − θ)ψ2(ξ) dξ, θ ∈ Rd,

provided the integral in the right hand side exists.

It is well-known that:

• For any function ϕ ∈ C∞0 (Rd), the sequence (δk)k∈N given by

(3.44) δk(θ) :=
(

1
k

)−d
ϕ(kθ), θ ∈ Rd,

is a Dirac sequence (cf. 2.13 2 in [6]).

• The Dirac sequence from (3.44) fulfills
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(3.45) conv(δk, ψ) ∈ C∞(Rd)

for any ψ ∈ L2(Rd) (cf. 2.12.4 from [6]).

• For any Dirac sequence (δk)k ⊂ L1(Rd) and any ψ ∈ L2(Rd), we have
(cf. 2.14.2 from [6]) that

(3.46) conv(δk, ψ) −→
L2 ψ as k →∞.

• For any ϕ ∈ L1(Rd) and any ψ ∈ L2(Rd), the convolution exists and
obeys the bound (cf. 2.12 2. from [6])

(3.47) ||conv(ϕ,ψ)||L2 ≤ ||ϕ||L1 ||ψ||L2 .

We show Claim 1 with the help of the above definitions and properties.

Let (en)n∈N ⊂ L2 be a complete orthonormal system of eigenvectors of
the operator Q ∈ T (L2).
Given the weight function µρ as in the Introduction, for n ∈ N and almost
all (s, ω) ∈ [ 0, T ]× Ω, we have (cf. (3.34)–(3.36))

µ
1
2
ρ χ(s)Q

1
2 en = 1[ 0,t )(s)µ

1
2
ρU(t, s)Mϕ(s)Q

1
2 en ∈ L2(Θ).

Outside Θ we trivially continue this function by 0.
Thus, by (3.46) we have, for any n ∈ N,

(3.48) conv(δk, µ
1
2
ρ χ(s)Q

1
2 en) −→

L2 µ
1
2
ρ χ(s)Q

1
2 en as k →∞,

where (δk)k∈N is the Dirac sequence from (3.44).
Furthermore, by (3.45) we get

conv(δk, µ
1
2
ρ χ(s)Q

1
2 en) ∈ C∞(Rd).

Thus, for any n ∈ N and almost all (s, ω) ∈ [ 0, T ] × Ω, we can calcu-

late (conv(δk, µ
1
2
ρ χ(s)Q

1
2 en))(θ) for any fixed θ ∈ Θ.

Given n, k ∈ N, we define ψ(n)
k : [ 0, T ]× Ω×Θ → R by

(3.49) ψ(n)
k (s, ω, θ) := (µ

− 1
2

ρ conv(δk, µ
1
2
ρ χ(s)Q

1
2 en))(θ)

= 1[ 0,t )(s)(µ
− 1

2
ρ conv(δk, µ

1
2
ρU(t, s)Mϕ(s)Q

1
2 en))(θ)



100 CHAPTER 3. STOCHASTIC ANALYSIS

Obviously, µ
− 1

2
ρ ψ ∈ L2

ρ for any ψ ∈ L2. Thus, for ψ(n)
k given by (3.49)

and for almost all (s, ω) ∈ [ 0, T ]× Ω, we get

ψ
(n)
k (s, ω, ·) ∈ L2

ρ

and

(3.50) lim
k∈N

||ψ(n)
k (s, ω, ·)− U(t, s)Mϕ(s)Q

1
2 en||L2

ρ
= 0.

We next show PT ⊗ B(Θ)− B(R)-measurability of each ψ(n)
k , n, k ∈ N.

To this end, we use Theorem 6.1 from [51]. To apply it, we need the follow-
ing two properties to be fulfilled:

• continuity of the mapping

Θ 3 θ 7→ ψ
(n)
k (s, ω, θ)

for any (s, ω) ∈ [ 0, T ]× Ω, and

• PT -measurability of

(s, ω) 7→ ψ
(n)
k (s, ω, θ)

for any fixed θ ∈ Θ.

By (3.45)/(3.49) there is a version of ψ(n)
k obeying the required continuity

property.

Concerning the PT -measurability required for any fixed θ ∈ Θ, note that

ψ
(n)
k (s, ω, θ) = µ

− 1
2

ρ (θ)
∫
Θ

δk(ξ − θ)(µ
1
2
ρ χ(s, ω)Q

1
2 en)(θ) dξ

= µ
− 1

2
ρ (θ) < δk(· − θ), µ

1
2
ρ χ(s, ω)Q

1
2 en >L2 .

Since χ is predictable, we get the PT -measurability of
(s, ω) 7→ ψ

(n)
k (s, ω, θ) by Fubini’s Theorem.

Thus, for each n, k ∈ N, the assumptions of Theorem 6.1 from [51] are
fulfilled. This gives us PT ⊗ B(Θ)-measurability of

(s, ω, θ) 7→ ψ
(n)
k (s, ω, θ).
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By construction, see (3.46),

(ψ(n)
k (s, ω, ·))k∈N

is a Cauchy sequence in L2
ρ for each n ∈ N and almost all (s, ω) ∈ [ 0, T ]×Ω.

Due to the uniform bound (3.45), Lebesgue’s theorem is applicable, which
yields that

(s, ω) 7→ ψ
(n)
k (s, ω, ·), k ∈ N,

is a Cauchy sequence in L2(Ω× [ 0, T ],PT , P ⊗ dt;L2
ρ) for each n ∈ N.

Furthermore, by Fubini’s theorem we have for any k, k̄ ∈ N

∑
n∈N

E
T∫
0

∫
Θ

|ψ(n)
k (s, θ)− ψ

(n)

k̄
(s, θ)|2 µρ(dθ) ds = E

T∫
0

∑
n∈N

||ψ(n)
k (s, ·)− ψ

(n)

k̄
(s, ·)||2L2

ρ
ds.

This implies that, for a fixed n ∈ N,

(s, ω, θ) 7→ ψ
(n)
k (s, ω, θ), k ∈ N,

is a Cauchy sequence in

L2([ 0, T ]× Ω×Θ) := L2([ 0, T ]× Ω×Θ,PT ⊗ B(Θ), P ⊗ ds⊗ µρ).

Moreover, by Lebesgue’s theorem and (3.46) (ψ(n)
k )k∈N is a Cauchy sequence

in L2([ 0, T ] × Ω × Θ; l2), which is the space of all sequences (ψ(n))n∈N in
L2([ 0, T ]× Ω×Θ) such that

∑
n∈N

E
T∫
0

∫
Θ

|ψ(n)(s, θ)|2 µρ(dθ) ds <∞.

Since L2([ 0, T ] × Ω × Θ; l2) is a Hilbert space, there exists a limit se-
quence (ψ(n))n∈N ∈ L2([ 0, T ]×Ω×Θ; l2) such that each ψ(n) is PT ×B(Θ)-
measurable and

(3.51)
∑
n∈N

E
T∫
0

∫
Θ

|ψ(n)
k (s, θ)− ψ(n)(s, θ)|2 µρ(dθ) ds→ 0 as k →∞.

Obviously, this implies that each component ψ(n)(s, ω, ·) ∈ L2
ρ for dt ⊗ P -

almost all (s, ω) ∈ [ 0, T ]× Ω.
On the other hand, by the definition of ψ(n)

k we have, for each n ∈ N and
almost all
(s, ω) ∈ [ 0, T ]× Ω,
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lim
k→∞

||ψ(n)
k (s, ω, ·)− χ(s, ω)Q

1
2 en||L2

ρ
= 0

and thus

lim
k→∞

||ψ(n)
k (s, ω, ·)− ψ(n)(s, ω, ·)||2L2

ρ
= ||χ(s, ω)Q

1
2 en − ψ(n)(s, ω, ·)||L2

ρ
.

This implies

(3.52) E
T∫
0

∑
n∈N

||χ(s, ω)Q
1
2 en − ψ(n)(s, ·)||2L2

ρ
ds

= E
T∫
0

∑
n∈N

lim
k→∞

||ψ(n)
k (s, ω, ·)− ψ(n)(s, ω, ·)||2L2

ρ
ds

= lim
k→∞

E
T∫
0

∑
n∈N

||ψ(n)
k (s, ω, ·)− ψ(n)(s, ω, ·)||2L2

ρ
ds

= lim
k→∞

∑
n∈N

E
T∫
0

∫
Θ

|ψ(n)
k (s, θ)− ψ(n)(s, θ)|2 µρ(dθ) ds

= 0,

which yields (3.42). �

Thus, the proof of Step 1 is finished. 4

Step 2: This step is proven by the following claim.

Claim 2: In L2(Ω;L2
ρ), for χ given by (3.31) we have

IWϕ (t) =
t∫
0

χ(s) dW (s) =
∑
n∈N

t∫
0

χ(s)Q
1
2 en dwn(s) =

∑
n∈N

t∫
0

ψ(n)(s, ·) dwn(s),

where for each n ∈ N (by (3.49))

(3.53) In(t) :=
t∫
0

ψ(n)(s, ·) dwn(s)

is the usual L2
ρ-valued stochastic integral of the predictable process

[ 0, T ] 3 s 7→ ψ(n)(s, ·) ∈ L2
ρ (see e.g. [97]).

Proof: By the definition of ψ(n) as a measurable modification of χ(s)Q
1
2 en

(see (3.49)), the claim is equivalent to showing that (in any case) the sum

(3.54)
∑
n∈N

t∫
0

χ(s)Q
1
2 en dwn(s)

converges in L2(Ω;L2
ρ) and that
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(3.55)
t∫
0

χ(s) dW (s) =
∑
n∈N

t∫
0

χ(s)Q
1
2 en dwn(s) =

∑
n∈N

In(t),

where the In(t) are defined by (3.53). To prove the convergence of (3.54), we
use a proper version of Itô’s isometry. Recall that, for a real-valued Brown-
ian motion (w(t))t∈[ 0,T ] and an L2

ρ-valued, predictable process (ϕ(t))t∈[ 0,T ],
we have (cf. e.g. [97])

E
∣∣∣∣∣∣∣∣ t∫

0

ϕ(s) dw(s)
∣∣∣∣∣∣∣∣2
L2

ρ

= E
t∫
0

||ϕ(s)||2L2
ρ
ds, t ∈ [ 0, T ],

provided the right hand side is finite.

Due to the mutual independence of (wn)n∈N, we have by (3.15)

E
∣∣∣∣∣∣∣∣ ∑
n∈N

t∫
0

χ(s)Q
1
2 en dwn(s)

∣∣∣∣∣∣∣∣2
L2

ρ

=
∑
n∈N

E
t∫
0

||χ(s)Q
1
2 en||2L2

ρ
ds <∞.

Hence, the series (3.54) is convergent in L2(Ω;L2
ρ).

To check the identity (3.55), let us first proceed in the nuclear and general
nuclear case, i.e. we suppose W is a Q-Wiener process with the covariance
operator Q ∈ T +(L2).

Recall that by 2.5.2 there is a family of elementary processes (χm)m∈N such
that

(3.56) lim
m→∞

E
T∫
0

||χm(s)− χ(s)||2L2
ds = 0,

where L2 denotes the set L2(Q
1
2L2, L2

ρ) of Hilbert-Schmidt operators from

Q
1
2L2 to L2

ρ (see also Definition 2.5.7 above).
We first show (3.55) for the elementary processes χm ∈ SW (T ).
Any such elementary process can be written in the form

χm(t) =
jm−1∑
j=0

χjm1[ tmj ,t
m
j+1)(s),

with 0 := tm0 < tm1 < ... < tmjm := T and χjm ∈ L(Q
1
2L2, L2

ρ), 0 ≤ j ≤ jm − 1.

For this χm, we have the following chain of equations in L2(Ω,F , P ;L2
ρ).

∑
n∈N

t∫
0

χm(s)Q
1
2 en dwn(s)
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=
∑
n∈N

(
jm−1∑
i=0

χjm1[ tmj ,t
m
j+1)(s)

)
Q

1
2 en(wn(tmj+1 ∧ t)− wn(tmj ∧ t))

=
jm−1∑
j=0

χjm1[ tmj ,t
m
j+1)(s)

(∑
n∈N

Q
1
2 en(wn(tmj+1 ∧ t)− wn(tmj ∧ t))

)
=

jm−1∑
j=0

χjm1[ tmj ,t
m
j+1)(s)(W (tmj+1 ∧ t)−W (tmj ∧ t)) =

t∫
0

χm dW (s),

where we used (2.5) (with G := L2 and (en)n∈N) for W in the last line.
Thus, the claim holds true for any elementary χm ∈ SW (T ).
On the other hand, we have

(3.57) E
∣∣∣∣∣∣∣∣ t∫

0

(χm(s)− χ(s)) dW (s)
∣∣∣∣∣∣∣∣2
L2

ρ

= E
t∫
0

||χm(s)− χ(s)||2L2
ds

≤ E
T∫
0

||χm(s)− χ(s)||2L2
ds→ 0, as m→∞

by Itô’s isometry and (3.56). Taking into account (3.15), (3.56) and the
mutual independence of wn for different n ∈ N, we also have

(3.58) E
∣∣∣∣∣∣∣∣ ∑
n∈N

t∫
0

(χm(s)− χ(s))Q
1
2 en dwn(s)

∣∣∣∣∣∣∣∣2
L2

ρ

=
∑
n∈N

E
t∫
0

||(χm(s)− χ(s))Q
1
2 en||2L2

ρ
ds

≤ E
T∫
0

||χm(s)− χ(s)||2L2
ds→ 0 as m→∞.

Combining (3.57) and (3.58), we get (3.55) both in the nuclear and the
general nuclear case.

Concerning the cylindrical case, note that the stochastic integration w.r.t.
the cylindrical Wiener process is defined via an auxiliary Q1-Wiener process
for some Q1 ∈ T +(L2), see Section 2.5. Thus, (3.55) in the cylindrical case
readily follows from the (general) nuclear case. �

Thus, we have finished Step 2. 4

Note that so far we did not use the measurability properties of the fam-
ily (ψ(n))n∈N. This is needed in

Step 3: P -almost surely, each
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In(t) :=
t∫
0

ψ(n)(s, ·) dwn(s)

belongs to L2ν
ρ . Furthermore, their sum

∑
n∈N

t∫
0

ψ(n)(s, ·) dwn(s)

converges P -almost surely in L2ν
ρ .

To prove this step, we first need the pointwise representation for the above
integrals:

Claim 3: For n ∈ N, let us consider the stochastic integral

(3.59) Ĩn(t, θ) :=
t∫
0

ψ(n)(s, θ)dwn(s) ∈ R

depending on the parameter θ ∈ Θ.
Then, there exists an Ft ⊗ B(Θ)-measurable realization of (3.59), which we
again denote by Ĩn(t, θ).
Furthermore, Ĩn(t) coincides P -almost surely with the L2

ρ-valued integral (cf.
(3.53))

In(t) :=
t∫
0

ψ(n)(s) dwn(s),

i.e.

E||Ĩn(t)− In(t)||2L2
ρ

= E
∣∣∣∣∫
Θ

|Ĩn(t, θ)− (In(t))(θ)|2 µρ(dθ)
∣∣∣∣ = 0.

Proof of Claim 3: Let us first check that Ĩn(t) is well-defined for µρ-
almost all θ ∈ Θ.
Indeed, by the construction (see (3.49) and (3.51)),
(ψ(n))n∈N ∈ L2(Ω× [ 0, T ]×Θ, P ⊗ dt⊗ µρ; l2). Thus, we have

E
T∫
0

∫
Θ

∑
n∈N

|ψ(n)(s, θ)|2 µρ(dθ) ds <∞.

Then, Fubini’s theorem gives us

(3.60)
∫
Θ

T∫
0

E|ψ(n)(s, ω, θ)|2 ds µρ(dθ) = E
T∫
0

∫
Θ

|ψ(n)(s, ω, θ)|2 µρ(dθ) ds <∞

and hence
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(3.61)
T∫
0

E(ψ(n)(s, θ))2 ds <∞

for µρ-almost all θ ∈ Θ.
By Itô’s isometry, this implies the well-definedness of Ĩn(t, θ), n ∈ N, t ∈
[ 0, T ], for µρ-almost all θ ∈ Θ.

In the following, we will crucially use the measurability of Ĩn(t, θ).

We claim that Ĩn(t) allows an Ft⊗B(Θ)-measurable realization for all n ∈ N.
A general measurability result A.1(a) from [13] states that, under the suf-
ficient condition (3.61), for each t ∈ [ 0, T ], there exists an Ft ⊗ B(Θ)-
measurable realization of the stochastic integral (3.59). More precisely,
one can find an Ft ⊗ B(Θ)-measurable function Īnt : Ω × Θ → R and a
set Θ0 ∈ B(Θ) of full µρ-measure such that Īnt (ω, θ) = Ĩn(t, ω, θ) for all
(ω, θ) ∈ Ω×Θ0.
Below, we identify Ĩn(t) with its measurable representative Īnt .

So, we want to identify the map Ĩn(t): Ω × Θ → R with the L2
ρ-valued

random variable

In(t) :=
t∫
0

ψ(n)(s, ·)dwn(s).

To this end, we consider cylinder functions F of the form

(3.62) F = F1 · F2, F1 ∈ L2(Ω,F , P ), F2 ∈ L2(Θ,B(Θ), µρ).

Obviously, such F belong both to L2(Ω;L2
ρ) := L2(Ω,F , P ;L2

ρ) and

L2(Ω×Θ) := L2(Ω×Θ,F ⊗ B(Θ), P ⊗ µρ).

We will show that the pairings of Ĩn and In with such functions coincide.
Since functions F of the form (3.62) constitute a total set in L2(Ω;L2

ρ), this
would imply the identity Ĩn = In as elements of L2(Ω;L2

ρ).

So, let F ∈ L2(Ω;L2
ρ) be of the form (3.62).

An important observation is that P -a.s.

(3.63)
t∫
0

[∫
Θ

F2(x)ψ(n)(s, θ)µρ(dθ)
]
dwn(s) =

∫
Θ

F2(θ)In(t, θ)µρ(dθ).

This follows by the stochastic Fubini theorem 4.18 from [26]. A sufficient
condition to apply this theorem is that
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F2ψ ∈ L1(Ω, µρ;L2(Ω× [ 0, T ], P ⊗ ds)).
Indeed, by the Cauchy inequality we have

∫
Θ

[
E

T∫
0

(F2(θ)ψ(n)(s, θ))2 ds

] 1
2

µρ(dθ)

=
∫
Θ

F2(θ)

[
E

T∫
0

(ψ(n)(s, θ))2 ds

] 1
2

µρ(dθ)

≤ ||F2||L2
ρ

[
E

T∫
0

∫
Θ

(ψ(n)(s, θ))2 µρ(dθ) ds

] 1
2

<∞,

where we used (3.61) in the last step.

Thus, we can rewrite the inner product as

< In(t), F >L2(Ω;L2
ρ)

=
∫
Ω

[∫
Θ

F (ω, θ)
(

t∫
0

ψ(n)(s, ·) dwn(s)
)

(ω, θ)µρ(dθ)
]
P (dω)

=
∫
Ω

F1(ω)
(∫

Θ

F2(θ)
(

t∫
0

ψ(n)(s, ·) dwn(s)
)

(ω, θ)µρ(dθ)
)
P (dω)

= E

[
F1

〈
F2,

t∫
0

ψ(n)(s, ·) dwn(s)
〉
L2

ρ

]

= E
[
F1

t∫
0

〈
F2, ψ

(n)(s, ·)
〉
L2

ρ
dwn(s)

]
= E

[
F1

(
t∫
0

∫
Θ

F2(θ)ψ(n)(s, θ)µρ(dθ) dwn(s)
)]

= E
[
F1

(∫
Θ

F2(θ)Ĩn(t, θ)µρ(dθ)
)]

=
∫
Ω

[∫
Θ

F (ω, θ)Ĩn(t, ω, θ)µρ(dθ)
]
P (dω)

=< Ĩn(t), F >L2(Ω;L2
ρ).

Here, we simply used the definition of the inner product in L2
ρ in the third

and the fifth, Proposition 2.5.3 in the fourth, (3.56) in the sixth, and (3.62)
in the second and the second last step.
So, the inner products of Ĩn(t) and In(t) with F of the form (3.62) coincide,
which proves Claim 3. �

We finish Step 3 by the following claim:
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Claim 4: For any n ∈ N, we have In(t) ∈ L2ν
ρ , P -a.s., and the se-

ries ∑
n∈N

In(t)

converges in L2ν(Ω,F , P ;L2ν
ρ ).

Proof: By the above construction, see Claim 3, there is an Ft ⊗ B(Θ)-
measurable version

Ĩn(t, θ) =
t∫
0

ψ(n)(s, θ) dwn(s)

of In(t) for any n ∈ N.
Since, by Claim 2, the infinite sum

∑
n∈N

In(t) =
∑
n∈N

t∫
0

ψ(n)(s, ·) dwn(s)

is convergent in L2(Ω,F , P ;L2
ρ), by Claim 3 we get the convergence of

∑
n∈N

Ĩn(t, θ) =
∑
n∈N

t∫
0

ψ(n)(s, θ) dwn(s)

in L2(Ω×Θ,F ⊗ B(Θ), P ⊗ µρ).
Thus, we can apply Fubini’s theorem yielding

E
∣∣∣∣∣∣∣∣ t∫

0

χ(s) dW (s)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

= E
∣∣∣∣∣∣∣∣ ∑
n∈N

In(t)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

(3.64) = E
∫
Θ

(∑
n∈N

t∫
0

ψ(n)(s, θ) dwn(s)
)2ν

µρ(dθ)

=
∫
Θ

E
(∑
n∈N

t∫
0

ψ(n)(s, θ) dwn(s)
)2ν

µρ(dθ)

=
∫
Θ

E
[∑
n∈N

Ĩn(t, θ)
]2ν

µρ(dθ),

provided the right hand side is finite.
Now, we will show that the partial sums

N∑
n=1

Ĩn(t), N ∈ N,

constitute a Cauchy sequence in L2ν(Ω;L2ν
ρ ) := L2ν(Ω,F , P ;L2ν

ρ ).
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Indeed, for any N,K ∈ N,

(3.65) E
∣∣∣∣∣∣∣∣N+K−1∑

n=N

Ĩn(t)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

= E
∫
Θ

(
N+K−1∑
n=N

Ĩn(t, θ)
)2ν

µρ(dθ)

=
∫
Θ

E
(
N+K−1∑
n=N

t∫
0

ψ(n)(s, ω, θ) dwn(s, ω)
)2ν

µρ(dθ).

Setting

ψK(s, θ) :=
(
ψ(n)(s, θ)

)N+K−1

n=N

and

WK(s) := (wn(s))
N+K−1
n=N ,

by the Burkholder-Gundy inequality for multi-dimensional Wiener processes
we have, for a fixed θ ∈ Θ,

E
(
N+K−1∑
n=N

t∫
0

ψ(n)(s, θ) dwn(s)
)2ν

= E

(〈
t∫
0

ψK(s, ·, θ), dWK

〉
RK

)2ν

≤ c(ν)E
(

t∫
0

||ψK(s, ·, θ)||2RK ds

)ν
= c(ν)E

[
t∫
0

N+K−1∑
n=N

ψ(n)(s, θ)2 ds
]ν

.

Thus, we can continue (3.65) as

(3.66) E
∣∣∣∣∣∣∣∣N+K−1∑

n=N

Ĩn(t)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

≤ c(ν)
∫
Θ

E
[
t∫
0

N+K−1∑
n=N

(ψ(n)(s, θ))2 ds
]ν

µρ(dθ)

= c(ν)E
∫
Θ

[
t∫
0

N+K−1∑
n=N

(ψ(n)(s))2 ds
]ν

(θ)µρ(dθ)

= c(ν)E
∫
Θ

(
t∫
0

N+K−1∑
n=N

(χ(s)Q
1
2 en)2 ds

)ν
(θ)µρ(dθ)

= c(ν)E
∫
Θ

(
t∫
0

N+K−1∑
n=N

(U(t, s)Mϕ(s)Q
1
2 en)2 ds

)ν
(θ)µρ(dθ),

where in the last three lines we passed to the Bochner integral over [ 0, T ]
in L1

ρ (cf. Remark 3.1.2.1 (ii) above) and used Claim 1.
Since by assumption (A4)
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E
∫
Θ

(
t∫
0

∑
n∈N

(U(t, s)Mϕ(s)Q
1
2 en)2 ds

)ν
dµρ

≤ c(ν, T )
t∫
0

(t− s)−ζE||ϕ(s)||2νL2ν
ρ
ds

<∞,

by Lebesgue’s theorem we can conclude that the last line in (3.66) tends
to 0 as N,K →∞.
So, we have proven that

∑
n Ĩn(t) converges in L2ν(Ω;L2ν

ρ ). 4

To complete the proof of Proposition 3.3.1, let us recall that
∑

n Ĩn(t) con-
verges to IWϕ (t) in L2(Ω;L2

ρ) by Claims 2 and 3.
Thus, P -a.s., we get the required inclusion

IWϕ (t) =
t∫
0

χ(s) dW (s) ∈ L2ν
ρ .

It remains to show estimate (3.40). But this follows immediately by com-
bining (3.66) with (3.64) and (3.65). �

Remark 3.4.4: Actually, Proposition 3.4.3 extends to any predictable
L2-valued process (χ(t))t∈[ 0,T ] such that

E
T∫
0

||χ(s)||2L2
dt <∞.

Namely, we can prove that

t∫
0

χ(s) dW (s) ∈ L2ν
ρ (P -a.s.)

and

(3.67)E
∣∣∣∣∣∣∣∣ t∫

0

χ(s) dW (s)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

≤ c(ν)E
[
t∫
0

||χ(s)Q
1
2 ||L2(L2,L2ν

ρ ) ds

]ν
≤ c(ν, T )

t∫
0

E||χ(s)Q
1
2 ||2νL2(L2,L2ν

ρ ) ds,

provided the right hand side in (3.67) is finite.
The proof of (3.67) follows by Minkowski’s inequality applied to (3.66) (see
Remark 3.1.2.1 (iv)).

To finish this section, we discuss the continuity property of the stochas-



3.4. WIENER CONVOLUTION INTEGRALS 111

tic convolution (3.26).

First, we recall the following proposition from [76], the proof of which is
based on the so-called factorization method for Wiener-type convolutions
(cf. e.g. [25] or the proof of Theorem 5.9 in [26]) and the Burkholder-Davis-
Gundy inequality (see Section 2.5).

Theorem 3.4.5: (cf. [76], Theorem 3.1.1 there)
Given a predictable process ϕ: [ 0, T ]× Ω → L2

ρ, suppose that

(3.68) E
T∫
0

||ϕ(t)||q
L2

ρ
dt <∞

for some q > 2 in the nuclear case and q > 2
1−ζ with ζ ∈ [ 0, 1 ) as in

(A2) in the general nuclear and in the cylindrical case.

Then, there exists a continuous modification of the process

[ 0, T ] 3 t 7→
t∫
0

U(t, s)Mϕ(s) dW (s) ∈ L2
ρ.

Note that in Theorem 3.4.5 it is really necessary to assume q > 2 in the
nuclear case resp. q > 2

1−ζ in the general nuclear and in the cylindrical case.
Otherwise the factorization method for Wiener-type convolutions would not
be applicable.

Since, in later chapters, the presence of jump terms in the equations (1.1)
and (1.2) causes us to consider other continuity properties, we finish this
section by the following propositions, which seem to be new for evolution
operators U(t, s), 0 ≤ s ≤ t ≤ T .

Proposition 3.4.6: Suppose that the conditions of Proposition 3.4.1 hold
for the evolution operator U .
Let (ϕ(t))t∈[ 0,T ] be an L2

ρ-valued predictable process obeying the uniform mo-
ment bound

(3.69) sup
t∈[ 0,T ]

E||ϕ(t)||2L2
ρ
<∞.

Then,

t 7→ IWϕ (t) :=
t∫
0

U(t, s)Mϕ(s) dW (s)



112 CHAPTER 3. STOCHASTIC ANALYSIS

is continuous in L2(Ω;L2
ρ) in the nuclear, general nuclear and cylindrical

case.

Proof: We extend here a method of proving meansquare continuity, which
is used e.g. by Knoche in [60] and by Knäble in [59], to the case of non-
Hilbert-Schmidt operator valued coefficients Mϕ(t).

For α > 1, consider the process

(3.70) Φα(t) :=
t
α∫
0

U(t, s)Mϕ(s) dW (s) ∈ L2
ρ, 0 ≤ t ≤ T ,

which is well-defined in all three cases by (A2) and (3.69).
We claim that Φα(t), 0 ≤ t ≤ T , is meansquare continuous. Indeed, for any
0 ≤ r ≤ t ≤ T , we have by Itô’s isometry

(3.71) E||Φα(t)− Φα(r)||2L2
ρ
≤ 2

( r
α∫
0

E||[U(t, s)− U(r, s)]Mϕ(s)||2L2
ds

+
t
α∫
r
α

E||U(t, s)Mϕ(s)||2L2
ds

.

Let us start with the first integral on the right hand side. We consider
simultaneously the nuclear and the cylindrical case. Note that

r
α∫
0

E||[U(t, s)− U(r, s)]Mϕ(s)||2L2
ds

=
r
α∫
0

E
∑
n∈N

||[U(t, s)− U(r, s)]Mϕ(s)Q
1
2 en||2L2

ρ
ds

=
r
α∫
0

E
∑
n∈N

||[U(t, αs)− U(r, αs)]U(αs, s)Mϕ(s)Q
1
2 en||2L2

ρ
ds,

where we have Q = I in the cylindrical case.
Note that both in the nuclear and in the cylindrical case the orthonormal
basis (en)n∈N ⊂ L2 of eigenvectors of Q especially fulfills (en)n∈N ⊂ L∞.
By the strong continuity of U in L2

ρ we have, for any s ∈ [ 0, T ]

(3.72)1[ 0, r
α

](s)||[U(t, αs) − U(r, αs)]U(αs, s)Mϕ(s)Q
1
2 en||2L2

ρ
→ 0 P -a.s. as

r ↑ t resp. t ↓ r.

On the other hand, uniformly for all 0 ≤ r ≤ t ≤ T ,

(3.73) 1[ 0, r
α

](s)||[U(t, αs)− U(r, αs)]U(αs, s)Mϕ(s)Q
1
2 en||2L2

ρ
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≤ 2c(T )||U(αs, s)Mϕ(s)Q
1
2 en||2L2

ρ
.

In the nuclear case we have

(3.74)
T∫
0

E||U(αs, s)Mϕ(s)||2L2

≤ c(T ) tr QT

(
sup

t∈[ 0,T ]
E||ϕ(t)||2L2

ρ

)
<∞,

whereas in the cylindrical case we have, by (A2),

(3.75)
T∫
0

E||U(αs, s)Mϕ(s)||2L2

≤ c(T )
T∫
0

((α− 1)s)−ζE||ϕ(s)||2L2
ρ
ds

≤ c(T )

(
sup

t∈[ 0,T ]
E||ϕ(t)||2L2

ρ

)
(α− 1)−ζ

T∫
0

s−ζ ds <∞.

Thus, Lebesgue’s theorem is applicable, which gives us the convergence to
0 as r ↑ t resp. t ↓ r of the first integral in (3.71).
The second integral in (3.71) can be estimated as follows. In the nuclear
case, analogously to (3.74), we get

t
α∫
r
α

E||U(t, s)Mϕ(s)||2L2
ds

≤ c(T )tr Q

(
sup

t∈[ 0,T ]
E||ϕ(t)||2L2

ρ

)(
t−r
α

)
,

whereas in the cylindrical case, analogously to (3.75), we get

t
α∫
r
α

E||U(t, s)Mϕ(s)||2L2
ds

≤ c(T )
t
α∫
r
α

(t− s)−ζE||ϕ(s)||2L2
ρ
ds

≤ c(T )

(
sup

t∈[ 0,T ]
E||ϕ(t)||2L2

ρ

) t
α∫
r
α

s−ζ ds→ 0 as r ↑ t resp. t ↓ r.

Thus, it remains to consider the general nuclear case.
Similar to the previous considerations, for the first integral in the right hand
side of (3.71) we have
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r
α∫
0

E||[U(t, s)− U(r, s)]Mϕ(s)||2L2
ds

=
r
α∫
0

E
∑
n∈N

||[U(t, s)− U(r, s)]Mϕ(s)Q
1
2 en||2L2

ρ
ds

=
r
α∫
0

E
∑
n∈N

||[U(t, αs)− U(r, αs)]U(αs, s)Mϕ(s)Q
1
2 en||2L2

ρ
ds.

In contrast to the nuclear case, we do not assume that (en)n∈N ⊂ L∞ obey-
ing (3.1). We have

r
α∫
0

E||[U(t, s)−U(r, s)]Mϕ(s)||2L2
ds =

T∫
0

∑
n∈N

1[ 0, r
α

](s)E||[U(t, s)−U(r, s)]Mϕ(s)Q
1
2 en||2L2

ρ
ds,

whereby uniformly for all n ∈ N and all 0 ≤ r ≤ t ≤ T ,

1[ 0, r
α

](s)||[U(t, s)− U(r, s)]Mϕ(s)Q
1
2 en||2L2

ρ

= 1[ 0, r
α

](s)||[U(t, αs)− U(r, αs)]U(αs, s)Mϕ(s)Q
1
2 en||2L2

ρ

≤ 2c(T )1[ 0, r
α

](s)||U(αs, s)Mϕ(s)Q
1
2 en||2L2

ρ
ds.

Since, by (A2)U(αs, s)Mϕ(s)Q
1
2 en ∈ L2

ρ P -a.s., for any s ∈ [ 0, T ] and
any n ∈ N, we get

1[ 0, r
α

](s)||[U(t, αs)− U(r, αs)]U(αs, s)Mϕ(s)Q
1
2 en||2L2

ρ
→ 0

P -a.s. as r ↑ t resp. t ↓ r. Furthermore,

T∫
0

E
∑
n∈N

2c(T )1[ 0, r
α

](s)||U(αs, s)Mϕ(s)Q
1
2 en||2L2

ρ
ds

≤ 2c(T ) tr Q
T∫
0

E||ϕ(s)||2L2
ρ
ds sup

n∈N
||en||L2︸ ︷︷ ︸
=1

.

Thus, Lebesgue’s theorem gives the convergence to 0 of the first integral
in (3.71).
The second integral can be estimated by

t
α∫
r
α

E||U(t, s)Mϕ(s)||2L2
ds ≤ c(T )T tr Q sup

n∈N
||en||L2︸ ︷︷ ︸
=1

(
sup

t∈[ 0,T ]
E||ϕ(t)||2L2

ρ

)(
t−r
α

)
→ 0 as r ↑ t resp. t ↓ r.

Thus, in all three cases, the mapping [ 0, T ] 3 t 7→ Φα(t) ∈ L2
ρ is mean-

square continuous. Now we observe that, for any α > 1,
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sup
t∈[ 0,T ]

E||IWϕ (t)− Φα(t)||2L2
ρ

= sup
t∈[ 0,T ]

t∫
t
α

E||U(t, s)Mϕ(s)||2L2
ds

in all three cases.

Since in the nuclear and in the general nuclear case we have

||U(t, s)Mϕ(s)||2L2
≤ trQ ||U(t, s)Mϕ(s)||2L2(L2,L2

ρ)

P -a.s. for any s ∈ [ 0, T ], it suffices to consider only the cylindrical case.

In the cylindrical case, we have

sup
t∈[ 0,T ]

E||IWϕ (t)− Φα(t)||2L2
ρ

= sup
t∈[ 0,T ]

t∫
t
α

E||U(t, s)Mϕ(s)||2L2
ds

≤ c(T ) sup
t∈[ 0,T ]

t∫
t
α

(t− s)−ζE||ϕ(s)||2L2
ρ
ds

≤ c(T )

(
sup

t∈[ 0,T ]
E||ϕ(t)||2L2

ρ

)
sup

t∈[ 0,T ]

t∫
t
α

s−ζ ds

≤ c(T )

(
sup

t∈[ 0,T ]
E||ϕ(t)||2L2

ρ

)
T 1−ζ−(T

α )1−ζ

1−ζ ,

which tends to 0 as α ↓ 1.
Thus, IWϕ is also meansquare continuous as a uniform limit in C([ 0, T ], L2(Ω;L2

ρ))
of Iα as α ↓ 1. �

A generalization of Proposition 3.4.6 to q ≥ 2 is the following:

Proposition 3.4.7: Let the assumptions of Proposition 3.4.5 hold.
Suppose additionally that

sup
t∈[ 0,T ]

E||ϕ(t)||q
L2

ρ
<∞

for some q ∈ [ 2, 2
ζ ) with ζ = 0 in the nuclear case and ζ as in (A2)

(or (A5) with ν = 1) in the general nuclear and in the cylindrical case.
Then, the mapping t 7→ IWϕ (t) is continuous in Lq(Ω;L2

ρ).

Proof: We keep the same notation and repeat the arguments used in prov-
ing Proposition 3.4.6.
Let us start again with the cylindrical case. Using the Burkholder-Davis-
Gundy inequality and Hölder’s inequality (similarly to the proof of Propo-
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sition 3.4.1), we arrive at the following estimate for 0 ≤ r ≤ t ≤ T :

(3.76) E||Φα(t)− Φα(r)||q
L2

ρ
≤ c(q, T )

[ r
α∫
0

E||[U(t, s)− U(r, s)]Mϕ(s)||
q
L2
ds

+
t
α∫
r
α

E||U(t, s)Mϕ(s)||
q
L2
ds

.

The first integral tends to 0 as r ↑ t resp. t ↓ r by Lebesgue’s theorem,
where we use (3.72), (3.73) and the uniform bound

T∫
0

E||U(αs, s)Mϕ(s)||
q
L2
ds ≤ c(q, T )

T∫
0

((α− 1)s)−
qζ
2 E||ϕ(s)||q

L2
ρ
ds.

The second integral in (3.76) tends to 0 as r ↑ t resp. t ↓ r, since

t
α∫
r
α

E||U(t, s)Mϕ(s)||
q
L2
ds ≤

t
α∫
r
α

(t− s)−
qζ
2 E||ϕ(s)||q

L2
ρ
ds

≤

(
sup

t∈[ 0,T ]
E||ϕ(t)||q

L2
ρ

) t
α∫
r
α

s−
qζ
2 ds

≤

(
sup

t∈[ 0,T ]
E||ϕ(t)||q

L2
ρ

)(
( t

α)1− qζ
2 −( r

α)1− qζ
2

1− qζ
2

)
−→ 0 as r ↑ t esp. t ↓ r.

In the nuclear and general nuclear case, the integrals in the right hand
side of (3.76) are estimated by the ones from the cylindrical case similary to
the proof of Proposition 3.4.6. �

Moreover, we have an extension of Proposition 3.4.4 to the spaces L2ν
ρ with

ν > 1.

Proposition 3.4.8: Suppose that U obeys the assumptions from Proposi-
tion 3.4.5 and additionally (A5) in the cylindrical and (A5)* in the general
nuclear case (see also the remark about these conditions in Section 3.1 (cf.
Remark 3.1.2.1) and in the formulation of Proposition 3.4.3).
Furthermore, let (ϕ(t))t∈[ 0,T ] be an L2ν

ρ -valued predictable process as in
Proposition 3.4.3 but additionally obeying the uniform moment bound

(3.77) sup
t∈[ 0,T ]

E||ϕ(t)||2νL2ν
ρ
<∞.

Then, assuming that ν ∈ [ 11
ζ ) with ζ = 0 in the nuclear case and ζ ∈ [ 0, 1 )

as in (A5) resp. (A5)* in the cylindrical resp. in the general nuclear case,
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t 7→ IWϕ (t) :=
t∫
0

U(t, s)Mϕ(s) dW (s)

is continuous in L2ν(Ω;L2ν
ρ ).

Proof: As was shown in Proposition 3.4.3, IWϕ ∈ L2ν
ρ , P -a.s., for each

t ∈ [ 0, T ].
Now, the previous scheme of proving Proposition 3.4.6 and 3.4.7 runs with
ν > 1 if we use the strong continuity of U(t, s) in L2ν

ρ (see assumption (A3)).
Indeed, for Φα(t) ∈ L2ν

ρ defined by (3.70) and 0 ≤ r ≤ t ≤ T , we have

(3.78)E||Φα(t)− Φα(r)||2νL2ν
ρ

≤ c(ν)

[
E

( r
α∫
0

||[U(t, αs)− U(r, αs)]U(αs, s)Mϕ(s)Q
1
2 ||2L2(L2,L2ν

ρ ) ds

)ν

+E

( r
α∫
r
α

||U(t, s)Mϕ(s)Q
1
2 ||2L2(L2,L2ν

ρ ) ds

)ν]
,

where we use the moment estimate (3.67) (cf. Remark 3.4.4).
Concerning the first integral on the right hand side of (3.78) we note that, by
(A5)/ (A5)*, in all three cases we have, P -a.s., U(αs, s)Mϕ(s)Q

1
2 en ∈ L2ν

ρ

for any n ∈ N, where (en)n∈N ⊂ L2 denotes an orthonormal basis of L2 con-
sisting of eigenvectors of the operator Q in the nuclear and general nuclear
case.
Therefore, by the continuity assumption from (A3), we have, for any n ∈ N
and s ∈ [ 0, T ],

1[ 0, r
α

](s)[U(t, αs) − U(r, αs)]U(αs, s)Mϕ(s)Q
1
2 en → 0 ∈ L2ν

ρ as r ↑ t resp.
t ↓ r, P -a.s.,

which implies that, for any s ∈ [ 0, T ],

1[ 0, r
α

](s)[U(t, αs) − U(r, αs)]U(αs, s)Mϕ(s)Q
1
2 → 0 ∈ L2(L2, L2ν

ρ ) as r ↑ t
resp. t ↓ r, P -a.s..

Note that so far there were no restrictions on Q.
Furthermore, by (A3), (A5)*, Hölder’s inequality and the fact that

ν ∈ [ 1, 1
ζ ) ⇒ ζν < 1,

in the nuclear and general nuclear case we have the estimate

E

( r
α∫
0

||[U(t, αs)− U(r, αs)]U(αs, s)Mϕ(s)Q
1
2 ||2L2(L2,L2ν

ρ ) ds

)ν
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≤ (tr Q)ν E

( r
α∫
0

||U(t, αs)− U(r, αs)||2L(L2ν
ρ )||U(αs, s)Mϕ(s)||2L(L2,L2ν

ρ ) ds

)ν

≤ c(ν, T, c(T )) (tr Q)ν E

( r
α∫
0

((α− 1)s)−ζ ||ϕ(s)||2L2ν
ρ
ds

)ν

≤ c(ν, T, c(T )) (tr Q)ν E

r
α∫
0

((α− 1)s)−ζν ||ϕ(s)||2νL2ν
ρ
ds

≤ c(ν, T, c(T )) (tr Q)ν
(

sup
t∈[ 0,T ]

E||ϕ(s)||2νL2ν
ρ

)
(α− 1)ζν

(
s1−ζν

1−ζν

)
<∞.

Concerning the cylindrical case, we note that just applying (A5) instead
of (A5)* the previous chain of arguments changes to

E

( r
α∫
0

||[U(t, αs)− U(r, αs)]U(αs, s)Mϕ(s)Q
1
2 ||2L2(L2,L2ν

ρ ) ds

)ν

≤ (tr Q)ν E

( r
α∫
0

||U(t, αs)− U(r, αs)||2L(L2ν
ρ )||U(αs, s)Mϕ(s)||2L2(L2,L2ν

ρ ) ds

)ν

≤ c(ν, T, c(T )) (tr Q)ν E

( r
α∫
0

((α− 1)s)−ζ ||ϕ(s)||2L2ν
ρ
ds

)ν

≤ c(ν, T, c(T )) (tr Q)ν E

r
α∫
0

((α− 1)s)−ζν ||ϕ(s)||2νL2ν
ρ
ds

≤ c(ν, T, c(T )) (tr Q)ν
(

sup
t∈[ 0,T ]

E||ϕ(s)||2νL2ν
ρ

)
(α− 1)ζν

(
s1−ζν

1−ζν

)
<∞.

Thus, we can apply Lebesgue’s dominated convergence theorem to get con-
vergence to 0 as r ↑ t resp. t ↓ r for the first integral in estimate (3.78) in
all three cases.
Concerning the second integral on the right hand side of (3.78) note that,
in the nuclear and general nuclear case, we have

E

( r
α∫
r
α

||U(t, s)Mϕ(s)Q
1
2 ||2L2(L2,L2ν

ρ ) ds

)ν
≤ (tr Q)νE

( r
α∫
r
α

(t− s)−ζ ||ϕ(s)||2L2ν
ρ
ds

)ν

≤ (tr Q)ν
(

sup
t∈[ 0,T ]

E||ϕ(s)||2νL2ν
ρ

)
( t−r

α
)1−ζν

1−ζν ,

whereas in the cylindrical case we have
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E

( r
α∫
r
α

||U(t, s)Mϕ(s)||2L2(L2,L2
ρ) ds

)ν
≤ E

( r
α∫
r
α

(t− s)−ζ ||ϕ(s)||2L2ν
ρ
ds

)ν

≤

(
sup

t∈[ 0,T ]
E||ϕ(s)||2νL2ν

ρ

)
( t−r

α
)1−ζν

1−ζν .

Obviously, both estimates tend to 0 as r ↑ t resp. t ↓ r. �

Next, we give an alternative and very short proof of Proposition 3.4.6 by
using the result of Theorem 3.4.4.

Alternative proof of Proposition 3.4.8: First, assume that the inte-
grand process ϕ(t), t ∈ [ 0, T ], satisfies conditions of Theorem 3.4.4, i.e.

(3.79) sup
t∈[ 0,T ]

E||ϕ(t)||2q
L2q

ρ
<∞

for a large enough q > ν.
We have to prove that for each sequence (tn)n∈N ⊂ [ 0, T ], tn → t as n→∞,

E||IWϕ (tn)− IWϕ (t)||2νL2ν
ρ
→ 0 as n→∞.

To this end, we use an Ft ⊗ B(Θ)-measurable modification of IWϕ (t),
t ∈ [ 0, T ], which exists by Step 3 from the proof of Proposition 3.3.1. We
have

(3.80) sup
t∈[ 0,T ]

E
∫
Θ

|IWϕ (t, θ)|2q µρ(dθ) = sup
t∈[ 0,T ]

E||IWϕ (t)||2q
L2q

ρ
<∞.

We claim that the pathwise L2
ρ-continuity of t 7→ IWϕ (t) together with the

uniform bound (3.80) imply the P ⊗ µρ-continuity of

[ 0, T ] 3 t 7→ IWϕ (t, θ), θ ∈ Θ.

Indeed, by Lebesgue’s dominated covergence theorem for any ε > 0 we
have

P ⊗ µρ({(ω, θ) | |IWϕ (tn, ω, θ)− IWϕ (t, ω, θ)| > ε})

=
∫
Ω

(∫
Θ

1{(ω,θ) | |IW
ϕ (tn,ω,θ)−IW

ϕ (t,ω,θ)|>ε} dµρ

)
dP → 0 as n→∞.

Due to the L2
ρ-continuity of IWϕ , the inner integral in the previous line con-

verges to 0 as n→∞ for almost all ω ∈ Ω. Thus, by (3.73) and (3.74), we
can apply the de la Vallée-Poussin theorem with any q > ν. This yields

lim
n→∞

∫
Ω

∫
Θ

|IWϕ (tn, θ)− IWϕ (t, θ)|2ν µρ(dθ) dP = 0.
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Obviously, the left hand side of the above equation is just

lim
n→∞

E||IWϕ (tn)− IWϕ (t)||2νL2ν
ρ

,

which proves the required continuity under the assumption (3.79).

Now, let us take any general ϕ satisfying (3.77).
For such ϕ one can always find a sequence of regular ϕn, n ∈ N, satisfying
(3.79) and approximating ϕ in the sense that, given δ > 0 as in Remark
3.3.1 (i),

T∫
0

(E||ϕn(t)− ϕ(t)||2νL2ν
ρ

)
δ+1

δ ds→ 0 as n→∞.

Actually, for ϕn one can take simple processes from NW (T ), see e.g. Propo-
sition 2.24 in [61].
Then, we have by (A4) (or (A5)) and Hölder’s inequality

sup
t∈[ 0,T ]

E||IWϕn
− IWϕ ||2νL2ν

ρ

≤ c(ν, T ) sup
t∈[ 0,T ]

t∫
0

(t− s)−ζE||ϕn(t)− ϕ(t)||2νL2ν
ρ
ds

≤ c(ν, T )

(
T∫
0

s−ζ(1+δ) ds

) 1
1+δ
(
T∫
0

(E||ϕn(s)− ϕ(s)||2νL2ν
ρ

)
δ+1

δ ds

) δ
δ+1

.

Thus, t 7→ IWϕ (t) is continuous in L2ν(Ω;L2ν
ρ ) as a uniform limit of L2ν(Ω;L2ν

ρ )-
continuous mappings. �

To finish this section, we give a remark on the special case of a bounded in-
tegrator ϕ, which will be relevant for the equation (1.2) driven by Lévy noise.

Remark 3.4.9: If (ϕ(t))t∈[ 0,T ] is bounded in the sense that

(3.81) sup
t∈[ 0,T ]

E||ϕ(t)||L∞ <∞,

then the statements of Propositions 3.4.1, 3.4.3, and 3.4.5–3.4.7 remain
valid under the weaker assumption that (A5) resp. (A5)* holds only for
ϕ ≡ 1 ∈ L2ν

ρ , i.e., instead of (3.5) resp. (3.6), it is enough to suppose

||U(t, s)||2L2(L2ν
ρ ) ≤ c(T )(t− s)−ζ

resp.

||U(t, s)||2L(L2ν
ρ ) ≤ c(T )(t− s)−ζ .
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Chapter 4

Stochastic convolution w.r.t.
compensated Poisson
random measures in
weighted L2-spaces

In this chapter, we are concerned with stochastic convolutions w.r.t. com-
pensated Poisson random measures on the weighted L2-spaces from Section
1.1.
The main results of this chapter establish the existence and moment bounds
of the stochastic convolution w.r.t. compensated Poisson random mea-
sures in L2

ρ(Θ) resp. L2ν
ρ (Θ) and its time-continuity in Lq(Ω;L2

ρ(Θ)) resp.
L2ν(Ω;L2ν

ρ (Θ)) with q ≥ 2 resp. ν ≥ 1.
Analogously to the stochastic convolution w.r.t. Q-Wiener processes, we
face the problem that, given any ϕ ∈ L2

ρ(Θ), the multiplication operator
Mϕ is not a Hilbert-Schmidt operator from L2(Θ) to L2

ρ(Θ). Thus, we have
to impose additional conditions on the Poisson random measure and the
evolution operator.
The key assumption on the compensated Poisson random measure is that
the corresponding Lévy intensity measure η obeys

(QI)
∫

{0<||x||L2<1}
||x||2L2 η(dx) +

∫
{||x||L2≥1}

||x||q
L2 η(dx) <∞

with q ≥ 2. The necessity of this assumptions follows from the Bichteler-
Jacod inequality for Poisson integrals, cf. Lemma 2.6.10 in Section 2.6.
Respectively, the key (and, compared to the Wiener case, new) assump-
tion on the almost strong evolution operator U is (A5) resp. (A5)* from
Section 3.1. These assumptions allow us to control the Poisson stochastic
convolution in the spaces Lq(Ω;L2

ρ(Θ)) resp. L2ν(Ω;L2ν
ρ (Θ)).

Assuming pseudo contractivity of the evolution operator (cf. condition (A7)

123
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from Section 3.1) and uniform boundedness of the multiplicator function,
we can also show existence of a càdlàg version of the stochastic convolution
(see Proposition 4.11 below).
Similar to the case of stochastic convolutions w.r.t. Wiener processes, a
crucial role is played by the regularity constant ζ ∈ [ 0, 1 ) associated to the
evolution operator via condition (A2).

As in Chapter 3, we assume ρ ∈ N ∪ {0} to be such that µρ(Θ) < ∞.
Under this assumption, the following considerations do not depend on the
choice of Θ. Thus, we use the shortened notations for the Lpρ-spaces on Θ.

More precisely, in this chapter we are focused on establishing analogons
to Propositions 3.4.1 and 3.4.3 by extending their methods of proof to the
case of compensated Poisson random measures. After that we also establish
continuity properties similar to that from Chapter 3. In that respect, recall
the shortened notations Lq(Ω;L2

ρ) := Lq(Ω,F , P ;L2
ρ) and L2ν(Ω,F , P ;L2ν

ρ ).

Let (Ñ(t, ·))t∈[ 0,T ] be a family of compensated Poisson random measures
with commutator dt⊗ η in the sense of Section 2.4.
Given an almost strong evolution operator U on L2

ρ with properties (A0),
(A1) and a predictable process (ϕ(t))t∈[ 0,T ] taking values in L2

ρ, we consider
the stochastic integral

(4.1) IÑϕ (t) :=
t∫
0

∫
L2

U(t, s)Mϕ(s)(x) Ñ(ds, dx).

Let us check the well-definedness of the Poisson stochastic convolution (4.1)
in L2(Ω;L2

ρ) and, more generally, in the spaces Lq(Ω;L2
ρ) and L2ν(Ω;L2ν

ρ )
with q ≥ 2 and ν ≥ 1.

To this end, we introduce the notation (QI) for both integrability con-
ditions (SI) and (PI) (with p := q) being fulfilled for the corresponding
Lévy measure η for some q ≥ 2, i.e.

(QI)
∫

{0<||x||L2<1}
||x||2L2 η(dx) +

∫
{||x||L2≥1}

||x||q
L2 η(dx) <∞.

Similar to the case of the Wiener stochastic convolution, the simplest as-
sumption guaranteeing well-definedness of the Poisson stochastic convolu-
tion (4.1) is

sup
t∈[ 0,T ]

E||ϕ(t)||2L2
ρ
<∞.

The following proposition is the analogon of Proposition 3.4.2 for the case
of Wiener stochastic convolution.
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Proposition 4.1: Suppose that (A0)– (A2) (or even the weaker as-
sumption (A5)* with ν = 1 instead of (A2)) hold. Furthermore, assume
(QI) with

(4.2) Cq,η :=
∫
L2

||x||q
L2 η(dx) +

(∫
L2

||x||2L2 η(dx)

) q
2

<∞.

Let ϕ = (ϕ(t))t∈[ 0,T ] be an L2
ρ-valued predictable process obeying

(4.3) sup
t∈[ 0,T ]

t∫
0

(t− s)−ζE||ϕ(s)||2L2
ρ
ds <∞,

where ζ ∈ [ 0, 1 ) as in (A2). Then, for each t ∈ [ 0, T ], the convolution
IÑϕ is well-defined in L2

ρ.
Furthermore, for any q ∈ [ 2, 2

ζ ) such that η obeys (QI) and

(4.4) sup
t∈[ 0,T ]

t∫
0

(t− s)−ζE||ϕ(s)||q
L2

ρ
ds <∞,

we have the moment bound

(4.5) E||IÑϕ (t)||q
L2

ρ
ds ≤ c(q, T, Cq,η)

t∫
0

(t− s)−
qζ
2 E||ϕ(s)||q

L2
ρ
ds.

In particular,

(4.6) sup
t∈[ 0,T ]

E||ϕ(t)||q
L2

ρ
<∞

is sufficient for (4.4) and implies

sup
t∈[ 0,T ]

E||IÑϕ (t)||q
L2

ρ
<∞.

Proof: Analogously to the proof of Proposition 3.4.3, we fix t ∈ [ 0, T ].
Setting (cf. (3.31))

χ(s) := 1[ 0,t )(s)U(t, s)Mϕ(s), 0 ≤ s ≤ T ,

we need to establish the PT ⊗ B(L2)/B(L2
ρ)-measurability of the integrand

function

[ 0, T ]× Ω× L2 3 (s, ω, x) 7→ χ(s, ω)x ∈ L2
ρ.

To this end, we will use Theorem 6.1 from [51], which requires the following
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properties to be fulfilled:

(i) The mapping

L2 3 x 7→ χ(s, ω)x ∈ L2
ρ

is continuous for almost any fixed (s, ω) ∈ [ 0, T ]× Ω.

(ii) The mapping

[ 0, T ]× Ω 3 (s, ω) 7→ χ(s, ω)x ∈ L2
ρ

is PT -measurable for any fixed x ∈ L2.

Note that (i) immediately follows from (A2) (or (A5)*). To show (ii), let
us note that, for each x ∈ L2, the function χ(s, ω)x ∈ L2

ρ can be pointwise
approximated on [ 0, T ]×Ω by linear combinations of χ(s, ω)en ∈ L2

ρ, n ∈ N.
Under the same assumptions, each χen is predictable as we showed in the
proof of Proposition 3.4.1, cf. Step 1 there. This implies the predictability
of χx required in (ii).

Thus, Theorem 6.1 from [51] is applicable and gives us existence of a
PT ⊗ B(L2

ρ)-measurable modification of the integrand function, which we
again denote by χx.
Being restricted to the set [ 0, T ] × Ω × L2 \ {0}, the integrand χ(s, ω)x is
obviously PT,A0-predictable as required to define Poisson integrals (see Sec-
tion 2.6, p.57). In our context A0 = {B ∈ B(L2) | 0 /∈ B̄}.

For the well-definedness of (4.1), we have to check that

(4.7) E
T∫
0

∫
L2

||χ(s)x||2L2
ρ
η(dx) ds <∞,

i.e. χx ∈ L2([ 0, T ]× Ω× L2;L2
ρ).

Indeed, we have

E
T∫
0

∫
L2

||χ(s)x||2L2
ρ
η(dx) ds

= E
t∫
0

∫
L2

||U(t, s)Mϕ(s)(x)||2L2
ρ
η(dx) ds

≤

(∫
L2

||x||2L2 η(dx)

)
E

t∫
0

||U(t, s)Mϕ(s)||2L2(L2,L2
ρ) ds

≤ Cq,ηc(T )
t∫
0

(t− s)−ζE||ϕ(s)||2L2
ρ
ds
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<∞.

Here, we used (3.2) from (A2) in the third step, respectively (4.2) and
(4.3) in the last step.
Thus, f(s, ω, x) := χ(s, ω)x ∈ N2,η

L2/L2
ρ
(T ) such that Definition 2.6.6 gives us

the well-definedness of IÑϕ (t) as an element of L2(Ω;L2
ρ).

It remains to prove the estimate (4.5) for q ≥ 2.
By the Bichteler-Jacod type inequality 2.6.10, (4.2), estimate (3.2) from
(A2) and Hölder’s inequality, we have

E||IÑϕ (t)||q
L2

ρ
≤ c(q, T )

T∫
0

[
E
∫
L2

||χ(s)x||q
L2

ρ
η(dx)

+E

(∫
L2

||χ(s)x||2L2
ρ
η(dx)

) q
2

 ds
= c(q, T )

∫
L2

||x||q
L2 η(dx) +

(∫
L2

||x||2L2 η(dx)

) q
2

E
T∫
0

||χ(s)||qL2
ds

= c(q, T, Cq,η)E
t∫
0

||U(t, s)Mϕ(s)||
q
L2
ds

≤ c(q, T, c(T ), Cq,η)
t∫
0

(t− s)−
qζ
2 E||ϕ(s)||q

L2
ρ
ds,

which finishes the proof. �

Remark 4.2: Analogously to Remark 3.4.2 in the Wiener case, the Pois-
son stochastic convolution is well-defined even under the weaker assumptions

(4.8)
T∫
0

(E||ϕ(t)||2L2
ρ
)r dt <∞ for some r > 1

1−ζ .

Indeed, the sufficient condition (4.3) is implied by the following estimate
with δ = 1

r−1 > 0

t∫
0

(t− s)−ζE||ϕ(s)||2L2
ρ
ds

≤
(

t∫
0

s−ζ(1+δ) ds

) 1
1+δ
(

t∫
0

(E||ϕ(s)||2L2
ρ
)

δ+1
δ ds

) δ
δ+1

already appearing in Remark 3.4.2 (i).
In turn, (4.8) is implied by
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T∫
0

E||ϕ(t)||2rLr
ρ
dt <∞ for some r > 1

1−ζ .

To describe admissible integrands in (4.1), for ν ≥ 1 we introduce the Ba-
nach spaces Gν(T ) of all predictable L2ν

ρ -valued processes (ϕ(t))t∈[ 0,T ] such
that

(4.9) ||ϕ||Gν(T ) :=

(
sup

t∈[ 0,T ]
E||ϕ(t)||2νL2ν

ρ

) 1
2ν

<∞.

Since L2ν
ρ ∈ B(Lνρ) and B(L2ν

ρ ) = B(L2
ρ)
⋂
L2ν
ρ , any ϕ ∈ Gν(T ) is even

predictable as a process with values in L2ν
ρ . Note that the spaces Gν(T ) will

be treated more detailed in Section 5.1.

Let us start with the following proposition, which is a Bichteler-Jacod
type inequality for Poisson convolutions in L2ν

ρ .

Proposition 4.3: Let ν ≥ 1 and suppose that (A0)–(A2) (Here, (A2)
can be replaced by (A5)* with ν = 1) hold. Furthermore, let the integrabil-
ity condition (QI) on the Lévy measure η be fulfilled with q = 2ν.
Given an L2

ρ-valued predictable process obeying (4.3), we have

IÑϕ :=
t∫
0

∫
L2

U(t, s)Mϕ(s)(x) Ñ(ds, dx) ∈ L2ν
ρ , P -a.s.,

for all t ∈ [ 0, T ], provided

(4.10) E
t∫
0

[∫
L2

||U(t, s)Mϕ(s)(x)||2νL2ν
ρ
η(dx) +

(∫
L2

||U(t, s)Mϕ(s)(x)||2L2ν
ρ
η(dx)

)ν]
ds <∞ .

Furthermore, for any fixed t ∈ [ 0, T ], we have the moment estimate

(4.11) E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)Mϕ(s)(x)Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2ν
ρ

≤ c(ν, T )E
t∫
0

[∫
L2

||U(t, s)Mϕ(s)(x)||2νL2ν
ρ
η(dx) +

(∫
L2

||U(t, s)Mϕ(s)(x)||2L2ν
ρ
η(dx)

)ν]
ds.

The main result of this section is the following proposition, which will be
relevant for later considerations of the SDEs (1.1) and (1.2). It is an imme-
diate corollary of the previous proposition (cf. (4.10)/(4.11)).

Proposition 4.4: Let ν ≥ 1 and assume additionally to the assump-
tions of 4.3 that (A5) (or even the weaker assumption (A5)*) holds.
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If

(4.12) sup
t∈[ 0,T ]

t∫
0

(t− s)−ζνE||ϕ(s)||2νL2ν
ρ
ds <∞,

then, for all t ∈ [ 0, T ],

t∫
0

∫
L2

U(t, s)Mϕ(s)(x) Ñ(ds, dx) ∈ L2ν
ρ , P -a.s..

Furthermore, we have the moment estimate

(4.13) E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)Mϕ(s)(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2ν
ρ

≤ c(ν, T, c(T ), C2ν,η)
t∫
0

(t− s)−ζνE||ϕ(s)||2νL2ν
ρ
ds

with a positive constant only depending on ν, T , U and η.
In particular, the right hand side is finite if ν < 1

ζ (of course, this condition
is only needed in case ζ 6= 0) and ϕ obeys (4.9), i.e. ϕ ∈ Gν(T ).

Remark 4.5: The estimate (4.13) (aswell as estimate (4.27) in Remark
4.6 (i) below) extends the Bichteler-Jacod inequality for Hilbert spaces (cf.
Section 2.6) to the Banach spaces L2ν

ρ with ν ≥ 1. A similar result in Lp-
spaces in bounded domains was established by Marinelli and Röckner in [80]
(see Lemma 4, p.1532 there).
There is also a general theory on stochastic integration w.r.t. compensated
Poisson random measures in a special family of Banach spaces, the so-called
UMD-Banach spaces, which is based on the theory of stochastic integration
w.r.t. Wiener processes developed in 2007 in [109] by van Neerven and col-
laborators. After this thesis was almost completed, we got to know about the
recent PhD-thesis [31] by Dirksen, where the Bichteler-Jacod inequality for
stochastic integrals w.r.t. compensated Poisson random measures is proven.
There an upper and a lower estimate on the stochastic integral w.r.t. com-
pensated Poisson random measures is given.

Proof of 4.3: Let us fix an arbitrary t ∈ [ 0, T ].
Setting (cf. (3.31) in the proof of Proposition 3.4.3)

χ(s, ω) := 1[ 0,t ](s)U(t, s)Mϕ(s,ω) ∈ L2(L2, L2
ρ), (s, ω) ∈ [ 0, T ]× Ω,

we are interested in the properties of the Poisson integral
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IÑϕ (t) =
t∫
0

∫
L2

U(t, s)Mϕ(s)x Ñ(ds, dx)

=
t∫
0

∫
L2

χ(s)x Ñ(ds, dx).

Note that we have the expansion in L2

x =
∑
n∈N

(x, en)L2en,

which implies the corresponding expansion in L2
ρ

(4.14) χ(t)x =
∑
n∈N

(x, en)L2χ(t)en, P -a.s.

Analogously to the proof of Theorem 3.4.3, we will proceed in three steps.

Step 1 Making use of the expansion (4.14), we find a measurable representa-
tive ψ of the mapping

[ 0, T ]× Ω× L2 3 (s, ω, x) 7→ χ(s, ω)x ∈ L2
ρ.

By definition, this is a PT ⊗ B(L2 \ {0}) ⊗ B(Θ)/B(R)-measurable
function ψ: Ω× [ 0, T ]× L2 \ {0} ×Θ → R such that

(4.15) E
T∫
0

∫
L2\{0}

||χ(s)x− ψ(s, x, ·)||2L2
ρ
η(dx) ds = 0.

Step 2 In L2(Ω;L2
ρ), we check the identity

IÑϕ (t) :=
t∫
0

∫
L2

χ(s)x Ñ(ds, dx) =
t∫
0

∫
L2\{0}

ψ(s, x, ·) Ñ(ds, dx).

Step 3 We show that

t∫
0

∫
L2\{0}

ψ(s, x, ·) Ñ(ds, dx) ∈ L2ν
ρ , P -a.s.,

and satisfies the estimate (4.11).

Step 1: To this end, everything was mainly prepared in Step 1 in the proof
of Proposition 3.4.3.
Indeed, there we have constructed a family (ψ(n))n∈N of PT ⊗ B(Θ)/B(R)-
measurable representatives for the functions χen, n ∈ N, such that
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(4.16) E
∑
n∈N

T∫
0

||χ(s)en − ψ(n)(s, ·)||2L2
ρ
ds = 0.

We claim that the series

(4.17) ψ(s, x, θ) :=
∑
n∈N

(x, en)L2ψ(n)(s, θ), (s, x, θ) ∈ [ 0, T ]× L2 ×Θ

is convergent in

L2(Ω×[ 0, T ]×L2\{0}×Θ) := L2(Ω×[ 0, T ]×L2\{0}×Θ, dP⊗ds⊗dη⊗dµρ).
Indeed, for any N,K ∈ N by Fubini’s theorem and (4.16)

(4.18)
∫
Ω

T∫
0

∫
L2\{0}

∫
Θ

(
N+K−1∑
n=N

(x, en)L2ψ(n)(s, ω, θ)
)2

µρ(dθ) η(dx) dsP (dω)

=
∫
Ω

T∫
0

∫
L2\{0}

∫
Θ

(
N+K−1∑
n,m=N

(x, en)L2(x, em)L2ψ(n)(s, ω, θ)ψ(m)(s, ω, θ)

)
µρ(dθ) η(dx) dsP (dω)

=
∫

L2\{0}

N+K−1∑
n,m=N

(x, en)L2(x, em)L2

[∫
Ω

T∫
0

∫
Θ

ψ(n)(s, ω, θ)ψ(m)(s, ω, θ)µρ(dθ) dsP (dω)

]
η(dx)

=
∫

L2\{0}

N+K−1∑
n,m=N

(x, en)L2(x, em)L2

[
E

T∫
0

< χ(s)en, χ(s)em >L2
ρ
ds

]
η(dx)

= E
T∫
0

∫
L2

[
N+K−1∑
n,m=N

(x, en)L2(x, em)L2 < χ(s)en, χ(s)em >L2
ρ

]
η(dx) ds

= E
T∫
0

∫
L2

∣∣∣∣∣
∣∣∣∣∣N+K−1∑
n,m=N

(x, en)L2χ(s)en

∣∣∣∣∣
∣∣∣∣∣
2

L2
ρ

η(dx) ds

= E
T∫
0

∫
L2

||χ(s)PN,N+K−1x||2L2
ρ
η(dx) ds

≤ E
T∫
0

∫
L2

||χ(s)x||2L2
ρ
η(dx) ds

= E
t∫
0

∫
L2

||U(t, s)Mϕ(s)x||2L2
ρ
η(dx) ds.

Here,

PN,N+K−1x :=
N+K−1∑
n=N

(x, en)L2en

is the projection of x ∈ L2 on the linear subspace generated by the vectors
eN , eN+1, ..., eN+K−1. Obviously ||PN,N+K−1x||L2 → 0 as N , K →∞. The
last integral is finite by the integrability assumption (4.10) on η. Therefore,
by Lebesgue’s dominated convergence theorem the left hand side in (4.18)
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tends to 0 as N , K →∞.
Thus, (4.17) defines ψ ∈ L2(Ω× [ 0, T ]× L2 \ {0} ×Θ).
The above reasoning also shows that

(4.19)
∑
n∈N

(x, en)L2χ(s)en

is convergent in L2(Ω × [ 0, T ] × L2;L2
ρ) and by (4.14) its limit coincides

with χ(s)x.
Thus, by (4.16),

E
T∫
0

∫
L2\{0}

||χ(s)x− ψ(s, x, ·)||2L2
ρ
η(dx) ds

= lim
N→∞

E
T∫
0

∫
L2\{0}

∣∣∣∣∣∣∣∣ N∑
n=1

(x, en)L2χ(s)en − (x, en)L2ψ(n)(s, x, ·)
∣∣∣∣∣∣∣∣2
L2

ρ

= 0,

which we needed to prove. 4

Step 2: This step is proven by the following claim:

Claim 2: In L2(Ω;L2
ρ), we have

IÑϕ (t) =
t∫
0

∫
L2

χ(s, x) Ñ(ds, dx) =
t∫
0

∫
L2\{0}

ψ(s, x, ·) Ñ(ds, dx).

Proof: The well-definedness of the integral on the left hand side has al-
ready been shown in the beginning of the section. Thus, we get the claim
by Itô’s isometry and (4.15) from Claim 1. � 4

Step 3:
t∫
0

∫
L2\{0}

ψ(s, x, ·) Ñ(ds, dx) ∈ L2ν
ρ , P -a.s..

This step will be shown by the following two claims.

Claim 3: Let us consider the stochastic integral

(4.20) Ĩ(t, θ) :=
t∫
0

∫
L2\{0}

ψ(s, x, θ) Ñ(ds, dx) ∈ R

depending on the parameter θ ∈ Θ.
Then, (4.20) allows an F ⊗B(Θ)- measurable modification, which we again
denote by Ĩ(t).
Furthermore, P -almost surely, Ĩ(t) coincides with the L2

ρ-valued random
variable
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I(t) :=
t∫
0

∫
L2\{0}

ψ(s, x, ·) Ñ(ds, dx),

i.e.

E||Ĩ(t)− I(t)||2L2
ρ

= E
(∫

Θ

|Ĩ(t, θ)− (I(t))(θ)|2 µρ(dθ)
)

= 0.

Proof: First of all, we note that Ĩ(t, θ) is well-defined for µρ-almost all
θ ∈ Θ. Indeed, by Step 1 ψ ∈ L2(Ω× [ 0, T ]× L2 ×Θ), which means

E
t∫
0

∫
L2\{0}

∫
Θ

(ψ(s, x, θ))2 µρ(dθ) η(dx) ds <∞,

and hence, by Fubini’s theorem,

(4.21) E
t∫
0

∫
L2\{0}

(ψ(s, x, θ))2 η(dx) ds <∞

for µρ-almost all θ ∈ Θ.
By Itô’s isometry this implies the well-definedness of Ĩ(t, θ) for µρ-almost
all θ ∈ Θ.

Next, we are going to show the measurability property of Ĩ.
To this end, we apply a general measurability result A.1.(b) from [13]. It
says that there exists an Ft ⊗ B(Θ)-measurable mapping Ī: Ω × Θ → R
and a Borel subset Θ0 ⊂ Θ of full µρ-measure such that for each θ ∈ Θ0

Ī(θ) = Ĩ(t, θ).
Below, we will always identify Ĩ(t) with its measurable realization Ī.

Next, we show that Ĩ(t) can be identified with the L2
ρ-valued random vari-

able I(t).

To this end, we take the inner product of Ĩ and I with cylinder functions
F ∈ L2(Ω×Θ) of the form

F (ω, θ) = F1(ω)

(
J−1∑
j=0

dj1Bj (θ)

)
, (ω, θ) ∈ Ω×Θ

with F1 ∈ L2(Ω,F , P ), dj ∈ R, pairwise disjoint Bj ∈ B(Θ) for
1 ≤ j ≤ J and J ∈ N. Since such F constitute a total set in
L2(Ω;L2

ρ), it suffices to show that the inner products coincide.

An important observation is that, P -a.s.,
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(4.22)
t∫
0

∫
L2\{0}

∫
Θ

F2(θ)ψ(s, x, θ)µρ(dθ) Ñ(ds, dx) =
∫
Θ

F2(θ)Ĩ(t, θ)µρ(dθ).

This follows by the stochastic Fubini theorem for Poisson processes, which
can be found e.g. in [106] (cf. Proposition 3.3.4 there).
A sufficient condition to apply this theorem is that

∫
Θ

E
T∫
0

∫
L2\{0}

(F2(θ)ψ(s, x, θ))2 η(dx) ds µρ(dθ) <∞,

which is checked by the following estimates

∫
Θ

E
T∫
0

∫
L2\{0}

(F2(θ)ψ(s, x, θ))2 η(dx) ds µρ(dθ)

=
∫
Θ

F 2
2 (θ)

(
E

T∫
0

∫
L2\{0}

(ψ(s, x, θ))2 η(dx) ds

)
µρ(dθ)

=
M∑
j=0

∫
Bj

d2
j

(
E

T∫
0

∫
L2\{0}

(ψ(s, x, θ))2 η(dx) ds

)
µρ(dθ)

≤
(

max
j
|dj |
)2 M∑

j=0

∫
Bj

E
T∫
0

∫
L2\{0}

(ψ(s, x, θ))2 η(dx) ds µρ(dθ)

=
(

max
j
|dj |
)2 ∫

Θ

E
T∫
0

∫
L2\{0}

(ψ(s, x, θ))2 η(dx) ds µρ(dθ)

<∞.

Now let us show that the inner products are equal. We get

< I(t), F >L2(Ω;L2
ρ)

= E

[∫
Θ

F (·, θ)

(
t∫
0

∫
L2\{0}

ψ(s, x, ·) Ñ(ds, dx)

)
(θ)µρ(dθ)

]

= E

F1

〈
F2,

t∫
0

∫
L2\{0}

ψ(s, x, ·) Ñ(ds, dx)

〉
L2

ρ


= E

[
F1

t∫
0

∫
L2\{0}

〈F2, ψ(s, x, ·)〉L2
ρ
Ñ(ds, dx)

]

= E

[
F1

t∫
0

∫
L2\{0}

∫
Θ

F2(θ)ψ(s, x, θ)µρ(dθ) Ñ(ds, dx)

]

= E

[
F1

∫
Θ

F2(θ)

(
t∫
0

∫
L2\{0}

ψ(s, x, θ) Ñ(ds, dx)

)
µρ(dθ)

]
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= E
[∫
Θ

F (·, θ)Ĩ(t, θ)µρ(dθ)
]

=< Ĩ(t), F >L2(Ω;L2
ρ).

Here, we used the Fubini theorem (4.22) in the sixth, the definition of the
inner product in L2

ρ in the second and the fourth, Proposition 2.6.8 in the
third and the form of F in the second and the second last step.
By the previous chain of equations, the inner products of I(t) and Ĩ(t) with
F coincide as elements of
L2(Ω;L2

ρ), which proves Claim 3. �

Now, we can finish Step 3 with the following claim.

Claim 4: The integral

Ĩ(t, θ) :=
t∫
0

∫
L2\{0}

ψ(s, x, θ) Ñ(ds, dx),

as a function of θ ∈ Θ, belongs P -almost surely to L2ν
ρ .

Proof: Applying the Bichteler-Jacod inequality 2.6.10 with H = R, we get

(4.23)
∫
Θ

E

(
t∫
0

∫
L2\{0}

ψ(s, x, θ) Ñ(ds, dx)

)2ν

µρ(dθ)

≤
∫
Θ

E

(
sup

0≤r≤t

r∫
0

∫
L2\{0}

ψ(s, x, θ) Ñ(ds, dx)

)2ν

µρ(dθ)

≤ c(κ, T )
∫
Θ

t∫
0

(
E

( ∫
L2\{0}

|ψ(s, x, θ)|2ν η(dx)

)

+E

[( ∫
L2\{0}

|ψ(s, x, θ)|2 η(dx)

)ν])
dsµρ(dθ).

It remains to show that both integrals in the right hand side are finite.

By the measurabilty property of ψ and Fubini’s theorem, we immediately get

(4.24)
∫
Θ

T∫
0

E
∫

L2\{0}
|ψ(s, x, θ)|2ν η(dx) dsµρ(dθ)

=
T∫
0

∫
L2\{0}

E
∫
Θ

|ψ(s, x, θ)|2νµρ(dθ) η(dx) ds

=
t∫
0

∫
L2\{0}

E
∫
Θ

|(U(t, s)Mϕ(s)(x))|2νµρ(dθ) η(dx) ds
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=
t∫
0

∫
L2

E||U(t, s)Mϕ(s)(x)||2νL2ν
ρ
η(dx) ds,

which is finite, since by the assumption of 4.1 the right hand side is fi-
nite.

To estimate the second integral in (4.24), we use the following Minkowski
inequality (see Theorem 2.4 in [69]) with p ≥ 1

(4.25)
(∫
X

[∫
Y

f(x, y) ν(dy)
]p
µ(dx)

) 1
p

≤
∫
Y

[∫
X

fp(x, y)µ(dx)
] 1

p

ν(dy).

This inequality is valid for any measurable spaces X and Y , σ-finite mea-
sures µ and η on X and Y and any nonnegative measurable function
f : X × Y → R+.

Hence, by (4.25) we get

(4.26)
∫
Θ

T∫
0

E

[( ∫
L2\{0}

|ψ(s, x, θ)|2 η(dx)

)ν]
ds µρ(dθ)

= E
∫
Θ

T∫
0

( ∫
L2\{0}

|ψ(s, x, θ)|2 η(dx)

)ν
ds µρ(dθ)

≤ E
T∫
0

( ∫
L2\{0}

(∫
Θ

|ψ(s, x, θ)|2ν µρ(dθ)
) 1

ν

η(dx)

)ν
ds

= E
t∫
0

(∫
L2

(∫
Θ

|(U(t, s)Mϕ(s)(x))|2ν dµρ
) 1

ν

η(dx)

)ν
ds

= E
t∫
0

(∫
L2

||U(t, s)Mϕ(s)(x)||2L2ν
ρ
η(dx)

)ν
ds,

which is finite by the assumption (4.10).

Now, combining (4.23), (4.24) and (4.26) gives us Claim 4. �

It is easy to see that the stochastic integral IÑϕ (t), which was initially defined
in L2

ρ, actually belongs to L2ν
ρ .

By Claim 2 and 3, we have the identity IÑϕ (t) = Ĩ(t) in L2(Ω;L2
ρ).

But in Claim 4, we have just shown that Ĩ(t) belongs to L2ν
ρ , P -a.s., as a

function of θ.

To finish Step 3 and the proof of 4.3, it remains to show the estimate (4.11).
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With the help of Step 2 and Claim 3, we immediately get

E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)Mϕ(s)(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2ν
ρ

= E

∣∣∣∣∣
∣∣∣∣∣ T∫0 ∫

L2\{0}
ψ(s, x, ·) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2ν
ρ

= E
∫
Θ

(
T∫
0

∫
L2\{0}

ψ(s, x, ·) Ñ(ds, dx)

)2ν

(θ)µρ(dθ)

=
∫
Θ

E

(
T∫
0

∫
L2\{0}

ψ(s, x, θ) Ñ(ds, dx)

)2ν

µρ(dθ)

≤ c(κ, T )
∫
Θ

T∫
0

(
E

( ∫
L2\{0}

|ψ(s, x, θ)|2ν η(dx)

)

+E

[( ∫
L2\{0}

|ψ(s, x, θ)|2 η(dx)

)ν])
dsµρ(dθ).

The last integral was aready estimated by (4.23)–(4.26). This gives us the
required estimate (4.11). 4

Thus, we are finished with the proof. �

Proof of 4.4: By (A5)/ (A5)* for U and (QI) with q = 2ν for η and
(4.12), we get

E
t∫
0

[∫
L2

||U(t, s)Mϕ(s)(x)||2νL2ν
ρ
η(dx) +

(∫
L2

||U(t, s)Mϕ(s)(x)||2L2ν
ρ
η(dx)

)ν]
ds <

∞.

Thus, by 4.3, we have for any fixed t ∈ [ 0, T ]

t∫
0

∫
L2

U(t, s)Mϕ(s)(x) Ñ(ds, dx) ∈ L2ν
ρ , P -a.s..

Furthermore, the estimate (4.11) together with (A5)/(A5)* for U resp.
(QI) for η with q = 2ν gives us

E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)Mϕ(s)(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2κ
ρ

≤ c(ν, T )

(
E

t∫
0

[∫
L2

||U(t, s)Mϕ(s)(x)||2νL2ν
ρ
η(dx) +

(∫
L2

||U(t, s)Mϕ(s)(x)||2L2ν
ρ
η(dx)

)ν]
ds

)
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≤ c(ν, T, c(T ), C2ν,η)
t∫
0

(t− s)−ζνE||ϕ(s)||2νL2ν
ρ
ds,

which is just (4.13). �

Remark 4.6: (i) Actually, analogously to Proposition 3.4.3 and Re-
mark 3.4.4, Proposition 4.3 extends to any predictable process
χ: [ 0, T ]× Ω× L2 \ {0} → L2ν

ρ such that χ ∈ N 2,η
L2/L2

ρ
(T ).

Namely, we can prove that (cf. (4.23)–(4.26))

t∫
0

∫
L2

χ(s, x) Ñ(ds, dx) ∈ L2ν
ρ (P -a.s.)

and

(4.27)E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

χ(s, x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2ν
ρ

≤ c(ν, T )

(
E

t∫
0

[∫
L2

||χ(s, x)||2νL2ν
ρ
η(dx) +

(∫
L2

||χ(s, x)||2L2ν
ρ
η(dx)

)ν]
ds

)
,

provided the right hand side is finite.

(ii) Let us give a direct proof of Step 1 in the proof of Proposition 4.3
without referring to Step 1 in the proof of Proposition 3.4.3.
So, a measurable realization ψ(s, x, θ) of χ(s)x can be constructed as follows.
By arguments analogous to that in Step 1 in the proof of Proposition 3.4.3,
we can approximate χ(s)x ∈ L2

ρ by standard convolutions

(4.28) ψm(s, x) := µ−1
ρ conv(δm, µρχ(s)x) ∈ L2

ρ

⋂
C(Rd)

in such a way that, for all (s, ω, x) ∈ [ 0, T ]× Ω× L2 \ {0},

(4.29) lim
m→∞

||ψm(s, x)− χ(s)x||2L2
ρ

= 0

and

(4.30) sup
m∈N

||ψm(s, x)||L2
ρ
≤ ||χ(s)x||L2

ρ
.

Since ψm(s, x) ∈ C(Rd), we can evaluate ψm(s, x, θ) for any θ ∈ Θ. Fur-
thermore, Theorem 6.1 from [51] guarantees that there exists a
PT ⊗ B(L2 \ {0})⊗ B(Θ)/B(R)-measurable realization of

(s, ω, x, θ) 7→ ψm(s, ω, x, θ).
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Sufficient conditions to apply this theorem are

(i) continuity of the mapping

Θ 3 θ 7→ ψm(s, ω, x, θ) ∈ R

for almost any fixed (s, ω, x) ∈ [ 0, T ] × Ω × L2 \ {0}, which holds
by (3.45);

(ii) PT ⊗ B(L2 \ {0})-measurability of

[ 0, T ]× Ω× L2 \ {0} 3 (s, ω, x) 7→ ψm(s, ω, x, θ) ∈ R

for any fixed θ ∈ Θ.

The latter readily follows by Fubini’s theorem from the definition (4.28) of
ψm, i.e.

ψm(s, ω, x, θ) = µ
− 1

2
ρ (θ) < δm(· − θ), µ

1
2
ρ χ(s, ω)x >L2.

Next, by (4.29), (4.30) and Lebesgue’s theorem, we observe that the cor-
responding sequence of measurable realizations ψm, m ∈ N, is a Cauchy
sequence in the Hilbert space
L2(Ω× [ 0, T ]×L2 \ {0} ×Θ,PT ⊗B(L2 \ {0})⊗B(Θ), P ⊗ dt⊗ η⊗ µρ; R).
Indeed, for all n,m,∈ N

E
T∫
0

∫
L2\{0}

∫
Θ

|ψm(s, x, θ)− ψn(s, x, θ)|2 µρ(dθ) η(dx) ds

= E
T∫
0

∫
L2\{0}

||ψm(s, x)− ψn(s, x)||2L2
ρ
η(dx) ds

with the uniform bound

sup
m∈N

||ψm(s, x)||L2
ρ
≤ ||χ(s)x||L2

ρ
∈ L2(Ω× [ 0, t ]× L2).

Thus, there exists a limit function
ψ ∈ L2(Ω× [ 0, T ]×L2 \{0}×Θ,PT ⊗B(L2 \{0})⊗B(Θ), P ⊗dt⊗η⊗µρ; R)
such that

(4.31) lim
m→∞

E
T∫
0

∫
L2\{0}

∫
Θ

|ψm(s, x, , θ)− ψ(s, x, θ)|2 µρ(dθ) η(dx) ds

= lim
m→∞

E
T∫
0

∫
L2\{0}

||ψm(s, x)− ψ(s, x)||2L2
ρ
η(dx) ds
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= 0.

Combining (4.29)–(4.31), we conclude that

E
T∫
0

∫
L2\{0}

||ψ(s, x)− χ(s)x||2L2
ρ
η(dx) ds = 0,

i.e. ψ(s, x, θ) is a measurable realization of χ(s)x obeying (4.15). �

Recall that in Section 3.4 we showed pathwise continuity for the stochastic
convolution w.r.t. the Wiener process.
But such continuity is surely not the case for Poisson processes (even in the
finite-dimensional case). Instead of this, one may expect to have meansquare
continuity. We finish this section by the following propositions, which are
the analogons of Propositions 3.4.4–3.4.6 in the case of Poisson stochastic
convolutions:

Proposition 4.7: Suppose, we have (A0)–(A2) (or (A5)* with ν = 1
instead of (A2)) for an almost strong evolution operator U and∫

L2

||x||2L2 η(dx) <∞

for the Lévy measure η corresponding to the compensated Poisson random
measureÑ .
Furthermore, let (ϕ(t))t∈[ 0,T ] be an L2

ρ-valued predictable process obeying the
uniform moment bound (3.27) from Section 3.4, i.e.

(4.32) sup
t∈[ 0,T ]

E||ϕ(t)||2L2
ρ
<∞.

Then,

t 7→ IÑϕ (t) :=
t∫
0

∫
L2

U(t, s)Mϕ(s)x Ñ(ds, dx)

is continuous in L2(Ω;L2
ρ).

Proof: Again, we extend here a method of proving meansquare conti-
nuity, which is used e.g. in [60] and [59], to the case of non-Hilbert-Schmidt
operator valued coefficients Mϕ(t) and two-parameter evolution operators
U(t, s).

For α > 1, consider the process
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(4.33) Φα(t) :=
t
α∫
0

∫
L2

U(t, s)Mϕ(s)x Ñ(ds, dx) ∈ L2
ρ, 0 ≤ t ≤ T ,

which is well-defined due to (4.32).
We claim that Φα(t), 0 ≤ t ≤ T , is meansquare continuous. Indeed, for any
0 ≤ r ≤ t ≤ T , we have by Itô’s isometry for compensated Poisson random
measures and (QI)

(4.34) E||Φα(t)− Φα(r)||2L2
ρ
≤ 2

( r
α∫
0

∫
L2

E||[U(t, s)− U(r, s)]Mϕ(s)x||2L2
ρ
η(dx) ds

+
t
α∫
r
α

∫
L2

E||U(t, s)Mϕ(s)x||2L2
ρ
η(dx) ds


≤ 2

∫
L2

||x||2L2 η(dx)

︸ ︷︷ ︸
<∞

[ r
α∫
0

E||[U(t, s)− U(r, s)]Mϕ(s)||2L2(L2,L2
ρ) ds

+
t
α∫
r
α

E||U(t, s)Mϕ(s)||2L2(L2,L2
ρ) ds

.

Thus, see inequality (3.71), by the same arguments as in the cylindrical
case of Proposition 3.4.6, we get the convergence to 0 as r ↑ t resp. t ↓ r.

Now, we observe that, for any α > 1,

sup
t∈[ 0,T ]

E||IÑϕ (t)− Φα(t)||2L2
ρ

= sup
t∈[ 0,T ]

t∫
t
α

∫
L2

E||U(t, s)Mϕ(s)x||2L2
ρ
η(dx) ds

≤

(∫
L2

||x||2L2 η(dx)

)
t∫

t
α

E||U(t, s)Mϕ(s)||2L2(L2,L2
ρ) ds.

Since the first term on the right hand side is finite and the second term
tends to 0 as α ↓ 1 uniformly in [ 0, T ] (cf. the cylindrical case in the proof
of Proposition 3.4.5), the term from the left hand side above tends to 0 as
α ↓ 1.
Thus, IÑϕ is also meansquare continuous as a uniform limit in C([ 0, T ], L2(Ω;L2

ρ))
of Iα as α ↓ 1. �

A generalization of Proposition 4.7 to q ≥ 2 is the following.

Proposition 4.8: Let the assumptions of Proposition 4.7 hold.
Suppose additionally that
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sup
t∈[ 0,T ]

E||ϕ(t)||q
L2

ρ
<∞

and that (QI) holds for η with some q ∈ [ 2, 2
ζ ) with ζ as in (A2) (resp.

(A5)* with ν = 1) .
Then, the mapping t 7→ IÑϕ (t) is continuous in Lq(Ω;L2

ρ).

Proof: We keep the same notation and repeat the arguments used in prov-
ing Proposition 4.7.
Using the Bichteler-Jacod and Hölder’s inequalities, similarly to the proof
of Proposition 3.4.3 we arrive at the following estimate for
0 ≤ r ≤ t ≤ T :

(4.35)E||Φα(t)− Φα(r)||q
L2

ρ

≤ c(q, T )

( r
α∫
0

[∫
L2

E||[U(t, s)− U(r, s)]Mϕ(s)x||
q
L2

ρ
η(dx) ds

+E

(∫
L2

||[U(t, s)− U(r, s)]Mϕ(s)x||2L2
ρ
η(dx)

) q
2

 ds


+ c(q, T )

 t
α∫
r
α

[∫
L2

E||U(t, s)Mϕ(s)||
q
L2

ρ
η(dx)

+E

(∫
L2

E||U(t, s)Mϕ(s)x||2L2
ρ
η(dx)

) q
2

 ds


≤ c(q, T, Cq,η)

( r
α∫
0

E||[U(t, s)− U(r, s)]Mϕ(s)||
q
L2(L2,L2

ρ)
ds

+
t
α∫
r
α

E||U(t, s)Mϕ(s)||
q
L2(L2,L2

ρ)
ds

.

From (4.35), proceeding analogously to the proof of 3.4.7 (the cylindrical
case there) we get the convergence to 0 as r ↑ t resp. t ↓ r, which finishes
the proof. �

Moreover, we have an extension of Proposition 4.7 to the spaces L2ν
ρ with

ν > 1.

Proposition 4.9: Suppose we have (A0)–(A2) and (A5) (or (A5)*)
for an almost strong evolution operator U .
Furthermore, let ν ∈ [ 1, 1

ν ) with ζ ∈ [ 0, 1 ) such that η fulfills (QI) with
q = 2ν and (ϕ(t))t∈[ 0,T ] is an L2ν

ρ -valued predictable process obeying
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(4.36) sup
t∈[ 0,T ]

E||ϕ(t)||2νL2ν
ρ
<∞.

Then,

t 7→ IÑϕ (t) :=
t∫
0

∫
L2

U(t, s)Mϕ(s)x Ñ(ds, dx)

is continuous in L2ν(Ω;L2ν
ρ ).

Proof: As was shown in Proposition 4.3, IÑϕ ∈ L2ν
ρ , P -a.s., for each

t ∈ [ 0, T ].
Now, the previous scheme of proving Proposition 4.7 and 4.8 runs with ν > 1
if we use the strong continuity of U(t, s) in L2ν

ρ (see assumption (A3)).
Indeed, for Φα(t) ∈ L2ν

ρ defined by (4.33) and 0 ≤ r ≤ t ≤ T we have

(4.37)E||Φα(t)− Φα(r)||2νL2ν
ρ

≤ c(ν)

[
E

r
α∫
0

[∫
L2

||[U(t, αs)− U(r, αs)]U(αs, s)Mϕ(s)(x)||2νL2ν
ρ
η(dx)+(∫

L2

||[U(t, αs)− U(r, αs)]U(αs, s)Mϕ(s)(x)||2L2ν
ρ
η(dx)

)ν]
ds

+E

t
α∫
r
α

[∫
L2

||U(t, s)Mϕ(s)(x)||2νL2ν
ρ
η(dx) +

(∫
L2

||U(t, s)Mϕ(s)(x)||2L2ν
ρ
η(dx)

)ν]
ds

]
,

where we use the moment estimate (4.27) (cf. Remark 4.6 (i)).
Concerning the right hand side of (4.37), let us note that by (A5)/ (A5)*
we have, P -a.s., U(αs, s)Mϕ(s)(x) ∈ L2ν

ρ for any x ∈ L2. Therefore, by the
continuity assumption from (A3) we have, for any x ∈ L2 and s ∈ [ 0, T ],

1[ 0, r
α

](s)[U(t, αs) − U(r, αs)]U(αs, s)Mϕ(s)(x) → 0 ∈ L2ν
ρ as r ↑ t resp.

t ↓ r, P -a.s..

Furthermore, by (A3) and (A5)/ (A5)*, (QI), Hölder’s inequality and
the fact that

ν < 1
ζ ⇒ ζν < 1,

we have the following estimate

E

r
α∫
0

∫
L2

||[U(t, αs)− U(r, αs)]U(αs, s)Mϕ(s)(x)||2νL2ν
ρ
η(dx)

≤ 2c(ν, T )E
r
α∫
0

||U(αs, s)Mϕ(s)(x)||2νL2ν
ρ
η(dx) ds
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≤ 2c(ν, T )

(∫
L2

||x||2νL2 η(dx)

)
E

r
α∫
0

||U(αs, s)Mϕ(s)||2νL2(L2,L2ν
ρ ) ds

≤ 2c(ν, T )

(∫
L2

||x||2νL2 η(dx)

)
E

r
α∫
0

((α− 1)s)−ζ ||ϕ(s)||2νL2ν
ρ
ds

≤ 2c(ν, T )

(∫
L2

||x||2νL2 η(dx)

)(
sup

t∈[ 0,T ]
E||ϕ(s)||2νL2ν

ρ

)
(α− 1−ζν T

1−ζν

1−ζν

<∞.

Thus, we can apply Lebesgue’s dominated convergence theorem to get the
convergence to 0 of the first integral on the right hand side of (4.37) for r ↑ t
resp. t ↓ r. The proof for the second integral on the right hand side of (4.37)
runs completely analogous.
Thus, it remains to consider the third and the fourth integral on the right
hand side of (4.37). Concerning the third integral we have

E

t
α∫
r
α

∫
L2

||U(t, s)Mϕ(s)(x)||2νL2ν
ρ
η(dx) ds

≤ c(T )

(∫
L2

||x||2νL2 η(dx)

)
E

t
α∫
r
α

(t− s)−ζν ||ϕ(s)||2νL2ν
ρ
ds

≤ c(c(T ), C2ν,η)

(
sup

t∈[ 0,T ]
E||ϕ(t)||2νL2ν

ρ

)
( t−r

α )1−ζν

1−ζν ,

which tends to 0 as r ↑ t resp. t ↓ r. By similar arguments also the
fourth integral in (4.37) tends to 0. �

Alternative Proof of Proposition 4.9

Let us first consider regular enough integrands ϕ(t), t ∈ [ 0, T ]. Namely,
we suppose that ϕ ∈ L∞(Θ), P-a.s., for each t ∈ [ 0, T ], and

sup
t∈[ 0,T ]

E||ϕ(t)||2rL2r
ρ
<∞ for some r > ν.

Let t ∈ [ 0, T ] be arbitrary and let (tn)n∈N ⊂ [ 0, T ] be a sequence such
that tn → t as n→∞.

In the following, we would like to apply the de la Vallée-Poissin theorem,
which only holds for finite measures. To this end, we observe that, by inte-
grability condition (4.2) (with q = 2ν) for η,

η̂ν(A) :=
∫
A

||x||2νL2 η(dx), A ∈ B(L2)
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is a finite measure on L2. In particular, we also get a finite measure η̂1

by setting

η̂1(A) :=
∫
A

||x||2L2 η(dx).

Next, for s ∈ [ 0, T ], we define the L2
ρ-valued random variables

gn(s, ω, x) := 1[ 0,tn ](s)U(tn, s)Mϕ(s,ω)(x)||x||−1
L2 if ||x||L2 6= 0

and

gn(s, ω, x) := 0 if ||x||L2 = 0

for (s, ω) ∈ [ 0, T ]× Ω.

Thus, applying the Bichteler-Jacod inequality, we get

(4.38) E||IÑϕ (tn)− IÑϕ (t)||2νL2ν
ρ

≤ c(ν, T )E
T∫
0

[∫
L2

||gn(s, x)− g(s, x)||2νL2ν
ρ
η̂ν(dx)

+

(∫
L2

||gn(s, x)− g(s, x)||2L2ν
ρ
η̂1(dx)

)ν]
ds.

Therefore, to prove the claim, it suffices to prove that the both integrals
on the right hand side converge to 0 as n→∞.

Since ϕ(s)x ∈ L2 (recall that at the moment we restrict ourselves to regular
processes ϕ such that ϕ(s) ∈ L∞ for any s ∈ [ 0, T ]) and

( s, T ] 3 t 7→ U(t, s) ∈ L(L2, L2ν
ρ )

is strongly continuous, we get that P -almost surely

(4.39) ||gn(s, ω, x)− g(s, ω, x)||2νL2ν
ρ
→ 0 as n→∞

for any fixed s ∈ [ 0, T ] and x ∈ L2.

Furthermore, due to the de la Vallée-Poissin theorem we have uniform inte-
grability of ||gn||2νL2ν

ρ
w.r.t. P ⊗ ds⊗ η̂ν . Indeed, given a small enough ε > 0

such that ζ(1 + ε) < 1 and ν(1 + ε) ≤ p, we get by (A5)/(A5)*



146 CHAPTER 4. POISSON CONVOLUTION INTEGRALS

E
T∫
0

∫
L2

||gn(s, x)||2ν(1+ε)
L2ν

ρ
η̂ν(dx) ds

= E
tn∫
0

∫
L2

||U(tn,s)Mϕ(s)(x)||
2ν(1+ε)

L2ν
ρ

||x||2ν(1+ε)

L2

η̂ν(dx) ds

≤ c(T )(η̂ν(L2))E
tn∫
0

(tn − s)−ζ(1+ε)||ϕ(s)||2ν(1+ε)
L2ν

ρ
ds

≤ c(ε, ν, T, c(T ))(η̂ν(L2))

(
sup

t∈[ 0,T ]
E||ϕ(t)||2p

L2p
ρ

)(
T∫
0

s−ζ(1+ε) ds

)
<∞

uniformly for any n ∈ N. Thus, we have

sup
n∈N

E
T∫
0

∫
L2

||gn(s, x)||2ν(1+ε)L2ν
ρ

η̂ν(dx) ds <∞.

Together with the P -almost sure convergence (4.39), this gives us

lim
n→∞

E
T∫
0

∫
L2

||gn(s, x)− g(s, x)||2νL2ν
ρ
η̂ν(dx) = 0.

Analogously, we consider the second term in (4.38).

Let again ε > 0 be such that ζ(1 + ε) < 1 and ν(1 + ε) ≤ p. Then, by
Hölder‘s inequality

E
T∫
0

(∫
L2

||gn(s, x)||2L2ν
ρ
η̂1(dx)

)ν(1+ε)
ds

≤ c(ν, ε)E
t∫
0

∫
L2

||gn(s, x)||2ν(1+ε)L2ν
ρ

η̂1(dx),

which is uniformly bounded in n ∈ N similarly to the previous argument.
Thus, we get

sup
n∈N

E
T∫
0

(∫
L2

||gn(s, x)||2L2ν
ρ
η̂1(dx)

)ν(1+ε)

ds <∞,

which together with (4.39) implies

lim
n→∞

E
T∫
0

(∫
L2

||gn(s, x)− g(s, x)||2L2ν
ρ
η̂1(dx)

)ν
ds = 0.

Therefore, the right hand side of the estimate of E||IÑϕ (tn) − IÑϕ (t)||2νL2ν
ρ

tends to 0 as n→∞, which proves the claim for such regular ϕ.
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The claim for general ϕ follows from the continuity of t 7→ IÑϕ (t) for regular
ϕ analogously to the alternative proof of Proposition 3.4.6 from Section 3.4.
�

Remark 4.10: If (ϕ(t))t∈[ 0,T ] is bounded in the sense of (3.81) from
Section 3.4., i.e.

sup
t∈[ 0,T ]

E||ϕ||∞ <∞,

then the statements of Propositions 4.3, 4.4 and 4.7–4.9 remain valid under
the weaker assumption that (A5) resp. (A5)* holds only for ϕ ≡ 1 ∈ L2ν

ρ .

Remark 4.11: From the proof of Claim 3 in the proof of Proposition
4.3 we know that, for each t ∈ [ 0, T ], there is an Ft ⊗ B(Θ)-measurable
version of

Ĩ(t, θ) =
t∫
0

∫
L2\{0}

ψ(s, x, θ) Ñ(ds, dx), θ ∈ Θ (cf (4.20))

with representation ψ as in (4.17).
On the other hand, from Proposition 4.7 it follows that
[ 0, T ] 3 t 7→ Ĩ(t, ω, θ) ∈ R is meansquare continuous (and hence continuous
in probability) w.r.t. P ⊗ µρ.
Thus, by Proposition 2.1.8, there exists a version (IÑϕ (t))(ω, θ) ∈ R,
(t, ω, θ) ∈ [ 0, T ]×Ω×Θ, of the Poisson integral IÑϕ (t), which is measurable
w.r.t. the predictable σ-algebra PT ⊗ B(Θ).

We finish this section by the following path property.

Proposition 4.12: Under the additional assumption that ϕ is uniformly
bounded, i.e.

(4.40) sup
t∈[ 0,T ]

E||ϕ||L∞ <∞,

and U is an almost strong evolution operator obeying (A7), the mapping

t 7→ IÑϕ(s)(t) =
t∫
0

∫
L2

U(t, s)Mϕ(s)(x) Ñ(ds, dx) ∈ L2ν
ρ

has a càdlàg version in L2 resp. L2
ρ.

Proof: Under our assumptions, the multiplication operators Mϕ(t) are
both in L2 and L2

ρ with
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sup
t∈[ 0,T ]

E||Mϕ(t)||L ≤ sup
t∈[ 0,T ]

E||ϕ(t)||L∞ <∞.

The evolution operator U is pseudo-contractive in L2 resp. L2
ρ.

Recall from Section 2.4 that setting

M(t, A) :=
∫

A\{0}
x Ñ(t, dx), (t, A) ∈ [ 0, T ]× B(L2)

gives us an orthogonal martingale-valued measure. Then, denoting
M(t) := M(t, L2), t ∈ [ 0, T ], we get

IÑϕ(s)(t) =
t∫
0

U(t, s)Mϕ(s) dM(s), t ∈ [ 0, T ].

Now, by the contraction property (A7) of U in L2 resp. L2
ρ, the uniform

moment bound (4.40) and the fact that M defined above is càdlàg in L2, we
get the claim in L2 resp. L2

ρ from Corollary 2.1 from [63] resp. Remark 1.2
1. from [64]. �

Remark 4.13: (i) In the case of a contractive semigroup
U(t, s) = e−(t−s)A, 0 ≤ s ≤ t, the existence of a càdlàg version of the sto-
chastic convolution w.r.t. compensated Poisson random measure was proven
e.g. by Albeverio, Mandrekar and Rüdiger in [3]( cf. Proposition 2.5., p.840
there).

(ii) The proof of the càdlàg property is based on the general maximal in-
equality for martingales, see Theorem 1.1 in [64]. An essential drawback of
this method is that we should assume ϕ to be uniformly bounded (see (4.40))
and U to be pseudo-contractive (see (A7)).
Furthermore, as was noted in [95], Section 11.4, pp 199/200 there, the fac-
torization method is not applicable to study convolutions of general martin-
gales, in contrast to the special case of a Wiener process (cf. e.g. [26],
Chapter 7, Proposition 7.3, p.184).

Remark 4.14: Let us clarify the relation between càdlàg and predictable
versions of t 7→ IÑϕ (t).
From the considerations above it follows that IÑϕ (t), t ∈ [ 0, T ], possesses a
predictable version under the general assumptions of Proposition 4.3.
Indeeed, from Proposition 4.7, it follows that the mapping
[ 0, T ] 3 t 7→ IÑϕ (t) ∈ L2

ρ is continuous in probability. Since IÑϕ (t) is Ft-
measurable for each t ∈ [ 0, T ], by Proposition 2.1.8 we get existence of a
predictable version of t 7→ IÑϕ (t).



149

If we know that t 7→ IÑϕ (t) obeys a càdlàg version ĨÑϕ (t) (see Proposition
4.12), then surely t 7→ ĨÑϕ (t−) will be predictable.
To distinguish between the two versions, some authors use the notation

t+∫
0

∫
L2

U(t, s)Mϕ(s)x Ñ(ds, dx)

for the càdlàg and

t−∫
0

∫
L2

U(t, s)Mϕ(s)x Ñ(ds, dx)

for the predictable version. If it does not lead to misunderstandings, we
will use the universal notation

t∫
0

∫
L2

U(t, s)Mϕ(s)x Ñ(ds, dx).
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Chapter 5

Existence and uniqueness of
mild solutions in the
Lipschitz case

In this chapter, we show several existence and uniqueness results for solu-
tions to equation (1.1) resp. equation (1.2) in the case of Lipschitz coeffi-
cients. A precise meaning to such solutions will be given in Section 5.1 below.

Given Θ ⊂ Rd with d ∈ N, let ρ ≥ 0 be such that µρ(Θ) <∞, i.e. ρ > d for
unbounded and ρ = 0 for bounded Θ.

For the whole chapter, let (Ω,F , P ) and (Ft)t∈[ 0,T ] be as in Section 1.2,
where we fix some T > 0. Furthermore, we here assume that e, f , σ, γ:
[ 0, T ]×Ω×R → R (generating E, F and Σ, Γ by (NEM)) fulfill the Lip-
schitz continuity property (LC) and the local boundedness property (LB).
We further assume that e, f , σ and γ are measurable functions mapping
([ 0, T ] × Ω × R,PT ⊗ B(R)) to (R,B(R)). We note that we assume the
functions to be predictable just for simplicity. This property is only needed
to define the Poisson integral terms. Clearly, for the drift and diffusion co-
efficients e, f and σ it suffices to assume only progressive measurability.

Given q ≥ 2 resp. ν > 1, the solutions will be constructed in the Ba-
nach spaces Hq(T ) and Gν(T ) of predictable L2

ρ(Θ) resp. L2ν
ρ (Θ)-valued

processes (X(t))t∈[ 0,T ] with finite q-th resp. 2ν-th moment (see also Defi-
nition 5.1.1 below). We consider solutions both in L2

ρ(Θ) and L2ν
ρ (Θ) with

ν > 1, since later in the case of drifts of polynomial growth, depending on
the polynomiality of the drift, the solutions will take their values either in
L2
ρ(Θ) or in L2ν

ρ (Θ) (see Chapter 7).

The explicit setting including the definition of mild predictable solutions
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is introduced in Section 5.1. Formulation and proof of the existence and
uniqueness result are given in Section 5.2.

5.1 Definition of mild solutions

In Sections 5.1. and 5.2, we are in the following setting:

1. (A(t))t∈[ 0,T ] generates an almost strong evolution operator
U = (U(t, s))0≤s≤t≤T in L2

ρ(Θ) in the sense of 2.2.1.

2. (W (t))t∈[ 0,T ] is a Q-Wiener process in L2(Θ) such that either
Q ∈ T +(L2(Θ)) has the representation (2.4) with an orthonormal basis
(en)n obeying (3.1) (called the nuclear case in the following) or
Q = I 6∈ T +(L2(Θ)) (called the cylindrical case in the following).

3. (Ñ(t, ·))t∈[ 0,T ] is a compensated Poisson random measures on L2(Θ).
We further assume that the corresponding Lévy intensity measure η
fulfills the integrability condition (QI).

4. L is a Lévy process in L2(Θ) with characteristics (b,W, η). Concerning
W and η, we assume the properties of the previous items, namely
Q ∈ T +(L2(Θ)) obeys an eigenvector expension with the property
(2.4). Note that in general the eigenvector basis in (2.4) does not obey
(3.1) (called the general nuclear case later).

To define solutions to equation (1.1) resp. equation (1.2), we introduce the
following spaces of predictable processes:

Definition 5.1.1: Let q ≥ 2 and ν ≥ 1 be fixed.
(i) By Hq(T ) we denote the Banach space of all predictable (up to a sto-
chastic modification) L2

ρ(Θ)-valued processes (Z(t))t∈[ 0,T ] such that

(5.1) sup
t∈[ 0,T ]

E||Z(t)||q
L2

ρ
<∞.

The norm in Hq(T ) is given by

(5.2) ||Z||Hq(T ) := sup
t∈[ 0,T ]

(
E||Z(t)||q

L2
ρ

) 1
q
.

(ii) By Gν(T ) we denote the Banach space of all predictable (up to a sto-
chastic modification) L2ν

ρ (Θ)-valued processes (Z(t))t∈[ 0,T ] such that

(5.3) sup
t∈[ 0,T ]

E||Z(t)||2νL2ν
ρ
<∞.
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The norm in Gν(T ) is given by

(5.4) ||Z||Gν(T ) := sup
t∈[ 0,T ]

(E||Z(t)||2νL2ν
ρ

)
1
2ν .

In particular, we have G1(T ) = H2(T ).
Note that the same spaces of predictable processes were used in the papers
[79] and [81].

The above notations are justified by the following

• since in (i) only the moment changes, the index q is written above;

• since in (ii) the basic space L2ν
ρ (Θ) changes with the index ν, the index

ν is written below.

To guarantee the completeness w.r.t. norms (5.2) resp. (5.4), actually
we consider the equivalence classes (up to stochastic modifications) inHq(T )
resp. Gν(T ).

Depending on the choice of initial conditions, which are L2
ρ(Θ)-valued, F0-

measurable random variables, we split our considerations into two cases:

Case (A) L2
ρ(Θ)-valued initial conditions ξ with E||ξ||q

L2
ρ
<∞ for some q ≥ 2;

Case (B) L2ν
ρ (Θ)-valued initial conditions ξ with E||ξ||2νL2ν

ρ
<∞ for some ν > 1.

Now, we rigorously define what we mean by a solution to equation (1.1) resp.
equation (1.2) in Case (A) resp. in Case (B) in the following chapters:

Definition 5.1.2: (i) In Case (A), an Hq(T )-valued process X is called
a mild solution to (1.1) resp. (1.2) if the following identity in L2

ρ(Θ) holds
P -almost surely for any t ∈ [ 0, T ]

(5.5) X(t) = U(t, 0)ξ +
t∫
0

U(t, s)F (s,X(s))ds

+
t∫
0

U(t, s)MΣ(s,X(s))dW (s)

+
t∫
0

∫
L2

U(t, s)MΓ(s,X(s))(x) Ñ(ds, dx)

resp.

(5.6) X(t) = U(t, 0)ξ +
t∫
0

U(t, s)E(s,X(s))ds+
t∫
0

U(t, s)MΣ(s,X(s))dL(s),
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whereby all the integrals on the right hand side exist.

(ii) In Case (B), a Gν(T )-valued process X is called a mild solution to
(1.1) resp. (1.2) if (5.5) resp. (5.6) holds true, P -almost surely, for all
t ∈ [ 0, T ].

The well-definedness of the integral terms in (5.5)/(5.6) is discussed in Lem-
mata 5.1.5–5.1.10 below.

In later chapters, the spaces Hq(T ) will be used to study equation (1.1)
resp. equation (1.2) in the case of the drift coefficients obeying condition
(PG) with ν = 1, whereas the spaces Gν(T ) will be used to study equation
(1.1) resp. equation (1.2) in the case of the drift coefficients obeying condi-
tion (PG) with ν > 1.

Remark 5.1.3: (i) Note that, in contrast to the solution definition in
[76], there is no condition on pathwise continuity in our setting. Indeed,
due to the presence of the Poisson resp. Lévy integral we cannot expect
pathwise continuity of the solutions anymore.
Nevertheless, in view of Proposition 4.12 we get existence of càdlàg versions
of the solutions under special assumptions on the jump coefficient Γ (case
(1.1)) resp. the jump diffusion coefficient Σ (case (1.2)) and the evolution
operator U .
The pathwise continuity will be substituted by the meansquare continuity of
the solutions resulting from Propositions 3.4.6 and 4.7.

(ii) By Definition 5.1.1 it is obvious that Hq(T ) ⊂ H2(T ) for q ≥ 2 and
Gν(T ) ⊂ H2ν(T ) ⊂ H2(T ) for ν > 1. Thus, both for Z ∈ Hq(T ) with q ≥ 2
and Z ∈ Gν(T ) with ν > 1, we have

sup
t∈[ 0,T ]

E||Z(t)||2L2
ρ
<∞.

Furthermore, for ν < 1
{ζ with ζ as in (A2) resp. (A5)/(A5)*, any

process from Gν(T ) fulfills the integrability conditions (3.39) and (4.12),
which means that 3.4.3 and 4.3 are applicable.

(iii) Given any measurable function λ: [ 0, T ] × Ω × Θ → R fulfilling the
Lipschitz property (LC) and the local boundedness property (LB), we see
that

sup
t∈[ 0,T ]

E||Λ(t, Z(t))||q
L2

ρ
<∞
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for any Z ∈ Hq(T ) and

sup
t∈[ 0,T ]

E||Λ(t, Z(t))||2νL2ν
ρ
<∞

for any Z ∈ Gν(T ), with Λ being defined through λ by (NEM). Indeed,
we have

(5.7) sup
t∈[ 0,T ]

E||Λ(t, Z(t))||q
L2

ρ
= sup

t∈[ 0,T ]
E
(∫

Θ

(|λ(t, Z(t, y))|)2µρ(dy)
) q

2

≤ sup
t∈[ 0,T ]

E
(∫

Θ

(cλ(T )(1 + Z(t, y)))2µρ(dy)
) q

2

≤ c(q, cλ(T ))

(
1 + sup

t∈[ 0,T ]
E||Z(t)||q

L2
ρ

)
= c(q, cλ(T ))(1 + ||Z(t)||qHq(T ))
< ∞

for any Z ∈ Hq(T ) and

(5.8) sup
t∈[ 0,T ]

E||Λ(t, ·, Z(t))||2νL2ν
ρ

= sup
t∈[ 0,T ]

E
∫
Θ

(|λ(t, ·, Z(t, y))|)2νµρ(dy)

≤ sup
t∈[ 0,T ]

E
∫
Θ

(cλ(T )(1 + Z(t, y)))2νµρ(dy)

≤ c(ν, cλ(T ))

(
1 + sup

t∈[ 0,T ]
E||Z||2νL2ν

ρ

)
= c(ν, cλ(T ))(1 + ||Z||2νGν(T ))
< ∞

for any Z ∈ Gν(T ), where we used (LC), (LB) for λ in the second and
the finiteness of µρ(Θ) in the third step of both cases.

So we have shown that under the above conditions the Nemitskii operator
preserves finiteness of the Hq(T )- resp. Gν(T )-norm.

The following general proposition concerning existence of measurable re-
alizations for the processes under consideration will be frequently used both
in this chapter and the following ones:

Proposition 5.1.4: For any PT /B(L2
ρ(Θ))-measurable process

ϕ: [ 0, T ]× Ω → L2
ρ(Θ) obeying

(5.9)
T∫
0

E||ϕ(s)||2L2
ρ
ds <∞,

there is a PT ⊗ B(Θ)/B(R)-measurable version ϕ̃: [ 0, T ] × Ω × Θ → R
such that
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T∫
0

E||ϕ(s)− ϕ̃(s)||2L2
ρ
ds = 0.

Proof: Analogously to Steps 1 in the proofs of 3.4.3 and 4.3, we can apply
Dirac sequences to construct measurable representatives. Without loss of
generality, we may assume here that Θ = Rd. In the case of Θ ⊂ Rd, the
function ϕ(s, ω) ∈ L2

ρ(Θ) should be extended by zero outside Θ.
By analogous arguments as in Step 1 in the proof of 3.4.3, we have the con-
vergence (in L2(Θ))

(5.10) conv(δm, µρϕ(s)) → µρϕ(s) as m→∞,

for almost all (s, ω) ∈ [ 0, T ] × Ω (with conv denoting the standard con-
volution with the Dirac sequence δm, m ∈ N, defined by (3.44) and the
weight function µρ as in the Introduction). Furthermore, we can calculate
conv(δm, µρϕ(s))(θ) for any θ ∈ Θ.
Thus, for m ∈ N, we define ϕm: [ 0, T ]× Ω× L2(Θ)×Θ → R by

(5.11) ϕm(s, ω, θ) := µ−1
ρ (conv(δm, µρϕ(s)))(θ).

By construction, for almost all (s, ω) ∈ [ 0, T ]× Ω,

(5.12) ϕm(s, ω) ∈ L2
ρ(Θ), ||ϕm(s, ω)||L2

ρ
≤ ||ϕ(s, ω)||L2

ρ

and

(5.13) lim
m→∞

||ϕm(s, ω)− ϕ(s, ω)||2L2
ρ

= 0.

From Theorem 6.1 in [51] we get PT ⊗ B(Θ)-measurability of ϕm, m ∈ N.

Recall that this needs the following properties to be fulfilled:

• continuity of the mapping

θ 7→ ϕm(s, ω, θ)

for almost any fixed (s, ω) ∈ [ 0, T ]× Ω, and

• predictability of

(s, ω) 7→ ϕm(s, ω, θ)
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for any fixed θ ∈ Θ.

The required continuity property holds by (3.45).

For any fixed θ ∈ Θ, we have P ⊗ ds-almost surely

ϕm(s, ω, θ) = µ
− 1

2
ρ (θ)

∫
Θ

δm(ξ − θ)(µ
1
2
ρ ϕ(s, ω))(ξ) dξ

= µ
− 1

2
ρ (θ) < δm(· − θ), µ

1
2
ρ ϕ(s) >L2 .

By Fubini’s Theorem, we get the required predictability of
(s, ω) 7→ ϕm(s, ω, θ) from the predictability of the process ϕ.

Thus, for eachm ∈ N, Theorem 6.1 from [51] gives us PT⊗B(Θ)-measurability
of

(s, ω, θ) 7→ ϕm(s, ω, x, θ).

By (5.9) and (5.12)/(5.13), (ϕm(s, ω))m∈N is a Cauchy sequence in L2
ρ(Θ)

for almost all (s, ω) ∈ [ 0, T ]× Ω.

By (5.12) we have for all m, m̄ ∈ N and almost all (s, ω) ∈ [ 0, T ]× Ω

(5.14) ||ϕm(s, ·)− ϕm̄(s, ·)||2L2
ρ
≤ 4||ϕ(s)||2L2

ρ
.

By (5.9) the right hand side of (5.14) is integrable w.r.t. P ⊗ ds. Thus,
Lebesgue’s dominated convergence theorem is applicable. Therefore,

(s, ω) 7→ ϕm(s, ω), m ∈ N,

is a Cauchy sequence in L2(Ω× [ 0, T ],PT , P ⊗ dt;L2
ρ).

Furthermore, by Fubini’s theorem we have

E
T∫
0

∫
Θ

|ϕm(s, θ)− ϕ
(n)
m̄ (s, θ)|2 µρ(dθ) ds = E

t∫
0

||ϕ(n)
m (s, ·)− ϕ

(n)
m̄ (s, ·)||2L2

ρ
ds.

Thus,

(s, ω, θ) 7→ ϕm(s, ω, θ), m ∈ N,

is a Cauchy sequence in the Hilbert space

L2([ 0, T ]× Ω×Θ) := L2([ 0, T ]× Ω×Θ,PT ⊗ B(Θ), P ⊗ dt⊗ µρ).
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So, there exists a limit function

ϕ̃ ∈ L2([ 0, T ]× Ω×Θ)

such that

(5.15) lim
m→∞

E
t∫
0

∫
Θ

|ϕm(s, θ)− ϕ̃(s, θ)|2 µρ(dθ) ds = 0.

Obviously, this implies that ϕ̃(s, ω, ·) ∈ L2
ρ(Θ) for P ⊗ dt-almost all

(s, ω) ∈ [ 0, T ]× Ω.

On the other hand, by Lebesgue’s theorem and (5.11)/(5.12) we have

(5.16) lim
m→∞

E
t∫
0

||ϕm(s)− ϕ(s)||2L2
ρ
ds = 0.

Combined with (5.15) and (5.16), this implies

E
T∫
0

∫
L2

||ϕ(s)− ˜ϕ(s)||2L2
ρ
ds = 0.

Thus, ϕ̃ is a version of ϕ obeying the required measurability properties.
�

We note that the authors in [76] showed pathwise time-continuity of the
solutions to (1.1) in the case Γ = 0. Because of the jump behaviour of Ñ
resp. L, we are not able to have this kind of time-continuity in our case. It
will be substituted by meansquare continuity or càdlàg properties.

Thus, before we proceed with proving existence and uniqueness of solu-
tions, we need to show that the integrals appearing on the right hand sides
of (5.5) and (5.6) map Hq(T ) resp. Gν(T ) onto itself and fulfill the required
time-continuity properties. This is done by the following six lemmata:

Let f and σ be as in the introduction of this chapter.
Everywhere below we assume that U is an almost strong evolution operator
in the sense of 2.2.1 obeying (A0)–(A1).

We start with the drift terms and define processes IF (Z), IΣ,η(Z) by

(5.17) IF (Z)(t) :=
t∫
0

U(t, s)F (s, Z(s)) ds,
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(5.18) IΣ,m(Z)(t) :=
t∫
0

U(t, s)MΣ(s,Z(s))(m) ds, t ∈ [ 0, T ],

with m ∈ L2 being defined through b and η as described in the refined
Lévy-Itô decomposition 2.4.13.
The integration is meant in the Bochner sense in L2

ρ(Θ). This is a special
case of the Bochner convolutions considered in Section 3.3.

Lemma 5.1.5: Case (A)
Given q ≥ 2, suppose (Z(t))t∈[ 0,T ] ∈ Hq(T ).

(i) The process IF (Z) is adapted, has finite Hq(T )-norm and t 7→ IF (Z)(t)
is continuous in Lq(Ω;L2

ρ(Θ)).
(ii) Additionally assuming that U obeys (A2) (or even the weaker assump-
tion (A5)* with ν = 1), the process IΣ,m(Z) is adapted, has finite Hq(T )-
norm and t 7→ IΣ,m(Z)(t) is continuous in Lq(Ω;L2

ρ(Θ)).

Thus, IF (Z) and IΣ,m(Z) obey predictable modifications and hence they are
Hq(T )-valued.
Furthermore, both t 7→ IF (Z)(t) and t 7→ IΣ,m(Z)(t) are pathwise continu-
ous, and there are PT⊗B(Θ)-measurable versions of the processes by Remark
5.1.4.

Proof: We prove (i) and (ii) simultaneously following a certain pattern.
It involves the following claims:

• predictability, i.e. PT /B(L2
ρ())-measurability of t 7→ F (t, Z(t)) and

t 7→ Σ(t, Z(t)),

• the well-definedness of IF (Z) and IΣ,m(Z) in L2
ρ(Θ),

• finiteness of Hq(T )-norms,

• the required continuity properties of t 7→ IF (Z)(t) and t 7→ IΣ,m(Z)(t).

• predictability of t 7→ IF (Z)(t) and t 7→ IΣ,m(Z)(t)

Claim 1: t 7→ F (t, Z(t)) ∈ L2
ρ(Θ) is predictable.

Proof: This follows immediately from the assumption Z ∈ Hq(T ) and
the PT ⊗ B(R)/B(R)- measurability of f . �

Claim 2: t 7→ Σ(t, Z(t)) ∈ L2
ρ(Θ) is predictable.
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Proof: This follows immediately from the assumption Z ∈ Hq(T ) and
the PT ⊗ B(R)/B(R)- measurability of σ. �

Claim 3: IF (Z) is well-defined as a process in L2
ρ(Θ).

Proof: Putting

(5.19) ϕ(t) := F (t, Z(t)), t ∈ [ 0, T ],

by Claim 1, Remark 5.1.3 (iii) and the finiteness of T > 0 the process
ϕ = (ϕ(t))t∈[ 0,T ] ⊂ L2

ρ(Θ) fulfills the sufficient condition (3.13) from Propo-
sition 3.3.2. Thus, we get Claim 3 by the well-definedness part in Proposition
3.3.2. �

Claim 4: IΣ,m(Z) is well-defined as a process in L2
ρ(Θ).

Proof: Putting

(5.20) ϕ(t) := Σ(t, Z(t)), t ∈ [ 0, T ],

by Claim 1, Remark 5.1.3 (iii) and the fact that 0 ≤ ζ < 1 the process
ϕ = (ϕ(t))t∈[ 0,T ] ⊂ L2

ρ(Θ) fulfills condition (3.13). Thus, we get Claim 4 by
the well-definedness part in Proposition 3.3.3. �

Claim 5: IF (Z) has finite Hq(T )-norm.

Proof: Since ϕ defined in (5.19) obeys (3.13) (cf. the proof of Claim
3 above), Claim 5 follows from Proposition 3.3.2. �

Claim 6: IΣ,m(Z) has finite Hq(T )-norm.

Proof: Since ϕ defined in (5.20) obeys (3.13) (cf. the proof of Claim
4 above), Claim 6 follows from Proposition 3.3.3. �

Claim 7: t 7→ IF (Z)(t) is continuous in Lq(Ω;L2
ρ(Θ)).

Furthermore, there is a pathwise continuous version of t 7→ IF (Z)(t).

Proof: Since ϕ defined in (5.19) obeys (3.13) (cf. the proof of Claim
3 above), Claim 7 follows from the continuity result in Proposition 3.3.2. �
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Claim 8: t 7→ IΣ(Z)(t) is continuous in Lq(Ω;L2
ρ(Θ)).

Furthermore, there is a pathwise continuous version of t 7→ IΣ,m(Z)(t).

Proof: Since ϕ defined in (5.20) obeys (3.13) (cf. the proof of Claim
3 above), Claim 8 follows from the continuity result in Proposition 3.3.3. �

Claim 9: IF (Z) obeys a predictable modification.

Proof: Recall that, by Lemma 2.1.8, stochastic continuity and adapted-
ness imply the existence of a predictable version of the process.
By the continuity property shown in Claim 7, we immediately get stochastic
continuity. Thus, it remains to show adaptedness of t 7→ IF (Z)(t).
Since Z is predictable, Z(s) is Ft-measurable for all 0 ≤ s ≤ t ≤ T . The
measurability assumption on f then implies Ft-measurability of
F (s, Z(s)) ∈ L2

ρ(Θ). Since U(t, s) ∈ L(L2
ρ), we get the Ft-measurability of

U(t, s)F (s, Z(s)).
Thus, the Bochner integral

IF (Z)(t) =
t∫
0

U(t, s)F (s, Z(s)) ds

is also Ft-measurable. As t ∈ [ 0, T ] was chosen arbitrarily, IF (Z) is adapted
as well. �

Claim 10: t 7→ IΣ,m(Z)(t) obeys a predictable modification.

Proof: Analogously to Claim 9, it remains to show adaptedness in or-
der to get predictability by an application of Lemma 2.1.8.
As in the proofs of Section 3.4, we start with m ∈ L∞(Θ). In this case,
we have MΣ(s,Z(s))m ∈ L2

ρ(Θ) for any 0 ≤ s ≤ t ≤ T . Thus, we get Ft-
measurability of

IΣ,m(Z)(t) =
t∫
0

U(t, s)MΣ(s,Z(s)) ds

by Claim 9.
For general m ∈ L2(Θ), we take any sequence (mN )N∈N ⊂ L∞(Θ) such that

||mN −m||L2 → 0 as N →∞.

Analogously to the proof of 3.3.3, we get
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E||IΣ,mN
(t)− IΣ,m(t)||2L2

ρ
→ 0 as N →∞.

Thus, for general m ∈ L2(Θ), IΣ,m(t) is Ft-measurable as the L2(Ω;L2
ρ(Θ))-

limit of Ft-measurable processes. �

By Claims 1–10, we have proven that IF and IΣ,m are well-defined pre-
dictable processes (up to stochastic modifications) with finite Hq(T )-norms
and that IF and IΣ,m(Z) are time-continuous in Lq(Ω;L2

ρ(Θ)). �

Lemma 5.1.6: Case (B)
Given ν > 1, let U additionally fulfill (A3).

(i) For Z ∈ Gν(T ), the process IF (Z) defined by (5.17) also belongs to
Gν(T ).
Furthermore, t 7→ IF (Z)(t) is continuous in L2ν(Ω;L2ν

ρ (Θ)), and there ex-
ists a pathwise continuous version of this mapping.

(ii) Suppose U also fulfills (A2) (or the even weaker assumption (A5)*
with ν = 1). Then, for any Z ∈ Gν(T ), the process IΣ,m(Z) defined by
(5.18) has finite Gν(T )-norm. Furthermore, t 7→ IΣ,m(t) is continuous in
L2ν(Ω;L2ν

ρ (Θ)).

In particular, both in (i) and (ii), there is a pathwise continuous version of
each of the processes.

Proof: As in the proof of 5.1.5, we first prove well-definedness, then
finiteness of the Gν(T )-norm, then continuity in L2ν(Ω;L2ν

ρ (Θ)) resp. the
pathwise continuity property, and finally predictability.

Claim 1: t 7→ F (t, Z(t)) is predictable.

Proof: This follows immediately from the assumption Z ∈ Gν(T ) and
the PT ⊗ B(R)/B(R)- measurability of f . �

Claim 2: t 7→ Σ(t, Z(t)) is predictable.

Proof: This follows immediately from the assumption Z ∈ Gν(T ) and
the PT ⊗ B(R)/B(R)- measurability of σ. �

Claim 3: IF (Z) is well-defined as a process in L2ν
ρ (Θ).
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Proof: The process ϕ = (ϕ(t))t∈[ 0,T ] defined by (5.19) obeys (3.21) from
the setting of Proposition 3.3.4 by Claim 1, Remark 5.1.3 (iii) and the fact
that T > 0 is finite. Thus, we get Claim 3 by the well-definedness part from
Proposition 3.3.4. �

Claim 4: IΣ,m(Z) is well-defined as a process in L2ν
ρ (Θ).

Proof: The process ϕ = (ϕ(t))t∈[ 0,T ] defined by (5.20) obeys (3.24) from
the setting of Proposition 3.3.5 by Claim 1, Remark 5.1.3 (iii) and the fact
that ζ ∈ [ 0, 1 ). Thus, we get Claim 4 by the well-definedness part from
Proposition 3.3.5. �

Claim 5: IF (Z) has finite Gν(T )-norm.

Proof: Since the process ϕ = (ϕ(t))t∈[ 0,T ] defined by (5.19) obeys (3.21)
(cf. the proof of Claim 3), we get Claim 5 from Proposition 3.3.4. �

Claim 6: IΣ,m(Z) has finite Gν(T )-norm.

Proof: Since the process ϕ = (ϕ(t))t∈[ 0,T ] defined by (5.20) obeys (3.24)
(cf. the proof of Claim 4), we get Claim 6 from Proposition 3.3.5. �

Claim 7: t 7→ IF (Z)(t) is continuous in L2ν(Ω;L2ν
ρ (Θ)).

Furthermore, there is a pathwise continuous version of t 7→ IF (Z)(t).

Proof: Since the process ϕ = (ϕ(t))t∈[ 0,T ] defined by (5.19) obeys (3.21)
(cf. the proof of Claim 3), we get Claim 7 from the continuity results in
Proposition 3.3.4. �

Claim 8: t 7→ IΣ(Z)(t) is continuous in L2ν(Ω;L2ν
ρ (Θ)).

Furthermore, there is a pathwise continuous version of t 7→ IΣ,m(Z)(t).

Proof: Since the process ϕ = (ϕ(t))t∈[ 0,T ] defined by (5.20) obeys (3.24)
(cf. the proof of Claim 4), we get Claim 8 from the continuity results in
Proposition 3.3.5. �
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Claim 9: IF (Z) obeys a predictable modification.

Proof: This claim holds true by the same arguments as in the proof
of Claim 9 in the proof of Lemma 5.1.5. �

Claim 10: t 7→ IΣ,m(Z)(t) obeys a predictable modification.

Proof: This claim holds true by the same arguments as in the proof
of Claim 10 in the proof of Lemma 5.1.5. �

By Claims 1–10, we have proven that IF and IΣ,m are well-defined pre-
dictable (up to stochastic modifications) processes with finite Gν(T )-norms
and that IF and IΣ,m(Z) are time-continuous in L2ν(Ω;L2ν

ρ (Θ)). �

Given a Q-Wiener process (W (t))t∈[ 0,T ] in L2, we define the Itô-integral

(5.21) IWΣ (Z)(t) :=
t∫
0

U(t, s)MΣ(s,Z(s)) dW (s), t ∈ [ 0, T ].

This is a special case of the Wiener convolution considered in Section 3.4.

Lemma 5.1.7: Case (A)
Suppose U additionally obeys (A2) with some ζ ∈ [ 0, 1 ).
The claims in this lemma hold

• in the nuclear case (which we could prove without assuming (A2)),

• in the general nuclear case (which we could also prove in case of U
obeying the weaker assumption (A5)* with ν = 1), and

• in the cylindrical case.

Let us fix some q ∈ [ 2, 2
ζ ) with ζ as in (A2). For each

(Z(t))t∈[ 0,T ] ∈ Hq(T ), the process IWΣ (Z) is Hq(T )-valued and t 7→ IWΣ (Z)(t)
is continuous in Lq(Ω;L2

ρ(Θ)).
In particular, if q > 2

1−ζ with ζ as in (A2) in the general nuclear and the
cylindrical case and ζ = 0 in the nuclear case, there is a pathwise continuous
version of [ 0, T ] 3 t 7→ IWΣ (Z)(t) ∈ L2

ρ(Θ).

Proof: We first show well-definedness, then finiteness of the Hq(T )-norm,
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then continuity in Lq(Ω;L2
ρ(Θ)) and finally predictability.

Claim 1: For any t ∈ [ 0, T ], IWΣ (Z)(t) is well-defined in L2
ρ(Θ).

Proof: Note that (5.21) is just the stochastic convolution from Section
3.4.
First, by 5.1.3 (ii) and Hq(T ) ⊂ H2(T ), for any q ≥ 2 (3.28) from Section
3.4 is fulfilled for ϕ as in (5.20). Thus, we have well-definedness in all three
cases by Proposition 3.4.1. �

Claim 2: IWΣ (Z) has finite Hq(T )-norm.

Proof : Defining ϕ as in (5.20), by the measurability assumption on σ,
Remark 5.1.3 (iii) (cf. (5.7) there) and the choice of ζ, the process ϕ =
(ϕ(t))t∈[ 0,T ] obeys (3.29). Thus, we can apply Proposition 3.4.1 to get
Claim 2 in all three cases. �

Claim 3: Given q from the assumption, t 7→ IWΣ (Z)(t) is continuous
in Lq(Ω;L2

ρ(Θ)).
If additionally q > 2

1−ζ , there is a pathwise continuous modification.

Proof: Let ϕ be as in (5.20). Then, in view of 5.1.3 (iii) (cf. (5.7) there),
the process ϕ obeys the assumptions of Proposition 3.4.7, which gives the
time-continuity in Lq(Ω;L2

ρ(Θ)).
In the case q > 2

1−ζ , even the assumptions from Theorem 3.4.5 are fulfilled,
which gives us the existence of a pathwise time-continuous modification of
IWΣ in L2

ρ(Θ). �

Claim 4: t 7→ IWΣ (Z)(t) obeys a predictable version.

Proof: As a stochastic integral, t 7→ IWΣ (Z)(t) is adapted. Furthermore,
by Claim 3, t 7→ IWΣ (Z)(t) is stochastically continuous. Thus, by Lemma
2.1.8, there is a predictable modification of t 7→ IWΣ (Z)(t). �

By Claim 1–4 the proof of Lemma 5.1.7 is finished. �

Lemma 5.1.8: Case (B)
Suppose U additionally obeys (A2) with some ζ ∈ [ 0, 1 ), (A3), (A4) and
(A5)*. Let us fix some ν ∈ [ 1, 1

ζ ) with ζ as in (A2).
Again, the claims in this lemma hold
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• in the nuclear case (which we could prove without assuming (A2) and
(A4)),

• in the general nuclear case (which we could also prove in case of U
obeying the weaker assumption (A5)* with ν = 1 instead of (A2)
and (A4)), and

• in the cylindrical case.

For (Z(t))t∈[ 0,T ] ∈ Gν(T ) the process IWΣ (Z) is Gν(T )-valued and
t 7→ IWΣ (Z)(t) is continuous in L2ν(Ω;L2ν

ρ ).
Additionally assuming that ν > 1

1−ζ with ζ as in (A2) in the general nuclear
and the cylindrical case and ζ = 0 in the nuclear case, there is a pathwise
continuous version of [ 0, T ] 3 t 7→ IWΣ (Z)(t) ∈ L2

ρ(Θ).

Proof: We proceed analogously to the proof of 5.1.7.

Claim 1: For any t ∈ [ 0, T ], IWΣ (Z)(t) is well-defined in L2ν
ρ (Θ).

Proof: Note that, by 5.1.3 (iii) (cf. (5.8) there), the sufficient condi-
tion (3.39) from Section 3.4 is fulfilled for the process ϕ defined by (5.20).
Thus, by Proposition 3.4.3, we get Claim 1. �

Claim 2: IWΣ (Z) has finite Gν(T )-norm.

Proof : Defining a process ϕ by (5.20), by the measurability assumption
on σ, Remark 5.1.3 (iii) (cf. (5.8) there) and the choice of ζ, we can again
apply Proposition 3.4.3 to get Claim 2. �

Claim 3: Given ν from the assumption, t 7→ IWΣ (Z)(t) is continuous
in L2ν(Ω;L2ν

ρ (Θ)).
If additionally ν > 1

1−ζ , there is a pathwise continuous modification in
L2
ρ(Θ).

Proof: Let us define a process ϕ by (5.20). Then, in view of 5.1.3(iii) (cf.
(5.8) there), the process ϕ obeys the integrability condition from the assump-
tions of Proposition 3.4.8, which gives the time-continuity in L2ν(Ω;L2ν

ρ (Θ)).
In the case

ν > 1
1−ζ ⇐⇒ 2ν > 2

1−ζ ≥ 2,

since || · ||L2
ρ
≤ || · ||L2ν

ρ
, even the assumptions from Proposition 3.4.5 are
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fulfilled, which gives us the existence of a pathwise time-continuous modifi-
cation of IWΣ in L2

ρ(Θ). �

Claim 4: t 7→ IWΣ (Z)(t) obeys a predictable version.

Proof: As a stochastic integral, t 7→ IWΣ (Z)(t) is adapted. Furthermore,
by Claim 3 t 7→ IWΣ (Z)(t) is stochastically continuous. Thus, by Lemma
2.1.8, there is a predictable modification of t 7→ IWΣ (Z)(t). �

By Claim 1–4 we get Lemma 5.1.8. �

Next, we consider stochastic integrals w.r.t. compensated Poisson random
measures Ñ .

Let (Ñ(t, ·))t∈[ 0,T ] be as described in the introduction of the chapter. We
define

(5.22) IÑΓ (Z)(t) :=
t∫
0

∫
L2

U(t, s)MΓ(s,Z(s))(x) Ñ(ds, dx), t ∈ [ 0, T ].

This is a special case of the Poisson stochastic convolutions considered in
Chapter 4.

Lemma 5.1.9: Case (A)
Suppose U additionally obeys (A2) (or alternatively the weaker assumption
(A5)* with ν = 1) for some ζ ∈ [ 0, 1 ) .

For any Z ∈ Hq(T ) with q ∈ [ 2, 2
ζ ), the process IÑΓ (Z) has finite Hq(T )-

norm.

Furthermore, we have continuity in Lq(Ω;L2
ρ(Θ)) for t 7→ IÑΓ (Z)(t).

If we additionally assume that γ is uniformly bounded on [ 0, T ] × Ω × R
and (A7) holds for U , there is a càdlàg version of [ 0, T ] 3 t 7→ IÑΓ (Z)(t) ∈
L2
ρ(Θ).

Proof: We first show well-definedness, then finiteness of the Hq(T )-norm,
then continuity in Lq(Ω;L2

ρ(Θ)) and finally predictability.

Claim 1: IÑΓ (Z) is well-defined in L2
ρ(Θ).

Proof: By 5.1.3(iii) and the fact that ζ ∈ [ 0, 1 ),
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(5.23) ϕ(t) := Γ(t, Z(t)), t ∈ [ 0, T ],

fulfills (4.3) for Z ∈ Hq(T ) ⊂ H2(T ). Thus, by Proposition 4.1, we get
the required well-definedness of IÑΓ (Z). �

Claim 2: IÑΓ (Z) has finite Hq(T )-norm.

Proof: Defining a process ϕ by (5.23), in view of 5.1.3 (iii) (cf. (5.7)
there) and the choice of ζ the process ϕ fulfills (4.4) from the assumptions
of Proposition 4.1, which gives us Claim 2. �

Claim 3: t 7→ IÑΓ (t) is continuous in Lq(Ω;L2
ρ(Θ)).

If we additionally assume that γ is uniformly bounded on [ 0, T ]×Ω×R and
(A7) holds for U , we get a càdlàg modification of t 7→ IÑϕ .

Proof: In view of 5.1.3 (iii) (cf. (5.7) there) and the choice of ζ, the
process ϕ defined by (5.23) fulfills the assumptions of Proposition 4.8, which
gives us time-continuity in Lq(Ω;L2

ρ(Θ)).
Concerning the càdlàg property, note that for ϕ as before under the addi-
tional assumptions we are just in the situation of Proposition 4.12, which
proves Claim 3. �

Claim 4: t 7→ IÑΓ (Z)(t) is predictable.

Proof: As a stochastic integral, t 7→ IÑΓ (Z)(t) is adapted. Furthermore,
by Claim 3 t 7→ IÑΓ (Z)(t) is stochastically continuous. Thus, by Lemma
2.1.8, there exists a predictable modification of t 7→ IÑΓ (Z)(t). �

By Claims 1–4 Lemma 5.1.9 is proven. �

Lemma 5.1.10: Case (B)
Suppose U additionally fulfills (A3) and (A5) (or (A5)*) with some
ζ ∈ [ 0, 1 ) . Let us fix some ν ∈ [ 1, 1

ζ ).
For Z ∈ Gν(T ), the process IΓ(Z) has finite Gν(T )-norm.
Furthermore, t 7→ IÑΓ (Z)(t) is continuous in L2ν(Ω;L2ν

ρ (Θ)).
Under the additional assumptions that
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(5.24) sup
[ 0,T ]×Ω×R

|γ| =: K <∞

and that condition (A7) on U is fulfilled, there is a càdlàg version of
[ 0, T ] 3 t 7→ IÑΓ (Z)(t) ∈ L2

ρ.

Proof: We proceed analogously to the proof of 5.1.9.

Claim 1: IÑΓ (Z) is well-defined.

Proof: Let us define a process ϕ by (5.23). By 5.1.3 (ii) ϕ fulfills
(4.3), which, analogously to Claim 1 in the proof of 5.1.9, implies the well-
definedness of IÑΓ (Z). �

Claim 2: IÑΓ (Z) has finite Gν(T )-norm.

Proof: By 5.1.3 (iii) we have

sup
t∈[ 0,T ]

E||Γ(t, Z(t))||2νL2ν
ρ
<∞.

By this and the obvious predictability of t 7→ Γ(t, ·, Z(t)) following from
the predictability of Z and the measurability property of γ, we get that the
process ϕ defined by (5.23) is in Gν(T ). Thus, we can apply 4.4 to get

sup
t∈[ 0,T ]

E||IÑΓ (Z)(t)||2νL2ν
ρ
≤ c(ν, c(T ), C2ν,η)

t∫
0

(t− s)−ζνE||Γ(s, Z(s))||2νL2ν
ρ
ds

≤ c(ν, c(T ), C2ν,η)
(

t∫
0

s−ζν ds

)(
sup

t∈[ 0,T ]
E||Γ(t, Z(t))||2νL2ν

ρ

)
< ∞. �

Claim 3: t 7→ IÑΓ (Z)(t) is continuous in L2ν(Ω;L2ν
ρ (Θ)).

Under the additional assumption that γ obeys (5.24) and (A7) holds for U ,
there is a càdlàg modification of t 7→ IÑΓ (Z)(t).

Proof: Defining a process ϕ by (5.23), we get inequality (4.36) from Chap-
ter 4 by Remark 5.1.3 (iii) (cf. (5.8) there). Thus, by Proposition 4.9, we
get the required continuity property.
Finally, by the boundedness assumption on γ and (A7), the conditions of
Proposition 4.12 are fulfilled. Therefore, we get the required càdlàg versions.
�

Claim 4: t 7→ IÑΓ (Z)(t) obeys a predictable modification.
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Proof: This holds true by the same arguments as in the proof of Claim 4
from the proof of 5.1.8. �

By Claims 1–4 we get 5.1.10. �

We finish this section with a remark on Bochner integrals IF in the case
of a non-Lipschitz f . This remark will be relevant for Chapters 7 and 8.

Remark 5.1.11: Let us consider IF defined by (5.17) with F defined
by (NEM) from a measurable function f : [ 0, T ] × Ω × R → R, which is
continuous in the third variable.
Suppose that f obeys (PG) and (LG) from Section 3.2.

(i) Suppose that ν = 1 and Z ∈ Hq(T ) for some q ≥ 2.
Then, the process IF (Z) is adapted, has finite Hq(T )-norm and
[ 0, T ] 3 t 7→ IF (Z)(t) ∈ L2

ρ is continuous in Lq(Ω;L2
ρ). Furthermore, there

exists a pathwise continuous version of the previous mapping.

(ii) Suppose that ν > 1 and Z ∈ Gν(T ).
Then, the process IF (Z) is adapted, has finite H2(T )-norm and
[ 0, T ] 3 t 7→ IF (Z)(t) ∈ L2

ρ is continuous in L2(Ω;L2
ρ). Furthermore, there

exists a pathwise continuous version of the previous mapping.

Proof: Concerning (i), note that (PG) with ν = 1 means that

|f(t, ω, y)| ≤ cf (T )(1 + |y|), (t, ω, y) ∈ [ 0, T ]× Ω× R.

Thus, we get the same chain of arguments as in (5.7) (of course with λ = f)
from 5.1.3(iii) in this case. Then, literally repaeting the arguments from
the proof of Lemma 5.1.5 (i), we get (i).

Concerning (ii), note that setting ϕ(t) := F (t, Z(t)), t ∈ [ 0, T ], for
Z = (Z(t))t∈[ 0,T ] ∈ Gν(T ) we get, analogously to estimate (5.7) from Re-
mark 5.1.3 (iii) (with q = 2)
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sup
t∈[ 0,T ]

E||ϕ(t)||2L2
ρ

= sup
t∈[ 0,T ]

E
∫
Θ

(|f(t, ·, Z(t, y))|)2µρ(dy)

≤ sup
t∈[ 0,T ]

E
∫
Θ

(cf (T )(1 + |Z(t, y)|ν)2µρ(dy)

≤ c(ν, cf (T ))

(
1 + sup

t∈[ 0,T ]
E||Z(t)||2νL2ν

ρ

)
= c(ν, cf (T ))(1 + ||Z||2νGν(T ))
< ∞

for any Z ∈ Gν(T ). Thus, by repeating almost literally the arguments from
the proof of Lemma 5.1.5 (i), we get (ii). �

5.2 Existence and uniqueness of mild solutions in
the case of Lipschitz coefficients

By the lemmata proven in the previous section, we can show existence of
unique solutions to equations (1.1) and (1.2) with Lipschitz coefficients E,
F , Σ and Γ.

The proofs will follow the lines of proof of Theorem 3.2.1 from [76]:

Theorem 5.2.1: Case (A)
Suppose the almost strong evolution operator U , generated by (A(t))t∈[ 0,T ],
has properties (A0)–(A2) (In the nuclear case (A2) can be replaced by
(A5)* with ν = 1.).
Let the initial condition ξ be as in Case (A), whereby q ∈ [ 2, 2

ζ ) is such
that the integrability condition (QI) for the Lévy measure η (corresponding
to Ñ (equation (1.1)) resp. L (equation (1.2))) is fulfilled with q ∈ [ 2, 2

ζ ).

Then, there exists a unique predicatable mild solution to each of the equa-
tions (1.1) and (1.2) in the sense of 5.1.2 (i). These solutions are time-
continuous in Lq(Ω;L2

ρ(Θ)).
Furthermore, we have the moment estimates (concerning (1.1))

(5.25) sup
t∈[ 0,T ]

E||X(t)||q
L2

ρ
≤ c(q, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

and (concerning (1.2))

(5.26) sup
t∈[ 0,T ]

E||X(t)||q
L2

ρ
≤ c(q, ζ,K, T, c(T ), ce(T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

with a positive constant both on the right hand side of (5.25) and (5.26).
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Let us assume that ζ ∈ [ 0, 1
2 ) and q ∈ ( 2

1−ζ ,
2
ζ ). Furthermore, let γ resp. σ

obey (5.24) and let U fulfill (A7). Then, there exist càdlàg versions of the
mapping t 7→ X(t) both for solutions to (1.1) and (1.2).

Theorem 5.2.2: Case (B)
Suppose the almost strong evolution operator U , generated by (A(t))t∈[ 0,T ],
has properties (A0)–(A5) with some ζ ∈ [ 0, 1 ) (Note that in the nuclear
case (A5) can be replaced by the weaker assumption (A5)*.).
Let the initial condition ξ be as in Case (B), whereby ν ∈ [ 1, 1

ζ ) is such that
the integrability condition (QI) for the Lévy measure η holds with q = 2ν.

Then, there exists a unique solution to each of the equations (1.1) and
(1.2) in the sense of 5.1.2 (ii). These solutions are time-continuous in
L2ν(Ω;L2ν

ρ (Θ)).
Furthermore, we have the moment estimates (concerning (1.1))

(5.27) sup
t∈[ 0,T ]

E||X(t)||2νL2ν
ρ
≤ c(ν, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

and (concerning (1.2))

(5.28) sup
t∈[ 0,T ]

E||X(t)||2νL2ν
ρ
≤ c(ν, ζ,m, T, c(T ), ce(T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

with positive constants in the right hand sides of (5.27) and (5.28).

Let us assume that ζ ∈ [ 0, 1
2 ) and ν ∈ ( 1

1−ζ ,
1
ζ ).

Under the additional assumption that γ resp. σ obeys (5.24) and that U
obeys (A7), there is a càdlàg version of t 7→ X(t) both for solutions to (1.1)
and (1.2).

Remark 5.2.3: (i) Note that by the assumptions in Theorem 5.2.1 and
5.2.2 we can treat the case of the Q-Wiener process W in (1.1) being

• nuclear, i.e. Q ∈ T +(L2) such that (2.4) holds with an orthonormal
basis obeying (3.1),

• general nuclear, i.e. Q ∈ T +(L2) such that the orthonormal basis
in (2.4) does not obey (3.1), and

• cylindrical, i.e. Q = I.
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Recall from Lemma 5.1.7 and Lemma 5.1.8 that the conditions, under which
the stochastic integrals w.r.t. Q-Wiener processes are well-defined, are dif-
ferent in the above three cases. Nevertheless under the given assumptions,
we have well-definedness of the stochastic integrals in any of the three cases
of Q-Wiener processes mentioned above.
In the nuclear case (A2) and (A5) can be substituted by (A5)*.

(ii) By ce(T ), cf (T ) and cσ(T ), we denote the common constants in (LC)
and (LB) for the functions e, f and σ.
We need ζ ∈ [ 0, 1

2 ) in order to have the intervall ( 2
1−ζ ,

2
ζ ) (Theorem 5.2.1)

resp. ( 1
1−ζ ,

1
ζ ) (Theorem 5.2.2) non-empty. We take q resp. ν from that

intervalls, since, for càdlàg versions, we need both ν > 1
1−ζ (cf. Lemma

5.1.8) and ν < 1
ζ (cf. Lemma 5.1.10).

The two main results will be proven by two different methods.
Theorem 5.2.1 will be proven by a general Banach contraction argument,
whereas Theorem 5.2.2 will be proven by a Picard iteration method.
The second method is more general and can also be applied to prove Theo-
rem 5.2.1. Furthermore, it can be used to prove unique solvability even in
larger spaces than Hq(T ) and Gν(T ).

Proof of 5.2.1: Let us start with equation (1.1). On the intervall [ 0, T ],
we look for solutions X ∈ Hq(T ) to

(5.29) X(t) = U(t, 0)ξ +
t∫
0

U(t, s)F (s,X(s)) ds

+
t∫
0

U(t, s)MΣ(s,X(s)) dW (s)

+
t∫
0

∫
L2

U(t, s)MΓ(s,X(s))(x) Ñ(ds, dx)

= U(t, 0)ξ + IF (X)(t) + IWΣ (X)(t) + IÑΓ (X)(t).

We note that, by 5.1.5, 5.1.7 and 5.1.9, the I-terms preserve Hq(T ).
Furthermore, the I-terms are time-continuous in Lq(Ω;L2

ρ(Θ)) by the same
lemmata.
Thus, any solution to (5.29), if there is one, is Hq(T )-valued and time-
continuous in Lq(Ω, L2

ρ(Θ)).
In particular, in the case of γ being bounded uniformly on [ 0, T ] × Ω × R
and (A7) being fulfilled for U , we get the required existence of a càdlàg
version of the solution.

Let us denote the right hand side of (5.29) by I(X). Let us check the
contraction property of the mapping I acting in the Banach space Hq(T )
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(Note that I is well-defined in the sense of stochastic versions). For any pair
of processes X,Y ∈ Hq(T ), we have

(5.30) ||I(X)− I(Y )||Hq(T )

≤ ||IF (X)− IF (Y )||Hq(T )

+ ||IWΣ (X)− IWΣ (Y )||Hq(T )

+ ||IÑΓ (X)− IÑΓ (Y )||Hq(T )

≤ sup
t∈[ 0,T ]

(E||IF (X)(t)− IF (Y )(t)||q
L2

ρ
)

1
q

+ sup
t∈[ 0,T ]

(E||IWΣ (X)(t)− IWΣ (Y )(t)||q
L2

ρ
)

1
q

+ sup
t∈[ 0,T ]

(E||IÑΓ (X)(t)− IÑΓ (Y )(t)||q
L2

ρ
)

1
q

= sup
t∈[ 0,T ]

(
E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[F (s,X(s))− F (s, Y (s))] ds
∣∣∣∣∣∣∣∣q
L2

ρ

) 1
q

+ sup
t∈[ 0,T ]

(
E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[MΣ(s,X(s)) −MΣ(s,Y (s))] dW (s)
∣∣∣∣∣∣∣∣q
L2

ρ

) 1
q

+ sup
t∈[ 0,T ]

E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)[MΓ(s,X(s)) −MΓ(s,Y (s))](x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
q

L2
ρ

 1
q

≤ c(T )cf (T ) sup
t∈[ 0,T ]

(E
t∫
0

||X(s)− Y (s)||q
L2

ρ
ds)

1
q

+ c(q, c(T ), cσ(T )) sup
t∈[ 0,T ]

(
t∫
0

(t− s)−ζE||X(s)− Y (s)||q
L2

ρ
ds

) 1
q

+ c(q, c(T ), cγ(T ), Cq,η) sup
t∈[ 0,T ]

t∫
0

(
(t− s)−

qζ
2 E||X(s)− Y (s)||q

L2
ρ
ds
) 1

q

≤ c(q, , T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η) sup
t∈[ 0,T ]

(
t∫
0

(t−s)−
qζ
2 E||X(s)−Y (s)||q

L2
ρ
ds)

1
q

=
(
T 1− qζ

2

1− qζ
2

) 1
q

c(q, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)||X − Y ||Hq(T ),

where we used 2.2.1 (iii) for U , estimate (3.30) from Proposition 3.4.1,
estimate (4.5) from Proposition 4.1, the fact that

q < 2
ζ ⇐⇒ qζ

2 < 1,

and the Lipschitz property of f , σ and γ in the third step.

Thus, given T̄ > 0 with



5.2. EXISTENCE AND UNIQUENESS OF MILD SOLUTIONS 175

c2(T ) :=
(
T̄ 1− qζ

2

1− qζ
2

) 1
q

c(q, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η) < 1,

by the Banach fixpoint theorem (5.29) has a unique fixpoint X̄, which is
a solution to (1.1) on [ 0, T̄ ] by construction. Setting ξ := X̄(T̄ ) leads to a
unique solution on [ T̄ , 2T̄ ]. By finite iteration of this procedure, we get a
unique solution on the whole intervall [ 0, T ] in the sense of 5.1.2(i).

The uniqueness in Hq(T ) means uniqueness up to modifications. If X1

and X2 are two predictable solutions from Hq(T ), then X1(t) = X2(t) in
L2
ρ, P -a.s., for any fixed t ∈ [ 0, T ]. Since Lemma 5.1.7 and 5.1.9 ensure

the existence of a continuous resp. càdlàg modification of IWΣ resp. IÑΓ , any
solution X posesses such a modification, too.
Furthermore, any two càdlàg solutions coincide up to indistinguishability
(see p.28), i.e.

P{X1(t) = X2(t) for all t ∈ [ 0, T ]} = 1.

Thus, it remains to show the estimate (5.25). Similarly to (5.30), for our
solution X ∈ Hq(T ) and arbitrary t ∈ [ 0, T ], we have

E||X(t)||q
L2

ρ
≤ c(q)

(
E||U(t, 0)ξ||q

L2
ρ
+ E||IF (X)(t)||q

L2
ρ

+E||IWΣ (X)(t)||q
L2

ρ

+E||IÑΓ (X)(t)||q
L2

ρ

)
≤ c(q)

(
c(q, c(T ))E||ξ||qρ,2

+c(q, c(T ))
t∫
0

E||F (s,X(s))||qρ,2 ds

+c(q, c(T ))
t∫
0

(t− s)−ζE||Σ(s,X(s))||qρ,2 ds

+c(q, c(T ), Cq,η)
t∫
0

(t− s)−
qζ
2 E||Γ(s,X(s))||qρ,2 ds

)
≤ c1(q, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

+c2(q, ζ, T, c(T ), cσ(T ), cγ(T ), Cq,η)
t∫
0

(t− s)−
qζ
2 E||X(s)||q

L2
ρ
ds.

Here, we used 2.2.1 (iii) for U , estimate (3.30) from Proposition 3.4.1 and
estimate (4.5) from Proposition 4.1 in the second and the fact that f , σ and
γ obey (LC) and (LB) in the third step.
Thus, by the Gronwall-Bellman lemma, we get estimate (5.25), which fin-
ishes the consideration of the equation (1.1).

Concerning equation (1.2) note that, by the Lévy-Itô decomposition 2.4.13
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we are looking for a solution to

(5.31) X(t) = U(t, 0)ξ +
t∫
0

U(t, s)E(s, ·, X(s)) ds

+
t∫
0

U(t, s)MΣ(s,X(s))(m) ds

+
t∫
0

U(t, s)MΣ(s,X(s)) dW (s)

+
t∫
0

∫
L2

U(t, s)MΣ(s,X(s))(x) Ñ(ds, dx)

= U(t, 0)ξ + IE(X)(t) + IΣ,m(t) + IWΣ (t) + IÑΣ (t).

By 5.1.5, 5.1.7 and 5.1.9, all five terms on the right hand side and thus
the solution to (5.31), if it exists, are Hq(T )-valued. By 5.1.5, 5.1.7 and
5.1.9, all these terms and hence X will be time-continuous in Lq(Ω;L2

ρ(Θ)).

Furthermore, additionally assuming boundedness of σ and the pseudo-contraction
property (A7) for U , there is a càdlàg version of t 7→ IÑΣ (t) and thus, by
the well-known pathwise continuity properties of the mappings
t 7→ IE(X)(t), t 7→ IΣ,m(t) and t 7→ IWΣ (t), also of a fixpoint of (5.31).
So, let us denote the right hand side of (5.31) by I(X) and check the con-
traction property of the mapping I in the Banach space Hq(T ).
Similar to the case of equation (1.1), we get

(5.32) ||I(X)− I(Y )||Hq(T )

≤ ||IE(X)− IE(Y )||Hq(T )

+ ||IΣ,m(X)− IΣ,m(Y )||Hq(T )

+ ||IWΣ (X)− IWΣ (Y )||Hq(T )

+ ||IÑΣ (X)− IÑΣ (Y )||Hq(T )

= sup
t∈[ 0,T ]

(E||IE(X)(t)− IE(Y )(t)||q
L2

ρ
)

1
q

+ sup
t∈[ 0,T ]

(E||IΣ,m(X)(t)− IΣ,m(Y )(t)||q
L2

ρ
)

1
q

+ sup
t∈[ 0,T ]

(E||IWΣ (X)(t)− IWΣ (Y )(t)||q
L2

ρ
)

1
q

+ sup
t∈[ 0,T ]

(E||IÑΣ (X)(t)− IÑΣ (Y )(t)||q
L2

ρ
)

1
q

≤ c(q, ζ,m, T, c(T ), ce(T ), cσ(T )) sup
t∈[ 0,T ]

(
E

t∫
0

(t− s)−ζE||X(s)− Y (s)||q
L2

ρ
ds

) 1
q

+ c(q, c(T ), cσ(T ), Cq,η) sup
t∈[ 0,T ]

t∫
0

(
(t− s)−

qζ
2 E||X(s)− Y (s)||q

L2
ρ
ds
) 1

q
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≤ c(q, ζ,m, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η) sup
t∈[ 0,T ]

(
t∫
0

(t− s)−
qζ
2 E||X(s)− Y (s)||q

L2
ρ
ds

) 1
q

=
(
T 1− qζ

2

1− qζ
2

) 1
q

c(q, ζ, T, c(T ), cf (T ), cσ(T ), Cq,η)||X − Y ||Hq(T ).

Here, we used 2.2.1 (iii) for U , estimate (3.18) for IΣ,m, estimate (3.30)
for IWΣ , estimate (4.5) for IÑΣ and the Lipschitz property for e and σ.
Thus, by the same procedure as in (i), we get existence of a unique solution
X ∈ Hq(T ) in the sense of 5.1.2 (i).
Similarly to (5.32), using the fact that e and σ obey (LC) and (LB), we
have for our solution X ∈ Hq(T )

E||X(t)||q
L2

ρ
≤ c(q)

(
E||U(t, 0)ξ||q

L2
ρ
+ E||IF (X)(t)||q

L2
ρ
+ E||IΣ,m(X)(t)||q

L2
ρ

+E||IWΣ (X)(t)||q
L2

ρ
+ E||IÑΣ (X)(t)||q

L2
ρ

)
≤ c(q, ζ,m, T,K, c(T ), ce(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

+c(q,m, ζ, T, c(T ), ce(T ), cσ(T ))
t∫
0

(t− s)−
qζ
2 E||X(s)||q

L2
ρ
ds.

Now, by the Gronwall-Bellman lemma, we get (5.26), which finishes the
proof of Theorem 5.2.1. �

Proof of 5.2.2: Here, we apply a Picard iteration method to prove the
unique solvability in the Banach space Gν(T ).

Equation (1.1)

We define a sequence (Xn)n∈N of processes by

X0(t) := U(t, 0)ξ, t ∈ [ 0, T ],

Xn(t) := X0(t) +
t∫
0

U(t, s)F (s, ,Xn−1(s)) ds

+
t∫
0

U(t, s)MΣ(s,Xn−1(s)) dW (s)

+
t∫
0

∫
L2

U(t, s)MΓ(s,Xn−1(s))(x) Ñ(ds, dx)

= X0(t) + IF (Xn−1)(t) + IWΣ (Xn−1)(t) + IÑΓ (X)(t), t ∈ [ 0, T ], n ∈ N.

Let us show that these processes are Gν(T )-valued. By (A3) and our as-
sumption on ξ, X0 is obviously Gν(T )-valued.
Now suppose we know that Xn−1 ∈ Gν(T ) (which we do for
n = 1). We know from 5.1.6, 5.1.8 and 5.1.10 that IF (Xn−1), IWΣ (Xn−1)



178 CHAPTER 5. MILD SOLUTONS IN THE LIPSCHITZ CASE

and IÑΓ (Xn−1) are in Gν(T ). This immediately gives us Gν(T )-valuedness of
Xn.

Next, we show that the sequence (Xn)n∈N converges in Gν(T ).
For any t ∈ [ 0, T ] and n ∈ N, we have

E||Xn+1(t)−Xn(t)||2νL2ν
ρ

≤ c(ν)

(
E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[F (s,Xn(s))− F (s,Xn−1(s))] ds
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

+E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[MΣ(s,Xn(s)) −MΣ(s,Xn−1(s))] dW (s)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

+E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[MΓ(s,Xn(s)) −MΓ(s,Xn−1(s))] Ñ(ds, dx)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

)

≤ c(ν, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)
t∫
0

(t−s)−ζνE||Xn(s)−Xn−1(s)||2νL2ν
ρ
ds,

where we used Proposition 3.4.3 and 4.4 and the Lipschitz property (LC)
for f , σ and γ. Herefrom, by the Gronwall-Bellman lemma 2.7.3 we get, for
all n ∈ N,

sup
t∈[ 0,T ]

E||Xn+1(t)−Xn(t)||2νL2ν
ρ

≤ Tn(1−ζν)c(ν, ζ, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η) sup
t∈[ 0,T ]

E||X1(t)−X0(t)||2νL2ν
ρ

with

sup
t∈[ 0,T ]

E||X1(t)−X0(t)||2νL2ν
ρ

≤ c(ν)

(
sup

t∈[ 0,T ]
E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)F (s, U(s, 0)ξ) ds
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

+ sup
t∈[ 0,T ]

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)MΣ(s,U(s,0)ξ) dW (s)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

+ sup
t∈[ 0,T ]

E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)MΓ(s,U(s,0)ξ)(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2ν
ρ


≤ c̄(ν, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
).

Thus, we finally get

||Xn+1 −Xn||2νGν(T ) ≤ Tn(1−ζν)c1 <∞



5.2. EXISTENCE AND UNIQUENESS OF MILD SOLUTIONS 179

with a positive constant
c1 := c(ν, ζ, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)c̄(ν, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η).

Since 0 < ν < 1
ζ , the right hand side tends to 0 as n → ∞, which gives

us the existence of a mild solution to (1.1) on the whole intervall [ 0, T ].

Concerning the uniqueness of the solution, let us note that for any two
solutions X,Y ∈ Gν(T ) we have (analogously to the Xn-estimate)

E||X(t)− Y (t)||2νL2ν
ρ
≤ c(κ)

(
E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[F (s,X(s))− F (s, Y (s))] ds
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

+E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[MΣ(s,X(s)) −MΣ(s,Y (s))] dW (s)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

+E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)[MΓ(s,X(s)) −MΓ(s,Y (s))](x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2ν
ρ


≤ c(ν, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)

t∫
0

(t− s)−ζνE||X(s)− Y (s)||2νL2ν
ρ
ds.

Then, applying 2.7.3 with gn(t) := g(t) := E||X(t)− Y (t)||2νL2ν
ρ

, gives us

E||X(t)− Y (t)||2νL2ν
ρ
≤ 0

for any t ∈ [ 0, T ]. Thus, we obviously have

||X − Y ||Gν(T ) = 0,

which proves uniqueness in Gν(T ). Again, we have continuity in L2ν(Ω;L2ν
ρ )

by Lemmata 5.1.6, 5.1.8 and 5.1.10.
Furthermore, for bounded γ and (A7) for U , there is a càdlàg version by
Lemmata 5.1.6, 5.1.8 and 5.1.10.
Thus, concerning (1.1), it remains to show the estimate (5.27) for our solu-
tion.
To this end, we note that, for any t ∈ [ 0, T ]:

E||X(t)||2νL2ν
ρ

≤ c(ν)

(
E||U(t, 0)ξ||2νL2ν

ρ
+ E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)F (s,X(s)) ds
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

+E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)MΣ(s,X(s)) dW (s)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ
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+E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)MΓ(s,X(s))(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2ν
ρ


≤ c(ν)

(
c(ν, T )E||ξ||2νL2ν

ρ

+c(ν, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)
(

1 +
t∫
0

(t− s)−ζνE||X(s)||2νL2ν
ρ
ds

))
≤ c(ν, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

+ c(ν, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)
t∫
0

(t− s)−ζνE||X(s)||2νL2ν
ρ
ds.

Thus, (5.27) follows by the Gronwall-Bellman lemma 2.7.2/2.7.3 and we
are finished with the consideration of equation (1.1).

Equation (1.2)

Let us define a sequence of processes (Xn)n∈N by

X0(t) := U(t, 0)ξ

and

Xn(t) := X0(t) +
t∫
0

U(t, s)E(t, ω,Xn−1(t)) ds

+
t∫
0

U(t, s)MΣ(s,Xn−1(s))(m) ds

+
t∫
0

U(t, s)MΣ(s,Xn−1(s)) dW (s)

+
t∫
0

∫
L2

U(t, s)MΣ(s,Xn−1(s))(x) Ñ(ds, dx)

= X0(t) + IE(Xn−1)(t) + IΣ,m(Xn−1)(t) + IWΣ (Xn−1)(t) + IÑΣ (Xn−1)(t)

for t ∈ [ 0, T ] and n ∈ N, where W is as in the general nuclear case (cf.
Sections 2.5 and 3.4).
Again, we have to show that these processes are Gν(T )-valued. By (A3)(i)
and our assumption on ξ, X0 is Gν(T )-valued.
Suppose we know that Xn−1 ∈ Gν(T )(which we do for n = 1). We know
from 5.1.6(ii), 5.1.8 and 5.1.10 that IE(Xn−1), IΣ,m(Xn−1), IWΣ (Xn−1) and
IÑΣ (Xn−1) are in Gν(T ). Thus Xn is in Gν(T ) as a sum of elements from
Gν(T ).

Next, we show that the sequence (Xn)n∈N converges in Gν(T ).
Indeed, we have
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E||Xn+1(t)−Xn(t)||2νL2ν
ρ
≤ c(κ)

(
E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[E(s,Xn(s))− E(s,Xn−1(s))] ds
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

+E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[MΣ(s,Xn(s)) −MΣ(s,Xn−1(s))]mds

∣∣∣∣∣∣∣∣2ν
L2ν

ρ

+E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[MΣ(s,Xn(s)) −MΣ(s,Xn−1(s))] dW (s)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

+E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)[MΣ(s,Xn(s)) −MΣ(s,Xn−1(s))](x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2ν
ρ


≤ c(ν, ζ,m, T, c(T ), ce(T ), cσ(T ), C2ν,η)
t∫
0

(t− s)−ζνE||Xn(s)−Xn−1(s)||2νL2ν
ρ
ds

for all t ∈ [ 0, T ] and arbitrary n ∈ N.

Thus, by the Gronwall-Bellman lemma 2.7.3, we get for all n ∈ N

sup
t∈[ 0,T ]

E||Xn+1(t)−Xn(t)||2νL2ν
ρ

≤ Tn(1−ζν)c(ν,m, c(T ), ce(T ), cσ(T ), cγ(T ), C2ν,η) sup
t∈[ 0,T ]

E||X1(t)−X0(t)||2νL2ν
ρ

with

sup
t∈[ 0,T ]

E||X1(t)−X0(t)||2νL2ν
ρ

≤ c(ν)

(
sup

t∈[ 0,T ]
E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)
[
E(s, U(s, 0)ξ) +MΣ(s,·,U(s,0)ξ)(m)

]
ds

∣∣∣∣∣∣∣∣2ν
L2ν

ρ

+ sup
t∈[ 0,T ]

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)MΣ(s,·,U(s,0)ξ) dW (s)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

+ sup
t∈[ 0,T ]

E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)MΣ(s,·,U(s,0)ξ)(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2ν
ρ


≤ c(ν, ζ,m, T,K, c(T ), ce(T ), cσ(T ), cγ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
).

Thus, we finally get

sup
t∈[ 0,T ]

E||Xn+1(t)−Xn(t)||2νL2ν
ρ

≤ Tn(1−ζν)c(ν, ζ,m, c(T ), ce(T ), , cσ(T ), C2ν,η)
c(ν, ζ, T,K, c(T ), ce(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

<∞
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for all n ∈ N.

Since 0 < ν < 1
ζ , we get existence of a mild solution to (1.2). Now, we estab-

lish the uniqueness result. Note that, for any two solutions X,Y ∈ Gν(T ),
analogously to the Xn-estimate we have

E||X(t)− Y (t)||2νL2ν
ρ

≤ c(κ)

(
E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[E(s,X(s))− E(s, Y (s))] ds
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

+E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[MΣ(s,X(s)) −MΣ(s,Y (s))](m) ds
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

+E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[MΣ(s,X(s)) −MΣ(s,Y (s))] dW (s)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

+E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)[MΣ(s,X(s)) −MΣ(s,Y (s))](x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2ν
ρ


≤ c(ν,m, T, c(T ), ce(T ), cσ(T ), C2ν,η)

t∫
0

(t− s)−ζνE||X(s)− Y (s)||2νL2ν
ρ
ds.

Thus, by the Gronwall-Bellman lemma 2.7.3 we get, for any t ∈ [ 0, T ],

E||X(t)− Y (t)||2νL2ν
ρ
≤ 0.

Thus, we obviously have

||X − Y ||Gν(T ) = 0,

which proves uniqueness in Gν(T ). Again, we have continuity in L2ν(Ω;L2ν
ρ (Θ))

from the fact that IE(X), IΣ,η, IWΣ and IÑΣ are continuous in L2ν(Ω;L2ν
ρ (Θ))

as was shown in 5.1.6 (ii), 5.1.8 and 5.1.10.
Similar to (i), under the additional assumption (A7) we get existence of
càdlàg versions of the solutions in (ii).
Thus, it remains to show the a-priori bound (5.28).
Note that we have, for t ∈ [ 0, T ],

E||X(t)||2νL2ν
ρ
≤ c(ν)

(
E||U(t, 0)ξ||2νL2ν

ρ
+ E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)E(s,X(s)) ds
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

+E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)MΣ(s,X(s))(m) ds
∣∣∣∣∣∣∣∣2ν
L2ν

ρ
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+E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)MΣ(s,X(s)) dW (s)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

+E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)MΣ(s,X(s))(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2ν
ρ


≤ c(ν)

(
c(ν, T )E||ξ||2νL2ν

ρ

+c(ζ, ν,m, T, c(T ), ce(T ), cσ(T ), C2ν,η)
(

1 +
t∫
0

(t− s)−ζνE||X(s)||2νL2ν
ρ
ds

))
≤ c1(ν, ζ,m, T, c(T ), ce(T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

+ c2(ν, ζ,m, T, c(T ), ce(T ), cσ(T ), C2ν,η)
t∫
0

(t− s)−ζνE||X(s)||2νL2ν
ρ
ds.

Thus, (5.28) follows from the Gronwall-Bellman lemma 2.7.2/2.7.3, which
finishes the proof. �

We complete this section with the following corollaries and remarks, we
need later.

Corollary 5.2.4: Under the assumptions of 5.2.1 resp. 5.2.2, there ex-
ist mild solutions V to (1.1) resp. (1.2) with ξ = 0 and F = 0 resp. E = 0
such that

(5.33) sup
t∈[ 0,T ]

E||V (t)||q
L2

ρ
≤ c(q, ζ, T, c(T ), cσ(T ), cγ(T ), Cq,η)

(5.34) sup
t∈[ 0,T ]

E||V (t)||q
L2

ρ
≤ c(q, ζ,m, T, c(T ), cσ(T ), Cq,η)

with positive constants on the right hand side resp.

(5.35) sup
t∈[ 0,T ]

E||V (t)||2νL2
ρ
≤ c(ν, ζ, T, c(T ), cσ(T ), cγ(T ), C2ν,η)

(5.36) sup
t∈[ 0,T ]

E||V (t)||2νL2ν
ρ
≤ c(ν, ζ,m, T, c(T ), cσ(T ), C2ν,η)

with positive constants on the right hand side.

From Theorem 5.2.1 and 5.2.2, in the special case that Γ and Σ are solution-
independent, we get

Corollary 5.2.5: (i) In the setting of Theorem 5.2.1, in the special case
that γ: [ 0, T ]×Ω → R resp. σ: [ 0, T ]×Ω → R and |γ| ≤ K resp. |σ| ≤ K
for some K > 0 uniformly in [ 0, T ] × Ω, there exists a unique solution to
(1.1) resp. (1.2) in the sense of 5.1.2 (i). Furthermore, t 7→ X(t) is con-
tinuous in Lq(Ω;L2

ρ(Θ)) and obeys estimate (5.25) resp. (5.26).
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(ii) In the setting of Theorem 5.2.2, in the special case that
γ: [ 0, T ]× Ω → R resp. σ: [ 0, T ]× Ω → R and |γ| ≤ K resp. |σ| ≤ K for
some K > 0 uniformly in [ 0, T ]×Ω, there exists a unique solution to (1.1)
resp. (1.2) in the sense of 5.1.2 (ii). Furthermore, t 7→ X(t) is continuous
in L2ν(Ω;L2ν

ρ (Θ)) and obeys estimate (5.27) resp. (5.28).

Remark 5.2.6: As was proven in the above theorems, under certain as-
sumptions the solutions X to the equations (1.1) and (1.2) allow càdlàg
modifications in L2

ρ(Θ). Let us denote them by Xcl(t), t ∈ [ 0, T ].

The processes Xcl(t), t ∈ [ 0, T ], are in general not predictable. To over-
come this, we define

Xcl
−(t) := Xcl(t−), t ∈ [ 0, T ].

This process is surely left-continuous and hence predictable.
It is easy to see that

(5.37) X(t) = Xcl
−(t), P -a.s., for any t ∈ [ 0, T ].

Indeed, given any t ∈ [ 0, T ] and any sequence (tn)n∈N ⊂ [ 0, T ] such that
tn ↑ t as n→∞, by definition we get

Xcl
−(t) = lim

n→∞
Xcl(tn), P-a.s. .

On the other hand, in L2(Ω;L2
ρ(Θ)) we have

X(t) = lim
n→∞

Xcl(tn) in probability.

Combining both convergences we get (5.37).

The Itô isometry shows that the stochastic equivalence of X and Xcl
− im-

plies the stochastic equivalence of all processes on the right hand side of
equation (1.1) resp. equation (1.2).

Let X(t), t ∈ [ 0, T ], be a càdlàg modification of the unique predictable
solution to (1.1) resp. (1.2). This modification satisfies the equation
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(5.38)X(t) = U(t, 0)ξ +
t∫
0

U(t, s)F (s,X(s))ds

+
t∫
0

U(t, s)MΣ(s,X(s))dW (s)

+
t∫
0

∫
L2

U(t, s)MΓ(s,X(s−))(x) Ñ(ds, dx)

resp.

(5.39)X(t) = U(t, 0)ξ +
t∫
0

U(t, s)E(s,X(s))ds+
t∫
0

U(t, s)MΣ(s,X(s))dL(s)

= U(t, 0)ξ +
t∫
0

U(t, s)E(s,X(s))ds

+
t∫
0

U(t, s)MΣ(s,X(s))mds

+
t∫
0

U(t, s)MΣ(s,X(s))dW (s)

+
t∫
0

∫
L2

U(t, s)MΣ(s,X(s−))(x) Ñ(ds, dx),

P -almost surely, for each fixed t ∈ [ 0, T ].
Taking the càdlàg modification of all integrals on the right hand sides in
(5.38) and (5.39), we have the identity for all t ∈ [ 0, T ] on the same uni-
versal subset Ω0 ∈ B(Ω) with P (Ω0) = 1.
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Chapter 6

Comparison results in the
Lipschitz case with additive
jump noise

For the whole chapter, let (Ω,F , P ) and (Ft)t∈[ 0,T ] for some T > 0 be as in
Section 1.2.
As in Chapter 5, we consider SDEs in L2

ρ(Θ) for Θ ⊂ Rd for some d ∈ N.
Again, we assume ρ to be such that µρ(Θ) < ∞, i.e. ρ > d for unbounded
Θ and ρ = 0 for bounded Θ.

Let (en)n∈N be an orthonormal basis of L2(Θ) obeying (3.1).

In this chapter, we show comparison results both for equation (1.1) and
for equation (1.2) in the case of additive jumps, i.e. when the coefficients
corresponding to the jump parts (Γ in (1.1) and Σ in (1.2)) are solution-
independent (see Section 6.1 below).
Thus, we assume that the drift coefficients e(i), f (i): [ 0, T ] × Ω × R → R,
i = 1, 2, are of the same type as e resp. f in Chapter 5, i.e. they are
PT ⊗B(R)/B(R)-measurable and Lipschitz continuous w.r.t. the third vari-
able.
Note that a crucial point to show a comparison theorem for equation (1.1)
in the case of an additive jump part is that for our L2(Θ)-valued Q-Wiener
process W we suppose that the orthonormal basis (en)n∈N of L2(Θ) appear-
ing in the representation

W (t) =
∑
n∈N

√
anwn(t)en, t ∈ [ 0, T ],

(which exists by Proposition 2.3.7) is uniformly bounded, i.e. (en)n∈N obeys
(cf. (3.1) in Section 3.1)

187
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sup
n∈N

||en||∞ <∞.

The proof, whose method is based on Manthey’s and Zausinger’s proof of
their Theorem 3.3.1 in [76], works by showing comparison theorems for finite
dimensional approximations of the solutions and establishing their conver-
gence to the solutions of the initial equations. Let us note that the proof
of Theorem 3.3.1 in [76] is a simplification of Kotenlenezproof of his com-
parison result in [65]. For the whole chapter, we assume the existence of
a bounded family of operators ((AN (t))t∈[ 0,T ])N∈N ⊂ L(L2

ρ(Θ)) fulfilling
(A6) (see Section 3.1 for its definition).

The chapter has the following structure. First, in Section 6.1 we state the
main result, a comparison result for some approximating SDE with finite-
dimensional Wiener noise and a convergence result for the approximating
stochastic differerential equation. Furthermore, we explain, why the method
from [76] gives us our main result. Then, we show the comparison result
for the approximating SDE in Section 6.2 and the convergence result for the
approximating SDE in Section 6.3.

In the subsequent sections, given X, Y ∈ L2
ρ(Θ), by writing X ≤ Y we

mean that X(θ) ≤ Y (θ) for µρ-almost all θ ∈ Θ.

6.1 The main result and the scheme of comparison
method for additive jumps

In this section, for i = 1, 2, we consider a pair of equations

dX(i)(t) = (A(t)X(i)(t) + F (i)(t,X(i)(t)))dt+MΣ(t,X(i)(t))dW (t)
+
∫
L2

MC(t)x Ñ(dt, dx), t ∈ [ 0, T ],

(6.1)

X(i)(0) = ξ(i),

resp.

dX(i)(t) = (A(t)X(i)(t) + E(i)(t,X(i)(t)))dt+MC(t)dL(t), t ∈ [ 0, T ],

(6.2)

X(i)(0) = ξ(i),
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with Σ defined through a PT ⊗ B(R)-measurable σ: [ 0, T ] × Ω × R → R
as in Chapter 5. Suppose that c: [ 0, T ] × Ω → R is PT -measurable and
uniformly bounded, i.e.

(6.3) sup
(t,ω)∈[ 0,T ]×Ω

|c(t, ω)| < K

for some K > 0. The multiplication operator MC : L2(Θ) → L2(Θ) is
given by

(MC(t,ω)(ψ))(θ) = c(t, ω)ψ(θ), (t, ω) ∈ [ 0, T ]× Ω, θ ∈ Θ, ψ ∈ L2.

Thus, (6.1) resp. (6.2) is just a special case of equation (1.1) resp. of
equation (1.2) with additive Poisson resp. additive Lévy noise, i.e. the coef-
ficients corresponding to the compensated Poisson random measure Ñ resp.
to the Lévy process L are independent of the solution.

As in Chapter 5, for the initial conditions ξ(i) we have the following two
cases

Case (A) The initial condition ξ is an L2
ρ(Θ)-valued random variable such that

E||ξ(i)||q
L2

ρ
<∞ for some q ≥ 2.

The solutions to (6.1) and (6.2) will be constructed in Hq(T ).

Case (B) The initial condition ξ is an L2ν
ρ (Θ)-valued random variable such that

E||ξ(i)||2νL2ν
ρ
<∞ for some ν ≥ 1.

The solutions to (6.1) and (6.2) will be constructed in Gν(T ).

In view of Theorems 5.2.1 and 5.2.2, to have existence of (unique) solutions
to (6.1) and (6.2) we also need to assume that q < 2

ζ resp. ν < 1
ζ with

ζ ∈ [ 0, 1 ) from (A2).

It will be enough to get comparison results in Case (A), since the compar-
ison results in Case (B) follow immediately. Indeed, since L2ν

ρ (Θ) ⊂ L2
ρ(Θ)

for ν ≥ 1, we have

E||ξ(i)||2νL2ν
ρ
<∞⇒ E||ξ(i)||2νL2

ρ
<∞.

Thus, we are again in Case (A) with q = 2ν ≥ 2.

For the Wiener process W in (6.1), we have the following basic cases.

• nuclear case, i.e. W is a Q-Wiener process in the sense of Section
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2.3 with Q ∈ T +(L2(Θ)) such that the operator Q obeys a complete
orthonormal system of eigenvectors (en)n∈N fulfilling (3.1), i.e.

sup
n∈N

||en||∞ <∞.

• general nuclear case, i.e. W is a Q-Wiener process in the sense of
Section 2.3 with Q ∈ T +(L2(Θ)), but Q does not allow an eigenvector
expansion fulfilling (3.1).

• cylindrical case, i.e. W is a I-Wiener process in L2(Θ) in the sense
of Section 2.3.

The general nuclear case typically occurs in equations driven by Lévy noise,
for which we apply the Lévy-Itô decompostion.

In both cases of bounded and unbounded domain Θ, we write L2
ρ for the

spaces L2
ρ(Θ).

A basic assumption on U is that it constitutes an almost strong evolution
operator in L2

ρ obeying (A0)–(A2). In the nuclear case, we set ζ = 0.
Thus, (A2) is surely fulfilled inthis case. In the general nuclear case, we can
substitute (A2) by the weaker assumption (A5)* with ν = 1.

Under the assumptions imposed above, there exist unique mild solutions
X(i) ∈ Hq(T ) (cf. Definition 5.1.1 (i) for the notation) to (6.1) and (6.2)
(cf. Section 5.2, Corollary 5.2.5).

We prove a comparison result for (6.1) and (6.2) in Case (A) by adapting
the proof of Theorem 3.3.1 from [76].

Theorem 6.1.1: Let U be an almost strong evolution operator gen-
erated by (A(t))t∈[ 0,T ] such that (A0)–(A2) and (A6) hold. Suppose the
Lévy measure corresponding to Ñ resp. L obeys the integrability condition
(QI) with a given q > 2

1−ζ , where ζ ∈ [ 0, 1 ) is as in (A2). The coefficients
f , σ and e fulfill the Lipschitz assumption (LC) and c obeys (6.3). Further-
more, let ξ(1), ξ(2) ∈ L2

ρ be as in Case (A), i.e.

E||ξ(i)||q
L2

ρ
<∞,

and let W be as in the nuclear or the cylindrical case. Then,

(i) ξ(1) ≤ ξ(2), P -a.s.,
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and

f (1)(t, y) ≤ f (2)(t, y) for all (t, y) ∈ [ 0, T ]× R, P -a.s.,

imply

X(1)(t) ≤ X(2)(t), P -a.s.,

for all t ∈ [ 0, T ], where X(i) ∈ Hq(T ), i = 1, 2, denotes the unique pre-
dictable mild solution to (6.1).

(ii) Respectively,

ξ(1) ≤ ξ(2), P -a.s.,

and

e(1)(t, y) ≤ e(2)(t, y) for all (t, y) ∈ [ 0, T ]× R, P -a.s.,

imply

X(1)(t) ≤ X(2)(t), P -a.s.,

for all t ∈ [ 0, T ], where X(i) ∈ Hq(T ), i = 1, 2, denotes the unique pre-
dictable mild solution to (6.2).

Remark 6.1.2: Assume that the evolution family (U(t, s))0≤s≤t≤T ful-
fills (A7).
Then, by Proposition 5.2.1 there are càdlàg solutions X(i) with X(i)

− ∈ Hq(T )
to each of the equations (6.1) and (6.2). Thus,

P ({ω ∈ Ω |X(1)(t, ω) ≤ X(2)(t, ω) for all t ∈ [ 0, T ]}) = 1.

Both in the proof of (i) and (ii), we use the following comparison method:

1. We show a comparison result for appropriate finite-dimensional ap-
proximations of X(i).

2. We show that these approximations tend to the solution to (6.1) resp.
(6.2), which immediately implies the comparison result for the solu-
tions to (6.1) and (6.2).



192 CHAPTER 6. COMPARISON RESULTS

This will be the content of the Propositions 6.1.3 and 6.1.4 below.

So, let us first of all construct approximations for both equation (6.1) and
(6.2).

Equation (6.1)

Given the Wiener process (W (t))t∈[ 0,T ] from equation (6.1) introduced above,
for M ∈ N, we define a covariance operator QM ∈ T +(L2) by

QMψ :=
M∑
n=1

an < ψ, en >L2 en

and the associated QM -Wiener process (WM (t))t∈[ 0,T ] ⊂ L2 by

WM (t) :=
M∑
n=1

√
anwn(t)en, t ∈ [ 0, T ],

where wn(t) :=< W (t), en >L2 , t ∈ [ 0, T ]. Obviously (wn)1≤n≤M is a
family of mutually independent real-valued Brownian motions.
Let X(i)

M ∈ Hq(T ) be a mild solution to (6.1) with WM substituting W , i.e.

dX
(i)
M (t) = (A(t)X(i)

M (t) + F (i)(t,X(i)
M (t)))dt

+M
Σ(t,X

(i)
M (t))

dWM (t) +
∫
L2

MC(t)(x) Ñ(dt, dx), t ∈ [ 0, T ],

(6.4)

X
(i)
M (0) = ξ(i).

By Definition 5.1.1, X(i)
M satisfies the following identity in L2

ρ

X
(i)
M (t) = U(t, 0)ξ(i) +

t∫
0

U(t, s)F (i)(s,X(i)
M (s)) ds

+
t∫
0

U(t, s)M
Σ(s,X

(i)
M (s))

dWM (s)

+
t∫
0

∫
L2

U(t, s)MC(s)x Ñ(ds, dx), P -a.s., for any t ∈ [ 0, T ].

Next, we fix additionally N ∈ N and consider the equation

dX
(i)
N,M (t) = (AN (t)X(i)

N,M (t) + F (i)(t,X(i)
N,M (t)))dt

+MΣ(t,XN,M (t)) dWM (t) +
∫
L2

MC(t)(x) Ñ(dt, dx), t ∈ [ 0, T ],

(6.5)
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X
(i)
N,M (0) = ξ(i),

where AN (t) ∈ L(L2) approximates A(t) in the sense of (A6). Due to the
boundedness of the operator AN (t) and the Lipschitz-continuity of all coef-
ficients, equation (6.5) has a unique (mild=strong) solution X(i)

N,M ∈ Hq(T ).

For general results in infinite dimensions about equivalence of globally Lip-
schitz coefficients see e.g. [97] in the Wiener case, [60] in the Poisson case
and Section 9 in [95] in the Lévy case.

Therefore, we have the following identity in L2
ρ

X
(i)
N,M (t) = UN (t, 0)ξ(i) +

t∫
0

UN (t, s)F (i)(s,X(i)
N,M (s)) ds

+
t∫
0

UN (t, s)M
Σ(s,X

(i)
N,M (s))

dWM (s)

+
t∫
0

∫
L2

UN (t, s)MC(s)x Ñ(ds, dx), P -a.s. for any t ∈ [ 0, T ].

Note that the existence and uniqueness of the X
(i)
M and X

(i)
N,M in Hq(T )

follows from the general solvability results in the Lipschitz case (see Sec-
tion 5.2, Theorem 5.2.1/Corollary 5.2.5), since AN and WM are only special
cases of A and W from Sections 5.1/5.2.

The solutions can be constructed e.g. by Picard’s iteration method (as
in the proof of Theorem 5.2.2). Furthermore, under the above assumptions
the classes of strong and mild solutions coincide (see e.g. [37], Sections 8
and 10).

Equation (6.2)

Let us define approximations similar to those for the equation (6.1). We
first note that by the integrability assumption (QI) on η, we have∫

L2

||x||2L2 η(dx) <∞,

i.e. (SI) holds true.
Thus, we can apply the Lévy-Itô decomposition 2.4.13 in L2 to get

(6.6) L(t) = tm+W (t) +
∫
L2

x Ñ(t, dx), t ∈ [ 0, T ],

with W being a Q-Wiener process with Q ∈ T +(L2).
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Recall from Section 2.3 that any Q-Wiener process W obeys the represen-
tation

W (t) =
∑
n∈N

√
anwn(t)en,

where (an)n∈N ⊂ R+ is such that∑
n∈N

an <∞,

(wn(t))t∈[ 0,T ], n ∈ N, is a family of independent real-valued Brownian mo-
tions and (en)n∈N is an orthonormal basis of L2.
Note that, in contrast to equation (6.1), (en)n∈N does not necessarily obey
(3.1).

By (6.6), (6.2) becomes

(6.7) dX(i)(t) = (A(t)X(i)(t) + E(i)(t,X(i)(t)) +MC(t)m)dt
+MC(t) dW (t) +

∫
L2

MC(t)xÑ(dt, dx), t ∈ [ 0, T ]

X(i)(0) = ξ(i).

Given N ∈ N, let AN be a bounded operator in L2
ρ as in condition (A6).

For M ∈ N, let WM be a finite-dimensional Wiener process as in the ap-
proximation of the equation (6.1). We denote by X

(i)
N,M , X

(i)
M ∈ Hq(T ) the

unique mild solutions to

(6.8) dX(i)
N,M (t) = (AN (t)X(i)

N,M (t) + E(i)(t,X(i)
N,M (t)) +MC(t)m)dt

+MC(t) dWM (t) +
∫
L2

MC(t)xÑ(dt, dx), t ∈ [ 0, T ]

X
(i)
N,M (0) = ξ(i),

and

(6.9) dX(i)
M (t) = (A(t)X(i)

M (t) + E(i)(t,X(i)
M (t)) +MC(t)m)dt

+MC(t) dWM (t) +
∫
L2

MC(t)xÑ(dt, dx), t ∈ [ 0, T ]

X
(i)
M (0) = ξ(i),

existing by Corollary 5.2.5 (i).

Having defined the approximations for both equation (6.1) and (6.2), we for-
mulate the following lemmata, which will be proven in Sections 6.2 (Lemma
6.1.3) and 6.3 (Lemma 6.1.4).

Lemma 6.1.3: Let U , W , the coefficients f , σ and e, and the initial
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conditions ξ(i) be as in Theorem 6.1.1.

(i) Let ξ(i), i = 1, 2, be as in Case (A), and

ξ(1) ≤ ξ(2), P -a.s..

Furthermore, suppose that

f (1) ≤ f (2) for all (t, y) ∈ [ 0, T ]× R, P -a.s..

Then, we have for the corresponding solutions X(i)
N,M , i = 1, 2 of equation

(6.5)

X
(1)
N,M (t) ≤ X

(2)
N,M (t), P -a.s.,

for any t ∈ [ 0, T ] and all N,M ∈ N.

(ii) Let ξ(i), i = 1, 2, as in Case (A), and

ξ(1) ≤ ξ(2), P -a.s..

Furthermore, suppose that

e(1) ≤ e(2) for all (t, y) ∈ [ 0, T ]× R, P -a.s..

Then, we have for the corresponding solutions X
(i)
N,M , i = 1, 2, of equa-

tion (6.8)

X
(1)
N,M (t) ≤ X

(2)
N,M (t), P -a.s.,

for all t ∈ [ 0, T ] and all N,M ∈ N.

Lemma 6.1.4: (i) Considering X(i), X(i)
M , X(i)

N,M , N,M ∈ N, i = 1, 2,
as defined in (6.1), (6.4) and (6.5), we get the following convergence results:

lim
N→∞

E||X(i)
N,M (t)−X

(i)
M (t)||2L2

ρ
= 0, for each M ∈ N,

lim
M→∞

E||X(i)
M (t)−X(i)(t)||2L2

ρ
= 0.

(ii) Considering X(i), X(i)
M , X(i)

N,M , N,M ∈ N, i = 1, 2, as defined in (6.2),
(6.9) and (6.8), we get the following convergence results:
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lim
N→∞

E||X(i)
N,M (t)−X

(i)
M (t)||2L2

ρ
= 0, for each M ∈ N,

lim
M→∞

E||X(i)
M (t)−X(i)(t)||2L2

ρ
= 0.

Thus, we first get

X
(1)
N,M (t) ≤ X

(2)
N,M (t), P -a.s.,

for all t ∈ [ 0, T ] by 6.1.3 (i) (for equation (6.1)) resp. by 6.1.3 (ii) (for
equation (6.2)). Then, by first letting N →∞ and then letting M →∞, we
get 6.1.1 (i) resp. (ii) by 6.1.4 (i) (for equation (6.1)) resp. by 6.1.4 (ii)
(for equation (6.2)).

6.2 Proof of Lemma 6.1.3

We adapt the proof of 3.3.2 from [76] to our situation.
Both in the proof of (i) and (ii), the idea is to construct approximating
processes by splitting [ 0, T ] into smaller intervalls of equal length. We show
comparison results for those processes and conclude the required comparison
result by letting the length of the subintervalls tend to 0.

The aim of such approximation is to separate stochastic and determinis-
tic terms, which require quite different methods of analysis.

(i) For a fixed j ∈ N, we set tk := kT
j , k = 0, 1, 2, ..., j, and thus get a

partition of [ 0, T ] into j intervalls of length T
j . We define processes Z(i)

k,j ,

V
(i)
k,j ∈ H

q([ tk, tk + 1]) in a recursive way by the following chain of identities
holding P -almost surely

Z
(i)
0,j(t) := ξ(i) +

t∫
0

M
Σ(s,Z

(i)
0,j(s))

dWM (s) +
t∫
0

∫
L2

MC(s)(x) Ñ(ds, dx),

(6.10)

V
(i)
0,j (t) := Z

(i)
0,j(t1) +

t∫
0

(AN (s)V (i)
0,j (s) + F (i)(s, V (i)

0,j (s))) ds,

for t ∈ [ 0, t1 ] and

Z
(i)
k,j(t) := V

(i)
k−1,j(tk) +

t∫
tk

M
Σ(s,Z

(i)
k,j(s))

dWM (s) +
t∫
tk

∫
L2

MC(s)(x) Ñ(ds, dx),

(6.11)
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V
(i)
k,j (t) := Z

(i)
k,j(tk+1) +

t∫
tk

(AN (s)V (i)
k,j (s) + F (i)(s, V (i)

k,j (s))) ds,

for t ∈ [tk, tk+1] and k = 1, 2, ..., j − 1.

Note that the processes Z(i)
k,j(t), t ∈ [ tk, tk+1 ], are described by the SDE

driven by the Wiener process and Poisson noise.
For each 0 ≤ k ≤ j − 1, the equation for Z(i)

k,j(t) has a unique (up to modifi-
cation) strong (and hence also mild) predictable solution in Hq([ tk, tk+1 ]),
which is time-continuous in Lq(Ω;L2

ρ).
This is guaranteed by the finite-dimensionality of WM , the Lipschitz prop-
erty of Σ, the boundedness of C and the integrability property (QI) of the
Lévy measure η corresponding to Ñ .
Then, a standard application of the Banach fixed point theorem (like in
the proof of Theorem 5.2.1), as well as the Picard iteration method (like
in the proof of Theorem 5.2.2), gives us the unique solvability result in
Hq([ tk, tk+1 ]).

Let us recall that the Poisson integrals

t∫
tk

∫
L2

MC(s)(x) Ñ(ds, dx)

in the right hand sides of (6.10) and (6.11) are càdlàg by their definition.
So, to get the versions of Z(i)

k,j from Hq([ tk, tk+1 ]), one has to take the pre-
dictable versions of the above integrals

t−∫
tk

∫
L2

MC(s)(x) Ñ(ds, dx) =
∫

[tk,t)

∫
L2

MC(s)(x) Ñ(ds, dx).

The V -terms are governed by deterministic equations but with random co-
efficients. Thus, the predictability of the integrand process is not essential
for defining the corresponding Bochner/Lebesgue integrals in the right hand
sides of (6.10) and (6.11).
Due to the boundedness of AN and the Lipschitz property of the F (i), there
exists a unique pathwise continuous process [ tk, tk+1 ] 3 t 7→ V

(i)
k,j (t) ∈ L2

ρ

solving (6.10), (6.11) P -almost surely.
Furthermore, [ tk, tk+1 ] 3 t 7→ V

(i)
k,j (t) ∈ L

2
ρ is continuous in Lq(Ω;L2

ρ).

Since V
(i)
k,j (t) is Ftk+1

-measurable for each t ∈ [ tk, tk+1 ], there exists an

Ftk+1
⊗ B([ tk, tk+1 ])-measurable modification of V (i)

k,j . However, by its con-

struction V (i)
k,j (t) is not Ft-adapted and hence not predictable.

Next, we define Z(i)
j , V (i)

j : Ω× [ 0, T ] → L2
ρ by
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Z
(i)
j (t) := Z

(i)
k,j(t), t ∈ [ tk, tk+1 ), k = 0, 1, 2, ..., j − 1,

V
(i)
j (0) := ξ(i),

(6.12)
V

(i)
j (t) := V

(i)
k,j (t), t ∈ (tk, tk+1], k = 0, 1, ..., j − 1,

Z
(i)
j (T ) := V

(i)
j (T ).

One easily checks the following identities (holding P -almost surely)

(6.13) Z
(i)
j (t) = ξ(i) +

tk∫
0

(AN (s)V (i)
j (s) + F (i)(s, V (i)

j (s))) ds

+
t∫
0

∫
L2

MC(s)(x) Ñ(ds, dx)

+
t∫
0

M
Σ(s,Z

(i)
j (s))

dWM (s),

for t ∈ [ tk, tk+1 ), k = 0, 1, ..., j − 1, and

(6.14) V
(i)
j (t) = ξ(i) +

t∫
0

(AN (s)V (i)
j (s) + F (i)(s, V (i)

j (s))) ds

+
tk+1∫
0

M
Σ(s,Z

(i)
j (s))

dWM (s) +
tk+1∫
0

∫
L2

MC(s)(x) Ñ(ds, dx),

for t ∈ ( tk, tk+1 ], k = 0, 1, ..., j − 1.

In particular, Z(i)
j (tk) = V

(i)
j (tk) for all 0 ≤ k ≤ j.

Note that by this definition, the V -terms are of the same structure as in
the proof of 3.3.2 in [76], whereas, compared to that proof, our Z-terms
have an additional jump term (cf. equations (3.1) and (3.2), p. 63 in [76]).
By construction, the processes Z(i)

j obey a càdlàg version on the whole in-

tervall [ 0, T ], whereas the V (i)
j ’s are càglàd.

Again, we will take a predictable version of Z(i)
j (t), t ∈ [ 0, T ], as a limit

value at t− on the right hand side in (6.13).
In contrast, the process V (i)

j (t), t ∈ [ 0, T ], is not adapted, but obeys an
FT ⊗ B([ 0, T ])-measurable version.

The proof of Lemma 6.1.3 (i) will be splitted into the following two claims:

Claim 1: For our processes defined in (6.10)/(6.11), we have in L2
ρ
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V
(1)
j (t) ≤ V

(2)
j (t),

(6.15)
Z

(1)
j (t) ≤ Z

(2)
j (t),

P -almost surely, for each t ∈ [ 0, T ].

Proof: Let us start with the intervall [ 0, t1 ).
By (6.13), we have

(6.16) Z(i)
j (t) = Z

(i)
0,j(t) = ξ(i)+

t∫
0

M
Σ(s,Z

(i)
j (s))

dWM (s)+
t∫
0

∫
L2

MC(s)(x) Ñ(ds, dx),

for any t ∈ [ 0, t1 ).

For a moment, we consider this equation on the whole intervall [ 0, t1 ].
As already mentioned before, it has a unique predictable solution Z

(i)
j (t),

t ∈ [ 0, t1 ].
Thus, by Proposition 5.1.4, similarly to the approximation procedure from
Step 1 in the proof of Proposition 3.4.3, we can find Pt1 ⊗B(Θ)-measurable
realizations of the mappings

[ 0, t1 )× Ω×Θ 3 (t, ω, θ) 7→ Z
(i)
j (t, ω, θ) ∈ R, i = 1, 2.

We prove the required comparison on [ 0, t1 ) with the help of Itô’s formula
applied to a localization of (6.16).

To this end, we take F0 ⊗ B(Θ)-measurable realizations of ξ(i)(ω, θ) and
Pt1⊗B(Θ)-measurable (i.e. predictable) realizations of both the Wiener (cf.
the proof of Proposition 3.4.3 in Section 3.4) and the Poisson integral(

t∫
0

∫
L2

MC(s)(x) Ñ(ds, dx)

)
(ω, θ) =

t∫
0

∫
L2

c(s, ω)x(θ) Ñ(ds, dx).

In both cases, the identity holds in L2(Ω;L2
ρ). For the Poisson integral,

such realizations exist by Lemma 5.1.8 and Step 3 in the proof of Proposi-
tion 4.3.
Thus, (6.16) can be interpreted (see also the proof of Theorem 3.3.1 in [76])
as a family of one-dimensional SDEs

(6.17)Z(i)
j (t, θ) = ξ(i)(θ) +

M∑
n=1

√
an

t∫
0

σ(s, Z(i)
j (s, θ))en(θ) dwn(s)

+
t∫
0

∫
L2

c(s, ω)x(θ) Ñ(ds, dx), P -a.s., for t ∈ [ 0, t1 ],

where θ is from some subset Θ0 ∈ B(Θ) of full µρ-measure.
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For each fixed θ ∈ Θ0, equation (6.17) has a unique predictable solution
Z

(i)
j (t, θ), t ∈ [ 0, t1 ], such that

sup
t∈[ 0,t1 ]

E|Z(i)
j (t, θ)|2 <∞.

Since the coefficient σ(s, ω, y) is Lipschitz continuous in the third variable,
this solution can be constructed by the Picard iteration method (as it was
done in the proof of Theorem 5.2.2 for the equation (1.1)).
Setting

Z
(i,0)
j (t, θ) = ξ(i)(θ), t ∈ [ 0, t1 ],

and

Z
(i,n)
j (t, θ) := Z

(i,0)
j (t) +

M∑
n=1

√
anen(θ)

t∫
0

σ(s, Z(i,n−1)
j (t, θ)) dwn(s)

+
t∫
0

∫
L2

c(s, ω)x(θ) Ñ(ds, dx), t ∈ [ 0, t1 ], n ∈ N,

we get a sequence of processes (Z(i,n)
j (t, θ))θ∈Θ0,t∈[ 0,t1 ], n ∈ N, which obey

Pt1 ⊗ B(Θ)-measurable versions (see Proposition A.1 in [13]).
Let us fix n ∈ N. For any t ∈ [ 0, t1 ] and θ ∈ Θ0, by (3.1) and the Lipschitz
property (LC) for σ we get

(6.18) E|Z(i,n+1)
j (t, θ)− Z

(i,n)
j (t, θ)|2

=
M∑
n=1

an|en(θ)|2
t∫
0

E|σ(s, Z(i,n−1)
j (t, θ))− σ(s, Z(i,n−1)

j (t, θ))|2 dwn(s)

≤
(

M∑
n=1

an

)(
sup
n∈N

||en||2∞
)
c2σ(T )

t∫
0

E|Z(i,n−1)
j (t, θ)− Z

(i,n−1)
j (t, θ)|2 ds.

Herefrom, by the Gronwall-Bellman lemma 2.7.2 we conclude that

sup
t∈[ 0,t1 ]

E|Z(i,n+1)
j (t, θ)− Z

(i,n)
j (t, θ)|2

≤ tn1qnc(cσ(T )) sup
t∈[ 0,t1 ]

E|Z(i,1)
j (t, θ)− Z

(i,0)
j (t, θ)|2

with

sup
t∈[ 0,t1 ]

E|Z(i,1)
j (t, θ)− Z

(i,0)
j (t, θ)|2

≤ sup
t∈[ 0,t1 ]

E
∣∣∣∣ M∑
n=1

√
an

t∫
0

σ(s, ξ(θ))en(θ) dwn(s)
∣∣∣∣2

= sup
t∈[ 0,t1 ]

M∑
n=1

an
t∫
0

E|σ(s, ξ(θ))en(θ)|2 ds
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≤
(

M∑
n=1

an

)(
sup
n∈N

||en||2∞
)
c(T, cσ(T ))(1 + E|ξ(θ)|2).

Thus, we finally get

sup
t∈[ 0,t1 ]

E|Z(i,n+1)
j (t, θ)− Z

(i,n)
j (t, θ)|2 ≤ tn1qnc(cσ(T ))c(T, cσ(T ))(1 + E|ξ(θ)|2)

< ∞.

Here, (qn)n∈N is gained from (6.18) as described in 2.7.2. Note that∫
Θ

c(T, cσ(T ))(1 + E|ξ(θ)|2)µρ(dθ) <∞.

Since, in view of the Gronwall-Bellman lemma 2.7.2, we have∑
n∈N

tn1qn <∞

and tn1qn → 0 as n → ∞, and since ξ(i) is a F0 ⊗ B(Θ)-measurable ver-
sion of the initial condition, we get the existence of Z(i)

j (t, θ), t ∈ [ 0, t1 ],

for µρ-almost all θ ∈ Θ, as the limit of the processes Z(i,n)
j (t, θ), n ∈ N, in

L2(Ω; R).
Furthermore, by similar estimates we have the convergence of Z(i)

j (t) in
L2(Ω;L2

ρ) uniformly in t ∈ [ 0, t1 ]. Applying pairing with cylinder functions
(as in Step 3 in the proof of Proposition 3.4.3 resp. 4.3), we can conclude
that Z(i)

j (t) solves (6.16) in L2
ρ.

On the other hand, t 7→ Z
(i)
j (t) ∈ L2

ρ is a predictable solution to (6.16),

which is unique up to modifications in Hq(T ). So, Z(i)
j (t, θ) is a Pt1 ⊗B(Θ)-

measurable realization of Z(i)
j (t) ∈ L2

ρ.
Let us consider the difference processes. We have

(6.19) ∆θ
jZ(t) := Z

(1)
j (t, θ)− Z

(2)
j (t, θ)

= ξ(1)(θ)− ξ(2)(θ)

+
M∑
n=1

√
an

t∫
0

(σ(s, Z(1)
j (s, θ))− σ(s, Z(2)

j (s, θ)))en(θ) dwn(s),

P -almost surely for any θ ∈ Θ0 and t ∈ [ 0, t1 ]. The right hand side in
(6.19) obeys a pathwise time-continuous modification by the standard prop-
erties of Wiener integrals.
Thus, we can apply the finite-dimensional Itô’s formula (see e.g. Section
II.5 in [53]), which gives us for any C2

b -function ψ: R → R

(6.20) ψ(∆θ
j(t))
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= ψ(∆θ
j(0)) +

t∫
0

ψ
′
(∆θ

j(s)) d∆
θ
j(s)

+ 1
2

t∫
0

ψ
′′
(∆θ

j(s)) d< ∆θ
j(s) >

=
M∑
n=1

√
an

t∫
0

ψ
′
(∆θ

j(s))[σ(s, Z(1)(s, θ))− σ(s, Z(2)(s, θ))]en(θ) dwn(s)

+ 1
2

M∑
n=1

t∫
0

ψ
′′
(∆θ

j(s))[σ(s, Z(1)(s, θ))− σ(s, Z(2)(s, θ))]2e2n(θ) ds,

for all t ∈ [ 0, t1 ), P -almost surely.
To make a proper choice of ψ, we first need some technical preparations,
which can e.g. be found in Sections IV. 3 and VI.1 in [53].
As a Lipschitz function, the diffusion coefficient Σ obeys the estimats

|σ(t, ω, ξ)− σ(t, ω, θ)| ≤ h(|ξ − θ|), ξ, θ ∈ R,

uniformly on [ 0, T ]× Ω with h(z) = cσ(T )z, z > 0.
Furthermore, h fulfills h(0) = 0 and∫

( 0,ε )

h−2(u) du = ∞ for any ε > 0.

Thus, we can find a strictly decreasing sequence (al)l∈N ⊂ ( 0, 1 ] with

a0 = 1, lim
l→∞

al = 0 and
al−1∫
al

h−2(u) du = l for any l ∈ N.

For each l, there is a continuous function αl with support in (al, al−1) such
that

0 ≤ αl(z) ≤ 2
lh2(z)

and
∫ al+1

al
αl(z) dz = 1.

Defining

ψl(z) := 0, z ≤ 0,

and

ψl(z) :=
z∫
0

y∫
0

αl(u)dudy ≥ 0, z > 0,

gives us a nondecreasing sequence (ψl)l∈N of C2
b functions with 0 ≤ ψ

′
l(z) ≤ 1

and liml→∞ ψl(z) = z+ := z ∨ 0 for each z ∈ R.
Furthermore, we have

(6.21) |ψ′′l (z)| = |αl(z)| ≤ 2
lh2(z)

, z > 0.
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Now we substitute into (6.20) the functions ψl, l ∈ N, constructed above.
Note that, for all 1 ≤ n ≤M and t ∈ [ 0, t1 ), we have

(6.22) E
t∫
0

|σ(s, Z(i)
j (s, θ))en(θ)|2 ds

≤
(

sup
n∈N

||en||∞
)2

Tc2σ(T )
(

1 + E
t∫
0

|Z(i)
j (s, θ)|2 ds

)
<∞

for i = 1, 2 and µρ-almost all θ ∈ Θ.
Without loss of generality, we may assume (6.22) to hold for all
θ ∈ Θ0 ∈ B(Θ) with some Θ0 having full µρ-measure. Furthermore, we
assume that, for all θ ∈ Θ0, ξ(1)(θ) ≤ ξ(2)(θ), P -a.s., and E|ξ(1)(θ)| < ∞,
E|ξ(2)(θ)| <∞.

Thus, the stochastic integral

t∫
0

ψ
′
j(∆

θ
j)σ(s, Z(i)

j )en(θ)dwn(s)

is well-defined for all θ ∈ Θ0. For t ∈ [ 0, t1 ) and 1 ≤ n ≤M , we have

E
t∫
0

ψ
′
l(∆

θ
j(s))(σ(s, Z(2)

j (s, θ))− σ(s, Z(1)
j (s, θ)))en(θ) dwn(s) = 0

and (by (6.21))

(6.23) E
M∑
n=1

t∫
0

ψ
′′
l (∆

θ
j(s))(σ(s, Z(1)

j (s, θ))− σ(s, Z(2)
j (s, θ)))2e2n(θ) ds

≤
(

sup
n∈N

||en||∞
)2

ME
t∫
0

ψ
′′
l (∆

θ
j(s))h

2(∆θ
j(s)) ds

≤ 1
l 2Mt

(
sup
n∈N

||en||2∞
)

.

Substituting these estimates in the right hand side of (6.20), we obtain

Eψl(∆θ
j(t)) ≤ Eψl(∆θ

j(0)) + 1
l

(
sup
n∈N

||en||2∞
)
Mt.

Thus, we get lim
l→∞

Eψl(∆θ
j(t)) ≤ lim

l→∞
Eψl(ξ(1)(θ)− ξ(2)(θ)).

By construction we have

0 ≤ ψl(z) ↑ z+ as l→∞,



204 CHAPTER 6. COMPARISON RESULTS

which by B.Levi’s monotone convergence theorem implies
E[(∆θ

j(t))
+] ≤ E[(ξ(1)(θ)− ξ(2)(θ))+] for all θ ∈ Θ0 and t ∈ [ 0, t1 ).

Since for θ ∈ Θ0, by our assumption, we have ξ(1)(θ) ≤ ξ(2)(θ), P -almost
surely, we get ∆θ

j(t) ≤ 0, P -almost surely, for all t ∈ [ 0, t1 ). Herefrom, using
the time-continuity of ∆θ

j(t), we conclude that for µρ-almost all θ ∈ Θ

P ({ω ∈ Ω |Z(1)
j (t, θ) ≤ Z

(2)
j (t, θ) for all t ∈ [ 0, t1 )}) = 1.

Finally, taking into account the Pt1 ⊗ B(Θ)-measurability of Z(i)
j (t, θ) and

the continuity of the map [ 0, t1 ) 3 t 7→ Z
(1)
j (t)− Z

(2)
j (t) ∈ L2

ρ, we conclude
that

P ({ω ∈ Ω |Z(1)
j (t) ≤ Z

(2)
j (t) inL2

ρ for all t ∈ [ 0, t1 )}) = 1,

which proves that Z(1)
j (t) ≤ Z

(2)
j (t) in L2

ρ for all t ∈ [ 0, t1 ) P -almost surely.

Similarly, we prove that Z(1)
0,j (t1) ≤ Z

(2)
0,j (t1) P -almost surely.

Next, we consider V (i)
j (t) on [ 0, t1 ].

We will continue to follow the lines of proof of 3.3.2 from [76] and use the
analytical tools from operator theory applied there.
Note that the V -terms in our proof coincide with the ones from the proof of
Lemma 3.3.2 from [76]. The sole difference is that the authors in [76] only
consider the case of ω-independent coefficients. Nevertheless, the proof can
be done by the same arguments as in [76].
Obviously, we have V (1)

j (0) = ξ(1) ≤ ξ(2) = V
(2)
j (0), P -almost surely.

For V (i)
j (t) with t ∈ [ 0, t1 ), we have the following deterministic integral

equation (with random coefficients) in L2
ρ

(6.24) V
(i)
j (t) = Z

(i)
0,j(t1) +

t∫
0

AN (s)V (i)
j (s) + F (i)(s, V (i)

j (s)) ds.

Since [ 0, t1 ) 3 t 7→ V
(i)
j (t) ∈ L2

ρ is pathwise continuous, one finds a uni-
versal subset Ω0 ⊂ Ω of full P -measure such that (6.24) holds for all ω ∈ Ω0,
t ∈ [ 0, t1 ) and i = 1, 2. Without loss of generality, we may assume that
ξ(2) ≥ ξ(1) and f (2)(t, ω, θ) ≥ f (1)(t, ω, θ) on [ 0, T ]× R, for all ω ∈ Ω0.
Next, we fix ω ∈ Ω0 and define a linear operator B(t) ∈ L(L2

ρ) for t ∈ [ 0, T ]
by

B(t)ϕ :=
F (2)(t,V

(2)
j (t))−F (2)(s,V

(1)
j (t))

V
(2)
j (t)−V (1)

j (t)
ϕ, ϕ ∈ L2

ρ,

in the case V (2)
j (t) 6= V

(1)
j (t) and
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B(t)ϕ := CF (T )ϕ, ϕ ∈ L2
ρ,

otherwise. Here, CF (T ) denotes the common Lipschitz-constant of f (1) and
f (2), i.e.

CF (T ) := max(cf (1)(T ), cf (2)(T )).

Obviously, B(t) is a bounded operator in L2
ρ, whose operator norm is less

than CF (T ).
From Step 1(ii) in the proof of Lemma 3.3.2 in [76], we know that (with the
help of [24])

(6.25) ĀN (t) := AN (t) +B(t), t ∈ [ 0, T ],

generates a positivity preserving evolution operator ŪN in L2
ρ.

By the definition of the V -terms we have, for all t ∈ [ 0, t1 ],

∆jV (t) := V
(2)
j (t)− V

(1)
j (t) = Z

(2)
0,j (t1)− Z

(1)
0,j (t1) +

t∫
0

ĀN (s)(V (2)
j (t)− V

(1)
j (t)) ds

+
t∫
0

(F (2)(s, V (1)
j (s))− F (1)(s, V (1)

j (s))) ds.

Next, following the lines of [76], we rewrite the above equation in the mild
form, using the evolution family ŪN . Thus, for all t ∈ ( 0, t1],

V
(2)
j (t)− V

(1)
j (t) = ŪN (t, 0)(Z(2)

0,j (t1)− Z
(1)
0,j (t1))

+
t∫
0

ŪN (t, s)[F (2)(s, V (1)
j (s))− F (1)(s, V (1)

j (s))] ds.

Recall that Z(i)
0,j(t1) = Z

(i)
j (t1) = V

(i)
j (t1) and, by the previous arguments,

Z
(1)
0,j (t1) ≤ Z

(2)
0,j (t1), P -almost surely.

Recall that ŪN is positivity preserving and f (2)(ω) ≥ f (1)(ω) on [ 0, T ]×R,
for all ω ∈ Ω0. Thus, we immediately get V (2)

j (t, ω) ≥ V
(1)
j (t, ω) for each

t ∈ ( 0, t1] and all ω ∈ Ω0.
Since V (2)

j (0, ω) − V
(1)
j (0, ω) = ξ(2)(ω) − ξ(1)(ω) ≥ 0 for all ω ∈ Ω0, we can

thus conclude that V (2)
j (t, ω) ≥ V

(1)
j (t, ω) for each t ∈ [ 0, t1 ] and all ω ∈ Ω0.

We also have Z(2)
j (t1) = V

(2)
j (t1) ≥ V

(1)
j (t1) = Z

(1)
j (t1), P -almost surely,

which yields

Z
(1)
j (t) ≤ Z

(2)
j (t) P -almost surely on [ 0, t1 ].

Claim 1 follows by the same arguments on each interval [ tk, tk+1 ]. �
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We finish the proof of (i) by the following claim.

Claim 2: For i = 1, 2

lim
j→∞

Z
(i)
j = X

(i)
N,M

in H2(T ), i.e.

lim
j→∞

sup
t∈[ 0,T ]

E||Z(i)
j (t)−X

(i)
N,M (t)||2L2

ρ
= 0.

Hence, inequality (6.15) (cf. Claim 1) implies that
X

(1)
N,M (t) ≤ X

(2)
N,M (t), P -almost surely, for all t ∈ [ 0, T ].

Proof: Recall that Z(i)
j and X(i)

N,M are Hq(T )-valued for all
j,N,M ∈ N and i = 1, 2.
Since Hq(T ) ⊂ H2(T ) for any q ≥ 2, it is enough to consider the processes
in this setting.
Furthermore, it is enough to take any modification of the processes V (i)

j ,

Z
(i)
j and X(i)

N,M , because all estimates will be in the meansquare sense.

First, let us note some a-priori estimates for the above processes:

By the moment estimate in the Lipschitz case (cf. Corollary 5.2.5), we
get

cN,M := max
i=1,2

sup
t∈[ 0,T ]

E||X(i)
N,M (t)||2L2

ρ
<∞.

For arbitrary j ∈ N and i = 1, 2, we have

sup
t∈[ 0,T ]

E||V (i)
j (t)||2L2

ρ
≤ c

(
E||ξ(i)||2L2

ρ
+

j−1∑
k=0

sup
t∈[ tk,tk+1 ]

E||V (i)
k,j (t)||

2
L2

ρ

)
≤ cV (j) <∞

and similarly

sup
t∈[ 0,T ]

E||Z(i)
j (t)||2L2

ρ
≤ cZ(j) <∞.

So,

(6.26) sup
t∈[ 0,T ]

E[ ||V (i)
j (t)−X

(i)
N,M (t)||2L2

ρ
+ ||Z(i)

j (t)−X
(i)
N,M (t)||2L2

ρ
]

≤ cV,Z(j,N,M) <∞, i = 1, 2.
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From the definitions (6.13) and (6.14) of Z(i)
j and V (i)

j , i = 1, 2, we have

(6.27) Z(i)
j (t) = V

(i)
j (tk) +

t∫
tk

M
Σ(s,Z

(i)
j (s))

dWM (s)

+
t∫
tk

∫
L2

MC(s)x Ñ(ds, dx), i = 1, 2,

for any t ∈ [ tk, tk+1 ) and 0 ≤ k ≤ j − 1.
Furthermore, taking the solutions X(i)

N,M , i = 1, 2, in the strong form, we
have

(6.28)X(i)
N,M (t) = X

(i)
N,M (tk) +

t∫
tk

(AN (s)X(i)
N,M (s) + F (i)(s,X(i)

N,M (s))) ds

+
t∫
tk

M
Σ(s,·,X(i)

N,M (s))
dWM (s) +

t∫
tk

∫
L2

MC(s)(x) Ñ(ds, dx)

for any t ∈ [ tk, tk+1 ).

This allows us to express Z(i)
j (t)−X

(i)
N,M (t) in terms of

V
(i)
j (t)−X

(i)
N,M (t).

By the isometries for stochastic integrals w.r.t. Wiener processes and Pois-
son random measures, assumption (QI) on the Lévy measure corresponding
to Ñ , Lipschitz property (LC) for both f (i) and σ, the boundedness prop-
erty (LB) for σ and the boundedness of the operator AN , we get

E||V (i)
j (t)−X

(i)
N,M (t)||2L2

ρ

= E

∣∣∣∣∣
∣∣∣∣∣ξ(i) +

t∫
0

(AN (s)V (i)
j (s) + F (i)(s, V (i)

j (s))) ds+
tk+1∫
0

M
Σ(s,Z

(i)
j (s))

dWM (s)

+
tk+1∫
0

∫
L2

MC(s)(x) Ñ(ds, dx)

−
(
ξ(i) +

t∫
0

(AN (s)X(i)
N,M (s) + F (i)(s,X(i)

N,M (s))) ds+
t∫
0

M
Σ(s,X

(i)
N,M (s))

dWM (s)

+
t∫
0

MC(s)(x) Ñ(ds, dx)
)∣∣∣∣∣∣∣∣2

L2
ρ

≤ c(C(T ), c(N), C2,η)

(
M∑
n=1

[
tk+1∫
0

E||(M
Σ(s,Z

(i)
j (s))

−M
Σ(s,X

(i)
N,M (s))

)(en)||2L2
ρ
ds

+
tk+1∫
t

E||M
Σ(s,X

(i)
N,M (s))

(en)||2L2
ρ
ds

]
+

tk+1∫
t

E||C(s)||2L2
ρ
ds

+
t∫
0

E||V (i)
j (s)−X

(i)
N,M (s)||2L2

ρ
ds

)
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≤ c(T,M, c(N), CF (T ), cσ(T ), C2,η)

[
tk+1∫
0

E||Z(i)
j (s)−X

(i)
N,M (s)||2L2

ρ
ds

+(tk+1 − tk)

(
1 + sup

r∈[ 0,T ]
E||X(i)

N,M (r)||2L2
ρ

)
+ (tk+1 − tk)K2Tµρ(Θ)

+
t∫
0

E||V (i)
j (s)−X

(i)
N,M (s)||2L2

ρ
ds

]
≤ c(T,M,K, c(N), CF (T ), cσ(T ), C2,η)

[
tk+1∫
0

E||Z(i)
j (s)−X

(i)
N,M (s)||2L2

ρ
ds

+(tk+1 − tk)

(
1 + sup

r∈[ 0,T ]
E||X(i)

N,M (r)||2L2
ρ

)
+

t∫
0

E||V (i)
j (s)−X

(i)
N,M (s)||2L2

ρ
ds

]
=: c(T,M,K, c(N), CF (T ), cσ(T ), C2,η)

[
Bj(tk+1) +

t∫
0

E||V (i)
j (s)−X

(i)
N,M (s)||2L2

ρ
ds

]
for t ∈ ( tk, tk+1 ] and k ∈ {0, 1, . . . , j − 1}. With the help of (6.26) the
term Bj can be estimated by

Bj(tk+1)

:=
tk+1∫
0

E||Z(i)
j (s)−X(i)

N,M (s)||2L2
ρ
ds+(tk+1−tk)

(
1 + sup

r∈[ 0,T ]
E||X(i)

N,M (r)||2L2
ρ

)
≤ T sup

t∈[ 0,T ]
E[ ||V (i)

j (t)−X
(i)
N,M (t)||2L2

ρ
+ ||Z(i)

j (t)−X
(i)
N,M (t)||2L2

ρ
]

+ T
j

(
1 + sup

t∈[ 0,T ]
E||X(i)

N,M (t)||2L2
ρ

)
≤ T

[
cV,Z(j, ξ) + 1

j (1 + c(ξ(i)))
]

<∞.

Now we can apply Gronwall’s lemma, which leads to

(6.29) E||V (i)
j (t)−X

(i)
N,M (t)||2L2

ρ
≤ c(T,M, c(N), C(T ), cσ(T ), C2,η)Bj(tk+1)

for any t ∈ [ tk, tk+1 ), k ∈ {0, 1, . . . , j − 1}.

Let t ∈ [ tk, tk+1 ) for some k ∈ {0, 1, . . . , j − 1}. By (6.27) and (6.28) we get

E||Z(i)
j (t)−X

(i)
N,M (t)||2L2

ρ

≤ C
(
E||V (i)

j (tk)−X
(i)
N,M (tk)||2L2

ρ

+E

∣∣∣∣∣
∣∣∣∣∣ t∫tk (M

Σ(s,Z
(i)
j (s))

−M
Σ(s,X

(i)
N,M (s))

) dWM (s)

∣∣∣∣∣
∣∣∣∣∣
2

L2
ρ
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+E

[
t∫
tk

||AN (s)||2L(L2
ρ) ||X

(i)
N,M (s)||2L2

ρ
+ ||F (i)(s,X(i)

N,M (s))||2L2
ρ
ds

])
=: C(I1 + I2 + I3).

By the previous considerations, we have (cf. (6.29))

I1 ≤ c̄(T,M, c(N), C(T ), cσ(T ), C2,η)Bj(tk+1).

Concerning I2 and I3, we observe

I2 ≤ c(M, cσ(T ))
t∫
tk

E||Z(i)
j (s)−X

(i)
N,M (s)||2L2

ρ

and

0 ≤ I3 ≤ T
j c(T,N,C(T ))

(
1 + sup

r∈[ 0,T ]
E||X(i)

N,M (r)||2L2
ρ

)
≤ 1

j c(T,N,C(T ))(1 + cN,M ).

Summing all together, by the definition of Bj(tk+1) we get

E||Z(i)
j (t)−X

(i)
N,M (t)||2L2

ρ
≤ T

j (1 + c̄(T,N,C(T ))(1 + c(ξ(i)))

+c(T,M, c(N), C(T ), cσ(T ))
t∫
0

E||Z(i)
j (s)−X

(i)
N,M (s)||2L2

ρ
ds.

Then, Gronwall’s lemma finally implies

E||Z(i)
j (t)−X

(i)
N,M (t)||2L2

ρ
≤ T

j (1 + C̄)(1 + c(ξ(i)))eC̄t <∞,

where C̄ denotes the maximum of the two constants c̄ and c from the pre-
vious inequalities. Thus,

(6.30) lim
j→∞

E||Z(i)
j (t)−X

(i)
N,M (t)||2L2

ρ
= 0,

which proves Claim 2. �

From (6.15), we know that for all t ∈ [ 0, T ]

Z
(1)
j (t) ≤ Z

(2)
j (t), P -almost surely.

On the other hand, (6.30) implies the existence of a subsequence (Z(i)
j(l)(t))l∈N,

which P -almost surely converges in L2
ρ to X(i)

N,M (t) as l→∞.
This leads to
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X
(1)
N,M (t) ≤ X

(2)
N,M (t) in L2

ρ, P -a.s., for all t ∈ [ 0, T ],

which proves Lemma 6.1.3 (i). �

(ii) As in (i), we fix j ∈ N and set tk := kT
j , k = 0, 1, ..., j, such that

again we have a partition of [ 0, T ] into j intervalls of length T
j . We define

processes Z(i)
k,j , V

(i)
k,j from Hq(T ) in a recursive way. Compared to (6.10) and

(6.11) in the proof of (i), the processes change to

Z
(i)
0,j(t) := ξ(i) +

t∫
0

MC(s) dWM (s) +
t∫
0

∫
L2

MC(s)(x) Ñ(ds, dx),

V
(i)
0,j (t) := Z

(i)
0,j(t1) +

t∫
0

(AN (s)V (i)
0,j (s) + E(i)(s, V (i)

0,j (s)) +MC(s)(m)) ds,

for t ∈ [ 0, t1 ] and

Z
(i)
k,j(t) := V

(i)
k−1,j(tk) +

t∫
tk

MC(s) dWM (s) +
t∫
tk

∫
L2

MC(s)(x) Ñ(ds, dx),

V
(i)
k,j (t) := Z

(i)
k,j(tk+1) +

t∫
tk

(AN (s)V (i)
k,j (s) + E(i)(s, V (i)

k,j (s)) +MC(s)(m)) ds,

for t ∈ [tk, tk+1] and k = 1, 2, ..., j − 1.

Thus, we get the required comparison for the processes Z(i)
j (see Claim1

in the proof of (i)) as an immediate consequence of the solution indendence
of the stochastic integrals, whereas the comparison result for the processes
V

(i)
j follows analogously to the proof of (i).

The rest of the proof works analogously to the proof of (i) and is even
simpler, since only the drift coefficients are solution-dependent. � �

Remark 6.2.1: So far, in the proof of 6.1.3 (i) we needed the special
property (3.1) of the eigenvectors (en)n∈N of Q ∈ T +(L2), i.e.

sup
n∈N

||en||∞ <∞,

to control the diffusion terms (see (6.22) and (6.23)) corresponding to
σ: [ 0, T ]×Ω×R → R, which is Lipschitz in the third variable. In particular,
this means that we cannot apply this method to show a comparison theorem
for equation (6.1) with a Q-Wiener process W as in the so-called general
nuclear case (cf. Chapter 3) resp. for equation (1.2). In Chapter 8 below,
we solve this problem by approximating the QM -Wiener processes WM from
equation (6.4) by Wiener processes WM,L, given by
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WM,L(t) :=
M∑
n=1

√
anen,Lwn(t), t ∈ [ 0, T ],

where, for any 1 ≤ n ≤ M , (en,L)L∈N is a sequence of L2-valued func-
tions obeying (3.1) such that

lim
L→∞

||en,L − en||L2 = 0.

Thus, we could also prove a comparison theorem for equation (6.1) with
W being a Q-Wiener process for some Q ∈ T +(L2) not obeying (3.1). This
just requires an additional convergence result, namely for L→∞.

6.3 Proof of Lemma 6.1.4

(i) Let us fix N,M ∈ N:
The difference between the corresponding solutions X(i)

N,M and X
(i)
M can be

represented as

X
(i)
N,M (t)−X

(i)
M (t) = aN (ξ) + bN (F ) + aN (F ) + bN (Σ) + aN (Σ), t ∈ [ 0, T ],

with the terms defined by

aN (ξ) = [UN (t, 0)− U(t, 0)]ξ(i)

bN (F ) =
t∫
0

UN (t, s)[F (i)(s,X(i)
N,M (s))− F (i)(s,XM (s))] ds

aN (F ) =
t∫
0

[UN (t, s)− U(t, s)]F (i)(s,X(i)
M (s)) ds

bN (Σ) =
t∫
0

UN (t, s)[M
Σ(s,X

(i)
N,M (s))

−M
Σ(s,X

(i)
M (s))

] dWM (s)

aN (Σ) =
t∫
0

[UN (t, s)− U(t, s)]M
Σ(s,X

(i)
M (s))

dWM (s).

Let us first estimate the aN -terms.
By (A6), we have for all ϕ ∈ L2

ρ

lim
N→∞

sup
t∈[ 0,T ]

||[UN (t, s)− U(t, s)]ϕ||L2
ρ

= 0.

By the Banach-Steinhaus uniform boundedness principle for operators (see
e.g. [98], Theorem III.9), this implies
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sup
N∈N

sup
t∈[ 0,T ]

||UN (t, s)||L(L2
ρ) =: CU (T ) <∞.

Thus, limN→∞ ||aN (ξ)||2L2
ρ

= 0 and by Lebesgue’s dominated convergence
theorem

lim
N→∞

E||aN (ξ)||2L2
ρ

= 0.

Similarly, limN→∞ ||aN (F )||2L2
ρ

= 0, where we used the uniform bound

sup
N∈N

||UN (t, s)F (i)(s,X(i)
N,M )||2L2

ρ
≤ c(CU (t), C(T ))(1 + ||X(i)

N,M ||2L2
ρ
),

which is integrable due to the fact that X(i)
N,M ∈ Hq(T ).

Concerning aN (Σ), note that by Itô’s isometry

E||aN (Σ)||2L2
ρ

=
M∑
n=1

an
t∫
0

E||(UN (t, s)− U(t, s))M
Σ(s,X

(i)
M )
en||2L2

ρ
ds

≤
(

M∑
n=1

an

)(
sup
n∈N

||en||2∞
)

t∫
0

E||[UN (t, s)− U(t, s)]Σ(s,X(i)
M )||2L2

ρ
ds

→ 0, as N →∞,

where the integral on the right hand side tends to 0 as N → ∞ by the
previous step.
The bN -terms are estimated by the Lipschitz property of f and σ. Namely,

E||bN (F )||2L2
ρ
≤ c(c(N), cf (T ))

t∫
0

E||X(i)
N,M (s)−X

(i)
M (s)||2L2

ρ
ds

E||bN (Σ)||2L2
ρ
≤ c(M, c(N), cσ(T ))

t∫
0

E||X(i)
N,M (s)−X

(i)
M (s)||2L2

ρ
ds.

Alltogether, this gives us

E||X(i)
N,M (t)−X

(i)
M (t)||2L2

ρ

≤ C
(
(E||aN (ξ)||2L2

ρ
+ E||aN (F )||2L2

ρ
+ E||aN (Σ)||2L2

ρ
)

+c(M, c(N), cf (T ), cσ(T ))
t∫
0

E||X(i)
N,M (s)−X

(i)
M (s)||2L2

ρ
ds

)
.

Recall that by Corollary 5.2.5 (i), X(i)
N,M and X

(i)
M are time-continuous in

Lq(Ω;L2
ρ).

Applying Gronwall’s lemma, the first part of the claim follows by the fact
that the aN -terms tend to 0 for N →∞.

Next, we prove the convergence of X(i)
M to X(i) as M → ∞. We have,

for all t ∈ [ 0, T ],
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X
(i)
M (t)−X(i)(t) =

t∫
0

U(t, s)[F (i)(s, ω,X(i)
M (s))− F (i)(s, ω,X(i)(s))] ds

+
t∫
0

U(t, s)[Σ(s,X(i)
M (s))− Σ(s,X(i)(s))] dWM (s)

−
∞∑

n=M+1

t∫
0

√
an[U(t, s)Σ(s,X(i)(s))](en) dwn(s), P -a.s..

Analogously to the bN -terms above, by Itô’s isometry we have , for all
t ∈ [ 0, T ],

E||X(i)
M (t)−X(i)(t)||2L2

ρ
≤ c(M, c(T ), cf (T ), cσ(T ))

t∫
0

E||X(i)
M (s)−X(i)(s)||L2

ρ
ds

+
∞∑

n=M+1

an
t∫
0

E|| [U(t, s)MΣ(s,X(i)(s))en||2L2
ρ
ds.

Now, Gronwall’s Lemma yields

E||X(i)
M (t)−X(i)(t)||2L2

ρ
≤ cM (Σ)ec(M,c(T ),cf (T ),cσ(T ))t

with cM (Σ) given by

cM (Σ) :=
∞∑

n=M+1

an
t∫
0

E|| [U(t, s)MΣ(s,X(i)(s))en||2L2
ρ
ds.

In the nuclear case, we have

trQ :=
∞∑
n=1

an <∞

and hence

cM (Σ) =
∞∑

n=M+1

an
t∫
0

E|| [U(t, s)MΣ(s,X(i)(s))(en)||2L2
ρ
ds

≤ T

(
∞∑

n=M+1

an

)(
sup
n∈N

||en||2∞
)(

sup
t∈[ 0,T ]

E||Σ(t,X(i)(t))||2L2
ρ

)
→ 0 as M →∞.

Here, we used the Lipschitz property of Σ and (5.1) (with q = 2).

In the cylindrical case , we also have

cM (Σ) =
∞∑

n=M+1

t∫
0

E|| U(t, s)MΣ(s,X(i)(s))(en)||2L2
ρ
→ 0 as M →∞.

Here, we used the bound
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(6.31)
∞∑

n=M+1

E|| U(t, s)MΣ(s,X(i)(s))(en)||2L2
ρ

≤ E||U(t, s)MΣ(s,X(i)(s))||2L2(L2,L2
ρ)

≤ c(T )(t− s)−ζE||Σ(s,X(i)(s))||2L2
ρ

and Lebesgue’s dominated convergence theorem. Finally, by the Gronwall-
Bellman lemma we get

lim
M→∞

E||X(i)
M (t)−X(i)(t)||2L2

ρ
→ 0 as M →∞,

which finishes the proof of (i). �

(ii) Let us first fix an arbitrary M ∈ N.
For any N ∈ N, setting

F (i)(t, ϕ) := E(i)(t, ϕ) +MC(t)m for (t, ϕ) ∈ [ 0, T ]× L2
ρ,

the equations (6.8) and (6.9) become

dX
(i)
N,M (t) = (AN (t)X(i)

N,M (t) + F (i)(t,X(i)
N,M (t)) ) dt

+MC(t)dWM (t)
(6.32)

+
∫
L2

MC(t)x Ñ(ds, dx)

X
(i)
N,M (0) = ξ(i),

and

dX
(i)
M (t) = ( A(t)X(i)

M (t) + F (i)(t,X(i)
M (t)) ) dt

+MC(t)dWM (t)
(6.33)

+
∫
L2

MC(t)x Ñ(ds, dx)

X
(i)
M (0) = ξ(i).

Thus, the convergence of X(i)
N,M to X(i)

M as N →∞ follows from (i).

Concerning the convergence of X(i)
M to X(i) as M →∞ note that

X
(i)
M (t)−X(i)(t) =

t∫
0

U(t, s)[E(i)(s, ω,X(i)
M (s))− E(i)(s, ω,X(i)(s))] ds

−
∞∑

n=M+1

t∫
0

√
anU(t, s)c(s)gn dwn(s)

for all t ∈ [ 0, T ] and arbitrary M ∈ N.
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Thus, applying Gronwall’s lemma, we get

E||X(i)
M (t)−X(i)(t)||2L2

ρ
≤ cM (C)ecE(T )t

with cE(T ) := max{ce(1)(T ), ce(2)(T )} and

cM (C) :=
∞∑

n=M+1

an
t∫
0

E||U(t, s)MC(s)gn||2L2
ρ
ds.

Hence,

cM (C) ≤ K2T

(
∞∑

n=M+1

an

)sup
n∈N

||gn||2L2︸ ︷︷ ︸
=1

 → 0 as M →∞.

Here, we used the boundedness of c, the fact that Q is trace class and
the fact that (gn)n∈N is an orthonormal basis of L2 ⊂ L2

ρ.
Thus, we get (ii). � �
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Chapter 7

Main results in the case of
non-Lipschitz drift and
additive jump noise

This chapter contains the main results of this work in the case of non-
Lipschitz drift, Lipschitz diffusion and additive jump resp. jump diffusion
coefficients.
We first show existence in the case of an additive Poisson noise added to the
equation considered by Manthey and Zausinger in [76]. This is just equation
(1.1) with the coefficient Γ being independent of the solution. Furthermore,
we consider equation (1.2) with the coefficient Σ being independent of the
solution, which corresponds to the case of additive Lévy noise. More pre-
cisely, for Θ ⊂ Rd and ρ ∈ N∪{0} such that µρ(Θ) <∞, we show existence
results for

dX(t) = (A(t)X(t) + F (t,X(t)))dt+MΣ(t,X(t))dW (t)
+
∫
L2

MC(t)x Ñ(dt, dx), t ∈ [ 0, T ]

(7.1)
X(0) = ξ(i)

resp.

dX(t) = (A(t)X(t) + E(i)(t,X(t)))dt+MC(t)dL(t), t ∈ [ 0, T ]
(7.2)

X(0) = ξ(i).

In both equations the solution-independent jump resp. jump diffusion coef-
ficient C is defined from a uniformly bounded function c: [ 0, T ] × Ω → R
(for more details on this function, see Section 7.1 below). Since we always

217
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have µρ(Θ) <∞, we use the shortened notations L2, L2
ρ and L2ν

ρ instead of
L2(Θ), L2

ρ(Θ) and L2ν
ρ (Θ).

Our considerations are divided into two cases.

Case (A) We suppose that f resp. e generating F resp. E by (NEM)
fulfills the condition (PG) from the introduction with ν = 1, i.e. f resp. e
is of at most linear growth.
An L2

ρ-valued initial condition ξ fulfills E||ξ||q
L2

ρ
<∞ for some q ≥ 2.

We show existence of a solution X ∈ Hq(T ) starting from the above ξ.

Case (B) We suppose that f resp. e generating F resp. E by (NEM)
fulfills condition (PG) from the introduction with ν > 1.
An L2

ρ-valued initial condition ξ obeys E||ξ||2νL2ν
ρ
<∞ for the above ν.

We show existence of a solution X ∈ Gν(T ) starting from the above ξ. A
crucial point in this proof will be the additional assumption that the Lévy
measure associated to the compensated Poisson random measure (equation
(1.1)) resp. the Lévy process (equation (1.2)) obeys (QI) with q = 2ν2,
which seems to be a natural condition in view of the main existence result
in [80].

Finally, given some restrictions on Θ, the evolution operator U and the
drift coefficients, with the help of Marinelli’s and Röckner’s paper [80] (see
Proposition 7 there) we even get a uniqueness result (see Theorem 7.1.6
below).

For an exact description of the setting, see Section 7.1 below.

Let us outline the structure of this chapter.
First, in Section 7.1 we present the explicit setting and the main existence
and uniqueness results for equation (7.1) and equation (7.2). Sections 7.2
and 7.3 are devoted to the proof of the above results. The scheme of prov-
ing the existence result is quite standard and goes along the lines of proving
Theorem 3.4.1. in [76]. In particular, we use the same approximation of
the non-Lipschitz drifts as Manthey and Zausinger did in [76]. The proof
is based on the comparison method derived in Chapter 6. Of course, com-
pared to Manthey’s and Zausinger’s case, additional technical difficulties are
caused by the presence of driving jump terms. Similarly to Chapter 5, this
is reflected in the use of the conditions (A5)/ (A5)* for the almost strong
evolution operator U . Again, we do not have pathwise time-continuity re-
sults but càdlàg versions of the solutions in the case of the evolution operator
U obeying (A7) and the jump resp. jump diffusion coefficients being uni-
formly bounded.
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For the whole chapter, let (Ω,F , P ) and (Ft)t∈[ 0,T ] with some T > 0 be
as in Section 1.2.

7.1 The main results of this chapter

In this section, we give the exact settings and state the main existence and
uniqueness results of this chapter.
We assume:

• (A(t))t∈[ 0,T ] generates an almost strong evolution operator in L2
ρ in

the sense of 2.1.1.

• σ: [ 0, T ]×Ω×R → R generating Σ by (NEM) is PT ⊗B(R)/B(R)-
measurable and fulfills (LC) and (LB).

• e, f : [ 0, T ]× Ω× R → R generating E, F by (NEM) are
PT ⊗ B(R)/B(R)-measurable, continuous in the third variable and
fulfill (LG) and(PG) with exponent ν ≥ 1. (to recall (PG) and
(LG) see Section 3.1).

• c: [ 0, T ]× Ω → R defining C by

(C(t, ω))(θ) := c(t, ω), θ ∈ Θ

is PT /B(R)-measurable and bounded, i.e.

(7.3) sup
(t,ω)∈[ 0,T ]×Ω

|c(t, ω)| =: K <∞.

• W is a Q-Wiener process in L2 such that either Q ∈ T +(L2) and the
system of eigenvectors (en)n∈N of Q obeys (3.1) (called the nuclear
case below) or Q = I (called the cylindrical case below).

• L is a Lévy process such that the corresponding Lévy measure η obeys
(SI). This yields the Lévy-Itô decomposition (2.16) (cf. Theorem
2.4.13 above) in L2 with a Q-Wiener process such that Q ∈ T +(L2)
(referred to as the general nuclear case below).

In this setting, we look for solutions to (7.1) resp. (7.2) in the following sense:

Definition 7.1.1: (i) In the case ν = 1, given an initial condition
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ξ ∈ L2
ρ as in Case (A), an Hq(T )-valued process X is called a mild solution

to (7.1) resp. (7.2) if, P -almost surely, we have for all t ∈ [ 0, T ] in L2
ρ

(7.4)X(t) = U(t, 0)ξ +
t∫
0

U(t, s)F (s,X(s))ds

+
t∫
0

U(t, s)MΣ(s,X(s))dW (s)

+
t∫
0

∫
L2

U(t, s)MC(s)(x) Ñ(ds, dx)

resp.

(7.5)X(t) = U(t, 0)ξ +
t∫
0

U(t, s)E(s,X(s))ds+
t∫
0

U(t, s)MC(s)dL(s).

(ii) In the case ν > 1, given an initial condition ξ ∈ L2ν
ρ as in Case (B), a

Gν(T )-valued process X is called a solution to (7.1) resp. (7.2) if (7.4) resp.
(7.5) holds true in L2

ρ, P -almost surely, for all t ∈ [ 0, T ].

This includes the requirement that the right hand sides in (7.4) resp. (7.5)
are well-defined.

Our first main result describes the case of drifts having at most linear growth,
i.e. when (PG) holds with ν = 1.

Theorem 7.1.2: Suppose the almost strong evolution operator U gener-
ated by (A(t))t∈[ 0,T ] has properties (A0)–(A2) and (A6).
Let (PG) be fulfilled with exponent ν = 1 both for e and f . Suppose that
q ∈ ( 2

1−ζ ,
2
ζ ) for ζ from (A2) with the additonal assumption that ζ ∈

[
0, 1

2 )
and the initial condition ξ is as in Case (A).
Futrhermore, assume that the integrability condition (QI) for the Lévy mea-
sure η is fulfilled with the above q.
Finally, let Γ in (1.1) resp. Σ in (1.2) be replaced by C, which corresponds
to the case of additive driving Lévy noise.

Then:
(i) There exists a solution X ∈ Hq(T ) to (7.1) in the sense of 7.1.1 (i).
The process t 7→ X(t) is continuous in Lq(Ω;L2

ρ).
Furthermore, we have the estimate

(7.6) sup
t∈[ 0,T ]

E||X(t)||q
L2

ρ
≤ c(q,K, T, c(T ), cf (T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

with a positive constant on the right hand side.
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(ii) There exists a solution X ∈ Hq(T ) to (7.2) in the sense of 7.1.1 (i).
Furthermore, t 7→ X(t) is continuous in Lq(Ω;L2

ρ) and we have the estimate

(7.7) sup
t∈[ 0,T ]

E||X(t)||q
L2

ρ
≤ c(q,K, T, c(T ), ce(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

with a positive constant on the right hand side.

Both in (i) and (ii), under the additional assumption (A7) and the as-
sumption that σ obeys (7.3), there is a càdlàg version of the solution process
[ 0, T ] 3 t 7→ X(t) ∈ L2

ρ.

Remark 7.1.3: Actually, in the assumptions of the previous theorem,
we could also assume (A5)* with ν = 1 instead of (A2) in the nuclear case
in claims (i) and (ii) (see Remark 3.4.2 (ii) and Theorem 4.1 above).

The second result covers the case of a drift having at most polynomial
growth, i.e. the drift obeys (PG) with exponent ν > 1. Let us stress
that, in contrast to the existence and uniqueness result in the Lipschitz case
(cf. Theorem 5.2.2 above), the solutions take their values in L2ν

ρ but are
time-continuous only in L2(Ω;L2

ρ). This is due to the polynomial growth of
order ν > 1 of f resp. e (see also Remark 5.1.11 (ii)).

Theorem 7.1.4: Suppose the almost strong evolution operator U gener-
ated by (A(t))t∈[ 0,T ] has properties (A0)– (A4), (A5)* and (A6) (note
that in the nuclear case (A2) and (A4) can be omitted, see Proposition
3.4.3).
Furthermore, let e, f fullfill (PG) with an exponent ν ∈ ( 1

1−ζ ,
1
ζ ) with

ζ from (A2) (resp. (A5)*) obeying ζ ∈
[
0, 1

2 ) .
Suppose the initial condition ξ is as in Case (B). Assume that the integra-
bility condition (QI) for the Lévy measure η is fulfilled with q = 2ν2.

Then:
(i) There exists a solution X ∈ Gν(T ) to (7.1) in the sense of 7.1.1 (ii).
The process t 7→ X(t) is continuous in L2(Ω;L2

ρ). Furthermore, we have the
estimate

(7.8) sup
t∈[ 0,T ]

E||X(t)||2νL2ν
ρ
≤ c(ν, ζ,K, T, c(T ), cf (T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

with a positive constant on the right hand side.

(ii) There exists a solution X ∈ Gν(T ) to (7.2) in the sense of 7.1.1 (ii).
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Furthermore, t 7→ X(t) is continuous in L2(Ω;L2
ρ) and we have the estimate

(7.9) sup
t∈[ 0,T ]

E||X(t)||2νL2ν
ρ
≤ c(ν, ζ,K, T, c(T ), ce(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

with a positive constant on the right hand side.

Again, assuming additionally (A7) and that σ defining Σ by (NEM) obeys
(7.3), there is a càdlàg version of the process [ 0, T ] 3 t 7→ X(t) ∈ L2

ρ both
in (i) and (ii).

Remark 7.1.5: (i) In the case of equation (1.2), a sufficient condition
for well-definedness of the stochastic convolutions in (7.4) is just (A5)*
with ϕ = 1 (see Remarks 3.4.9 and 4.10).

(ii) The integrability condition (QI) with q = 2ν2 will be crucial in Step2
in the proof of Theorem 7.1.4 (see the estimate of the term Ī

(2)
M on p.245).

The proofs of Theorem 7.1.2 and 7.1.3 will be done in Sections 7.1.2 and
7.1.3.

Finally, in the special case that (A(t))t∈[ 0,T ] in (7.1) and (7.2) is replaced by
the generator A of a C0-semigroup, we get the following uniqueness result,
which is based on the uniqueness results of the two papers [80] and [81] by
Marinelli and Röckner.

Theorem 7.1.6: For this theorem, let Θ ⊂ Rd be an open bounded set with
smooth boundary ∂Θ. So, as described in the introduction of the chapter,
we let ρ = 0, i.e. L2ν

ρ (Θ) = L2ν(Θ) for any ν ≥ 1.

(i) Let ν = 1. Suppose we have E||ξ||q
L2 < ∞ with some q ≥ 2 as in

Theorem 7.1.2 for the initial condition ξ.
Suppose that A ∈ L(L2(Θ)) admits a unique extension to a strongly contin-
uous semigroup of positive contractions on L2(Θ).
Let f , σ, c and η obey the assumptions from Theorem 7.1.2 (i). Further-
more, let f be uniformly maximally monotone on [ 0, T ]×Ω, i.e. there
is a positive constant cf (T ) such that

R 3 y 7→ f(t, ω, y) + cf (T )y ∈ R

is a monotone function for any (t, ω) ∈ [ 0, T ]× Ω.
Now, if the Wiener process W obeys the assumptions of the cylindrical case
(cf. Chapter 3), then the solution to (7.1) (in the sense of Definition 7.1.1
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above) existing by 7.1.2 (i) is unique.

(ii) Let ν > 1. Suppose we have E||ξ||2νL2ν < ∞ with ν obeying the as-
sumptions of Theorem 7.1.4 for the initial condition ξ.
Suppose that A ∈ L(L2(Θ)) admits a unique extension to a strongly contin-
uous semigroup of positive contractions on L2ν(Θ) and L2ν2

(Θ).
Let f , σ, c and η obey the assumptions from Theorem 7.1.4 (i). Further-
more, let f be uniformly maximally monotone on [ 0, T ]×Ω in the sense of
(i).
Now, if the Wiener process W obeys the assumptions of the cylindrical case
(cf. Chapter 3), then the solution to (7.1) (in the sense of Definition 7.1.1
above) existing by 7.1.4 (i) is unique.

Proof: See Section 7.4. below.

In the proofs, we want to apply our knowledge about existence and unique-
ness in the case of Lipschitz drift functions e, f . To this end, we prepare
the following definitions and lemmata.

Definition 7.1.7: Consider a real-valued, PT ⊗ B(R)-measurable func-
tion f : [ 0, T ]× Ω× R → R and define

(7.10) fN (t, ω, y) := f(t, ω, y) ∨ (−N)
(7.11) fN,M (t, ω, y) := inf

u∈R
{fN (t, ω, u) +M |u− y|}

for all t ∈ [ 0, T ], ω ∈ Ω, y ∈ R and N,M ∈ N.

This construction implies the pointwise monotone convergence

(7.12) fN,M (t, ω, y) ↑ fN (t, ω, y) as M →∞

and

(7.13) fN (t, ω, y) ↓ f(t, ω, y) as N →∞.

Note that (7.12) and (7.13) (and the Comparison theorem 6.1.1) will be
crucially used in the proof.
Clearly, fN and fN,M are PT ⊗ B(R)-measurable as well.

Lemma 7.1.8: The functions fN,M introduced in 7.1.7 fulfill Lipschitz con-
dition (LC) and the boundedness assumption (LB),whereby the correspond-
ing constants can be chosen uniformly for N ∈ N.

Proof: Let N,M ∈ N be arbitrary.
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We first prove the Lipschitz property (LC). Indeed, given
y, z, u ∈ R, we have

M |z − y| = M |y − z| = M | − (u− y) + u− z|
≥ M |u− z| −M |u− y|
= (fN (t, ω, u) +M |u− z|)− (fN (t, ω, u) +M |u− y|)
≥ fN,M (t, ω, z)− (fN (t, ω, u) +M |u− y|),

which implies fN,M (t, ω, z) − fN,M (t, ω, y) ≤ M |z − y|. By changing the
roles of y and z, we get

fN,M (t, ω, y)− fN,M (t, ω, z) ≤M |y − z| = M |z − y|,

which shows (LC) for fN,M with the Lipschitz constant M .
Concerning the boundedness assumption (LB), let us note that by the con-
struction we get

(7.14) −N ≤ fN,M (t, ω, 0) ≤ fN (t, ω, 0) ≤ cf (T )

and thus

|fN,M (t, ω, 0)| ≤ c(N)

with the constant c(N) := max{N, cf (T )}, which is the same for all M ∈ N
and ω ∈ Ω. �

Remark 7.1.9: (i) A standard example of drift terms e(t, ω, y), which
fulfill the polynomial growth condition (PG) and the one-sided linear growth
condition (LG), are polynomials of the form

e(y) =
n∑
k=0

bky
k, bn < 0, bk ∈ R, 0 ≤ k ≤ n− 1, n odd.

The coefficients bk = bk(t, ω), 0 ≤ k ≤ n have to be bounded functions
of
(t, ω) ∈ [ 0, T ]× Ω.

(ii) Let us note that the proof of Theorem 7.1.6 will be based on the unique-
ness condition from Marinelli’s and Röckner’s paper [80]. Recall that in this
paper the authors also need the assumption (QI) to be fulfilled with q = 2ν2

in the case of the drift being of polynomial growth of at most order ν. So
this condition from 7.1.4 seems to be quite natural in such framework.

(iii) As compared to the existence and uniqueness results in Chapter 5,
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we assume that ζ ∈ ( 0, 1
2 ) for ζ from (A2) right from the start. By this

assumption the intervall ( 2
1−ζ ,

2
ζ ) is non-empty, which is needed to prove the

existence of càdlàg versions of the solutions.

We finish this section by describing the outline of the proofs in the fol-
lowing sections. In general, all proofs run along the lines of the proof of
Theorem 3.4.1 from [76], but of course we have to take into account the
presence of the jump terms.

The scheme of proving Theorems 7.1.2 and 7.1.3

The proofs are devided into five steps:

Step 1: We define auxilliary functions ḡ and h̄, which later will help us
to estimate the non-Lipschitz drift term in each of the proofs.

Step 2: We show existence and uniquness of solutions XN,M corresponding
to the case of F resp. E being replaced by FN,M resp. EN,M . Here, FN,M
resp. EN,M are defined by (NEM) from fN,M resp. eN,M from (7.11).
With the help of the Comparison Theorem 6.1.1, we further establish certain
M -independent estimates of XN,M , which will be crucial for the rest of the
proof.

Step 3: We construct processes XN := lim
M→∞

XN,M , which will be our

candidates for solutions to the equations with F resp. E being replaced
by FN resp. EN , being defined by (NEM) from fN from (7.10) resp. en
defined analogously to fN . In this step, we only check the convergence in
the appropriate spaces.

Step 4: We show that the processes XN from Step 3 solve the equation,
when F is replaced by FN resp. E is replaced by EN .

Step 5: We first show that there are N -independent estimates for solu-
tions XN from Step 4.
Then, we define candidates X := lim

N→∞
XN for solutions to the initial equa-

tions and prove that they really solve the equations (7.1) and (7.2).
Finally, we prove the required estimates on the moments of the solution.
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7.2 Proof of Theorem 7.1.2

Step 1: Let us define mappings ḡ, h̄: R → R by

(7.15) ḡ(v) := min

(
inf

0≤u≤v
(t,ω)∈[ 0,T ]×Ω

f(t, ω, u)1[0,∞)(v), 0

)
−cf (T )(1−v)1(−∞,0)(v),

(7.16) h̄(v) := max

 sup
v≤u≤0

(t,ω)∈[ 0,T ]×Ω

f(t, ω, u)1(−∞,0](v), 0

+cf (T )(1+v)1(0,∞)(v).

Note that for all v ∈ R

inf
0≤u≤v

(t,ω)∈[ 0,T ]×Ω

f(t, ω, u) ≥ −cf (T )(1 + |v|)

and

sup
v≤u≤0

(t,ω)∈[ 0,T ]×Ω

f(t, ω, u) ≤ cf (T )(1 + |v|),

which implies

(7.17) ḡ(v) ≥ −cf (T )[(1 + |v|)1[0,∞)(v) + (1− v)1(−∞,0)(v)]

and

(7.18) h̄(v) ≤ cf (T )[(1 + |v|)1(−∞,0](v) + (1 + v)1[0,∞)(v)].

Since f fulfills (LG), ḡ and h̄ obey, for (t, ω, v) ∈ [ 0, T ]× Ω× R

(7.19) ḡ ≤ 0 , ḡ(v) ≤ f(t, ω, v),

(7.20) h̄ ≥ 0 , h̄(v) ≥ f(t, ω, v).

Furthermore, ḡ1[ 0,∞ ) and h̄1(−∞,0 ] are decreasing functions on R.
Of course, (7.19) and (7.20) also hold true, when f is replaced by e in (7.15)
and (7.16).
These auxiliary functions help us to estimate the integral IF (X), defined in
Section 5.1, in the non-Lipschitz case.

Step 2: Given arbitrary N,M ∈ N, we know that the function fN,M defined
by (7.10)/(7.11) from 7.1.5/7.1.6 is PT ⊗B(R)-measurable, obeys (LC) and
(LB) and is such that fN,M is PT ⊗ B(R)-measurable.
Of course, this also holds true for the function eN,M defined analogously to
the fN,M .



7.2. PROOF OF THEOREM 7.1.2 227

Thus, the existence and uniqueness results from Section 5.2 are applica-
ble. By 5.2.1 (applied to the special cases Γ = C resp. Σ = C), there are
processes XN,M ∈ Hq(T ) solving equations (7.1) resp. (7.2), when f resp. e
is replaced by fN,M resp. eN,M .
To proceed along the lines of Manthey’s and Zausinger’s proof, we need to
find M -independent estimates for the moments of XN,M .

(i) The Poisson noise case - equation (7.1)

By 5.2.1, the map t 7→ XN,M (t) is continuous in Lq(Ω;L2
ρ). Since

fN,M ≤ fN,M+1, by Theorem 6.1.1 we have

(7.21) XN,M (t) ≤ XN,M+1(t), P -a.s., for any t ∈ [ 0, T ].

We denote solutions to equation (7.1) as follows:

• by X̄0,M in the case of initial condition ξ+ := ξ∨0 and drift F0,M resp.
E0,M ,

• by XN,M in the case of initial condition ξ− := ξ ∧ 0 and drift F−N,M
resp. E−N,M ,

• by V in the case of initial condition ξ = 0 and drift F = 0 resp. E = 0.

We observe that, for all N,M ∈ N,

(7.22) f−N,M ≤ fN,M ≤ f0,M ,

(7.23) f−N,M ≤ 0 ≤ f0,M ,

and analogous estimates hold for the e-terms. Hence, by 6.1.1 we have
in L2

ρ

(7.24) XN,M (t) ≤ XN,M (t) ≤ X̄0,M (t),
(7.25) XN,M (t) ≤ V (t) ≤ X̄0,M (t),

P -almost surely, for any t ∈ [ 0, T ] and N,M ∈ N.

Note that similarly to Section 5.2, all the solutions above are time-continuous
in Lq(Ω;L2

ρ) and, by assumption (7.3) on c, have a càdlàg version under the
additional assumption that U obeys (A7).

In view of (7.24), we show the M -independent estimate required for XN,M
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by showing an M -independent estimate both for X̄0,M and XN,M .

By (5.25) and the boundedness assumption (7.3) on c, we first have

sup
t∈[ 0,T ]

E||X̄0,M (t)||q
L2

ρ
≤ c(q,K, T, c(T ), cf0,M

(T ), cσ(T ), Cq,η)(1 + E||ξ+||q
L2

ρ
)

with an M -dependent constant in the right hand side.
To find an M -independent estimate, let us define, for t ∈ [ 0, T ],

Ī(1)(t) := E||U(t, 0)ξ+||q
L2

ρ
,

Ī
(2)
M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)F0,M (s, X̄0,M (s)) ds
∣∣∣∣∣∣∣∣q
L2

ρ

,

Ī
(3)
M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)MΣ(s,X̄0,M (s)) dW (s)
∣∣∣∣∣∣∣∣q
L2

ρ

and

I(4)(t) := E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)MC(s)(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
q

L2
ρ

.

Thus, we have for each M ∈ N

(7.26) E||X̄0,M (t)||q
L2

ρ
≤ c(q)[Ī(1)(t) + Ī

(2)
M (t) + Ī

(3)
M (t) + I(4)(t)].

We start with the obvious estimate

Ī(1)(t) ≤ cq(T )E||ξ+||q
L2

ρ
≤ cq(T )E||ξ||q

L2
ρ

for the first term.
To handle the second term, we note that by (7.16), (7.18) and (7.22) we have

(7.27) f0,M (t, v) ≤ h(v) ≤ cf (T )[(1 + |v|)1(−∞,0](v) + (1 + v)1[0,∞)(v)].

This implies
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Ī
(2)
M (t) ≤ c(q, T, c(T ))E

t∫
0

||h̄(X̄0,M (s))||q
L2

ρ
ds

≤ c(q, T, c(T ), cf (T ))E
(

t∫
0

∫
Θ

[
(1 + X̄2

0,M (s, θ))1{X̄0,M (s,θ)>0}(s, θ)

+(1 + |V (s, θ)|)1{X̄0,M (s,θ)<0}(s, θ)
]
µρ(dθ)

) q
2
ds

≤ c(q, T, c(T ), cf (T ))

(
1 +

t∫
0

E||X̄0,M (s)||q
L2

ρ
ds+

T∫
0

E||V (s)||q
L2

ρ
ds

)
≤ c(q,K, T, c(T ), cf (T ), cσ(T ), Cq,η)

(
1 +

t∫
0

E||X̄0,M (s)||q
L2

ρ
ds

)
.

Here, we used (7.20) in the first, (7.18) in the second and estimate (5.33)
for the V -term in the fourth step.
By the Burkholder-Davis-Gundy inequality 2.5.4/2.5.6, condition (A2) for
U , Hölder’s inequality, the fact that

q > 2
1−ζ ⇐⇒ qζ

q−2 > −1

and (LC), (LB) for σ, we get (cf. Proposition 3.4.1)

Ī
(3)
M (t) ≤ c(q, c(T ))E

(
t∫
0

(t− s)−ζ ||Σ(s, X̄0,M (s))||2L2
ρ
ds

) q
2

≤ c(q, T, ζ, c(T ), cσ(T ))
(

1 +
t∫
0

E||X̄0,M (s)||q
L2

ρ
ds

)
.

By the Bichteler-Jacod inequality 2.6.10, (QI) for η, (A2) for U , the fact
that

q < 2
ζ ⇐⇒ ζq

2 < 1

and the assumption (7.3) on c, we get (cf. Proposition 4.1)

Ī(4)(t) ≤ C
1
q
q,η

t∫
0

(t− s)−
ζq
2 E||C(s)||q

L2
ρ
ds ≤ c(q, ζ,K, T,Cq,η).

Summing up in (7.26), we thus get, for t ∈ [ 0, T ],

E||X̄0,M (t)||q
L2

ρ
≤ c(q, ζ,K, T, c(T ), cf (T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

+c(q, ζ,K, T, c(T ), cf (T ), cσ(T ), Cq,η)
t∫
0

E||X̄0,M (s)||q
L2

ρ
ds.

Therefore, by Gronwall’s Lemma we get

E||X̄0,M (t)||q
L2

ρ
≤ c̄(q, ζ,K, T, c(T ), cf (T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)
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for arbitrary M ∈ N and t ∈ [ 0, T ]. Thus, we have proven that

(7.28) sup
t∈[ 0,T ]

M∈N

E||X̄0,M (t)||q
L2

ρ
≤ c̄(q, ζ,K, T, c(T ), cf (T ), cσ(T ), Cq,η)(1+E||ξ||q

L2
ρ
).

The fact that (7.20) holds true uniformly in M ∈ N was essential for getting
the above estimate, which shows that the X̄0,M are uniformly bounded inM .

Next, we consider XN,M with arbitrary N,M ∈ N. For any t ∈ [ 0, T ],
we define

I(1)(t) := E||U(t, 0)ξ−||q
L2

ρ
,

I
(2)
N,M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)F−N,M (s,XN,M ) ds
∣∣∣∣∣∣∣∣q
L2

ρ

and

I
(3)
N,M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)MΣ(s,XN,M (s)) dW (s)
∣∣∣∣∣∣∣∣q
L2

ρ

.

Thus, we have for any t ∈ [ 0, T ] (with Ī(4) as in (7.26))

E||XN,M (t)||q
L2

ρ
≤ c(q)[I(1)(t) + I

(2)
N,M (t) + I

(3)
N,M (t) + I(4)(t)].

Analogously to the consideration of Ī(3)
M above, we get

I
(3)
N,M (t) ≤ c(q, ζ, T, c(T ), cσ(T ))

(
1 +

t∫
0

E||XN,M (s)||q
L2

ρ

)
.

As obviously I(1)(t) ≤ c(q, c(T ))E||ξ||q
L2

ρ
and I(4) has already been calcu-

lated before, it remains to estimate I(2)
N,M (t).

Since by the construction

−N ≤ f−N,M (t, ω, y) ≤ 0 for any (t, ω, y) ∈ [ 0, T ]× Ω× R,

we immediately get

sup
t∈[ 0,T ]

M∈N

I
(2)
N,M (t) ≤ c(N, q, T, c(T )) <∞.

Thus, putting all the estimates together, we have

E||XN,M ||
q
L2

ρ
≤ c(N, q, ζ,K, T, c(T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

+c(q, ζ, T, c(T ), cσ(T ))
t∫
0

E||XN,M (s)||q
L2

ρ
ds,
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and hence by Gronwall’s lemma

E||XN,M ||
q
L2

ρ
≤ c(N, q, ζ,K, T, c(T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
).

As the previous estimate holds for arbitrary t ∈ [ 0, T ] and M ∈ N, we
have shown that

(7.29) sup
t∈[ 0,T ]
M∈N

E||XN,M ||
q
L2

ρ
≤ c(N, q, ζ,K, T, c(T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
).

Finally, by (7.24), (7.28) and (7.29) we get

(7.30) sup
t∈[ 0,T ]

M∈N

E||XN,M ||qL2
ρ
≤ c(N, q, ζ,K, T, c(T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

with c = c̄+ c.

(ii) The Lévy noise case - equation (7.2)

Now, we replace Σ by the solution independent coefficient C.
For the Q-Wiener process W appearing in the Lévy-Itô decomposition of
L we cannot guarantee the representation (2.5) with an orthonormal basis
(en)n ⊂ L2 obeying (3.1). So, W is as in the general nuclear case (cf. Sec-
tion 3.4) but not necessarily as in the nuclear case.
We denote the solutions to (7.2) as follows:

• by X̄0,M if ξ+ and E0,M replace ξ and E,

• by XN,M if ξ− and E−N,M replace ξ and E, and

• by V if 0 and 0 replace ξ and E.

Obviously, we get the relations (7.24) and (7.25) again. By (5.25), we have

sup
t∈[ 0,T ]

E||X̄0,M (t)||q
L2

ρ
≤ c(q,M)(1 + E||ξ+||q

L2
ρ
) <∞.

For any t ∈ [ 0, T ], we define

Ī(1)(t) := E||U(t, 0)ξ+||q
L2

ρ
,

Ī
(2)
M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)E0,M (s, X̄0,M (s)) ds
∣∣∣∣∣∣∣∣q
L2

ρ

and

I(3)(t) := E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)MC(s) dL(s)
∣∣∣∣∣∣∣∣q
L2

ρ

.
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Thus, for t ∈ [ 0, T ], we have

(7.32) E||X̄0,M (t)||q
L2

ρ
≤ c(q)[Ī(1)(t) + Ī

(2)
M (t) + Ī(3)(t)].

Obviously Ī(1)(t) ≤ c(q, c(T ))E||ξ||q
L2

ρ
.

By the same arguments as in (i), we get

Ī
(2)
M (t) ≤ c(q,K, T, c(T ), ce(T ), Cq,η)

(
1 +

t∫
0

E||X̄0,M (s)||q
L2

ρ
ds

)
.

Applying first the Lévy-Itô decomposition 2.4.13 and then the Burkholder-
Davis-Gundy and Bichteler-Jacod inequalities, we obtain for q < 2

ζ that

I(3)(t) ≤ c(q, ζ, T,K, c(T ), Cq,η).

Thus, by (7.32), we have for t ∈ [ 0, T ]

E||X̄0,M (t)||q
L2

ρ
≤ c(q, ζ,K, T, c(T ), ce(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

+c(q,K, T, c(T ), ce(T ), Cq,η)
t∫
0

,E||X̄0,M (s)||q
L2

ρ
ds.

Hence, by Gronwall’s Lemma we conclude that

(7.33) sup
t∈[ 0,T ]

M∈N

E||X̄0,M (t)||q
L2

ρ
≤ c(q, ζ,K, T, c(T ), ce(T ), Cq,η)(1 + E||ξ||q

L2
ρ
).

Next, we consider XN,M for arbitrary N,M ∈ N. Setting

I(1)(t) := E||U(t, 0)ξ−||q
L2

ρ

and

I
(2)
N,M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)E−N,M (s,XN,M ) ds
∣∣∣∣∣∣∣∣q
L2

ρ

, t ∈ [ 0, T ],

we get (with I(3) as before)

E||XN,M (t)||q
L2

ρ
≤ c(q)[I(1)(t) + I

(2)
N,M (t) + Ī(3)(t)].

Since obviously I(1)(t) ≤ c(q, c(T ))E||ξ||q
L2

ρ
, it remains to consider I(2)

N,M (t).
Recall that by construction

−N ≤ e−N,M (t, ω, y) ≤ 0
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for any (t, ω, y) ∈ [ 0, T ] × Ω × R. Thus, there is a constant depending
on N , q, T and U such that

I
(2)
N,M (t) ≤ c(N, q, T, c(T )) <∞.

Putting all the estimates together, we get for any t ∈ [ 0, T ]

E||XN,M (t)||q
L2

ρ
≤ c(N, q, ζ,K, T, c(T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
).

Since the previous estimate holds for arbitrary t ∈ [ 0, T ] and M ∈ N,
we have proven that

(7.34) sup
t∈[ 0,T ]

M∈N

E||XN,M ||
q
L2

ρ
≤ c(N, q, ζ,K, T, c(T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
).

Finally, by (7.24), (7.33) and (7.34) we conclude that

(7.35) sup
t∈[ 0,T ]

M∈N

E||XN,M ||qL2
ρ
≤ c(N, q, ζ,K, T, c(T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

with c = c̄+ c, which finishes Step 2.

Step 3: Our aim is to show that XN,M converges, as M →∞, to a process
XN , which shall solve equation (7.1) resp. (7.2) with F resp. E being re-
placed by FN resp. EN , N ∈ N. Recall that FN and EN are defined by
(NEM) with fN from (7.10) resp. eN defined analogously to fN . In this
step we only check that the limit process XN exists and belongs to Hq(T ).

Let us define

ZN,M (t) := XN,M (t)−XN,1(t), N,M ∈ N, t ∈ [ 0, T ].

Thus, we have (by (7.24) and (7.32), (7.35))

(7.36) 0 ≤ ZN,M (t) ≤ ZN,M+1(t), t ∈ [ 0, T ],

and

sup
t∈[ 0,T ]

M∈N

E||ZN,M (t)||q
L2

ρ
≤ c(q)

 sup
t∈[ 0,T ]

M∈N

E||XN,M (t)||q
L2

ρ
+ sup
t∈[ 0,T ]

E||XN,1(t)||qL2
ρ


< ∞.

Next, we define
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(7.37) 0 ≤ ZN (t) := sup
M∈N

ZN,M (t), N ∈ N, t ∈ [ 0, T ].

Actually, for each N ∈ N and t ∈ [ 0, T ], the random variable ZN (t) is
uniquely defined up to a P ⊗ µρ-zero set in Ω × Θ (which depends on the
B(Ω)⊗ B(Θ)-measurable representations chosen for ZN,M ).
By (7.24) and B.Levi’s monotone convergence theorem, we get

(7.38) sup
t∈[ 0,T ]

E||ZN (t)||q
L2

ρ
= sup

t∈[ 0,T ]
sup
M∈N

E||ZN,M (t)||q
L2

ρ
<∞.

By construction, t 7→ ZN (t) ∈ L2
ρ obeys a predictable modification. Thus,

(ZN (t))t∈[ 0,T ] is a process in Hq(T ) for any N ∈ N.
Finally, we define

(7.39) XN (t) := ZN (t) +XN,1(t), t ∈ [ 0, T ], N ∈ N.

Obviously, [ 0, T ] 3 t 7→ XN (t) ∈ L2
ρ is again predictable as a sum of pre-

dictable processes. From (7.35) and (7.38), we get

(7.40) sup
t∈[ 0,T ]

E||XN (t)||q
L2

ρ
<∞

such that XN ∈ Hq(T ) for any N ∈ N.

Now, we check that for each fixed N ∈ N XN,M converges to XN in Hq(T )
as M →∞.
Indeed, by (7.37) and B.Levi’s monotone convergence theorem we have, for
each t ∈ [ 0, T ],

(7.41) lim
M→∞

E||XN,M (t)−XN (t)||q
L2

ρ
= lim

M→∞
E||ZN,M (t)− ZN (t)||q

L2
ρ

= 0.

Herefrom, by (7.38) and Lebesgue’s dominated convergence theorem we im-
mediately get

(7.42) lim
M→∞

T∫
0

E||XN,M (t)−XN (t)||q
L2

ρ
dt = lim

M→∞

T∫
0

E||ZN,M (t)− ZN (t)||q
L2

ρ
dt = 0.

In the same manner, we construct processes XN , X̄ ∈ Hq(T ) such that

lim
M→∞

T∫
0

E||XN,M (t)−XN (t)||q
L2

ρ
ds = 0,

(7.43)

lim
M→∞

T∫
0

E||X̄0,M (t)− X̄(t)||q
L2

ρ
ds = 0,

and (by (7.24), (7.25))
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XN (t) ≤ XN (t) ≤ X̄(t),
(7.44)

XN (t) ≤ V (t) ≤ X̄(t),

P -almost surely, for all t ∈ [ 0, T ].

Step 4: We show that for each N ∈ N, the process XN defined in Step 3
solves (7.1) resp. (7.2) in the case of F resp. E being replaced by FN resp.
EN described in the beginning of Step 3.
Furthermore, we show that t 7→ XN (t) is continuous in Lq(Ω;L2

ρ) and
that, under the additional assumption (A7), there is a càdlàg version of
[ 0, T ] 3 t 7→ XN (t) ∈ L2

ρ.

By (7.42), there is a subsequence of (XN,M )M∈N that converges P⊗ds⊗dµρ-
almost everywhere toXN . Without loss of generality, we assume (XN,M )M∈N
itself to be this sequence.

(i) The Poisson case - equation (7.1)

Putting

I
(1)
N,M (t) := E||XN (t)−XN,M (t)||2L2

ρ
,

I
(2)
N,M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)[FN (s,XN (s))− FN,M (s,XN,M (s))] ds
∣∣∣∣∣∣∣∣2
L2

ρ

,

I
(3)
N,M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)[MΣ(s,XN (s)) −MΣ(s,XN,M (s))] dW (s)
∣∣∣∣∣∣∣∣2
L2

ρ

, t ∈ [ 0, T ],

we have, for a fixed t ∈ [ 0, T ],

E
∣∣∣∣∣∣∣∣XN (t)− U(t, 0)ξ −

t∫
0

U(t, s)FN (s,XN (s)) ds−
t∫
0

U(t, s)MΣ(s,XN (s)) dW (s)

−
t∫
0

∫
L2

U(t, s)MC(s)(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2

L2
ρ

≤ C[I(1)
N,M (t) + I

(2)
N,M (t) + I

(3)
N,M (t)].

Thus, by (7.41) at least the first term tends to 0 as M → ∞. Let us
consider the second term.
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I
(2)
N,M (t) ≤ 2c(T )

(
T∫
0

E||FN (s,XN (s))− FN (s,XN,M (s))||2L2
ρ
ds

+
T∫
0

E||FN (s,XN,M (s))− FN,M (s,XN,M (s))||2L2
ρ
ds

)
=: 2c(T )(I(21)

N,M (T ) + I
(22)
N,M (T )).

Note that, by the continuity of fN and the convergence property of XN ,
we have for almost all s ∈ [ 0, T ]

|fN (s, ω,XN (s, ω, θ))− fN (s, ω,XN,M (s, ω, θ))| → 0 as M →∞

for P ⊗ dµρ almost all (ω, θ) ∈ Ω×Θ.
Condition (PG) with exponent ν = 1 and the relation

XN,1(s) ≤ XN,M (s) ≤ XN (s), N,M ∈ N

imply, for almost all s ∈ [ 0, T ],

|fN (s, ω,XN (s, ω, θ))− fN (s, ω,XN,M (s, ω, θ))|
≤ 2c(N, cf (T ))(1 + |XN (s, ω, θ)|+ |XN,1(s, ω, θ)|), P ⊗ dµρ-almost surely.

To apply Lebesgue’s theorem, we need integrability of the majorizing map-
ping

(7.45) sup
s∈[ 0,T ]

∫
Ω

∫
Θ

|XN (s, ω, θ)|2 + |XN,1(s, ω, θ)|2 µρ(dθ)P (dω)

= sup
s∈[ 0,T ]

(E||XN (s)||2L2
ρ
+ E||XN,1(s)||2L2

ρ
) <∞.

The right hand side in (7.45) is finite, since XN , XN,1 ∈ Hq(T ) ⊂ H2(T ) by
Step 3.
Thus, Lebesgue’s theorem is applicable and gives us first

lim
M→∞

E||FN (s,XN (s))− FN (s,XN,M (s))||2L2
ρ

= 0 for almost all s ∈ [ 0, T ]

and hence

lim
M→∞

T∫
0

E||FN (s,XN (s))− FN (s,XN,M (s))||2L2
ρ
ds = 0.

To estimate I
(22)
N,M , we use the following trick, which was already imple-

mented in [76].

Let us fix some L ≤ M , L,M ∈ N. In full analogy to the consideration
of I(21)

N,M , the fact that fN,M ↑ fN (and thus fN − fN,M ↓ 0) as M → ∞
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implies

lim
M→∞

I
(22)
N,M ≤ lim

M→∞

T∫
0

E||FN (s,XN,M (s))− FN,L(s,XN,M (s))||2L2
ρ
ds

=
T∫
0

E||FN (s,XN (s))− FN,L(s,XN (s))||2L2
ρ
ds,

which holds for any L ∈ N. Letting L → ∞ and noting that fN,L ↑ fN
as L→∞ gives us, by Lebesgue’s convergence theorem, that

lim
M→∞

I
(22)
N,M (T ) = 0.

Thus, we have

lim
M→∞

I
(2)
N,M (t) = 0, t ∈ [ 0, T ].

Finally, we examine I(3)
N,M .

By Itô’s isometry, (A2), (LC), Hölder’s inequality and the fact that

q > 2
1−ζ ⇐⇒ ζq

q−2 < 1,

we have

I
(3)
N,M (t) ≤ c2(T )E

t∫
0

(t− s)−ζ ||Σ(s,XN (s))− Σ(s,XN,M (s))||2L2
ρ
ds

≤ c(q, ζ, T, c(T ), cσ(T ))

(
E

T∫
0

||XN (s)−XN,M (s)||q
L2

ρ
ds

) 2
q

,

which by (7.42) tends to 0 as M →∞.

So, XN solves the equation in the sense of 7.1.1 (i), when F is replaced
by FN for arbitrary N ∈ N.

Substituting XN in the equation (7.1), we now obtain from the above esti-
mates

||XN −XN,M ||2H2(T ) = sup
t∈[ 0,T ]

E||XN (t)−XN,M (t)||2L2
ρ

≤ 3[I(1)
N,M (t) + I

(2)
N,M (t) + I

(3)
N,M (t)] → 0 as M →∞.

Similar reasoning shows that XN solves equation (7.1) with ξ− and f−N
and X̄ solves equation (7.1) with ξ+ and f+.
The required continuity properties of the solutions XN , XN and X̄ follow
immediately from the corresponding properties of the integrals in the right
hand side of (7.4), which were established in Section 5.1.
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(ii) The Lévy case - equation (7.2)
Setting

I
(1)
N,M (t) := E||XN (t)−XN,M (t)||2L2

ρ
,

I
(2)
N,M (t) := c2(T )E

∣∣∣∣∣∣∣∣ t∫
0

EN (s,XN (s))− EN,M (s,XN,M (s)) ds
∣∣∣∣∣∣∣∣2
L2

ρ

, t ∈ [ 0, T ],

we have, for each t ∈ [ 0, T ],

E
∣∣∣∣∣∣∣∣XN (t)− U(t, 0)ξ −

t∫
0

U(t, s)EN (s,XN (s)) ds−
t∫
0

U(t, s)MC(s) dL(s)
∣∣∣∣∣∣∣∣2
L2

ρ

≤ 2(I(1)
N,M (t) + I

(2)
N,M (t)).

But lim
M→∞

I
(1)
N,M (t) = 0 by (7.41), whereas lim

M→∞
I

(2)
N,M (t) = 0 just by re-

placing F -terms by E-terms in the above reasoning for (7.1).
Thus, XN solves (7.2) in the sense of 7.1.1 (i) with E being replaced by EN .
The continuity properties of XN follow analogously to the case (i).

Step 5: In this final step, we shall check that

(7.46) X(t) := inf
N∈N

XN (t), t ∈ [ 0, T ]

solves equation (7.1) resp. (7.2).
To this end, we first show that

(7.47) sup
N∈N

sup
t∈[ 0,T ]

E||XN (t)||q
L2

ρ
<∞.

Recall that by the above construction

XN (t) ≤ XN (t) ≤ X̄(t) in L2
ρ.

The process X̄ ∈ Hq(T ) was defined in Step 3. Thus, in particular, we
have

sup
t∈[ 0,T ]

E||X̄(t)||q
L2

ρ
<∞.

Therefore, it would suffice to establish the N -independent estimate for XN .

From Step 4 we already know that

sup
t∈[ 0,T ]

E||XN (t)||q
L2

ρ
≤ c(N, q)(1 + E||ξ||q

L2
ρ
),
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where the constant on the right hand side depends on N . Now, we will
improve the estimate by using Gronwall’s lemma.

(i) The case of Poisson noise - equation (7.1)

Setting

I(1)(t) := E||U(t, 0)ξ−||q
L2

ρ
≤ cq(T )E||ξ||q

L2
ρ
,

I
(2)
N (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)F−N (s,XN (s)) ds
∣∣∣∣∣∣∣∣q
L2

ρ

,

I
(3)
N (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)MΣ(s,XN (s)) dW (s)
∣∣∣∣∣∣∣∣q
L2

ρ

and

I(4)(t) := E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)MC(s)(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
q

L2
ρ

, t ∈ [ 0, T ],

we have, for each t ∈ [ 0, T ],

E||XN (t)||q
L2

ρ
≤ c(q)[I(1)(t) + I

(2)
N (t) + I

(3)
N (t) + I(4)(t)].

We proceed analogously to the case of Ī(2)
M and Ī(3)

M considered in Step 2.
By means of (7.17) and (7.19), we get

I
(2)
N (t) ≤ c(q, c(T ))

t∫
0

||F−N (s,XN (s))||q
L2

ρ
ds

≤ c(q, c(T ))
t∫
0

E||ḡ(XN (s))||q
L2

ρ
ds

≤ c(q, T, c(T ), cf (T ))
(

1 +
t∫
0

E||XN (s)||q
L2

ρ
ds

)
,

where we used that XN (t) ≤ V (t) and ḡ ≤ f−.
Then, by the Burkholder-Davis-Gundy inequality 2.5.4/2.5.6, (A2), Hölder‘s
inequality, the fact that

q > q
1−ζ ⇐⇒ q

q−2 < 1

and the Lipschitz and monotonicity assumption (LC), (LB), we get
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I
(3)
N (t) ≤ c(q, c(T ))E

(
t∫
0

(t− s)−ζ ||Σ(s,XN (s))||2L2
ρ
ds

) q
2

≤ c(q, ζ, T, c(T ), cσ(T ))
(

1 +
t∫
0

E||XN (s)||q
L2

ρ
ds

)
.

Recall from Step 2 that

I(4)(t) ≤ c(q, ζ,K, T,Cq,η), t ∈ [ 0, T ].

Putting the four estimates together, we get for all t ∈ [ 0, T ]

E||XN (t)||q
L2

ρ
≤ c(q, ζ,K, T, c(T ), cf (T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

+c(q, ζ, T, c(T ), cf (T ), cσ(T ))
t∫
0

E||XN (s)||q
L2

ρ
ds,

and herefrom by Gronwall’s lemma

E||XN (t)||q
L2

ρ
≤ c(q, ζ,K, T, c(T ), cf (T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
).

Hence, we have proven that

sup
t∈[ 0,T ]

N∈N

E||XN (t)||q
L2

ρ
≤ c1(q, ζ,K, T, c(T ), cf (T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
),

which implies (7.47).

(ii) The case of Lévy noise - equation (7.2)

We set

I(1)(t) := E||U(t, 0)ξ−||q
L2

ρ
≤ cq(T )E||ξ||q

L2
ρ
,

I
(2)
N (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)E−N (s,XN (s)) ds
∣∣∣∣∣∣∣∣q
L2

ρ

,

I(3)(t) := E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)MC(s) dL(s)
∣∣∣∣∣∣∣∣q
L2

ρ

, t ∈ [ 0, T ],

and obtain, for any t ∈ [ 0, T ],

E||XN (t)||q
L2

ρ
≤ c(q)

(
I(1)(t) + I

(2)
N (t) + I(3)(t)

)
.

Replacing FN by EN in the previous arguments, we get

I
(2)
N (t) ≤ c(q, T, c(T ), ce(T ))

(
1 +

t∫
0

E||XN (s)||q
L2

ρ
ds

)
.
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Analogously to Step 2, we have

I(3) ≤ c(q, ζ,m,K, T, c(T ), Cq,η).

Putting the three estimates together and applying Gronwall’s lemma, we
conclude that

E||XN (t)||q
L2

ρ
≤ c1(q, ζ,K, T, c(T ), ce(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

for all N ∈ N and t ∈ [ 0, T ]. Thus,

sup
t∈[ 0,T ]

N∈N

E||XN (t)||q
L2

ρ
≤ c1(q, ζ,K, T, c(T ), ce(T ), Cq,η)(1 + E||ξ||q

L2
ρ
),

which is the N -independent estimate on the moments of XN , we needed
to prove.

Next, we consider the process X̄ ∈ Hq(T ). Recall that this process was
defined in Step 3 as a limit of X̄0,M for M →∞. More precisely, by (7.41)
we have

lim
M→∞

E||X̄0,M (t)− X̄(t)||q
L2

ρ
= 0 for each t ∈ [ 0, T ].

By Step 2, we know that

sup
t∈[ 0,T ]

M∈N

E||X̄0,M (t)||q
L2

ρ
≤ c(q, ζ,K, T, c(T ), cf (T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

in the Poisson noise case resp.

sup
t∈[ 0,T ]

M∈N

E||X̄0,M (t)||q
L2

ρ
≤ c(q, ζ,m,K, T, c(T ), ce(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

in the Lévy noise case.

Thus, we get

sup
t∈[ 0,T ]

E||X̄(t)||q
L2

ρ
≤ c3(q, ζ,K, T, c(T ), cf (T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

in the Poisson noise case resp.

sup
t∈[ 0,T ]

E||X̄(t)||q
L2

ρ
≤ c4(q, ζ,K, T, c(T ), ce(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

in the Lévy noise case.
By construction (cf. (7.44)) we have for all t ∈ [ 0, T ]
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XN (t) ≤ XN (t) ≤ X̄(t) in L2
ρ,

which leads to

sup
t∈[ 0,T ]

N∈N

E||XN (t)||q
L2

ρ

≤ (c1(q, ζ,K, T, c(T ), cf (T ), cσ(T ), Cq,η)
+c3(q, ζ,K, T, c(T ), cf (T ), cσ(T ), Cq,η)) (1 + E||ξ||q

L2
ρ
)

(in the Poisson noise case) and, respectively, (in the Lévy noise case)

sup
t∈[ 0,T ]

N∈N

E||XN (t)||q
L2

ρ

≤ (c2(q, ζ,K, T, c(T ), ce(T ), cσ(T ), Cq,η)
+c4(q, ζ,K, T, c(T ), ce(T ), Cq,η)) (1 + E||ξ||q

L2
ρ
).

Thus, we have shown that there are N -independent estimates for the XN

both in the Poisson and the Lévy noise case.
Next, we define our candidates for the solution to (7.1) resp. (7.2).
Since fN ↓ f resp. eN ↓ e, the comparison from Theorem 6.1.1 implies

XN+1(t) ≤ XN (t),
(7.48)

XN+1(t) ≤ XN (t),

P -a.s., for all t ∈ [ 0, T ], N ∈ N.

We claim that

X(t) := inf
N∈N

XN (t) , t ∈ [ 0, T ],

is a solution in the sense of 7.1.2 (i) both in the Poisson and the Lévy
noise case.
We would like to proceed similarly to Step 3 and 4. But, in contrast to the
(XN,M )M∈N, the sequence (XN )N∈N is decreasing.
Thus, we define

YN (t) := X1(t)−XN (t), t ∈ [ 0, T ], N ∈ N.

By (7.48), this is a sequence of random variables in L2
ρ with the proper-

ties

0 ≤ YN (t) ≤ YN+1(t), P -a.s., t ∈ [ 0, T ], N ∈ N,
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and

sup
t∈[ 0,T ]

E||YN (t)||q
L2

ρ
= sup

t∈[ 0,T ]
E||X1(t)−XN (t)||q

L2
ρ

≤ c(q)

(
sup

t∈[ 0,T ]
E||X1(t)||qL2

ρ
+ sup
t∈[ 0,T ]

E||XN (t)||q
L2

ρ

)
< ∞.

Hence, YN ∈ Hq(T ) for any N ∈ N.
Now, analogously to the definition of XN in Step 3, we set

(7.49) Y (t) := sup
N∈N

YN (t) = X1(t)−X(t), t ∈ [ 0, T ].

Note that, for each t ∈ [ 0, T ], the random variable Y (t) is uniquely de-
fined up to a zero set in Ω×Θ .
By its construction, t 7→ Y (t) obeys a predictable modification. By B.Levi’s
monotone convergence theorem and the previous estimate on YN , we get

(7.50) sup
t∈[ 0,T ]

E||Y (t)||q
L2

ρ
= sup

t∈[ 0,T ]

[
sup
N∈N

E||YN (t)||q
L2

ρ

]
≤ 2c(q) sup

t∈[ 0,T ]
N∈N

E||XN (t)||q
L2

ρ
<∞,

where the last term is finite by (7.47).
Since by (7.49)

X(t) = Y (t)−X1(t), t ∈ [ 0, T ],

we have proven that X ∈ Hq(T ).

Next, we show that

lim
N→∞

T∫
0

E||XN (t)−X(t)||q
L2

ρ
dt

= lim
N→∞

T∫
0

E||YN (t)− Y (t)||q
L2

ρ
dt = 0.

As |YN (t) − Y (t)| ≤ 2|Y (t)| P -almost surely, by (7.50) Lebesgue’s theo-
rem is applicable and gives us

(7.51) lim
N→∞

E||YN (t)− Y (t)||q
L2

ρ
= 0, t ∈ [ 0, T ],

which in turn implies

(7.52) lim
N→∞

E||XN (t)−X(t)||q
L2

ρ
= 0, t ∈ [ 0, T ],
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and

(7.53) lim
N→∞

E
T∫
0

||XN (t)−X(t)||q
L2

ρ
dt = 0.

It remains to show that X solves equation (7.1) resp. (7.2). We apply
the method used in Step 4 for XN .
We denote the process on the right hand side of (7.3) by K(X) and the
process on the right hand side of (7.4) by K̄(X). Then, by setting

I
(1)
N (t) := E||X(t)−XN (t)||2L2

ρ
,

I
(2)
N (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)[F (s,X(s))− FN (s,XN (s))] ds
∣∣∣∣∣∣∣∣2
L2

ρ

,

Ī
(2)
N (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)[E(s,X(s))− EN (s,XN (s))] ds
∣∣∣∣∣∣∣∣2
L2

ρ

and

I
(3)
N (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)[MΣ(s,X(s)) −MΣ(s,XN (s))] dW (s)
∣∣∣∣∣∣∣∣2
L2

ρ

, t ∈ [ 0, T ],

we get, for each t ∈ [ 0, T ],

E||X(t)−K(X)(t)||2L2
ρ
≤ 3(I(1)

N (t) + I
(2)
N (t) + I

(3)
N (t))

for (7.1) resp.

E||X(t)− K̄(X)(t)||2L2
ρ

≤ 2(I(1)
N (t) + Ī

(2)
N (t))

for (7.2). Analogously to Step 4, we find that

I
(1)
N (t) ≤ c(q, ρ)

(
E||X(t)−XN (t)||q

L2
ρ

) 2
q

I
(2)
N (t) ≤ 2c(t)

(
T∫
0

E||F (s,X(s))− F (s,XN (s))||2L2
ρ
ds

+
T∫
0

E||F (s,XN (s))− FN (s,XN (s))||2L2
ρ
ds

)
=: I

(21)
N (T ) + I

(22)
N (T ).
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Note that, by (7.53), there is a subsequence of (XN )N∈N converging to X
P ⊗ds⊗µρ-everywhere on [ 0, T ]×Ω×Θ. Let us suppose that (XN )N itself
is this sequence.
By the continuity of f and the convergence of XN , we have for almost all
s ∈ [ 0, T ]

f(s, ω,XN (s, ω, θ)) → f(s, ω,X(s, ω, θ)) as N →∞

for P ⊗ µρ-almost all (ω, θ) ∈ Ω×Θ.
Condition (PG) with exponent ν = 1 and the bound

X(t) ≤ XN (t) ≤ X1(t), t ∈ [ 0, T ], N ∈ N,

imply, for any s ∈ [ 0, T ],

|f(s, ω,X(s, ω, θ))− f(s, ω,XN (s, ω, θ))|
≤ c(cf (T ))(1 + |X(s, ω, θ)|+ |XN (s, ω, θ)|)
≤ 2c(cf (T ))(1 + |X(s, ω, θ)|+ |X1(s, ω, θ)|)

for P ⊗ µρ-almost all (ω, θ) ∈ Ω×Θ.
It is easy to check that

sup
s∈[ 0,T ]

∫
Ω

∫
Θ

(|X(s, ω, θ)|2 + |X1(s, ω, θ)|2)µρ(dΘ)P (dω)

≤ sup
s∈[ 0,T ]

(E||X(s)||2L2
ρ
+ E||X1(s)||2L2

ρ
) <∞,

since X,X1 ∈ Hq(T ) ⊂ H2(T ). Thus, Lebesgue’s theorem is applicable
and gives us

lim
N→∞

I
(21)
N (T )

=
T∫
0

∫
Ω

∫
Θ

(f(s, ω,X(s, ω, θ))− f(s, ω,XN (s, ω, θ)))2 µρ(dθ)P (dω) ds

= 0.

To estimate I(22)
N (T ), let us fix some K ≤ N , K,N ∈ N. By the defini-

tion fN := f ∨ (−N) ↓ f as N →∞, we always have

(7.54) f2 ≥ f2
N and (f − fN )2 ≤ (f − fK)2

whenever K ≤ N .
By the preceeding arguments, used to prove that I(21)

N (t) → 0 as N → ∞,
we get
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lim
N→∞

I
(22)
N (T ) ≤ lim

N→∞

T∫
0

E||F (s,XN (s))− FK(s,XN (s))||2L2
ρ
ds

=
T∫
0

E||F (s,X(s))− FK(s,X(s))||2L2
ρ
ds,

which holds for any K ∈ N.
Letting here K →∞ and noting that fK ↓ f gives us that
lim
N→∞

I
(22)
N (T ) → 0.

Replacing the F -terms by E-terms, we know that Ī(2)
N (t) → 0 as N → ∞.

Therefore, X = K(X) solves equation (7.2) in the sense of 7.1.1 (i).
By (7.53) we also get lim

N→∞
I

(3)
N (T ) = 0 by the same arguments as in Step 4.

Thus, X = K̄(X) solves (7.1) in the sense of 7.1.1 (i).

Concerning the required continuity properties of t 7→ X(t) ∈ L2
ρ, we note

that, analogously to the XN (t) from Step 4, the Lipschitz property (LC) for
σ and c gives us similar properties for the stochastic integrals on the right
hand side of (7.4) resp. (7.5).

It remains to show the a-priori bounds (7.6), (7.7). We note that, both
in the Poisson and the Lévy noise case, we have for any t ∈ [ 0, T ]

E||X(t)||q
L2

ρ
≤ c(q)

[
E||Y (t)||q

L2
ρ
+ E||X1(t)||qL2

ρ

]
,

and thus

sup
t∈[ 0,T ]

E||X(t)||q
L2

ρ
≤ c(q)

[
sup

t∈[ 0,T ]
E||Y (t)||q

L2
ρ
+ sup
t∈[ 0,T ]

E||X1(t)||qL2
ρ

]

≤ c(q)

 sup
t∈[ 0,T ]

E||Y (t)||q
L2

ρ
+ sup

t∈[ 0,T ]
N∈N

E||XN (t)||q
L2

ρ


≤ c(q, ζ,K, T, c(T ), cf (T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

in the Poisson noise case resp.

sup
t∈[ 0,T ]

E||X(t)||q
L2

ρ
≤ c(q)

[
sup

t∈[ 0,T ]
E||Y (t)||q

L2
ρ
+ sup
t∈[ 0,T ]

E||X1(t)||qL2
ρ

]

≤ c(q)

 sup
t∈[ 0,T ]

E||Y (t)||q
L2

ρ
+ sup

t∈[ 0,T ]
N∈N

E||XN (t)||q
L2

ρ


≤ c(q, ζ,m,K, T, c(T ), ce(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

in in the Lévy noise case, which finishes the proof. �
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7.3 Proof of Theorem 7.1.4

As in the proof of 7.1.2, we adapt the procedure from the proof of Theorem
3.4.1 in [76]. To shorten the proof, we proceed simultaneously for the Pois-
son and the Lévy noise case.

Step 1: Compared to Step 1 in the proof of Theorem 7.1.2 (cf. Section 7.2),
(7.15)/(7.16) and (7.19)/(7.20) remain valid, whereas (7.17)/(7.18) changes
to

(7.55) ḡ(v) ≥ −cf (T )[(1 + |v|ν)1[ 0,∞ )(v) + (1− v)1(−∞,0 )(v),

(7.56) h̄(v) ≥ cf (T )[(1 + |v|ν)1(−∞,0](v) + (1 + v)1( 0,∞ )(v), v ∈ R.

Again, all inequalities also hold true, when f is replaced by e.

Step 2: Here, we establish the M -independent estimates for XN,M ∈ Gν(T )
solving (7.1) resp. (7.2) with F resp. E being replaced by FN,M resp. EN,M .
Analogously to Step 2 in the proof of 7.1.2, we refer to the results of Section
5.2 for the unique solvability of equation (7.1) resp. equation (7.2) with
Lipschitz coefficients.
By 5.2.2 applied to the special case of Γ = C resp. Σ = C, there are unique
(up to modifications) mild solutions XN,M ∈ Gν(T ) to the equations (7.1)
resp. (7.2), when f resp. e is replaced by fN,M resp. eN,M .
The solution processes are time-continuous in L2ν(Ω;L2ν

ρ ). Moreover, they
obey càdlàg versions if U additionally fulfills (A7).
Similarly to (7.24), we have

XN,M (t) ≤ XN,M+1(t) P -a.s., t ∈ [ 0, T ],

by the comparison result Theorem 6.1.1 both in the Poisson and the Lévy
noise case.

We denote by

• X̄0,M the unique solution to (7.1) resp. (7.2) with initial condition ξ+

and drift F0,M ,

• XN,M the unique solution to (7.1) resp. (7.2) with initial condition
ξ− and drift F−N,M ,
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• V the unique solution to (7.1) resp. (7.2) with initial condition ξ = 0
and drift F = 0.

Then, we have (cf. (7.24),(7.25))

XN,M (t) ≤ XN,M (t) ≤ X̄0,M (t),
XN,M (t) ≤ V (t) ≤ X̄0,M (t)

P -almost surely, for each t ∈ [ 0, T ] and N,M ∈ N.

(i) The Poisson noise case - equation (7.1)

We first prove that

(7.57) sup
t∈[ 0,T ]

M∈N

E||X̄0,M (t)||2νL2ν
ρ
<∞.

Setting

Ī(1)(t) := E||U(t, 0)ξ+||2νL2ν
ρ

,

Ī
(2)
M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)F0,M (s, X̄0,M (s)) ds
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

,

Ī
(3)
M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)MΣ(s,X̄0,M (s)) dW (s)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

and

I(4)(t) := E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)MC(s)(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2ν
ρ

, t ∈ [ 0, T ],

we get, for any t ∈ [ 0, T ],

E||X̄0,M (t)||2νL2ν
ρ
≤ c(ν)(Ī(1)(t) + Ī

(2)
M (t) + Ī

(3)
M (t) + I(4)(t)).

First, by (A3) we have

Ī(1)(t) ≤ c(ν, T )E||ξ+||2νL2ν
ρ

≤ c(ν, T )E||ξ||2νL2ν
ρ

.

(A1) and (A3) imply

Ī
(2)
M (t) ≤ c(ν, T )E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)|F0,M (s, X̄0,M (s))|ν ds
∣∣∣∣∣∣∣∣2
L2

ρ
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and thus

Ī
(2)
M (t) ≤ c(ν, T, c(T ))E

t∫
0

||h̄(X̄0,M (s))||2νL2ν
ρ
ds

≤ c(ν, T, c(T ), cf (T ))E
t∫
0

∫̄
Θ

[
(1 + |X̄0,M |2ν(s, θ))1{X̄0,M (s,θ)>0}(s, θ)

+(1 + |V |2ν2
(s, θ))1{X̄0,M (s,θ)<0}(s, θ)

]
µρ(dθ) ds

≤ c(ν, T, c(T ), cf (T ))

(
1 +

t∫
0

E||X̄0,M (s)||2νL2ν
ρ
ds+

T∫
0

E||V (s)||2ν2

L2ν2
ρ

ds

)
≤ c(ν, T, c(T ), cf (T ), cσ(T ))

(
1 +

t∫
0

E||X̄0,M (s)||2νL2ν
ρ
ds

)
,

where (7.20) was used in the first, (7.18) and (7.25) were used in the second
and estimate (5.35) for the V -term was used in the fourth step.

Let us note that to estimate E||V (t)||2ν2

L2ν2
ρ

in a way similar to Corollary

5.2.4, we need to impose assumption (QI) with q = 2ν2.
This is in full consistency with the assumption imposed on the jump coeffi-
cient in [80].

To estimate the third term, we apply Proposition 3.4.3 to the process
ϕ̄(t) := Σ(t, X̄0,M (t)) ∈ L2ν

ρ , t ∈ [ 0, T ].
Then, (3.40) and (LC), (LB) for σ give us

Ī
(3)
M (t) ≤ c(ν, T )

t∫
0

(t− s)−ζE||Σ(s, X̄0,M (s))||2νL2ν
ρ
ds

≤ c(ν, ζ, T, cσ(T ))
(

1 +
t∫
0

(t− s)−ζE||X̄0,M (s)||2νL2ν
ρ
ds

)
.

Finally, by Proposition 4.4 we have

Ī(4)(t) ≤ c(ν, T, c(T ), C2ν,η)
t∫
0

(t− s)−ζνE||C(s)||2νL2ν
ρ
ds

≤ c(ν, ζ, T, c(T ),K,C2ν,η),

where we take into account the boundedness of c and the fact that

ν < 1
ζ ⇐⇒ νζ < 1.

Putting these four estimates together, we get



250 CHAPTER 7. THE CASE OF ADDITIVE JUMP NOISE

E||X̄0,M (t)||2νL2ν
ρ
≤ c(ν, T )E||ξ||2νL2ν

ρ

+c(ν, ζ,K, T, c(T ), cf (T ), C2ν,η)

+c(ν, ζ, T, c(T ), cσ(T ), C2ν,η)
(

1 +
t∫
0

(t− s)−ζE||X̄0,M (s)||2νL2ν
ρ
ds

)
for arbitrary t ∈ [ 0, T ]. Thus, by the Gronwall-Bellman lemma 2.7.3,

E||X̄0,M (t)||2νL2ν
ρ
≤ c(ν, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
),

for arbitrary M ∈ N and t ∈ [ 0, T ].
Thus, we have proven that

sup
t∈[ 0,T ]
M∈N

E||X̄0,M (t)||2νL2ν
ρ
≤ c(ν, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

< ∞
as it is required.

Next, we consider XN,M for arbitrary N,M ∈ N. Setting

I(1)(t) := E||U(t, 0)ξ−||2νL2ν
ρ

,

I
(2)
N,M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)F−N,M (s,XN,M ) ds
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

and

I
(3)
N,M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)MΣ(s,XN,M (s)) dW (s)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

, t ∈ [ 0, T ],

we get, for t ∈ [ 0, T ],

E||XN,M ||2νL2ν
ρ
≤ c(ν)[I(1)(t) + I

(2)
N,M (t) + I

(3)
N,M (t) + I(4)(t)].

Analogously to the consideration of Ī(3)
M above, we get

I
(3)
N,M (t) ≤ c(ν, c(T ), cσ(T ))

(
1 +

t∫
0

(t− s)−ζE||XN,M (s)||2νL2ν
ρ

)
.

Since obviously I(1)(t) ≤ c(ν, c(T ))E||ξ||2νL2ν
ρ

and I(4)(t) is the same as in

the estimate for X̄0,M , it remains to estimate I(2)
N,M .

Since by construction we have

−N ≤ f−N,M (t, ω, y) ≤ 0 for any (t, ω, y) ∈ [ 0, T ]× Ω× R,

we get by Definition 2.2.1 that
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sup
t∈[ 0,T ]

M∈N

I
(2)
N,M (t) ≤ c(N, ν, T, c(T )) <∞.

Thus, putting all the estimates together, we have

E||XN,M ||2νL2ν
ρ
≤ c(N, ν, T, c(T ), cσ(T ), cγ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

+c(ν, ζ, T, c(T ), cσ(T ), cγ(T ), C2ν,η)
t∫
0

(t− s)−ζE||XN,M (s)||2νL2ν
ρ
ds.

Again by the Gronwall-Bellman lemma 2.7.3, we get

E||XN,M ||2νL2ν
ρ
≤ c(N, ν, ζ,K, T, c(T ), cσ(T ), cγ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

and hence

sup
t∈[ 0,T ]

M∈N

E||XN,M ||
q
L2

ρ
≤ c(N, ν,K, T, c(T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
).

Finally, by (7.23) we conclude

sup
t∈[ 0,T ]

M∈N

E||XN,M ||2νL2ν
ρ
≤ c(N, ν,K, T, c(T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

with c = c̄+ c.

(ii) The case of Lévy noise - equation (7.2)

Let us first consider X̄0,M . Setting

Ĩ
(2)
M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)E0,M (s, X̄0,M (s)) ds
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

and

Ĩ
(3)
C (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)MC(s) dL(s)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

, t ∈ [ 0, T ],

we get, for t ∈ [ 0, T ],

E||X̄0,M (t)||2νL2ν
ρ
≤ c(ν)(Ī(1)(t) + Ĩ

(2)
M (t) + Ĩ

(3)
C (t)),

with Ī(1)(t) ≤ c(ν, c(T ))E||ξ||2νL2ν
ρ

as in the Poisson noise case.
To estimate the second term, we use the same chain of arguments as in (i)
to get
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Ĩ
(2)
M (t) ≤ c(ν, T, c(T ))E

t∫
0

||h̄(X̄0,M (s))||2νL2ν
ρ
ds

≤ c(ν, T, c(T ), ce(T ))E
t∫
0

∫̄
Θ

[
(1 + X̄2ν

0,M (s, θ))1{X̄0,M (s,θ)>0}(s, θ)

+(1 + V 2ν2
(s, θ))1{X̄0,M (s,θ)<0}(s, θ)

]
µρ(dθ) ds

≤ c(ν, T, c(T ), ce(T ))

(
1 +

t∫
0

E||X̄0,M (s)||2νL2ν
ρ
ds+

T∫
0

E||V (s)||2ν2

L2ν
ρ
ds

)
≤ c(ν, T, c(T ), ce(T ), C2ν,η)

(
1 +

t∫
0

E||X̄0,M (s)||2νL2ν
ρ
ds

)
.

Note that again the estimate on E||V (t)||2ν2

L2ν
ρ

requires that the Lévy measure

η obeys (QI) with q = 2ν2.
Now, by (QI) and (A5)/(A5)*, the Lévy-Itô-decomposition 2.4.12 and the
stochastic convolution results 3.4.3 and 4.4 we get

Ĩ
(3)
C (t) ≤ c(ν,m, c(T ), C2ν,η)

t∫
0

(t− s)−νζE||C(s)||2νL2ν
ρ
ds

+c(ν, c(T ))
t∫
0

(t− s)−νζE||C(s)||2νL2ν
ρ
ds

≤ c(ν, ζ,m,K, c(T ), C2ν,η).

Putting all the estimates together, we get

E||X̄0,M (t)||2νL2ν
ρ

≤ c(ν, T )E||ξ||2νL2ν
ρ

+ c(ν, ζ,m,K, T, c(T ), ce(T ), cγ(T ), C2ν,η)
(

1 +
t∫
0

E||X̄0,M (s)||2νL2ν
ρ
ds

)
for arbitrary t ∈ [ 0, T ].
Thus, by Gronwall’s Lemma we have

sup
t∈[ 0,T ]

M∈N

E||X̄0,M ||2νL2ν
ρ
≤ c̄(ν, ζ,m,K, T, c(T ), ce(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
).

Next, we consider XN,M for arbitrary N,M ∈ N. Setting

I(1)(t) := E||U(t, 0)ξ−||2νL2ν
ρ

,

I
(2)
N,M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)E−N,M (s,XN,M ) ds
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

,

and I(3) as before, we get for t ∈ [ 0, T ]

E||XN,M (t)||2νL2ν
ρ
≤ c(ν)[I(1)(t) + I

(2)
N,M (t) + I(3)(t)].
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We already know that

I(1)(t) ≤ c(ν, c(T ))E||ξ||2νL2ν
ρ

and

I(3)(t) ≤ c(ν, ζ,m,K, T, c(T ), C2ν,η),

so it remains to estimate I(2)
N,M (t).

Since by the construction

−N ≤ e−N,M (t, ω, y) ≤ 0 for any (t, ω, y) ∈ [ 0, T ]× Ω× R,

by Definition 2.2.1 we immediately see that

I
(2)
N,M (t) ≤ c(N, ν, T, c(T )) <∞.

Thus, putting all the estimates together, we have

E||XN,M (t)||2νL2ν
ρ
≤ c(ν, c(T ))E||ξ||2νL2ν

ρ
+ c(N, ν, T, c(T ))

+c(ν, ζ,m,K, T, c(T ), C2ν,η)
+c(N, ν, T, c(T ))

≤ c(N, ν, ζ,m,K, T, c(T ), C2ν,η)(1 + E||ξ||2νL2ν
ρ

)

and thus

sup
t∈[ 0,T ]

M∈N

E||XN,M (t)||q
L2

ρ
≤ c(N, ν, ζ,K,m, T, c(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
).

By (7.24), we then conclude that

sup
t∈[ 0,T ]

M∈N

E||XN,M (t)||2νL2ν
ρ
≤ c(N, ν, ζ,m,K, T, c(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

with c = c̄+ c.

Step 3: Analogously to Step 3 in the proof of 7.1.2, we construct the
processes XN := lim

M→∞
XN,M , which later shall solve our equations in the

case of F resp. E being replaced by FN resp. EN .

To this end, we define the random variables

ZN,M (t) := XN,M (t)−XN,1(t) ∈ L2ν
ρ , t ∈ [ 0, T ], N,M ∈ N,
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such that (cf. (7.36))

0 ≤ ZN,M (t) ≤ ZN,M+1(t).

With the help of the M -independent estimate from Step 2, we get

sup
t∈[ 0,T ]

M∈N

E||ZN,M (t)||2νL2ν
ρ
≤ c(ν)

 sup
t∈[ 0,T ]

M∈N

E||XN,M (t)||2νL2ν
ρ

+ sup
t∈[ 0,T ]

E||XN,1(t)||2νL2ν
ρ


< ∞.

Next, we define

ZN (t) := sup
M∈N

ZN,M (t), t ∈ [ 0, T ], N ∈ N,

and check that there exists a modification ZN ∈ Gν(T ), which fulfills

(7.58) sup
t∈[ 0,T ]

E||ZN (t)||2νL2ν
ρ

= sup
t∈[ 0,T ]

sup
M∈N

E||ZN,M (t)||2νL2ν
ρ
<∞.

Thereafter, we can define XN ∈ Gν(T ) by

XN (t) := ZN (t) +XN,1(t) ∈ L2ν
ρ , N ∈ N, t ∈ [ 0, T ]

and check that

(7.59) lim
M→∞

T∫
0

E||XN,M (t)−XN (t)||2νL2ν
ρ
dt

= lim
M→∞

T∫
0

E||ZN,M (t)− ZN (t)||2νL2ν
ρ
dt = 0.

Indeed, by B.Levi’s monotone convergence theorem we have for each
t ∈ [ 0, T ]

lim
M→∞

E||XN,M (t)−XN (t)||2νL2ν
ρ

= lim
M→∞

E||ZN,M (t)− ZN (t)||2νL2ν
ρ

= 0.

Herefrom, by (7.58) and Lebesgue’s dominated convergence theorem we im-
mediately get (7.59).

In the same manner, we construct processes XN , X̄ ∈ Gν(T ) such that

lim
M→∞

T∫
0

E||XN,M (t)−XN (t)||2νL2ν
ρ
ds = 0,

lim
M→∞

T∫
0

E||X̄0,M (t)− X̄(t)||2νL2ν
ρ
ds = 0
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and (by (7.24), (7.25))

XN (t) ≤ XN (t) ≤ X̄(t),
(7.60)

XN (t) ≤ V (t) ≤ X̄(t),

P -almost surely, for any t ∈ [ 0, T ].

Step 4: The aim of this step is to show that, for any N ∈ N, the process
XN ∈ Gν(T ) defined in Step 3 solves (7.1) resp. (7.2) in the case of F resp.
E being replaced by FN resp. EN .
This implies that t 7→ XN (t) is continuous in L2ν(Ω,F , P ;L2ν

ρ ) and, under
the additional assumption (A7) on U , has a càdlàg modification.

By (7.59), there is a subsequence of (XN,M )M∈N that converges P⊗ds⊗dµρ-
almost everywhere to XN . For simplicity, we assume (XN,M )M∈N itself to
be this sequence.

(i) The case of Poisson noise - equation (7.1)

We define for t ∈ [ 0, T ]

I
(1)
N,M (t) := E||XN (t)−XN,M (t)||2L2

ρ

I
(2)
N,M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)[FN (s,XN (s))− FN,M (s,XN,M (s))] ds
∣∣∣∣∣∣∣∣2
L2

ρ

,

and

I
(3)
N,M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)[MΣ(s,XN (s)) −MΣ(s,XN,M (s))] dW (s)
∣∣∣∣∣∣∣∣2
L2

ρ

.

Thus, for each t ∈ [ 0, T ], we have

E
∣∣∣∣∣∣∣∣XN (t)− U(t, 0)ξ −

t∫
0

U(t, s)FN (s,XN (s)) ds−
t∫
0

U(t, s)MΣ(s,XN (s)) dW (s)

−
t∫
0

∫
L2

U(t, s)MC(s)(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2

L2
ρ

≤ 3[I(1)
N,M (t) + I

(2)
N,M (t) + I

(3)
N,M (t)].

First of all, by Hölder’s inequality we get
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I
(1)
N,M (t) := E||XN (t)−XN,M (t)||2L2

ρ
≤ c(ν, ρ)[E||XN (t)−XN,M (t)||2νL2ν

ρ
]
1
ν

such that by construction the first term tends to 0 for M → ∞. By 2.1.1
(iii) for U , we have for the second term

I
(2)
N,M (t) ≤ 2c(T )

(
E

T∫
0

||FN (s,XN (s))− FN (s,XN,M (s))||2L2
ρ
ds

+E
T∫
0

||FN (s,XN,M (s))− FN,M (s,XN,M (s))||2L2
ρ
ds

)
=: 2c(T )[I(21)

N,M (T ) + I
(22)
N,M (T )].

By the continuity of fN and the convergence property of XN,M , we have
for almost all s ∈ [ 0, T ]

|fN (s, ω,XN (s, ω, θ))− fN (s, ω,XN,M (s, ω, θ))| → 0 as M →∞

P ⊗ dµρ almost surely on Ω×Θ.
Condition (PG) and the relation

XN,1(t) ≤ XN,M (t) ≤ XN (t), t ∈ [ 0, T ], N,M ∈ N

imply for almost all s ∈ [ 0, T ]

|fN (s, ω,XN (s, ω, θ))− fN (s, ω,XN,M (s, ω, θ))|
≤ 2c(N, cf (T ))(1 + |XN (s, ω, θ)|ν + |XN,1(s, ω, θ)|ν),

P ⊗ dµρ almost surely.
To apply Lebesgue’s theorem, we check that

sup
s∈[ 0,T ]

∫
Ω

∫
Θ

(|XN (s, ω, θ)|2ν + |XN,1(s, ω, θ)|2ν)µρ(dθ))P (dω) ds

= sup
s∈[ 0,T ]

(
E||XN (s)||2νL2ν

ρ
+ E||XN,1(s)||2νL2ν

ρ

)
<∞,

since XN , XN,1 ∈ Gν(T ). Thus, Lebesgue’s theorem is applicable and gives
us

lim
M→∞

I
(21)
N,M (T )

= lim
M→∞

T∫
0

[∫
Ω

∫
Θ

[fN (s, ω,XN (s, ω, θ))− fN (s, ω,XN,M (s, ω, θ))]2 dµρ P (dω)
]
ds

= 0.

To estimate I(22)
N,M (T ), we fix L ≤ M , L,M ∈ N. In full analogy to the

consideration of I(21)
N,M with fN,M ↑ fN (and thus fN − fN,M ↓ 0), we get
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lim
M→∞

I
(22)
N,M ≤ lim

M→∞

T∫
0

E||FN (s,XN,M (s))− FN,L(s,XN,M (s))||2L2
ρ
ds

=
T∫
0

E||FN (s,XN (s))− FN,L(s,XN (s))||2L2
ρ
ds.

Letting here L→∞ gives us

lim
M→∞

I
(22)
N,M (T ) = 0.

Thus, we have

lim
M→∞

I
(2)
N,M (T ) = 0.

By (A4), (LC), Itô’s isometry and Hölder’s inequality, we get the following
estimate for the third term

I
(3)
N,M (T ) ≤ c(c(T ), cσ(T ))

t∫
0

(t− s)−ζE||XN (s)−XN,M (s)||2L2
ρ
ds

≤ c(ν, T, c(T ), cσ(T ))

(
T∫
0

E||XN (s)−XN,M (s)||2νL2ν
ρ
ds

) 1
ν

.

Thus, by (7.59) I(3)
N,M (T ) tends to 0 as M →∞.

So we have shown that XN ∈ Gν(T ) is the mild solution to the equation
(7.1), when F is replaced by FN .

The required continuity properties of XN follow immediately from the prop-
erties of the integrals on the right hand side of (7.1).
Indeed, the Bochner convolution integral in (7.1) is time-continuous in L2(Ω;L2

ρ)
by Remark 5.1.11 (ii), whereas the stochastic convolutions integrals in (7.1)
are continuous by the continuity results 5.1.8 and 5.1.10 and the simple
(Hölder’s) estimate

E||ξ||2L2
ρ
≤ (E||ξ||2νL2ν

ρ
)

1
ν

holding for any L2ν
ρ -valued random variable.

Similar arguments show that XN ∈ Gν(T ) solves (7.1) with ξ− and f−N ,
whereas X̄ solves (7.1) with ξ+ and f+.

(ii) The case of Lévy noise - equation (7.2)
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Defining

I
(1)
N,M (t) := E||XN (t)−XN,M (t)||2L2

ρ

and

I
(2)
N,M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)[EN (s,XN (s))− EN,M (s,XN,M (s))] ds
∣∣∣∣∣∣∣∣2
L2

ρ

, t ∈ [ 0, T ],

we have for t ∈ [ 0, T ]

E
∣∣∣∣∣∣∣∣XN (t)− U(t, 0)ξ −

t∫
0

U(t, s)EN (s,XN (s)) ds−
t∫
0

U(t, s)MC(s) dL(s)
∣∣∣∣∣∣∣∣2
L2

ρ

≤ 2[I(1)
N,M (t) + I

(2)
N,M (t)].

But I(1)
N,M (t) tends to 0 for M →∞ by construction, whereas I(2)

N,M (t) tends
to 0 for M → ∞ by replacing the F -terms by the E-terms in the proof of
the same claim in the Poisson noise case.

Thus, for all N ∈ N, XN ∈ Gν(T ) is a solution to (7.2) in the sense of
7.1.1.

Again, the stochastic integrals obey the required continuity properties by
the results from Section 5.1.
Indeed, the Bochner convolution integral in (7.2) is time-continuous in L2(Ω;L2

ρ)
by Remark 5.1.11 (ii), whereas the stochastic convolutions integral in (7.2)
is continuous by the continuity results 5.1.6 (ii), 5.1.8 and 5.1.10 and the
simple estimate

E||ξ||2L2
ρ
≤ (E||ξ||2νL2ν

ρ
)

1
ν

holding for any L2ν
ρ -valued random variable (by taking a F⊗B(Θ)-measurable

version and applying Hölder’s inequality twice).

Step 5: As in Step 5 of the proof of 7.1.2, we first establish N -independent
estimates for the moments of XN . Then, the required N -independent esti-
mate for XN will follow from the inequality in L2ν

ρ (cf. (7.21))

XN (t) ≤ XN (t) ≤ X̄(t),

which holds for any t ∈ [ 0, T ] and any N ∈ N.

From Steps 2 and 4, we already know that
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sup
t∈[ 0,T ]

E||XN (t)||2νL2ν
ρ
≤ c(N, ν, ζ,K, T, c(T ), cf (T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

in the Poisson noise case and (in the Lévy noise case)

sup
t∈[ 0,T ]

E||XN (t)||2νL2ν
ρ
≤ c(N, ν, ζ,m,K, T, c(T ), ce(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
).

In the Poisson noise case, setting

I(1)(t) := E||U(t, 0)ξ−||2νL2ν
ρ

,

I
(2)
N (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)F−N (s,Xn(s)) ds
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

,

I
(3)
N (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)MΣ(s,XN (s)) dW (s)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

,

I(4)(t) := E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)MC(s)(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2ν
ρ

, t ∈ [ 0, T ],

we have for, t ∈ [ 0, T ],

E||XN (t)||2νL2ν
ρ
≤ c(ν)

[
I(1)(t) + I

(2)
N (t) + I

(3)
N (t) + I(4)(t)

]
.

In the Lévy noise case, setting

I(1)(t) := E||U(t, 0)ξ−||2νL2ν
ρ

,

I
(2)
N (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)E−N (s,Xn(s)) ds
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

,

I(3)(t) := E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)MC(s) dL(s)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

, t ∈ [ 0, T ]

we have for t ∈ [ 0, T ]

E||XN (t)||2νL2ν
ρ
≤ c(ν)[I(1)(t) + I

(2)
N (t) + I(3)(t)].

Now, by (A3) (both in the Poisson and the Lévy noise case)

I(1)(t) ≤ c(ν, T )E||U(t, 0)|ξ−|ν ||2L2
ρ

≤ c(ν, T, c(T ))E||ξ||2νL2ν
ρ

.

In the Poisson noise case, we get by (7.20), (7.25) and (7.60)
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I
(2)
N (t) ≤ c(ν, c(T ))

t∫
0

||F−N (s,XN (s))||2νL2ν
ρ
ds

≤ c(ν, c(T ))
t∫
0

E||ḡ(XN (s))||2νL2ν
ρ
ds

≤ c(ν, T, c(T ), cf (T ))
(

1 +
t∫
0

E||XN (s)||2νL2ν
ρ
ds+

t∫
0

E||V (s)||2ν2

L2ν
ρ
ds

)
≤ c(ν, T, c(T ), cf (T ), C2ν2,η

(
1 +

t∫
0

E||XN (s)||2νL2ν
ρ
ds

)
,

where we used XN (t) ≤ V (t) and ḡ ≤ f .
Respectively, in the Lévy noise case, just replacing FN by EN in the above
estimate, we get

I
(2)
N (t) ≤ c(ν, T, c(T ), ce(T ), C2ν2,η)

(
1 +

t∫
0

E||XN (s)||2νL2ν
ρ
ds

)
.

Next, we consider the third term in the Poisson noise case. By 3.4.3 and
(LC), (LB) for σ, we have

I
(3)
N (t) ≤ c(ν, T, c(T ), cσ(T ))

(
1 +

t∫
0

(t− s)−ζE||XN (s)||2νL2ν
ρ
ds

)
.

Combining this with the estimate

E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)MC(s)(x)N(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2ν
ρ

≤ c(ν, T, c(T ), C2ν,η)
t∫
0

(t− s)−ζν ||C(s)||2νL2ν
ρ
ds

≤ c(ν, ζ,K, T, c(T ), C2ν,η)

following from 4.4 and the boundedness assumption on c, we get for all
t ∈ [ 0, T ]

E||XN (t)||2νL2ν
ρ
≤ c(ν, T )E||ξ||2νL2ν

ρ

+c(ν, T, c(T ), cf (T ), cσ(T ))
(

1 +
t∫
0

(t− s)−ζE||XN (s)||2νL2ν
ρ
ds

)
+c(ν, ζ,K, T, c(T ), C2ν,η)

≤ c(ν, ζ,K, T, c(T ), cf (T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν
ρ

)

+c(ν, T, c(T ), cf (T ), cσ(T ))
t∫
0

(t− s)−ζE||XN (s)||2νL2ν
ρ

.

Thus, by the Gronwall-Bellman lemma 2.7.3, we conclude that

sup
t∈[ 0,T ]

N∈N

E||XN (t)||2νL2ν
ρ
≤ c1(ν, ζ,K, T, c(T ), cf (T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
).
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The above arguments are modified to the Lévy noise case in the follow-
ing way. By the Lévy-Itô decomposition 2.4.13 together with 3.4.3 and 4.4,
we get

I(3)(t) ≤ c(ν, ζ,m,K, T, c(T ), C2ν,η).

Combining this with the above estimates on I(1)(t) and I
(2)
N (t), we get for

all t ∈ [ 0, T ]

E||XN (t)||2νL2ν
ρ
≤ c(ν, T )E||ξ||2νL2ν

ρ

+c(ν, ζ,m,K, T, c(T ), ce(T ), C2ν,η)
(

1 +
t∫
0

(t− s)−ζE||XN (s)||2νL2ν
ρ
ds

)
.

Then, the Gronwall-Bellman lemma is applicable, which yields

E||XN (t)||2νL2ν
ρ
≤ c2(ν, ζ,m,K, T, c(T ), ce(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

and hence

sup
t∈[ 0,T ]

N∈N

E||XN (t)||2νL2ν
ρ
≤ c(ν, ζ,m,K, T, c(T ), ce(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

also in the Lévy noise case.

As we have shown in Step 2, for any t ∈ [ 0, T ] and M ∈ N,

E||X̄0,M (t)||2νL2ν
ρ
≤ c3(ν,K, T, c(T ), cf (T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

in the Poisson noise case respectively

E||X̄0,M (t)||2νL2ν
ρ
≤ c4(ν,K, T,m, c(T ), ce(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

in the Lévy noise case.

Next, let us consider the upper solution X̄.
Recall that, by its definition in Step 3, X̄ is a process in Gν(T ) such that

lim
M→∞

E||X̄0,M (t)− X̄(t)||2νL2ν
ρ

= 0 for each t ∈ [ 0, T ].

Thus, we get

sup
t∈[ 0,T ]

E||X̄(t)||2νL2ν
ρ
≤ c(ν, ζ,K, T, c(T ), cf (T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

in the Poisson noise case respectively
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sup
t∈[ 0,T ]

E||X̄(t)||2νL2ν
ρ
≤ c(ν, ζ,m,K, T, c(T ), ce(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

in the Lévy noise case. Since by (7.44)

XN (t) ≤ XN (t) ≤ X̄(t) in L2ν
ρ ,

we immediately obtain that

sup
t∈[ 0,T ]

N∈N

E||XN (t)||2νL2ν
ρ

≤ (c1(ν,K, T, c(T ), cf (T ), cσ(T ), C2ν,η)
+c3(ν, ζ,K, T, c(T ), cf (T ), cσ(T ), C2ν,η)) (1 + E||ξ||2νL2ν

ρ
)

resp.

sup
t∈[ 0,T ]

N∈N

E||XN (t)||2νL2ν
ρ

≤ (c2(ν,K, T, c(T ), ce(T ), C2ν,η)+c4(ν, ζ,K, T, c(T ), ce(T ), C2ν,η))(1+E||ξ||2νL2ν
ρ

),

which proves the N -independent estimates for moments of XN .

By fN ↓ f resp. eN ↓ e, Theorem 6.1.1 implies (cf. (7.44))

XN+1(t) ≤ XN (t), P -almost surely, for all t ∈ [ 0, T ], N ∈ N.

Now, we can define our solution candidates.

We claim that

X(t) := inf
N∈N

XN (t), t ∈ [ 0, T ],

defines a solution in the sense of 7.1.1(ii) both for (7.1) and (7.2).
As in Step 5 in the proof of 7.1.2, we have to overcome the problem that
(XN )N∈N is a decreasing but not necessarily positive sequence in L2ν

ρ .
So, we first fix t ∈ [ 0, T ] and define

(7.61) YN (t) := X1(t)−XN (t), N ∈ N.

Since
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sup
t∈[ 0,T ]

E||YN (t)||2νL2ν
ρ

= sup
t∈[ 0,T ]

E||X1(t)−XN (t)||2νL2ν
ρ

≤ c(ν)

(
sup

t∈[ 0,T ]
E||X1(t)||2νL2ν

ρ
+ sup
t∈[ 0,T ]

E||XN (t)||2νL2ν
ρ

)
< ∞,

we have YN ∈ Gν(T ) for any N ∈ N.
Obviously, 0 ≤ YN (t) ≤ YN+1(t), P -almost surely, for each t ∈ [ 0, T ]. Thus,
defining a process Y by

[ 0, T ] 3 t 7→ Y (t) := sup
N∈N

YN (t), N ∈ N,

by B.Levi’s monotone convergence theorem we get that

(7.62) sup
t∈[ 0,T ]

E||Y (t)||2νL2ν
ρ

= sup
t∈[ 0,T ]

sup
N∈N

E||YN (t)||2νL2ν
ρ
<∞.

Since t 7→ Y (t) is predictable by its construction, it is also an element
of Gν(T ).
Since by (7.61)

X(t) = Y (t)−X1(t),

we have proven that X ∈ Gν(T ).
As |YN (t)− Y (t)| ≤ 2|Y (t)| and Y ∈ Gν(T ), by Lebesgue’s dominated con-
vergence theorem we conclude that, for each t ∈ [ 0, T ],

(7.63) lim
N→∞

E||XN (t)−X(t)||2νL2ν
ρ

= lim
N→∞

E||YN (t)− Y (t)||2νL2ν
ρ

= 0.

Taking into account (7.62) and applying Lebesgue’s theorem ones more,
we get

(7.64) lim
N→∞

E
T∫
0

||XN (t)−X(t)||2νL2ν
ρ
dt = lim

N→∞
E

T∫
0

||YN (t)− Y (t)||2νL2ν
ρ
dt = 0.

It remains to show that X solves equation (7.1) resp. (7.2) in the sense
of 7.1.1 (ii).
Defining

I
(1)
N (t) := E||X(t)−XN (t)||2L2

ρ
,

I
(2)
N (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)[F (s,X(s))− FN (s,XN (s))] ds
∣∣∣∣∣∣∣∣2
L2

ρ

,

Ĩ
(2)
N (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)[E(s,X(s))− EN (s,XN (s))] ds
∣∣∣∣∣∣∣∣2
L2

ρ
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and

I
(3)
N (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)[MΣ(s,X(s)) −MΣ(s,XN (s))] dW (s)
∣∣∣∣∣∣∣∣2
L2

ρ

, t ∈ [ 0, T ],

we get, for each t ∈ [ 0, T ],

E
∣∣∣∣∣∣∣∣X(t)− U(t, 0)ξ −

t∫
0

U(t, s)F (s,X(s)) ds−
t∫
0

U(t, s)MΣ(s,X(s)) dW (s)

−
t∫
0

∫
L2

U(t, s)MC(s)(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2

L2
ρ

≤ C[I(1)
N (t) + I

(2)
N (t) + I

(3)
N (t)]

in the Poisson noise case and, respectively in the Lévy noise case,

E
∣∣∣∣∣∣∣∣X(t)− U(t, 0)ξ −

t∫
0

U(t, s)E(s,X(s)) ds−
t∫
0

U(t, s)MC(s) dL(s)
∣∣∣∣∣∣∣∣2
L2

ρ

≤ C[I(1)
N (t) + Ĩ

(2)
N (t)].

Analogously to Step 4, we have (by (7.63))

I
(1)
N (t) ≤ c(ν, ρ)

(
E||X(t)−XN (t)||2νL2ν

ρ

) 1
ν → 0, as N →∞,

both in the Poisson and the Lévy noise case.
By (7.64) there is a subsequence of XN , which converges to X, P ⊗dt⊗dµρ-
almost everywhere on [ 0, T ] × Ω × Θ. For simplicity, we assume XN itself
to be this sequence.
Herefrom, by the continuity of f we have for almost all s ∈ [ 0, T ]

f(s, ω,X(s, ω, θ))− f(s, ω,XN (s, ω, θ)) → 0, as N →∞,

P ⊗ µρ-almost surely on Ω×Θ.
Condition (PG) with exponent ν > 1 and

X(t) ≤ XN (t) ≤ X1(t), t ∈ [ 0, T ], N ∈ N,

imply that for all s ∈ [ 0, T ]

|f(s, ω,X(s, ω, y))− f(s, ω,XN (s, ω, y))|
≤ c(cf (T ))(1 + |X(s, ω, y)|ν + |XN (s, ω, y)|ν)
≤ 2c(cf (T ))(1 + |X(s, ω, y)|ν + |X1(s, ω, y)|ν),
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P ⊗ µρ-almost surely on Ω×Θ.
Obviously

sup
s∈[ 0,T ]

∫
Ω

∫
Θ

(|X(s, ω, θ)|2ν + |X1(s, ω, θ)|2ν)µρ(dy)P (dω)

≤ sup
s∈[ 0,T ]

(
E||X(s)||2νL2ν

ρ
ds+ E||X1(s)||2νL2ν

ρ

)
<∞,

since X,X1 ∈ Gν(T ). Thus, Lebesgue’s theorem is applicable and gives
us

lim
N→∞

I
(21)
N (T ) =

T∫
0

[∫
Ω

∫
Θ

(f(s, ω,X(s, ω, θ))− f(s, ω,XN (s, ω, θ)))2 µρ(dθ)P (dω)
]
ds

= 0.

To estimate I(22)
N,M (T ), let us fix some K ≤ N , K,N ∈ N.

Using the relation (7.54), we find that

(7.65) lim
N→∞

I
(22)
N (T ) ≤ lim

N→∞

T∫
0

E||F (s, ·, XN (s))− FK(s, ·, XN (s))||2L2
ρ
ds

=
T∫
0

E||F (s, ·, X(s))− FK(s, ·, X(s))||2L2
ρ
ds.

Since (7.65) holds for any K ∈ N, letting K →∞ we get I(22)
N (T ) → 0.

Replacing the F -terms by the E-terms, we know that Ĩ(2)
N (t) → 0 as N →∞.

In view of (7.64), we can apply the same arguments as in Step 4 to get

lim
N→∞

I
(3)
N (t) = 0 for any t ∈ [ 0, T ].

Thus, X solves (7.1) resp. (7.2) in the sense of 7.1.1 (ii).

The required continuity properties of the solution follow from the similar
properties of the integral terms in the right hand side of the equations (7.1)
and (7.2), which were considered in Section 5.1.

Thus, it remains to show estimates (7.8), (7.9).
We note that in both cases, we have for any t ∈ [ 0, T ]

E||X(t)||2νL2ν
ρ
≤ c(ν)

[
E||Y (t)||2νL2ν

ρ
+ E||X1(t)||2νL2ν

ρ

]
and thus
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sup
t∈[ 0,T ]

E||X(t)||2νL2ν
ρ
≤ c(ν)

[
sup

t∈[ 0,T ]
E||Y (t)||2νL2ν

ρ
+ sup
t∈[ 0,T ]

E||X1(t)||2νL2ν
ρ

]

≤ c(ν)

 sup
t∈[ 0,T ]

E||Y (t)||2νL2ν
ρ

+ sup
t∈[ 0,T ]

N∈N

E||XN (t)||2νL2ν
ρ


≤ c(ν, ζ,K, T, c(T ), cf (T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

in the Poisson noise case resp.

sup
t∈[ 0,T ]

E||X(t)||2νL2ν
ρ
≤ c(ν)

[
sup

t∈[ 0,T ]
E||Y (t)||2νL2ν

ρ
+ sup
t∈[ 0,T ]

E||X1(t)||2νL2ν
ρ

]

≤ c(ν)

 sup
t∈[ 0,T ]

E||Y (t)||2νL2ν
ρ

+ sup
t∈[ 0,T ]

N∈N

E||XN (t)||2νL2ν
ρ


≤ c(ν, ζ,m,K, T, c(T ), ce(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

in the Lévy noise case, which finishes the proof. �

7.4 Proof of Theorem 7.1.6

So far, we have only established existence of a solution, but not uniqueness.
Before we start with the proof of Theorem 7.1.6, let us recall two related
uniqueness results on SDEs in infinite dimensions with non-Lipschitz drift.
First, in the framework of Section 7.1, Manthey and Zausinger proved path-
wise uniqueness of mild solutions to the Wiener noise driven SDE

dX(t) = (A(t)X(t) + F (t,X(t)))dt+MΣ(t,X(t)) dW (t), t ∈ [ 0, T ],
X(0) = ξ,

which is just equation (7.1) with C = 0.
Their result requires the following additional assumptions:

• Θ is bounded;

• W is a cylindrical Wiener process in L2;

• f is bounded, i.e. sup
(t,y)∈[ 0,T ]×R

|f(t, y)| <∞;

• σ is strictly positive, i.e.

inf
(t,y)∈[ 0,T ]×R

|σ(t, y)| ≥ ε > 0, (t, y) ∈ [ 0, T ]×Θ.
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To prove their uniqueness result, Manthey and Zausinger used Girsanov’s
theorem, which is not applicable in our case. Therefore, our proof of Theo-
rem 7.1.6 is based on the following uniqueness result in infinite dimensions
with both Wiener and Poisson noise.

In Section 2.1 of their paper [80], Marinelli and Röckner consider the SDE

(7.66) dX(t) = (A(t)X(t) + F (X(t)))dt+B(t)dW (t)
+
∫
Z

G(t, z) Ñ(dt, dz), t ∈ [ 0, T ],

X(0) = ξ.

In their setting, solutions to equation (7.66) take values in L2(Θ) with
Θ ⊂ Rd being open and bounded with a smooth boundary. Here, W is
a cylindrical Wiener process in L2 and Ñ is a compensated Poisson random
measure on [ 0, T ]×Z with compensator dt⊗m, where (Z,Z,m) is a mea-
surable space.
Since the results in [80] are restricted to open bounded Θ with smooth
boundary ∂Θ, we will not use the shorthened notations from the previous
sections.

Definition 7.4.1: Assume that f defining F by (NEM) obeys (PG)
with exponent ν ≥ 1. Given an initial condition ξ ∈ L2ν(Θ), an adapted
process (X(t))t∈[ 0,T ] such that

E sup
t∈[ 0,T ]

||X(t)||2L2 <∞

is called a mild solution (7.66) if (cf. Definition 2, p.1531 in [80])

• X(t) ∈ L2ν(Θ), P -a.s., for all t ∈ [ 0, T ], and

•
X(t) = etAξ +

t∫
0

e(t−s)AF (X(s)) ds

+
t∫
0

e(t−s)AB(s) dW (s) +
t∫
0

∫
Z

e(t−s)AG(s, z) Ñ(ds, dz),

P -a.s., for all t ∈ [ 0, T ] and the integrals on the right hand side are
well-defined.

Besides the assumption that f is of at most polynomial growth, it is
assumed that (cf. p.1531 in [80]):

• A admits a unique extension to a strongly continuous semigroup of
positive contractions on L2ν(Θ) and L2ν2

(Θ).

• f is a continuous maximal monotone function, i.e. there is some µ ∈ R
such that R 3 θ 7→ f(θ) + µθ ∈ R is monotone.
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• G: [ 0, T ]× Ω× Z → L2ν(Θ) obeys

(7.67) E
T∫
0

[∫
Z

||G(t, z)||2ν2

L2ν2 m(dz) +
(∫
Z

||G(t, z)||2
L2ν2 m(dz)

)ν2
]
dt <∞.

Under these assumptions, the uniqueness result proven in [80] (cf. Proposi-
tion 7, p.1539 there) can be stated as follows

Proposition 7.4.2: There is a unique càdlàg mild solution to (7.66)
in the sense of Definition 7.4.1. It satisfies the estimate

E sup
t∈[ 0,T ]

||X(t)||2νL2ν ≤ c(ν, T )(1 + E||ξ||2νL2ν ),

where c(ν, T ) is a positive constant.

Now, let us prove Theorem 7.1.6 with the help of Proposition 7.4.2.

Proof of 7.1.6(i): First, we recall that by Theorem 7.1.2 (i) we have
the existence of a mild predictable solution [ 0, T ] 3 t 7→ X(t) ∈ L2(Θ),
which obeys a càdlàg version.
As was mentioned in [80] (cf. Remark 13, p.1546 there), Proposition 7.4.2
extends to the case of an additional solution-dependent Wiener noise with
a Lipschitz coefficient. This gives us the possibility to apply Proposition
7.4.2 to the solutions of equation (7.1) if the other conditions from 7.4.2 are
fulfilled.
Note that the original result in [80] was formulated for nonrandom and time-
independent f . Since by assumption f is maximal monotone uniformly in
(t, ω), the dependence of f on (t, ω) does not cause any problem in extending
Proposition 7.4.2 to our setting.
By assumption (QI) for η and the fact that c is bounded uniformly in
[ 0, T ]× Ω, we immediately get (7.67) with G(t, x) = MC(t)(x),
(t, x) ∈ [ 0, T ]× L2(Θ).
Now, since the assumptions on A are such that the assumptions from above
are fulfilled, Proposition 7.4.2 gives us the claim. �

Proof of 7.1.6(ii): In this case, by Theorem 7.1.3 (i) we have the existence
of a mild predictable solution [ 0, T ] 3 t 7→ X(t) ∈ L2ν(Θ), which obeys a
càdlàg version. Similarly to the proof of 7.1.6 (i), we get that Proposition
7.4.2 is applicable. Again, by the assumption that f is maximal monotone
uniformly in (t, ω) and the fact that G from the proof of 7.1.6 (i) obeys
(7.67), since (QI) holds with q = 2ν2 for η and c is bounded uniformly in
[ 0, T ]× Ω, we can apply Proposition 7.4.2. Thus, we get the claim. � �

Remark 7.4.3: Theorem 7.4.2 can also be proven by the abstract unique-
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ness result for dissipative stochastic evolution equations in Hilbert spaces
proved in [81] (see Theorem 1, p.365/366 there). Also, this approach allows
us to consider infinite-dimensional SDEs with nuclear Wiener processes.

Remark 7.4.4: Unfortunately, in the solution-dependent case, under the
assumptions of the existence theorem for equations (1.1) and (1.2) (cf. Sec-
tion 8.1) the uniqueness result given by Theorem 12 in [80] and Theorem 3
in [81] is not directly applicable as we will see in Remark 8.1.6 (v) below.
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Chapter 8

Existence in the case of
non-Lipschitz drift with
multiplicative jump noise

In this chapter, we will present the main result of the thesis. We will prove
the existence of mild solutions to equations (1.1) and (1.2) in the case of
non-Lipschitz drift, i.e. we allow the jump coefficients in the equations to
be solution-dependent.
The proofs will be done analogously to the proofs of Theorems 7.1.2 and
7.1.4. To shorten the presentation, we will merely discuss the parts that
differ from the proofs in Chapter 7. Of course, this procedure requires com-
parison results for equations (1.1) and (1.2) in the case of Lipschitz drifts.
These results will be proven similarly to the results in the additive case in
Chapter 6, namely by using finite-dimensional approximations of the initial
equations. To compare the corresponding solutions to the finite-dimensional
equations driven by multiplicative Poisson resp. Lévy noise, we consider the
approximations as equations in Sobolev spaces, since then we can apply
the Sobolev embedding theorem to get solutions, which are continuous and
bounded in space. With the help of this technique we can apply the com-
parison results from [92], [68] and [67] collected in Appendix C. To make use
of the Sobolev embedding theorem, we need the restriction that the domain
Θ ⊂ Rd obeys the weak cone property (cf. Appendix A, Theorem A.6).
The application of the finite-dimensional comparison results mentioned be-
fore forces us to assume that the function defining the jump resp. jump
diffusion coefficient is monotonically increasing (resp. decreasing), the Lévy
measure is supported by the set L2

≥0(Θ) of nonnegative functions (resp. by
the set L2

≤0(Θ) of nonpositive functions). Furthermore, the family (UN )N∈N
approximating the almost strong evolution operator U in the sense of (A6)
should obey the regularity property (A8) in Sobolev spaces Wm,2(Θ). This
is the main new issue compared to Chapters 6 and 7.

271
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Let us recall the basic framework.
For the whole chapter, let (Ω,F , P ) and (Ft)t∈[ 0,T ] for some T > 0 be as in
Section 1.2.
We suppose that ρ ∈ N ∪ {0} is such that µρ(Θ) <∞, i.e. we have the two
basic cases

• ρ > d for unbounded Θ ⊂ Rd and

• ρ = 0 for bounded Θ.

Again, given X, Y ∈ L2
ρ(Θ), by writing X ≤ Y we mean that X(θ) ≤ Y (θ)

for µρ-almost all θ ∈ Θ.
Analogously to the formulation of Theorem 7.1.6, in order to emphasize that
we have a restriction on the domain Θ, we will not use the shortened nota-
tion in this chapter, i.e. we will always write L2(Θ) or L2

ρ(Θ).

8.1 The main results of this chapter

First of all, let us give the exact setting.
Recall that according to the general framework from Chapter 7:

• (A(t))t∈[ 0,T ] generates an almost strong evolution operator in L2
ρ(Θ)

in the sense of 2.1.1.

• σ, γ: [ 0, T ]× Ω× R → R generating Σ, Γ by (NEM) are
PT ⊗B(R)-measurable and fulfill the Lipschitz property (LC) and the
local boundedness property (LB).

• e, f : [ 0, T ]× Ω× R → R generating E, F by (NEM) are
PT ⊗B(R)-measurable, continuous in the third variable and fulfill the
polynomial growth condition (PG) with exponent ν ≥ 1 and the one-
sided linear growth condition (LG).

• W is a Q-Wiener process in L2(Θ) such that either Q ∈ T +(L2(Θ))
and the system of eigenvectors (en)n∈N of Q obeys (3.1) (referred to
as the nuclear case) or Q = I (referred to as the cylindrical case).

• Ñ is a compensated Poisson random measure and L is a Lévy process
such that the corresponding intensity measure η obeys the square in-
tegrablility condition (SI).
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Additionally to the previous conditions, we need to assume that

(M) Let γ, σ: [ 0, T ]×Ω×R → R be PT ⊗B(R)-measurable functions such
that

γ(t, ω, y1) ≤ γ(t, ω, y2) for any (t, ω) ∈ [ 0, T ]× Ω and y1 ≤ y2

resp.

σ(t, ω, y1) ≤ σ(t, ω, y2) for any (t, ω) ∈ [ 0, T ]× Ω and y1 ≤ y2.

(P) The intensity measure η is supported on

L2
≥0 := {ψ ∈ L2 |ψ ≥ 0 , dθ − a.e.}.

Assuming (M) and (P) is crucial to apply the comparison method in the
case of multiplicative Poisson resp. Lévy noise.
Assumption (M) means that γ resp. σ is nondecreasing in the last vari-
able.
(P) is surely satisfied if η corresponds to a Lévy process L of positive
jumps, i.e., ∆L(t) ∈ L2

≥0.
Alternatively, we could assume that γ resp. σ is nonincreasing in the last
variable and that η is supported on L2

≤0 := {ψ ∈ L2 |ψ ≤ 0 dθ − a.e.}. E.g.
this is the case if η corresponds to a Lévy process L of nonpositive jumps,
i.e. ∆L(t) ∈ L2

≤0. Lévy processes with nonpositive jumps are e.g. used to
model queing, insurance risk and dam theory.
For further examples of application and a closer look at Lévy processes with
nonpositive jumps, we refer to [12], Chapter 7.
In the proof of the comparison theorem 8.1.5 below, we have to work in a
Hilbert space setting in order to develop proper stochastic analysis and de-
fine Wiener and Poisson stochastic integral via Itô’s isometry, which is not
evident in the case of general Banach spaces. We further need to evaluate
the equations pointwise. Thus, we will work in Sobolev spaces Wm,2(Θ) (for
the definition see Appendix A) with large enough m > d

2 , since

1. Wm,2(Θ) is a Hilbert space (in contrast to the general Sobolev spaces
Wm,p(Θ)) and

2. Wm,2(Θ)⊂−→Cb(Θ), i.e. Wm,2(Θ) is continuously embedded in Cb(Θ).

Recall from Appendix A (cf. Theorem A.6 Case 1 (with j = 0) there) that
in the case of Θ being a domain obeying the weak cone property(cf. Def-
inition A.1.1 in Appendix A), the second item holds for any m ∈ N such that
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mp = 2m > d ⇐⇒ m > d
2 .

The weak cone property is a standard assumption in the theory of Sobolev
spaces.

Below, we always suppose that Θ ∈ B(Rd) obeys the weak cone property
(for examples of spaces fulfilling this property, see Appendix A).

For a comparison theorem it is enough to consider the solutions in W2
m(T ),

the space of predictable, Wm,2(Θ)-valued processes X = (X(t))t∈[ 0,T ] such
that

sup
t∈[ 0,T ]

E||X(t)||2Wm,2 <∞.

Furthermore, we need an additional assumption on the approximations of
the generating family of operators (A(t))t∈[ 0,T ]:

(A8) The family (AN (t))t∈[ 0,T ] from (A6) is such that, for any N ∈ N, we
have (AN (t))t∈[ 0,T ] ⊂ L(Wm,2(Θ)) and, for the corresponding evolu-
tion operators UN ,

sup
0≤s≤t≤T

||UN (t, s)||L(Wm,2) := c̄N (T ) <∞.

Now, we can formulate the main results of this chapter, which will be proven
in Sections 8.2–8.4 below.

As in the case of Lipschitz coefficients considered in Chapter 5, we split
our considerations into the following two cases:

Case (A) We suppose that f resp. e generating F resp. E by (NEM) fulfills
the condition (PG) from the introduction with ν = 1, i.e. f resp. e
is of at most linear growth.
An L2

ρ-valued initial condition ξ fulfills E||ξ||q
L2

ρ
<∞ for some q ≥ 2.

We show existence of a solution X ∈ Hq(T ) starting from the above
ξ.

Case (B) We suppose that f resp. e generating F resp. E by (NEM) fulfills
condition (PG) from the introduction with ν > 1.
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An L2ν
ρ -valued initial condition ξ obeys E||ξ||2νL2ν

ρ
<∞ for the above ν.

We show existence of a solution X ∈ Gν(T ) starting from the above ξ.

Analogously to the situation in Chapter 7, the first theorem describes the
case of at most linear growth for the drift terms.

Theorem 8.1.1: Suppose that, additionally to (A8), the almost strong
evolution operator U generated by (A(t))t∈[ 0,T ] has properties (A0)–(A2),
and (A6).
Suppose that in (A2) we have ζ ∈ [ 0, 1

2 ).
Furthermore, let (PG) be fulfilled with exponent ν = 1 both for e and f .
Suppose that q ∈ ( 2

1−ζ ,
2
ζ ) (Note that, by the choice of ζ, this intervall is

non-empty!) and the initial condition is as in Case (A).
Finally, assume that the integrability condition (QI) for the Lévy measure
η is fulfilled with the above q.

(i) There exists a predictable mild solution to (1.1) in the sense of 5.1.2
(i). The process t 7→ X(t) is continuous in Lq(Ω;L2

ρ(Θ)).
Furthermore, we have the moment bound

(8.1) sup
t∈[ 0,T ]

E||X(t)||q
L2

ρ
≤ c(q,K, T, c(T ), cf (T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

with a positive constant on the right hand side. Additionally assuming that
γ resp. U obeys

(8.2) sup
(t,ω,y)∈[ 0,T ]×Ω×R

|γ(t, ω, y)| := K <∞

resp. (A7), there exists a cádlág version of the solution.

(ii) There exists a predictable mild solution to (1.2) in the sense of 5.1.2
(i).
The process t 7→ X(t) is continuous in Lq(Ω;L2

ρ(Θ)).
Furthermore, we have the moment bound

(8.3) sup
t∈[ 0,T ]

E||X(t)||q
L2

ρ
≤ c(q,K, T, c(T ), ce(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

with a positive constant on the right hand side. Additionally assuming that
σ resp. U obeys

(8.4) sup
(t,ω,y)∈[ 0,T ]×Ω×R

|σ(t, ω, y)| := K <∞

resp. (A7), there exists a cádlág version of the solution.
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Remark 8.1.2: Actually, in the nuclear case we could also assume (A5)*
with ν = 1 instead of (A2) (see Remark 3.4.2 (ii) and Theorem 4.1 above).

The second theorem describes the general case of drift terms having poly-
nomial growth of order ν > 1. Analogously to Theorem 7.1.4, the solutions
take their values in L2ν

ρ but are only time-continuous in L2(Ω;L2
ρ).

Theorem 8.1.3: Suppose that, additionally to (A8), the almost strong
evolution operator U , generated by (A(t))t∈[ 0,T ], has properties (A0)– (A4),
(A5)* and (A6) (Note that, analogously to Theorem 7.1.4, we could also
assume (A5) instead of (A2) and (A4). Furthermore, in the nuclear case
we can drop (A2) and (A4) at all).
Suppose that in (A2) (resp. (A5)) we have ζ ∈ [ 0, 1

2 ).
Let e and f fullfill (PG) with an exponent ν ∈ ( 1

1−ζ ,
1
ζ ) with ζ from (A2)

(Note that, by the choice of ζ, this intervall is non-empty!).
Suppose the initial condition ξ is as in Case (B). Assume that the integra-
bility condition (QI) for the Lévy measure η is fulfilled with q = 2ν2.

(i) There exists a predictable mild solution X to (1.1) in the sense of 5.1.2
(ii).
The process t 7→ X(t) is continuous in L2(Ω;L2

ρ(Θ)). Furthermore, we have
the estimate

(8.5) sup
t∈[ 0,T ]

E||X(t)||2νL2ν
ρ
≤ c(ν, ζ,K, T, c(T ), cf (T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

with a positive constant on the right hand side. Additionally assuming that γ
resp. U obeys (8.2) resp. (A7), there exists a càdlàg version of the solution.

(ii) There exists a predictable mild solution X to (1.2) in the sense of 5.1.2
(ii).
The process t 7→ X(t) is continuous in L2(Ω;L2

ρ(Θ)). Furthermore, we have
the estimate

(8.6) sup
t∈[ 0,T ]

E||X(t)||2νL2ν
ρ
≤ c(ν, ζ,K, T, c(T ), ce(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

with a positive constant on the right hand side. Additionallly assuming that
σ resp. U obeys (8.4) resp. (A7), there exists a càdlàg version of the solu-
tion.

The proofs of Theorems 8.1.1 and 8.1.3 will be done in Sections 8.3 resp. 8.4.

Remark 8.1.4: Analogously to Theorem 7.1.4 in the previous chapter,
the assumption that (QI) holds with q = 2ν2 will be crucial in Step 2 in the
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proof of Theorem 8.1.3 (see estimate of the term Ī
(2)
M from the proof of 7.1.4

on p.245 (which accurs again on p.321 below)).

To prove Theorem 8.1.1 and 8.1.2, similarly to the proofs of Theorems 7.1.2
and 7.1.4, we need the following comparison results in the case of Lipschitz
drifts.

Theorem 8.1.5: Let U be an almost strong evolution operator generated
by (A(t))t∈[ 0,T ] such that, additionally to (A8), also (A0)–(A2), (A6)

and (A7) hold. Let (QI) hold with the given q ∈ ( 2
1−ζ ,

2
ζ ) for ζ from (A2)

in [ 0, 1
2 ). Furthermore, let ξ(1), ξ(2) be as in Case (A):

(i) Let f (i), i = 1, 2, σ and γ fulfill the Lipschitz property (LC) and the
local boundedness property (LB). Suppose that γ additionally fulfills (M).
Furthermore, assume that

ξ(1) ≤ ξ(2), P -a.s.,

and

f (1)(t, y) ≤ f (2)(t, y) for all (t, y) ∈ [ 0, T ]× R, P -a.s..

Then, we have

X(1)(t) ≤ X(2)(t), P -a.s.,

for any t ∈ [ 0, T ], where X(i) ∈ Hq(T ) denotes the unique predictable mild
solution to (1.1).

(ii) Let e(i), i = 1, 2, and σ fulfill the Lipschitz property (LC) and the
local boundedness property (LB). Suppose that σ additionally fulfills (M).
Furthermore, assume that

ξ(1) ≤ ξ(2), P -a.s.,

and

e(1)(t, y) ≤ e(2)(t, y) for all (t, y) ∈ [ 0, T ]× R, P -a.s..

Then, we have

X(1)(t) ≤ X(2)(t), P -a.s.,
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for all t ∈ [ 0, T ], where X(i) ∈ Hq(T ) denotes the unique predictable mild
solution to (1.2).

Proof: See Section 8.2 below.

Remark 8.1.6: (i) By Proposition 5.2.1, (A7) implies the existence
of càdlàg solutions X(i) with X

(i)
− ∈ Hq(T ) to each of the equations (1.1)

resp. (1.2). Thus,

P ({ω ∈ Ω |X(1)(t, ω) ≤ X(2)(t, ω)for all t ∈ [ 0, T ]}) = 1.

(ii) Repeating literally the arguments from Section 6.1 a comparison re-
sult with initial conditions ξ(i) as in Case (B) follows immediately from
the comparison theorem 8.1.5 in Case (A).

(iii) Recall that already in Chapter 4 we had integrability conditions on
the Lévy measure η, which of course also have to be fulfilled in this special
case.
For a class of examples fulfilling both (P) and (QI) from Chapter 4, see
Appendix E at the end of this thesis.

(iv) The assumption q ∈ ( 2
1−ζ ,

2
ζ ) and the boundedness assumption on γ

resp. σ are needed to guarantee the existence of a càdlàg mild solution (cf.
the results on the pathwise properties of the Bochner convolutions and the
stochastic convolutions w.r.t. Wiener processes and compensated Poisson
random measures from Sections 3.3, 3.4 and 4.2).

(v) Note that in this chapter, we do not have a uniqueness result by the
means used so far.
Indeed, in their paper [80] Marinelli and Röckner get the additional assump-
tion

E
∫

L2(Θ)

||MΓ(s,ϕ1) −MΓ(s,ϕ2)x||2L2
ρ
η(dx) ≤ h(s)||ϕ1 − ϕ2||2L2

ρ

for the jump coefficient in the case, where the jump coefficient is solution-
dependent (cf. Theorem 12, p.1544 in [80]). Here, h is supposed to be in
L1([ 0, T ]).
To have such an estimate, we need that η is supported on the Sobolev space
Wm,2(Θ) with m > d

2 as above and with Θ ⊂ Rd obeying the weak cone
property.
Then, by Theorem A.6, we have Wm,2(Θ)⊂−→Cb(Θ) and thus

sup
θ∈Θ

|x(θ)| ≤ C||x||Wm,2 for any x ∈Wm,2(Θ).
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Therefore, for any s ∈ [ 0, T ] and ϕ1, ϕ2 ∈ L2
ρ(Θ), given a Lipschitz function

Γ we have∫
L2

||(MΓ(s,ϕ1) −MΓ(s,ϕ2))x||2L2
ρ
η(dx)

=
∫
L2

||(MΓ(s,ϕ1)−Γ(s,ϕ2)x||2L2
ρ
η(dx)

=
∫

Wm,2

∫
Θ

[γ(s, ϕ1(θ))− γ(s, ϕ2(θ))]2x2(θ)µρ(dθ) η(dx)

≤ C2

( ∫
Wm,2

||x||2Wm,2 η(dx)

)
||Γ(s, ϕ1)− Γ(s, ϕ2)||2L2

ρ

≤ C2c2γ(T )

( ∫
Wm,2

||x||2Wm,2 η(dx)

)
||ϕ1 − ϕ2||2L2

ρ
,

and obviously

h(s) := C2c2γ(T )

(
C

∫
Wm,2

||x||2Wm,2 η(dx)

)
, s ∈ [ 0, T ]

defines an element in L1([ 0, T ]) such that the assumptions of Theorem 12
in [80] are fulfilled.
Thus, to be able to have an estimate of the required form we may strengthen
the assumption (QI) in the sense that it holds in Wm,2(Θ) instead of L2(Θ).

8.2 Proof of Theorem 8.1.5

Recall that in Chapter 6 the jump coefficients were just additive, i.e. solution-
independent, whereas in Theorem 8.1.5 we allow for multiplicative, i.e.
solution-dependent, jump coefficients.

To this end, we need to apply the corresponding finite-dimensional com-
parison results for jump diffusions shown by Peng and Zhu (cf. [92]) resp.
Krasin and Melnikov (cf. [67]). To apply those results, we need to evaluate
our solution processes pointwise, which gives reason to consider the Sobolev
spaces Wm,2(Θ) described in the introduction of this chapter.

We try to keep the structure of Chapter 6, but, compared to that chap-
ter, we need further approximations to evaluate the equations pointwise.

The approximations will be described in Subsections 8.2.1 (for equation
(1.1)) and 8.2.2 (for equation (1.2)). The comparison results for the ap-
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proximating equations from Subsections 8.2.1 and 8.2.2 will be shown in
Subsection 8.2.3, whereas the convergence of the approximation is shown in
Subsection 8.2.4.

To shorten the presentation, in Subsections 8.2.3 and 8.2.4 we only present
the issues that principally differ from that of Chapter 6.

8.2.1 Approximations of equation (1.1)

It has already been emphasized before that, in order to prove Theorem
8.1.5, we need to evaluate the solutions pointwise. Therefore, we will work
in Sobolev spaces Wm,2(Θ) with m > d

2 and Θ ⊂ Rd obeying the weak cone
property.
The main difference to the proof of the comparison result in Chapter 6 is
that we first approximate equation (1.1) by equations that are uniquely solv-
able in Wm,2(Θ)⊂−→L2(Θ)⊂−→L2

ρ(Θ). After getting the comparison result for
the regularized equations, by taking limits in L2

ρ(Θ) we can conclude the
similar result for the initial equations. The latter will be done by reasoning
close to that from Chapter 6.

To be able to approximate in Wm,2(Θ), we need the some technical prepa-
rations:

For a fixed ϕ ∈ C∞0 (Rd), let (δJ)J∈N be given by

(8.7) δJ(θ) := 1
Jϕ(Jθ), θ ∈ Rd, J ∈ N.

This is a Dirac sequence (cf. 2.13 2 from [6]) and for any ψ ∈ L2(Rd)
we have ψJ := conv(ψ, δJ) ∈ C∞0 (Rd) (cf. 2.12 4 from [6]), where conv de-
notes the standard convolution mapping in Rd (More about the properties
of convolutions can be found in the proof of Proposition 3.4.3 in Chapter 3.).

Recall that we also need boundedness of the approximating functions. In
the following, we describe the procedure of getting such approximations by
considering the initial conditions ξ(i) ∈ L2

ρ(Θ), i = 1, 2. We have

ξ(i) ∈ L2
ρ(Θ) ⇐⇒ ψ(i) := µ

− 1
2

ρ ξ(i) ∈ L2(Θ).

In the case Θ 6= Rd, denoting the trivial extension of ξ(i) on Rd again by

ξ(i), we get that ψ(i) := µ
− 1

2
ρ ξ(i) ∈ L2(Rd).

Next, we define a sequence of cut-off functions χJ : R+ → [ 0, 1 ],
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χJ ∈ C∞0 (R+), J ∈ N, with the properties χJ(r) = 1 for r ∈ [ 0, J ],
χJ(r) = 0 for r ≥ J + 1 and χJ+1(r) = χJ(r − 1) for r ≥ 1.
Thus, by setting

(8.8) ψ
(i)
J := µ

1
2
ρ conv(χJψ(i), δJ), J ∈ N,

(and, if necessary, taking a subsequence δJ ′(J), J → ∞) we get families

(ψ(i)
J )J∈N ⊂ C∞0 (Rd), i = 1, 2, with the properties

||ξ(i)J ||L2
ρ
≤ ||ξ(i)||L2

ρ
,

(8.9)

||ψ(i)
J − ψ(i)||L2

ρ
= ||µ−

1
2

ρ ξ
(i)
J − µ

− 1
2

ρ ξ(i)||L2 → 0 as J →∞.

By Lebesgue’s dominated convergence theorem, this immediately gives us

E||ξ(i)J − ξ(i)||2L2
ρ
→ 0 as J →∞.

Obviously for each J ∈ N ψ
(i)
J restricted to Θ is an element of Wm,2(Θ)

and ψ(1)
J ≤ ψ

(2)
J provided ψ(1) ≤ ψ(2).

Next, we approximate the identity function

L2(Θ) 3 ψ 7→ I(ψ) := ψ ∈ L2(Θ)

by the family of mappings

L2(Θ) 3 ψ 7→ IJ(ψ) := conv(ψ, δJ) ∈Wm,2(Θ).

Therefore, for any ψ ∈ L2(Θ), IJ(ψ) → I(ψ) = ψ in L2(Θ) as J → ∞
and

(8.10) ||IJ(ψ)||L2 ≤ ||ψ||L2 .

Obviously, ψ ∈ L2(Θ) implies IJ(ψ) ∈ C∞(Rd) and , for arbitrary α ∈ Nd
0,

for the corresponding partial derivative we have
∂αIJ = conv(ψ, ∂αδJ) ∈ L2(Θ).
Furthermore, we need to approximate the coefficients f (i), σ and γ, which
define the operators F (i), Σ and Γ by (NEM), by smooth functions with
the following properties (cf. e.g. [65], items (2.15)–(2.17) in Section 2 there):

1. The k-th derivatives of f (i)
J , σJ and γJ w.r.t. y ∈ R are bounded and

continuous for k = 0, 1, ...,m + 1 and i = 1, 2 with all partial deriva-
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tives taking values in L2(Θ);

2. f (1)
J (t, y) ≤ f

(2)
J (t, y) for all (t, y) ∈ [ 0, T ]× R, P -a.s.;

3. f (i)
J (t, ω, y) → f (i)(t, ω, y) as J →∞ for any (t, ω, y) ∈ [ 0, T ]× Ω× R

and i = 1, 2.
The same holds true for σJ and γJ ;

4. The functions f (i)
J , i = 1, 2, σJ and γJ fulfill (LC) and (LB) uniformly

in J ∈ N.

Such functions can e.g. be gained by using cut-off and mollifiers in Rd (like
in the previous constructions). A crucial moment here is that the convolu-
tion operator is a contraction not only in L2(Θ) but also in the Lipschitz
norm (see e.g. [108]), which guarantees that (LC) holds for all f (i)

J , J ∈ N,
with the same constant, which does not depend on t ∈ [ 0, T ] and ω ∈ Ω.
Furthermore, the convolution operator preserves the monotonicity property,
i.e. given any t ∈ [ 0, T ] and any y ∈ R, f (1)(t, y) ≤ f (2)(t, y) implies
f

(1)
J (t, y) ≤ f

(2)
J (t, y) for all J ∈ N.

For a fixed J ∈ N, we consider the SDE

dX
(i)
J (t) = (A(t)X(i)

J (t) + F
(i)
J (t,X(i)

J (t)))dt
+MΣJ (t,XJ (t)) dW (t) +

∫
L2

M
ΓJ (t,X

(i)
J (t))

IJ(x) Ñ(dt, dx), t ∈ [ 0, T ],

(8.11)

X
(i)
J (0) = ξ

(i)
J .

We look for solutions in the mild sense, i.e. for each t ∈ [ 0, T ] we have
in L2

ρ(Θ), P -a.s.,

(8.12)X(i)
J (t) = U(t, 0)ξ(i)J +

t∫
0

U(t, s)F (i)
J (s,X(i)

J (s)) ds

+
t∫
0

U(t, s)M
ΣJ (s,X

(i)
J (s))

dW (s)

+
t∫
0

∫
L2

U(t, s)M
ΓJ (s,X

(i)
J (t))

IJ(x) Ñ(ds, dx).

Since by construction the f (i)
J , σJ and γJ fulfill (LC) and (LB) and γJ

is bounded, we get the existence of càdlàg modifications of mild solutions to
(8.11) in L2

ρ(Θ) from the existence and uniqueness results in Chapter 5.
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Starting from (8.11), we define the further approximations similarly to the
procedure in Chapter 6.

Analogously to equation (6.4), for a fixed L ∈ N, we solve in L2
ρ(Θ), for

t ∈ [ 0, T ]

dX
(i)
L,J(t) = (A(t)X(i)

L,J(t) + F
(i)
J (t,X(i)

L,J(t)))dt
+M

ΣJ (t,X
(i)
L,J (t))

dWL(t) +
∫
L2

M
ΓJ (t,X

(i)
L,J (t))

IJ(x) Ñ(dt, dx),

(8.13)

X
(i)
L,J(0) = ξ

(i)
J

in the mild sense. Recall that, given the representation (2.5) from Sec-
tion 2.3, WL was defined as

(8.14) WL(t) :=
L∑
n=1

√
anenwn(t), t ∈ [ 0, T ].

Note that in general we do not assume that the orthonormal basis (en)n∈N
obeys (3.1).
The solution X(i)

L,J ∈ Hq(T ) satisfies P -a.s. the identity in L2
ρ(Θ)

(8.15)X(i)
L,J(t) = U(t, 0)ξ(i)J +

t∫
0

U(t, s)F (i)
J (s,X(i)

L,J(s)) ds

+
t∫
0

U(t, s)M
ΣJ (s,X

(i)
L,J (s))

dWL(s)

+
t∫
0

∫
L2

U(t, s)M
ΓJ (s,X

(i)
L,J (t))

IJ(x) Ñ(ds, dx), t ∈ [ 0, T ].

Next, we approximate any element en ∈ L2(Θ) of the orthonormal basis
in the representation (8.14) by a sequence (en,M )M∈N ⊂ C∞0 (Θ) in the sense
of (8.9).
Let us fix some M ∈ N. We define

(8.16) WM,L(t) :=
L∑
n=1

√
anen,Mwn(t), t ∈ [ 0, T ].

In L2
ρ(Θ), we solve, for t ∈ [ 0, T ]

dX
(i)
M,L,J(t) = (A(t)X(i)

M,L,J(t) + F
(i)
J (t,X(i)

M,L,J(t)))dt
+M

ΣJ (t,X
(i)
M,L,J (t))

dWM,L(t) +
∫
L2

M
ΓJ (t,X

(i)
M,L,J (t))

IJ(x) Ñ(dt, dx),

(8.17)
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X
(i)
M,L,J(0) = ξ

(i)
J

in the mild sense. The solution process X(i)
M,L,J ∈ Hq(T ) satisfies P -a.s.

the identity in L2
ρ(Θ)

(8.18) X(i)
M,L,J(t) = U(t, 0)ξ(i)J +

t∫
0

U(t, s)F (i)
J (s,X(i)

M,L,J(s)) ds

+
t∫
0

U(t, s)M
ΣJ (s,X

(i)
M,L,J (s))

dWM,L(s)

+
t∫
0

∫
L2

U(t, s)M
ΓL(s,X

(i)
M,L,J (t))

IJ(x) Ñ(ds, dx), t ∈ [ 0, T ].

Finally, we additionally fix some N ∈ N and consider the equation

dX
(i)
N,M,L,J(t) = (AN (t)X(i)

N,M,L,J(t) + F
(i)
J (t,X(i)

N,M,L,J(t)))dt
+MΣJ (t,XN,M,L,J (t)) dWM,L(t)
+
∫
L2

M
ΓJ (t,X

(i)
N,M,L,J (t))

IJ(x) Ñ(dt, dx), t ∈ [ 0, T ],

(8.19)

X
(i)
N,M,L,J(0) = ξ

(i)
J ,

where AN (t) ∈ L(L2) approximates A(t) in the sense of (A6) and obeys
(A8).

Since all coefficients are Lipschitz continuous with a uniform Lipschitz con-
stant for all (t, ω) ∈ [ 0, T ] × Ω, analogously to equation (6.5) we get the
existence of a unique (strong=mild) solution X

(i)
N,M,L,J ∈ Hq(T ) to (8.19).

Being rewritten in the mild form, P -a.s., for each t ∈ [ 0, T ] we have the
following identity in L2

ρ(Θ)

(8.20) X(i)
N,M,L,J(t) = UN (t, 0)ξ(i)J +

t∫
0

UN (t, s)F (i)
J (s,X(i)

N,M,L,J(s)) ds

+
t∫
0

UN (t, s)M
ΣJ (s,X

(i)
N,M,L,J (s))

dWM,L(s)

+
t∫
0

∫
L2

UN (t, s)M
ΓJ (s,X

(i)
N,M,L,J (s))

IJ(x) Ñ(ds, dx).

To summarize, the aim of the construction is to consider approximations
of W by finite-dimensional Wiener processes WM,L and the approximation
of A(t) by the bounded operators AN (t). Furthermore, all functions defining
Nemitskii operators are chosen to have bounded smooth derivatives.
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Analogously to the consideration of (6.4) and (6.5) in Section 6.1, we get
the existence and uniqueness of the X(i)

M,L,J and X(i)
N,M,L,J in Hq(T ) from the

general solvability results in the Lipschitz case (see Section 5.2, Theorem
5.2.1/Corollary 5.2.5), since AN and WM,L can be seen as special cases of
A and W from Sections 5.1/5.2.
Furthermore, we have a unique strong solution to equation (8.19) considered
in the Sobolev spaces Wm,2(Θ). This follows by general results about SDEs
with Poisson noise and Lipschitz coefficients in Hilbert spaces (see e.g. [95]
or [80]). We point out that according to the above approximation procedure
all operator coefficients in (8.19) are Lipschitzian in the space Wm,2(Θ),
whereby the Lipschitz constant for them can be chosen to be the same for
all (t, ω) ∈ [ 0, T ]× Ω.
Thus, we also have X(i)

N,M,L,J ∈ W2
m(T ) and it obeys a càdlàg modification

in Wm,2(Θ).
Furthermore, we have the existence of càdlàg versions in L2

ρ(Θ) of the solu-
tions to (8.11), (8.17) and (8.19).

In Section 8.2.3, for fixed N,M,L, J ∈ N we will show a pointwise com-
parison result for the processes Y (i) := X

(i)
N,M,L,J ∈ W2

m(T ).

8.2.2 Approximations of equation (1.2)

Taking into account the Lévy-Itô decomposition, we note that (1.2) becomes

(8.21) dX(i)(t) = (A(t)X(i)(t) + E(i)(t,X(i)(t)) +MΣ(t,X(i)(t))m)dt
+MΣ(t,X(i)(t)) dW (t) +

∫
L2

MΣ(t,X(i)(t))xÑ(dt, dx),

X(i)(0) = ξ(i).

Analogously to (8.11), (8.13), (8.17) and (8.19), we get the following SDEs:

Given J ∈ N, let us consider

dX
(i)
J (t) = (A(t)X(i)

J (t) + E
(i)
J (t,X(i)

J (t)) +M
ΣJ (t,X

(i)
J (t))

IJ(m))dt

+MΣJ (t,XJ (t)) dW (t) +
∫
L2

M
ΣJ (t,X

(i)
J (t))

IJ(x) Ñ(dt, dx), t ∈ [ 0, T ],

(8.22)

X
(i)
J (0) = ξ

(i)
J .

Here, the e(i)J are constructed analogously to the f (i)
J .

Since by the construction the e(i)J and σJ fulfill (LC) and (LB), by the
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existence and uniquenes results from Chapter 5 there are mild predictable
solutions X(i)

J ∈ Hq(t) to (8.22). In particular, due to the boundedness of
σJ we get the existence of a càdlàg version of this solution.
Given additionally L ∈ N, let X(i)

L,J ∈ Hq(T ) be the mild solution to the
equation

dX
(i)
L,J(t) = (A(t)X(i)

L,J(t) + E
(i)
J (t,X(i)

L,J(t)) +M
ΣJ (t,X

(i)
L,J (t))

IJ(m))dt

+M
ΣJ (t,X

(i)
L,J (t))

dWL(t) +
∫
L2

M
ΓJ (t,X

(i)
L,J (t))

IJ(x) Ñ(dt, dx),

(8.23)

X
(i)
L,J(0) = ξ

(i)
J

with WL as in (8.14).
Next, for M ∈ N and WM,L as in (8.16), we uniquely solve in Hq(T )

dX
(i)
M,L,J(t) = (A(t)X(i)

M,L,J(t) + E
(i)
J (t,X(i)

M,L,J(t)) +M
ΣJ (t,X

(i)
M,L,J (t))

IJ(m))dt

+M
ΣJ (t,X

(i)
M,L,J (t))

dWM,L(t) +
∫
L2

M
ΣJ (t,X

(i)
M,L,J (t))

IJ(x) Ñ(dt, dx),

(8.24)

X
(i)
M,L,J(0) = ξ

(i)
J .

Finally, given N ∈ N, for t ∈ [ 0, T ] we consider

dX
(i)
N,M,L,J(t) = (AN (t)X(i)

N,M,L,J(t) + E
(i)
J (t,X(i)

N,M,L,J(t)) +M
ΣJ (t,X

(i)
N,M,L,J (t))

IJ(m))dt

+MΣJ (t,XN,M,L(t)) dWM,L(t) +
∫
L2

M
ΣJ (t,X

(i)
N,M,L,J (t))

IJ(x) Ñ(dt, dx),

(8.25)

X
(i)
N,M,L,J(0) = ξ

(i)
J ,

where AN (t) ∈ L(L2) approximates A(t) in the sense of (A6) and obeys
(A8).

We get the existence and uniqueness of the X(i)
M,L,J and X(i)

N,M,L,J in Hq(T )
from the general solvability results in the Lipschitz case (see Section 5.2,
Theorem 5.2.1/Corollary 5.2.5), since AN and WM are only special cases of
A and W from Sections 5.1/5.2.
Analogously to the case of equation (8.19), we have a unique strong solution
X

(i)
N,M,L,J ∈ W2

m(T ) to (8.25). In particular, we get the existence of càdlàg
versions in L2

ρ(Θ) of the solutions to (8.24) and (8.25). Obviously, these
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solutions also obey càdlàg modifications in Wm,2(Θ).

In Section 8.2.3, for fixed N,M,L, J ∈ N we will show a pointwise com-
parison result for the processes Y (i) := X

(i)
N,M,L,J .

8.2.3 Comparison results for the approximations of (1.1) and
(1.2)

To prove Theorem 8.1.3, we proceed analogously to the proof of 6.1.1.
Similar to Section 6.2, we first prove a comparison result for the approxima-
tions in (8.20) and (8.25).

Given arbitrary N,M,L, J ∈ N and i = 1, 2, we shorten notation by setting

(8.26) Y (i)(t) := X
(i)
N,M,L,J(t), t ∈ [ 0, T ].

The main result of this subsection is the following comparison result for
the processes Y (i), i = 1, 2, as in (8.26).

Lemma 8.2.3.1: (i) Let ξ(i) ∈ L2
ρ(Θ), i = 1, 2, as in Case (A) and

ξ(1) ≤ ξ(2), P -a.s..

Furthermore, suppose that

f (1) ≤ f (2) for all (t, y) ∈ [ 0, T ]× R, P -a.s..

Then, for càdlàg processes (8.20) we get

Y (1)(t) ≤ Y (2)(t), for all t ∈ [ 0, T ], P -a.s..

(ii) Let ξ(i), i = 1, 2, as in Case (A), and

ξ(1) ≤ ξ(2), P -a.s..

Furthermore suppose that

e(1) ≤ e(2), for all (t, y) ∈ [ 0, T ]× R, P -a.s..

Then, for càdlàg processes (8.25) we have
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Y (1)(t) ≤ Y (2)(t), for all t ∈ [ 0, T ], P -a.s..

Remark 8.2.3.2: Note that in contrast to Section 6.2, in the proof
of 8.2.3.1 (i) we will not use the special property (3.1) for the orthonormal
basis (en)n∈N ⊂ L2(Θ) from (8.14) (since by construction, the approximat-
ing vectors (en,M )n∈N obey this property). Thus, we do not need to restrict
the covariance operator Q corresponding to W to the nuclear case.
Therefore, we can conclude the comparison result (ii) for (1.2) from that
for (1.1) (in the case F = E +MΣJ

(m) and Σ=Γ).

Proof of 8.2.3.1:

By Remark 8.2.3.2, it suffices to show (i).

We use a discritization scheme similar to that of Section 6.2.
For a fixed j ∈ N, we set tk := kT

j , k = 0, 1, 2, ..., j, and thus get a partition

of [ 0, T ] into j intervalls of length T
j . We define processes Z(i)

k,j and V (i)
k,j by

Z
(i)
0,j(t) := ξ

(i)
J +

t∫
0

M
ΣJ (s,Z

(i)
0,j(s))

dWM,L(s) +
t∫
0

∫
L2

MΓJ (s)IJ(x) Ñ(ds, dx),

V
(i)
0,j (t) := Z

(i)
0,j(t1) +

t∫
0

(AN (s)V (i)
0,j (s) + F

(i)
J (s, V (i)

0,j (s))) ds

for t ∈ [ 0, t1 ] and

Z
(i)
k,j(t) := V

(i)
k−1,j(tk)+

t∫
tk

M
ΣJ (s,Z

(i)
k,j(s))

dWM,L(s)+
t∫
tk

∫
L2

MΓJ (s)IJ(x) Ñ(ds, dx),

V
(i)
k,j (t) := Z

(i)
k,j(tk+1) +

t∫
tk

(AN (s)V (i)
k,j (s) + F

(i)
J (s, V (i)

k,j (s))) ds

for t ∈ [tk, tk+1] and k = 1, 2, ..., j − 1.

Due to the Lipschitz continuity of the coefficients, the above equations obey
unique strong solutions V (i)

k,j , Z
(i)
k,j ∈ W

2
m([ tk, tk+1 ]).

Next, analogously to the proof of Theorem 6.1.1 in Section 6.2, we define
processes V (i)

j and Z
(i)
j , i = 1, 2, taking values in W2

m(T ), from the above
processes by setting (cf. (6.12) in Chapter 6)

Z
(i)
j (t) := Z

(i)
k,j(t), t ∈ [ tk, tk+1 ), k = 0, 1, 2, ..., j − 1,

V
(i)
j (0) := ξ(i),
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V
(i)
j (t) := V

(i)
k,j (t), t ∈ (tk, tk+1], k = 0, 1, ..., j − 1,

Z
(i)
j (T ) := V

(i)
j (T ).

Furthermore, Zj obeys a càdlàg version in Wm,2(Θ). Because of the contin-
uous embedding Wm,2(Θ)⊂−→Cb(Θ), we can evaluate V (i)

j (t, θ) resp. Z(i)
j (t, θ)

for any t ∈ [ 0, T ] and any θ ∈ Θ.

First, we prove

Claim 1: For the processes Vj, Zj defined above we have, P -almost surely,

V
(1)
j (t, θ) ≤ V

(2)
j (t, θ),

(8.27)
Z

(1)
j (t, θ) ≤ Z

(2)
j (t, θ),

for any θ ∈ Θ and any t ∈ [ 0, T ].

Proof: Let us start with the intervall [ 0, t1 ].
By (6.13), we have for t ∈ [ 0, t1 )

(8.28)Z(i)
j (t) = Z

(i)
0,j(t) = ξ

(i)
J +

t∫
0

M
ΣJ (s,Z

(i)
j (s))

dWM,L(s)

+
t∫
0

∫
L2

M
ΓJ (s,Z

(i)
j (s))

IJ(x) Ñ(ds, dx).

For a moment, we consider (8.28) on the whole intervall [ 0, t1 ].
Now, for the first time we need a comparison result in the jump noise case.
Note that, by construction, there exists a unique strong solution to (8.28)
in Wm,2(Θ)⊂−→Cb(Θ). Thus, we can really evaluate Z(i)

j (t) pointwise in any
θ ∈ Θ.

By the boundedness of γ, there is a càdlàg version Z̃(i)
j (t) of Z(i)

j (t).

To estimate the value of Z(i)
j (t, θ), we consider the pairing of Z(i)

j (t) with δθ,
where δθ denotes the δ-function at a fixed θ ∈ Rd. Due to the embedding
theorem Wm,2(Θ)⊂−→Cb(Θ), this is a linear bounded functional in Wm,2(Θ).

Thus, by Propositions B.8, 2.5.3 resp. 2.6.8 for the Bochner- Wiener- resp.
Poisson stochastic integral, we get
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(8.29) Z(i)
j (t, θ) = < Z

(i)
j (t), δθ >L2(Θ)

= ξ
(i)
J (θ) +

L∑
n=1

√
an

t∫
0

<M
ΣJ (s,Z

(i)
j (s))

en,M , δθ >L2 dwn(s)

+
t∫
0

∫
L2

<M
ΓJ (s,Z

(i)
j (s))

xJ , δθ >L2 Ñ(ds, dx).

Obviously, for any 1 ≤ n ≤ L and θ ∈ Θ we have

t∫
0

<M
ΣJ (s,Z

(i)
j (s))

enM , δθ >L2 dwn(s) =
t∫
0

σJ(s, Z
(i)
j (s, θ))en,M (θ) dwn(s).

The integral w.r.t. the compensated Poisson random measure can be rewrit-
ten as follows:

(8.30)
t∫
0

∫
L2(Θ)

<M
ΓJ (s,Z

(i)
j (s))

IJ(x), δθ >L2(Θ) Ñ(ds, dx)

=
t∫
0

∫
L2(Θ)

(γJ(s, Z
(i)
j (s))IJ(x))(θ) Ñ(ds, dx).

Note that IJ(x)(θ) :=
∫

Rd

x(y)δJ(θ − y) dy =< x, δJ,θ >L2 , where

0 ≤ δJ,θ ∈ C∞0 (Rd) is defined by δJ,θ(y) := δJ(θ − y), y ∈ Rd. Thus, the
integral in (8.30) can be rewritten as

t∫
0

∫
R
γJ(s, Z

(i)
j (s, θ))u Ñθ(ds, du),

where Ñθ(ds, du) is the projection of Ñ(ds, dx) (cf. Section 2.4 for gen-
eral projections) on the one-dimensional subspace of functions

L2
θ := {< x, δJ,θ >L2 δJ,θ |x ∈ L2(Θ)} ⊂ L2(Θ).

Since η corresponding to Ñ is supported on L2
≥0, ηθ corresponding to Ñθ

is supported on R+. Here, we crucially use that < x, δJ,θ >L2≥ 0 for any
x ∈ L2

≥0.
Now, by the Lipschitz properties of σ and γ and the monotonicity property
(M) for γ, we can apply the finite dimensional comparison theory for càdlàg
solutions of SDEs from [92] resp.[67] (for more details, cf. Appendix C).

From (8.29) and (8.30), Z(i)
j (t, θ) =< Z̃

(i)
j (t), δθ >L2(Θ)∈ R is a càdlàg solu-

tion to the equation

Z
(i)
j (t, θ) = ξ

(i)
J (θ) +

L∑
n=1

√
an

t∫
0

σJ(s, Z
(i)
j (s, θ))en,M (θ) dwn(s)

+
t∫
0

∫
R
γJ(s, Z

(i)
j (s−, θ))u Ñθ(ds, du).
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Then, by Theorem C.2.1 (with fj = 0) we have Z(1)
j (t, θ) ≤ Z

(2)
j (t, θ),

P -almost surely, for each fixed θ ∈ Θ and t ∈ [ 0, t1 ].
Since θ 7→ Z

(i)
j (t, θ) is a continuous function, there exists a subset Ωt of full

P -measure such that

Z
(1)
j (t, ω, θ) ≤ Z

(2)
j (t, ω, θ)

for all ω ∈ Ωt and θ ∈ Θ. By considering càdlàg versions of Z(i)
j (t) ∈ L2

ρ(Θ),
we can get this inequality for each t ∈ [ 0, T ] on a universal subset Ω0 of full
P -measure.

Analogously to Section 6.2, we define operators BJ : Wm,2(Θ) → Wm,2(Θ)
by

BJ(t)ϕ := F
(2)
J (t,Z(2)(t))−F (2)

J (s,Z(1)(t))

Z(2)(t)−Z(1)(t)
ϕ, ϕ ∈Wm,2(Θ),

in the case Z(2)(t) 6= Z(1)(t) and

BJ(t)ϕ := C(T )ϕ, ϕ ∈Wm,2(Θ),

otherwise. Here, C(T ) is as in the proof of 6.1.1 in Section 6.2. Due to
the existence of a common Lipschitz constant for all F (i)

J . By the additional
assumption that AN maps Wm,2(Θ) onto itself, analogously to the proof of
Claim 1 in Section 6.2, we get

V
(1)
j (t) ≤ V

(2)
j (t) in Wm,2(Θ) for all t ∈ [ 0, t1 ] P -a.s..

Now, by the continuous embedding property Wm,2(Θ)⊂−→Cb(Θ), this gives
us (8.27) on [ 0, t1 ] and analogously to the proof of Claim 1 in Section 6.2,
we get (8.27) on [ 0, T ] by iterating the previous procedure on all intervalls
[tk, tk+1], k = 1, 2, ..., j − 1. �

Let us note that, by the boundedness assumption on γ, the processes Z(i)
j

and V (i)
j are also elements of Hq(T ). This is shown analogously to the proof

of Lemma 6.1.3 in Section 6.2.
Thus, to finish the proof of Lemma 8.2.3.1, we need the following claim,
which is the analogon to Claim 2 from Section 6.2:

Claim 2: For i = 1, 2

lim
j→∞

Z
(i)
j = Y (i)
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in H2(T ), i.e.

lim
j→∞

sup
t∈[ 0,T ]

E||Z(i)
j (t)− Y (i)(t)||2L2

ρ
= 0.

Hence, inequality (8.27) (cf. Claim 1) implies that
Y (1)(t) ≤ Y (2)(t), P-almost surely, for all t ∈ [ 0, T ].

Proof: Actually, we have Y (1)(t, θ) ≤ Y (2)(t, θ), P -almost surely, for all
t ∈ [ 0, T ] and θ ∈ Θ. This follows for the càdlàg solutions Y (1), Y (2) due to
the continuous embedding Wm,2(Θ)⊂−→Cb(Θ).

We only describe the necesssary modifications to the proof of Claim 2 in
Section 6.2.

We express the difference Z(i)
j (t)− Y (i)(t) in terms of the difference

V
(i)
j (t)− Y (i)(t).

By the Lipschitz property of γ, the latter can be estimated as follows.

E||V (i)
j (t)− Y (i)(t)||2L2

ρ

= E

∣∣∣∣∣
∣∣∣∣∣ξ(i) +

t∫
0

(AN (s)V (i)
j (s) + F

(i)
J (s, V (i)

j (s))) ds+
tk+1∫
0

M
ΣJ (s,Z

(i)
j (s))

dWM,L(s)

+
tk+1∫
0

∫
L2

M
ΓJ (s,Z

(i)
j (s))

(IJ(x)) Ñ(ds, dx)

−
(
ξ
(i)
J +

t∫
0

(AN (s)Y (i)(s) + F
(i)
J (s, Y (i)(s))) ds+

t∫
0

MΣJ (s,Y (i)(s)) dWM,L(s)

+
t∫
0

MΓJ (s,Y (i)(s))(IJ(x)) Ñ(ds, dx)
)∣∣∣∣∣∣∣∣2

L2
ρ

≤ c(C(T ), c(N), C2,η)

(
M∑
n=1

an

[
tk+1∫
0

E||(M
ΣJ (s,Z

(i)
j (s))

−MΣJ (s,Y (i)(s)))(en,M )||2L2
ρ
ds

+
tk+1∫
t

E||MΣJ (s,Y (i)(s))(en,M )||2L2
ρ
ds

]
+

tk+1∫
0

E||ΓJ(s, Z(i)
j (s))− ΓJ(s, Y (i)(s))||2L2

ρ
ds

+
tk+1∫
t

E||ΓJ(s, Y (i)(s))||2L2
ρ
ds+

t∫
0

E||V (i)
j (s)− Y (i)(s)||2L2

ρ
ds

)

≤ c(T,M, c(N), C(T ), cσ(T ), cγ(T ), C2,η)

[
tk+1∫
0

E||Z(i)
j (s)− Y (i)(s)||2L2

ρ
ds

+(tk+1 − tk)

(
1 + sup

r∈[ 0,T ]
E||Y (i)(r)||2L2

ρ

)
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+
t∫
0

E||V (i)
j (s)− Y (i)(s)||2L2

ρ
ds

]
≤ c(T,M,K, c(N), C(T ), cσ(T ), cγ(T ), C2,η)

[
tk+1∫
0

E||Z(i)
j (s)− Y (i)(s)||2L2

ρ
ds

+(tk+1 − tk)

(
1 + sup

r∈[ 0,T ]
E||Y (i)(r)||2L2

ρ

)
+

t∫
0

E||V (i)
j (s)− Y (i)(s)||2L2

ρ
ds

]
=: c(T,M,K, c(N), C(T ), cσ(T ), cγ(T ), C2,η)

[
Bj(tk+1) +

t∫
0

E||V (i)
j (s)− Y (i)(s)||2L2

ρ
ds

]
with Bj as in Section 6.2 (replacing XN,M -terms by Y = XN,M,L,J -terms).

As in that Section, we apply Gronwall’s lemma to get

E||V (i)
j (t)− Y (i)(t)||2L2

ρ
≤ c(T,M, c(N), C(T ), cσ(T ), cγ(T ), C2,η)Bj(tk+1)

for any t ∈ [ tk, tk+1 ), k ∈ {0, 1, . . . , j − 1}.

The estimate of Z(i)
j (t)− Y (i)(t) from that proof changes as follows.

Given t ∈ [ tk, tk+1 ), k ∈ {0, 1, . . . , j − 1}, we get

E||Z(i)
j (t)− Y (i)(t)||2L2

ρ

≤ C
(
E||V (i)

j (tk)− Y (i)(tk)||2L2
ρ

+E

∣∣∣∣∣
∣∣∣∣∣ t∫tk (M

ΣJ (s,Z
(i)
j (s))

−MΣJ (s,Y (i)(s)) dWM,L(s)

∣∣∣∣∣
∣∣∣∣∣
2

L2
ρ

+E

∣∣∣∣∣
∣∣∣∣∣ t∫tk ∫L2

(M
ΓJ (s,Z

(i)
j (s))

−MΓJ (s,Y (i)(s)))(IJ(x)) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2

L2
ρ

+E

[
t∫
tk

||AN (s)||2 ||Y (i)(s)||2L2
ρ
+ ||F (i)(s, ·, Y (i)(s))||2L2

ρ
ds

])
=: C(I1 + I2 + Iad2 + I3).

Since the σJ are uniformly Lipschitz, except for the term Iad2 , all terms
in the estimate are as the ones from the proof of Claim 2 in Section 6.2
(again with XN,M -terms being replaced by Y = XN,M,L,J -terms).

But, by Itô’s isometry w.r.t. compensated Poisson random measures, the
fact that the γj are uniformly Lipschitz and the fact that∫

L2(θ)

||IJ(x)||2L2 η(dx) ≤
∫

L2(Θ)

||x||2L2 η(dx) <∞,
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we immediately get

Iad2 ≤ c(cγ(T ), C2,η)

[
t∫
tk

E||Z(i)
j (s)− Y (i)(s)||2L2

ρ
ds

]
≤ c̄(T, c(N), C(T ), cγ(T ), C2,η)

[
t∫
0

E||Z(i)
j (s)− Y (i)(s)||2L2

ρ
ds

]
.

Thus, summing all the estimates together and recalling the definition of
Bj(tk+1), we get

E||Z(i)
j (t)− Y (i)(t)||2L2

ρ

≤ T
j (1 + c̄(T,N,C(T ))(1 + cN,M,L))

+ c(T,M, c(N), C(T ), cσ(T ), cγ(T ), C2,η)
t∫
0

E||Z(i)
j (s)− Y (i)(s)||2L2

ρ
ds.

Then, Gronwall’s lemma finally implies

E||Z(i)
j (t)− Y (i)(t)||2L2

ρ
≤ T

j (1 + C̄)(1 + cN,M,L)eC̄t <∞,

where C̄ denotes the maximum of the two constants from the equations
before. Thus,

lim
j→∞

E||Z(i)
j (t)− Y (i)(t)||2L2

ρ
= 0,

which was needed to prove Claim 2. � �

8.2.4 Convergence of the approximations

As already mentioned in the introduction of this section, in the proofs of
this subsection we restrict ourselves to the issues that differ from the proofs
in Section 6.3.
But let us first formulate the main result of this subsection:

Lemma 8.2.4.1: (i) Considering predictable solutions X(i), X(i)
J , X(i)

L,J ,

X
(i)
M,L,J and X

(i)
N,M,L,J , N,M,L, J ∈ N, i = 1, 2, to the equations (1.1),

(8.11), (8.13), (8.17) and (8.19), we get the following convergence results:

(8.31) lim
N→∞

E||X(i)
N,M,L,J(t)−X

(i)
M,L,J(t)||2L2

ρ
= 0,

(8.32) lim
M→∞

E||X(i)
M,L,J(t)−X

(i)
L,J(t)||2L2

ρ
= 0,

(8.33) lim
L→∞

E||X(i)
L,J(t)−X

(i)
J (t)||2L2

ρ
= 0,



8.2. PROOF OF THEOREM 8.1.5 295

(8.34) lim
J→∞

E||X(i)
J (t)−X(i)(t)||2L2

ρ
= 0.

(ii) Considering X(i), X(i)
J , X(i)

L,J , X
(i)
M,L,J and X

(i)
N,M,L,J , N,M,L, J ∈ N,

i = 1, 2, as defined in (1.2) and (8.22)–(8.25), we get the following conver-
gence results:

(8.35) lim
N→∞

E||X(i)
N,M,L,J(t)−X

(i)
M,L,J(t)||2L2

ρ
= 0,

(8.36) lim
M→∞

E||X(i)
M,L,J(t)−X

(i)
L,J(t)||2L2

ρ
= 0,

(8.37) lim
L→∞

E||X(i)
L,J(t)−X

(i)
J (t)||2L2

ρ
= 0,

(8.38) lim
J→∞

E||X(i)
J (t)−X(i)(t)||2L2

ρ
= 0.

From Lemma 8.2.4.1 and Lemma 8.2.3.1 we immediately get Theorem 8.1.3.
Indeed, we first get

X
(1)
N,M,L,J(t) ≤ X

(2)
N,M,L,J(t), P -a.s.,

for all t ∈ [ 0, T ] by 8.2.3.1 (i)(equation (1.1)) resp. (ii) (equation (1.2)).
Then, by taking N → ∞, M → ∞, L → ∞ and finally J → ∞, we get
Theorem 8.1.3.

Proof: To shorten the proof, we only consider the issues that appear
additionally to the proof of Lemma 6.1.4 in Section 6.3.

(i) The limit properties of the approximations of (1.1)

For fixed M,L, J ∈ N, the difference between solutions X(i)
N,M,L,J and X(i)

M,L,J

can be represented as

X
(i)
N,M,L,J(t)−X

(i)
M,L,J(t) = aN (ξ) + aN (F ) + bN (F ) + aN (Σ) + bN (Σ)

+aN (Γ) + bN (Γ)

for fixed t ∈ [ 0, T ] and N ∈ N, with the terms defined by

aN (ξ) := [UN (t, 0)− U(t, 0)]ξ(i)J ,
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aN (F ) :=
t∫
0

[UN (t, s)− U(t, s)]F (i)
J (s,X(i)

M,L,J(s)) ds,

bN (F ) :=
t∫
0

UN (t, s)[F (i)
J (s,X(i)

N,M,L,J(s))− F
(i)
J (s,XM,L,J(s))] ds,

aN (Σ) :=
L∑
n=1

√
an

t∫
0

[UN (t, s)− U(t, s)]M
ΣJ (s,X

(i)
M,L,J (s))

en,M dwn(s),

bN (Σ) :=
L∑
n=1

√
an

t∫
0

UN (t, s)[M
ΣJ (s,X

(i)
N,M,L,J (s))

−M
ΣJ (s,X

(i)
M,L,J (s))

]en,M dwn(s),

aN (Γ) :=
t∫
0

∫
L2

[UN (t, s)− U(t, s)]M
ΓJ (s,X

(i)
N,M,L,J (s))

IJ(x)Ñ(ds, dx)

and

bN (Γ) :=
t∫
0

∫
L2

U(t, s)[M
ΓJ (s,X

(i)
N,M,L,J (s))

−M
ΓJ (s,X

(i)
M,L,J (s))

]IJ(x) Ñ(ds, dx).

Analogously to the proof of Lemma 6.1.4 (cf. Section 6.3), we get

lim
N→∞

E||aN (ξ)||2L2
ρ

= 0, lim
N→∞

E||aN (F )||2L2
ρ

= 0

and the estimate

E||bN (F )||2L2
ρ
≤ c(c(N), cf (T ))

t∫
0

E||X(i)
N,M,L,J(s)−X

(i)
M,L,J(s)||2L2

ρ
ds.

Concerning aN (Σ) and bN (Σ), note that the system (en,M )1≤n≤L ⊂ C∞0 (Θ)
is not orthonormal in L2(Θ). Thus, compared to the part (i) in the proof
of Lemma 6.1.4 in Section 6.3, the proof changes as follows.

First of all, by Itô’s isometry and the boundedness of σJ we get

E||aN (Σ)||2L2
ρ

=
L∑
n=1

an
t∫
0

E||[UN (t, s)− U(t, s)]M
ΣJ (s,X

(i)
N,M,L,J (s))

en,M ||2L2
ρ
ds

≤ c(L,K)
t∫
0

E||[UN (t, s)− U(t, s)]en,M ||2L2
ρ︸ ︷︷ ︸

→0 asN→∞

ds

≤ 2Tc(L,K, c(N), c(T ))
(

max
1≤n≤L

||en,M ||L2

)
< ∞.

By Lebesgue’s dominated convergence theorem we get
lim
N→∞

E||aN (Σ)||2L2
ρ

= 0.

On the other hand, for bN (Σ) we get
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E||bN (Σ)||2L2
ρ

=
L∑
n=1

an
t∫
0

E||UN (t, s)[M
ΣJ (s,X

(i)
N,M,L,J (s))

−M
ΣJ (s,X

(i)
M,L,J (s))

]en,M ||2L2
ρ

≤ c(L, c(N), cσ(T ))
t∫
0

E||X(i)
N,M,L,J(s)−X

(i)
M,L,J(s)||2L2

ρ
ds,

where we applied the fact that max
1≤n≤L

||en,M ||L∞ < ∞, (A6) and the Lip-

schitz property (LC) for σJ (recall that by construction this property holds
uniformly in J).

By Itô’s isometry for the stochastic integration w.r.t. compensated Pois-
son random measures and the boundedness of γL we get

E||aN (Γ)||2L2
ρ

=
t∫
0

∫
L2

E||[UN (t, s)− U(t, s)]M
ΓJ (s,X

(i)
N,M,L,J (s))

IJ(x)||2L2
ρ
η(dx) ds

≤ c(L,K)
t∫
0

∫
L2

E||[UN (t, s)− U(t, s)]IJ(x)||2L2
ρ︸ ︷︷ ︸

→0 asN→∞

η(dx) ds.

By the fact that

E||[UN (t, s)− U(t, s)]IJ(x)||2L2
ρ
≤ c(c(N), c(T ))||IJ(x)||2L2

and (cf. (QI) and (8.10))

t∫
0

∫
L2

c(c(N), c(T ))||IJ(x)||2L2 η(dx) ds ≤ Tc(c(N), c(T ))
∫
L2

||IJ(x)||2L2 η(dx) ≤ c(c(N), c(T ), Cq,η) <∞,

we can apply Lebesgue’s theorem to get E||aN (Γ)||2L2
ρ
→ 0 as N →∞.

Finally, applying Itô’s isometry for the stochastic integration w.r.t. com-
pensated Poisson random measures, (A2) (or (A5)* with ν = 1) and (QI)
we get

E||bN (Γ)||2L2
ρ

=
t∫
0

∫
L2

E||U(t, s)[M
ΓJ (s,X

(i)
N,M,L,J (s))

−M
ΓJ (s,X

(i)
M,L,J (s))

]IJ(x)||2L2
ρ
η(dx) ds

≤ c(c(T ))

(∫
L2

||xJ ||2L2 η(dx)

)
t∫
0

(t− s)−ζE||ΓJ(s,X(i)
N,M,L,J(s))− ΓJ(s,X

(i)
M,L,J(s))||2L2

ρ
ds

≤ c(c(T ), cγ , Cq,η)
t∫
0

(t− s)−ζE||X(i)
N,M,L,J(s)−X

(i)
M,L,J(s)||2L2

ρ
ds.

Thus, given any t ∈ [ 0, T ], we can estimate

E||X(i)
N,M,L,J(s)−X

(i)
M,L,J(s)||2L2

ρ
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≤ (E||aN (ξ)||2L2
ρ
+ E||aN (F )||2L2

ρ
+ E||aN (Σ)||2L2

ρ
+ E||aN (Γ)||2L2

ρ
)

+c(ζ, L, T, c(N), cf (T ), cσ(T ), cγ(T ), Cq,η)
t∫
0

(t−s)−ζE||X(i)
N,M,L,J(s)−X

(i)
M,L,J(s)||2L2

ρ
ds.

Thus, by the Gronwall-Bellman lemma 2.7.2 and the corresponding Remark
2.7.3, we get

E||X(i)
N,M,L,J(s)−X

(i)
M,L,J(s)||2L2

ρ

≤ (E||aN (ξ)||2L2
ρ
+ E||aN (F )||2L2

ρ
+ E||aN (Σ)||2L2

ρ
+ E||aN (Γ)||2L2

ρ
)

c(ζ, L, T, c(N), cf (T ), cσ(T ), cγ(T ), Cq,η).

Now, since the aN -terms tend to 0 as N → ∞, we get the convergence
result (8.31) for N →∞.

Next, we consider the M -approximation. For any t ∈ [ 0, T ], we have

X
(i)
M,L,J(t)−X

(i)
L,J(t) = bM (F ) + aM (Σ) + bM (Σ) + bM (Γ)

with the terms defined by

bM (F ) :=
t∫
0

U(t, s)[F (i)
J (s,X(i)

M,L,J(s))− F
(i)
J (s,XL,J(s))] ds,

aM (Σ) :=
L∑
n=1

√
an

t∫
0

U(t, s)[M
ΣJ (s,X

(i)
L,J (s))

(en,M − en) dwn(s),

bM (Σ) :=
L∑
n=1

√
an

t∫
0

U(t, s)[M
ΣJ (s,X

(i)
M,L,J (s))

−M
ΣJ (s,X

(i)
L,J (s))

]en,M dwn(s),

and

bM (Γ) :=
t∫
0

∫
L2

U(t, s)[M
ΓJ (s,X

(i)
M,L,J (s))

−M
ΓJ (s,X

(i)
L,J (s))

]IJ(x) Ñ(ds, dx).

Analogously to theN -convergence case, we show that the aM -term tends to 0
as M →∞. Indeed, by (A2) and the uniform boundedness of the σJ we get

E||aM (Σ)||2L2
ρ

=
L∑
n=1

an
t∫
0

E||U(t, s)M
ΣJ (s,X

(i)
L,J (s))

(en,M − en)||2L2
ρ
ds

≤
L∑
n=1

an

(
t∫
0

(t− s)−ζE||ΣJ(s,X
(i)
L,J(s))||2L2

ρ
ds

)
||en,M − en||2L2

≤ c(ζ,K, T )
M∑
n=1

||en,M − en||2︸ ︷︷ ︸
→0 asM→∞ for 1≤n≤L

→ 0 as M →∞.
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Furthermore, similar to the N -convergence we have

E||bM (F )||2L2
ρ
≤ c(c(T ), cf (T ))

t∫
0

E||X(i)
M,L,J(s)−X

(i)
L,J(s)||2L2

ρ
ds,

E||bM (Σ)||2L2
ρ
≤ c(L, c(T ), cσ(T ))

t∫
0

E||X(i)
M,L,J(s)−X

(i)
L,J(s)||2L2

ρ
ds

and

E||bM (Γ)||2L2
ρ
≤ c(c(T ), cγ , Cq,η)

t∫
0

(t− s)−ζE||X(i)
M,L,J(s)−X

(i)
L,J(s)||2L2

ρ
.

Thus, given any t ∈ [ 0, T ], we can estimate

E||X(i)
M,L,J(s)−X

(i)
L,J(s)||2L2

ρ

≤ E||aM (Σ)||2L2
ρ

+c(ζ, L, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)
t∫
0

(t−s)−ζE||X(i)
M,L,J(s)−X

(i)
L,J(s)||2L2

ρ
ds.

Thus, by the Gronwall-Bellman lemma 2.7.2 and the corresponding Remark
2.7.3, we get

E||X(i)
M,L,J(s)−X

(i)
L,J(s)||2L2

ρ

≤ (E||aM (Σ)||2L2
ρ
)c(ζ,M, T, c(N), cf (T ), cσ(T ), cγ(T ), Cq,η).

Now, since the aM -term tends to 0 as M → ∞, we get the convergence
result (8.32) for M →∞.

Let us now proceed with the convergence for L→∞.
For any t ∈ [ 0, T ], we have

X
(i)
L,J(t)−X

(i)
J (t) =

t∫
0

U(t, s)[F (i)
J (s,X(i)

L,J(s))− F
(i)
J (s,X(i)

J (s))] ds

+
t∫
0

∫
L2

U(t, s)[M
ΓJ (s,X

(i)
L,J (s))

−M
ΓJ (s,X

(i)
J (s))

]IJ(x) Ñ(ds, dx)

+
L∑
n=1

√
an

t∫
0

U(t, s)[M
ΣJ (s,X

(i)
L,J (s))

−M
ΣJ (s,X

(i)
J (s))

]en dwn(s)

+
∞∑

n=L+1

√
an

t∫
0

U(t, s)M
ΣJ (s,X

(i)
J (s))

en dwn(s).

Analogously to the bN -terms above, we get



300 CHAPTER 8. THE CASE OF MULTIPLICATIVE JUMP NOISE

E||X(i)
L,J(t)−X

(i)
J (t)||2L2

ρ
≤ c(ζ, L, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)

t∫
0

(t− s)−ζE||X(i)
L,J(s)−X

(i)
J (s)||2L2

ρ
ds

+
∞∑

n=L+1

an
t∫
0

E||U(t, s)M
ΣJ (s,X

(i)
J (s))

en||2L2
ρ
ds.

Thus, the Gronwall-Bellman lemma yields

E||X(i)
L,J(t)−X

(i)
J (t)||2L2

ρ
≤ cL(Σ)ec(ζ,L,T,c(T ),cf (T ),cσ(T ),cγ(T ),Cq,η)t

with cL(Σ) as in the proof of Lemma 6.1.4 (i) (cf. Section 6.3), i.e.

cL(Σ) :=
∞∑

n=L+1

an
t∫
0

E||U(t, s)M
ΣJ (s,X

(i)
J (s))

en||2L2
ρ
ds.

Let us first check the nuclear case, when

∞∑
n=1

an,∞.

Since each σJ is bounded (cf. Section 8.2.1), we get

cL(Σ) :=
∞∑

n=L+1

an
t∫
0

E||U(t, s)M
ΣJ (s,X

(i)
J (s))

en||2L2
ρ
ds

≤
∞∑

n=L+1

an

(
sup
n∈N

t∫
0

E||U(t, s)M
ΣJ (s,X

(i)
J (s))

en||2L2
ρ
ds

)
≤ c(T, c(T ), cσ(T ))

∞∑
n=L+1

an

−→ 0 as L→∞,

which proves E||X(i)
L,J(t) − X

(i)
J (t)||2L2

ρ
→ 0 as L → ∞ in this case. Note

that here we did not apply property (3.1) such that the claim indeed holds
in the general nuclear case.
In the cylindrical case, we get cL(Σ) → 0 as L → ∞ analogously to the
consideration of cL(Σ) in the proof of Lemma 6.1.4 (i). Thus, also in the
cylindrical case we have E||X(i)

L,J(t)−X
(i)
J (t)||2L2

ρ
→ 0 as L→∞. Therefore,

the proof of (8.33) is finished.

Finally, for fixed J ∈ N we have
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X
(i)
J (t)−X(i)(t) = U(t, 0)[ξ(i)J − ξ(i)] +

t∫
0

U(t, s)[F (i)
J (s,X(i)

J (s))− F (i)(s,X(i)(s))] ds

+
∑
n∈N

√
an

t∫
0

U(t, s)[M
ΣJ (s,X

(i)
J (s))

−MΣ(s,X(i)(s))]en dwn(s)

+
t∫
0

∫
L2

U(t, s)[M
ΓJ (s,X

(i)
J (s))

IJ(x)−MΓ(s,X(i)(s))x] Ñ(ds, dx)

= aJ(ξ) + aJ(F ) + bJ(F ) + aJ(Σ) + bJ(Σ)
+aJ(Γ) + bJL(Γ)

with the terms defined by

aJ(ξ) := U(t, 0)(ξ(i)J − ξ(i)),

aJ(F ) :=
t∫
0

U(t, s)[F (i)
J (s,X(i)(s))− F (i)(s,X(i)(s))] ds,

bJ(F ) :=
t∫
0

U(t, s)[F (i)
J (s,X(i)

J (s))− F
(i)
J (s,X(i)(s))] ds,

aJ(Σ) :=
t∫
0

U(t, s)[MΣJ (s,X(i)(s)) −MΣ(s,X(i)(s))] dW (s),

bJ(Σ) :=
t∫
0

U(t, s)[M
ΣJ (s,X

(i)
J (s))

−MΣJ (s,X(i)(s))] dW (s),

aJ(Γ) :=
t∫
0

∫
L2

U(t, s)[MΓJ (s,X(i)(s))IJ(x)−MΓ(s,X(i)(s))x] Ñ(ds, dx)

and

bJ(Γ) :=
t∫
0

∫
L2

U(t, s)[M
ΓJ (s,X

(i)
J (s))

−MΓJ (s,X(i)(s))]IJ(x) Ñ(ds, dx).

Analogously to the proof of Lemma 6.1.4 in Section 6.3, we show conver-
gence of the aJ and estimate the bJ -terms with the help of the Lipschitz
property of the coefficients.

First, concerning aJ(ξ) we note that for any fixed t ∈ [ 0, T ]

E||U(t, 0)(ξ(i)J − ξ(i))||2L2
ρ
≤ c(T )E||ξ(i)J − ξ(i))||2L2

ρ

→ 0 as J →∞.

For aJ(F ), we know that the integrand converges to 0 as J → ∞, since
fJ → f by the choice of the approximating functions.
Furthermore, by the uniform Lipschitz property of the fJ , J ∈ N, we can
estimate

E||U(t, s)[F (i)
J (s,X(i)(s))− F (i)(s,X(i)(s))]||2L2

ρ
≤ c(c(T ), cf (T ))(1 + E||X(i)(s)||2L2

ρ
),
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where the right hand side is intergrable by the fact that
X(i) ∈ Hq(T ) ⊂ H2(T ).
Thus, by Lebesgue’s dominated convergence theorem, we get aJ(F ) → 0 as
J →∞.

Concerning aJ(Σ), note that by the fact that σJ → σ as J →∞ we get, for
any s ∈ [ 0, T ],

lim
j→∞

E||ΣJ(s,X(i)(s))− Σ(s,X(i)(s))||L2
ρ

= 0.

Furthermore, since the σJ fulfill (LC) and (LB) with constants uniformly
in J , we have, for any s ∈ [ 0, T ],

lim
j→∞

E||ΣJ(s,X(i)(s))− Σ(s,X(i)(s))||L2
ρ
≤ c(cσ(T ))(1 + E||X(i)(s)||L2

ρ
)

and, for any t ∈ [ 0, T ],

(t− s)−ζc(cσ(T ))(1 + E||X(i)(s)||L2
ρ
)

is integrable on [ 0, t ], since X(i)(s) ∈ Hq(T ) ⊂ H2(T ).
Thus, for any t ∈ [ 0, T ], by the estimate

E||aJ(Σ)||2L2
ρ

=
t∫
0

E||U(t, s)[MΣJ (s,X(i)(s)) −MΣ(s,X(i)(s))]||2L2
ds

≤
t∫
0

(t− s)−ζE||ΣJ(s,X(i)(s))− Σ(s,X(i)(s))||2L2
ρ
ds

we get that E||aJ(Σ)||2L2
ρ
→ 0 as J →∞.

Concerning aJ(Γ), note that

(8.39) E||aJ(Γ)||2L2
ρ

=
t∫
0

∫
L2

E||U(t, s)[MΓJ (s,X(i)(s))IJ(x)−MΓ(s,X(i)(s))x]||2L2
ρ
η(dx) ds

≤
t∫
0

∫
L2

E||U(t, s)MΓJ (s,X(i)(s))[IJ(x)− x]||2L2
ρ
η(dx) ds

+
t∫
0

∫
L2

E||U(t, s)[MΓJ (s,X(i)(s)) −MΓ(s,X(i)(s))]x||2L2
ρ
η(dx) ds

≤

(∫
L2

||IJ(x)− x||2L2 η(dx)

)
t∫
0

(t− s)−ζE||ΓJ(s,X(i)(s))||2L2
ρ
ds
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+

(∫
L2

||x||2L2 η(dx)

)
t∫
0

(t− s)−ζE||ΣJ(s,X(i)(s))− Σ(s,X(i)(s))||2L2
ρ
ds.

Note that the first term on right hand side of the above estimate tends
to 0 as J → ∞ by Lebesgue’s dominated convergence theorem, since η is
σ-finite, ||xJ − x||2L2 ≤ 2||x||2L2 for any x ∈ L2(Θ),∫

L2

2||x||L2 η(dx) <∞,

and since, by the the fact that |γJ | ≤ |γ| for all J ∈ N and γ obeys the
Lipschitz property (LC) and the local boundedness property (LB), we have

t∫
0

(t− s)−ζE||ΓJ(s,X(i)(s))||2L2
ρ
ds ≤ cγ(T )(1 + ||X(i)||2H2(T ))

T 1−ζ

1−ζ <∞.

The second term on the right hand side tends to 0 for J → ∞ by (QI)
and since

lim
J→∞

t∫
0

(t− s)−ζE||ΓJ(s,X(i)(s))− Γ(s,X(i)(s))||2L2
ρ
ds = 0

analogously to the considerations of aJ(Σ) before.
Thus, we get lim

J→∞
E||aJ(Γ)||2L2

ρ
= 0.

So all the aJ -terms tend to 0 as J →∞.

Concerning the bJ -terms note that with the help of the Itô isometries w.r.t.
Wiener processes and compensated Poisson random measures and the uni-
form Lipschitz properties, we get

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[F (i)
J (s, ·, X(i)

J (s))− F
(i)
J (s, ·, X(i)(s))] ds

∣∣∣∣∣∣∣∣2
L2

ρ

≤ c(c(T ), cf (T ))
t∫
0

E||X(i)
J (s)−X(i)(s)||2L2

ρ
ds,

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[M
ΣJ (s,X

(i)
J (s))

−MΣJ (s,X(i)(s))] dW (s)
∣∣∣∣∣∣∣∣2
L2

ρ

≤ c(c(T ), cσ(T ))
t∫
0

(t− s)−ζE||X(i)
J (s)−X(i)(s)||2L2

ρ
ds,

and by (A2) (or (A5)* with ν = 1)

E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)[M
ΓJ (s,X

(i)
J (s))

−MΓJ (s,X(i)(s))]IJ(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2

L2
ρ
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≤ c(c(T ), cγ(T ), Cq,η)
t∫
0

(t− s)−ζE||X(i)
J (s)−X(i)(s)||2L2

ρ
ds.

Thus, given any t ∈ [ 0, T ], we can estimate

E||X(i)
J (s)−X(i)(s)||2L2

ρ

≤ (E||aJ(ξ)||2L2
ρ
+ E||aJ(F )||2L2

ρ
+ E||aJ(Σ)||2L2

ρ
+ E||aJ(Γ)||2L2

ρ
)

+ c(c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)
t∫
0

(t− s)−ζE||X(i)
J (s)−X(i)(s)||2L2

ρ
ds.

Thus, by the Gronwall-Bellman lemma 2.7.2 and the corresponding Remark
2.7.3, we get

E||X(i)
J (s)−X(i)(s)||2L2

ρ

≤ (E||aJ(ξ)||2L2
ρ
+ E||aJ(F )||2L2

ρ
+ E||aJ(Σ)||2L2

ρ
+ E||aJ(Γ)||2L2

ρ
)

c(c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η).

Now, since the aJ -terms tend to 0 as J →∞ we get the convergence result
(8.34) for J →∞, which finishes part (i).

(ii) The limit properties of the approximations of (1.2)

Fixing M,L, J ∈ N, the difference between solutions X(i)
N,M,L,J and X

(i)
M,L,J

can be represented as

X
(i)
N,M,L,J(t)−X

(i)
M,L,J(t)

= aN (ξ) + aN (E) + bN (E) + aN (Σ,m) + bN (Σ,m) + aN (Σ) + bN (Σ)
+ aN (Σ2) + bN (Σ2)

for t ∈ [ 0, T ] and fixed N ∈ N with the terms defined by

aN (ξ) := [UN (t, 0)− U(t, 0)]ξ(i)J ,

aN (E) :=
t∫
0

[UN (t, s)− U(t, s)]E(i)
J (s,X(i)

M,L,J(s)) ds,

bN (E) :=
t∫
0

UN (t, s)[E(i)
J (s,X(i)

N,M,L,J(s))− E
(i)
J (s,XM,L,J(s))] ds,

aN (Σ,m) :=
t∫
0

[UN (t, s)− U(t, s)]M
ΣJ (s,·,X(i)

M,L,J (s))
IJ(m) ds,

bN (Σ,m) :=
t∫
0

UN (t, s)[M
ΣJ (s,·,X(i)

N,M,L,J (s))
−M

ΣJ (s,·,X(i)
M,L(s))

]IJ(m) ds,
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aN (Σ) :=
L∑
n=1

√
an

t∫
0

[UN (t, s)− U(t, s)]M
ΣJ (s,X

(i)
M,L,J (s))

en,M dwn(s),

bN (Σ) :=
L∑
n=1

√
an

t∫
0

UN (t, s)[M
ΣJ (s,X

(i)
N,M,L,J (s))

−M
ΣJ (s,X

(i)
M,L,J (s))

]en,M dwn(s),

aN (Σ2) :=
t∫
0

∫
L2

[UN (t, s)− U(t, s)]M
ΣJ (s,X

(i)
N,M,L,J (s))

IJ(x)Ñ(ds, dx)

and

bN (Σ2) :=
t∫
0

∫
L2

UN (t, s)[M
ΣJ (s,X

(i)
N,M,L,J (s))

−M
ΣJ (s,X

(i)
M,L(s))

]IJ(x) Ñ(ds, dx).

Again, the aim is to show that the aN -terms tend to 0 as N →∞.
Clearly, we have

lim
N→∞

E||aN (ξ)||2L2
ρ
0, lim

N→∞
E||aN (E)||2L2

ρ
= 0

analogously to the proof of Lemma 6.1.4 (cf. Section 6.3). Since the σJ
are uniformly Lipschitz in J and ||IJ(m)||L2 ≤ ||m||L2 , we get

lim
N→∞

E||aN (Σ,m)||2L2
ρ

= 0

analogously to the consideration of aN (m) in the proof of 6.1.4 (ii).
Analogously to the proof of (i), we also have

lim
N→∞

E||aN (Σ)||2L2
ρ

= 0.

Finally, analogously to the consideration of aN (Γ) in the proof of (i), we get

lim
N→∞

E||aN (Σ2)||2L2
ρ

= 0.

Concerning the bN -terms note that, applying the uniform Lipschitz proper-
ties in J of eJ and σJ , we get

E||bN (E)||2L2
ρ
≤ c(c(N), ce(T ))

t∫
0

E||X(i)
N,M,L,J(s)−X

(i)
M,L,J(s)||2L2

ρ
ds,

E||bN (Σ,m)||2L2
ρ
≤ c(m, c(N), cσ(T ))(T ))

t∫
0

(t−s)−ζE||X(i)
N,M,L,J(s)−X

(i)
M,L,J(s)||2L2

ρ
ds,

E||bN (Σ)||2L2
ρ
≤ c(m, c(N), cσ(T ))

t∫
0

E||X(i)
N,M,L,J(s)−X

(i)
M,L,J(s)||2L2

ρ
ds

and
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E||bN (Σ2)||2L2
ρ
≤ c(c(N), cσ(T ), Cq,η)

t∫
0

(t−s)−ζE||X(i)
N,M,L,J(s)−X

(i)
M,L,J(s)||2L2

ρ
ds.

Thus, for any t ∈ [ 0, T ], we have the estimate

E||X(i)
N,M,L,J(s)−X

(i)
M,L,J(s)||2L2

ρ

≤ (E||aN (ξ)||2L2
ρ
+E||aN (E)||2L2

ρ
+E||aN (Σ,m)||2L2

ρ
+E||aN (Σ)||2L2

ρ
+E||aN (Σ2)||2L2

ρ
)

+c(ζ,M,m, T, c(N), ce(T ), cσ(T ), cγ(T ), Cq,η)
t∫
0

(t−s)−ζE||X(i)
N,M,L,J(s)−X

(i)
M,L,J(s)||2L2

ρ
ds.

Thus, by the Gronwall-Bellman lemma 2.7.2 and the corresponding Remark
2.7.3, we get

E||X(i)
N,M,L,J(s)−X

(i)
M,L,J(s)||2L2

ρ

≤ (E||aN (ξ)||2L2
ρ
+E||aN (E)||2L2

ρ
+E||aN (Σ,m)||2L2

ρ
+E||aN (Σ)+E||aN (Σ2)||2L2

ρ
)

c(ζ,M,m, T, c(N), cf (T ), cσ(T ), cγ(T ), Cq,η).

Now, since the aN -terms tend to 0 as N → ∞, we get the convergence
result (8.35) for N →∞.

Next, we consider the M -approximation. For any t ∈ [ 0, T ], we have

X
(i)
M,L,J(t)−X

(i)
L,J(t) = bM (F ) + bM (Σ,m) + aM (Σ) + bM (Σ) + bM (Σ2)

with the terms defined by

bM (E) :=
t∫
0

U(t, s)[E(i)
J (s,X(i)

M,L,J(s))− E
(i)
J (s,XL,J(s))] ds,

bM (Σ,m) :=
t∫
0

U(t, s)[M
ΣJ (s,·,X(i)

M,L,J (s))
−M

ΣJ (s,·,X(i)
L,J (s))

]IJ(m) ds,

aM (Σ) :=
L∑
n=1

√
an

t∫
0

U(t, s)M
ΣJ (s,X

(i)
L,J (s))

(en,M − en) dwn(s),

bM (Σ) :=
L∑
n=1

√
an

t∫
0

U(t, s)[M
ΣJ (s,X

(i)
M,L,J (s))

−M
ΣJ (s,X

(i)
L,J (s))

]en,M dwn(s)

and

bM (Σ2) :=
t∫
0

∫
L2

U(t, s)[M
ΣJ (s,X

(i)
M,L,J (s))

−M
ΣJ (s,X

(i)
L,J (s))

]IJ(x) Ñ(ds, dx).

Analogously to the N -convergence case, we show that the aM -term tends
to 0 as M → ∞. Indeed, this holds true by the same arguments as in the
proof of (i).
Furthermore, similar to the N -convergence we have
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E||bM (E)||2L2
ρ
≤ c(c(T ), ce(T ))

t∫
0

E||X(i)
M,L,J(s)−X

(i)
L,J(s)||2L2

ρ
ds,

E||bM (Σ,m)||2L2
ρ
≤ c(m, c(N), cσ(T ))(T ))

t∫
0

(t−s)−ζE||X(i)
M,L,J(s)−X

(i)
L,J(s)||2L2

ρ
ds,

E||bM (Σ)||2L2
ρ
≤ c(L, c(T ), cσ(T ))

t∫
0

E||X(i)
M,L,J(s)−X

(i)
L,J(s)||2L2

ρ
ds

and

E||bM (Σ2)||2L2
ρ
≤ c(c(T ), cσ, Cq,η)

t∫
0

(t− s)−ζE||X(i)
M,L,J(s)−X

(i)
L,J(s)||2L2

ρ
.

Thus, for any t ∈ [ 0, T ], we can estimate

E||X(i)
M,L,J(s)−X

(i)
L,J(s)||2L2

ρ

≤ E||aM (Σ)||2L2
ρ

+c(ζ, L, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)
t∫
0

(t−s)−ζE||X(i)
M,L,J(s)−X

(i)
L,J(s)||2L2

ρ
ds.

Therefore, by the Gronwall-Bellman lemma 2.7.2 and the corresponding
Remark 2.7.3 we get

E||X(i)
M,L,J(s)−X

(i)
L,J(s)||2L2

ρ

≤ (E||aM (Σ)||2L2
ρ
)c(ζ,M, T, c(N), cf (T ), cσ(T ), cγ(T ), Cq,η).

Now, since the aM -term tends to 0 as M → ∞, we get the convergence
result (8.36) for M →∞.

Let us now proceed with the convergence for L→∞.
For any t ∈ [ 0, T ], we have

X
(i)
L,J(t)−X

(i)
J (t) =

t∫
0

U(t, s)[E(i)
J (s,X(i)

L,J(s))− E
(i)
J (s,X(i)

J (s))] ds

+
t∫
0

∫
L2

U(t, s)[M
ΓJ (s,X

(i)
L,J (s))

−M
ΓJ (s,X

(i)
L,J (s))

]IJ(x) Ñ(ds, dx)

+
t∫
0

U(t, s)[M
ΣJ (s,X

(i)
L,J (s))

−M
ΣJ (s,X

(i)
L,J (s))

]IJ(m) ds

+
L∑
n=1

√
an

t∫
0

U(t, s)[M
ΣJ (s,X

(i)
L,J (s))

−M
ΣJ (s,X

(i)
J (s))

]en dwn(s)

+
∞∑

n=L+1

√
an

t∫
0

U(t, s)M
ΣJ (s,X

(i)
J (s))

en dwn(s).

Analogously to the bN -terms from the previous steps we get
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E||X(i)
L,J(t)−X

(i)
J (t)||2L2

ρ
≤ c(ζ,M,m, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)

t∫
0

(t− s)−ζE||X(i)
L,J(s)−X

(i)
J (s)||2L2

ρ
ds

+
∞∑

n=L+1

an
t∫
0

E||U(t, s)M
ΣJ (s,X

(i)
J (s))

en||2L2
ρ
ds.

Thus, the Gronwall-Bellman lemma yields

E||X(i)
M,L(t)−X

(i)
L (t)||2L2

ρ
≤ cL(Σ)ec(ζ,M,T,c(T ),cf (T ),cσ(T ),cγ(T ),Cq,η)t

with cL(Σ) as in the proof of Lemma 6.1.4 (i) (cf. Section 6.3). By the
same arguments as in the proof of part (i) we get cL(Σ) → 0 as L → ∞.
This proves E||X(i)

L,J(t)−X
(i)
J (t)||2L2

ρ
→ 0 as L→∞, i.e. (8.37) holds.

Finally, for fixed J ∈ N we have

X
(i)
J (t)−X(i)(t) = U(t, 0)[ξ(i)J − ξ(i)] +

t∫
0

U(t, s)[E(i)
J (s,X(i)

J (s))− E(i)(s,X(i)(s))] ds

+
t∫
0

U(t, s)[M
ΣJ (s,X

(i)
J (s))

IJ(m)−MΣ(s,X(i)(s))m] ds

+
t∫
0

U(t, s)[M
ΣJ (s,X

(i)
J (s))

−MΣ(s,X(i)(s))] dW (s)

+
t∫
0

∫
L2

U(t, s)[M
ΣJ (s,X

(i)
J (s))

IJ(x)−MΣ(s,X(i)(s))x] Ñ(ds, dx)

= aJ(ξ) + aJ(E) + bJ(E) + aJ(Σ,m) + bJ(Σ,m)
+aJ(Σ) + bJ(Σ) + aJ(Σ2) + bJ(Σ2).

Here, aJ(ξ), aJ(Σ) and bJ(Σ) are as in the proof of (i), aJ(E) resp. bJ(E)
is just aJ(F ) resp. bJ(F ) from the proof of (i) with F being replaced by
E and aJ(Σ2) resp. bJ(Σ2) is just aJ(Γ) resp. bJ(Γ) from the proof of (i)
with Γ being replaced by Σ. Finally, aJ(Σ,m) resp. bJ(Σ,m) is defined by

aJ(Σ,m) :=
t∫
0

U(t, s)[M
Σ

(i)
J (s,X(i)(s))

IJ(m)−MΣ(s,X(i)(s))m] ds

resp.

bJ(Σ,m) :=
t∫
0

U(t, s)[M
Σ

(i)
J (s,X

(i)
J (s))

−M
Σ

(i)
J (s,X(i)(s))

]IJ(m) ds.

Analogously to the proof of (i) we get

lim
J→∞

E||aJ(ξ)||2L2
ρ

= 0,



8.2. PROOF OF THEOREM 8.1.5 309

lim
J→∞

E||aJ(E)||2L2
ρ

= 0,

and

lim
J→∞

E||aJ(Σ)||2L2
ρ

= 0.

Concerning aJ(Σ,m), note that

E||aJ(Σ,m)||2L2
ρ
≤

t∫
0

E||U(t, s)[MΣJ (s,X(i)(s))IJ(m)−MΣ(s,X(i)(s))m]||2L2
ρ
ds

≤
t∫
0

E||U(t, s)MΣJ (s,X(i)(s))[IJ(m)−m]||2L2
ρ
ds

+
t∫
0

E||U(t, s)[MΣJ (s,X(i)(s)) −MΣ(s,X(i)(s))]m||2L2
ρ
ds

≤
(
||IJ(m)−m||2L2

) t∫
0

(t− s)−ζE||ΣJ(s,X(i)(s))||2L2
ρ
ds

+||m||2L2

t∫
0

(t− s)−ζE||ΣJ(s,X(i)(s))− Σ(s,X(i)(s))||2L2
ρ
ds.

The first term on the right hand side tends to 0 as J →∞, since
lim
J→∞

||IJ(m)−m||2L2 = 0 and

t∫
0

(t− s)−ζE||ΣJ(s,X(i)(s))||2L2
ρ
ds ≤ c(cσ(T ))T

1−ζ

1−ζ <∞.

The second term obvously tends to 0 as J → ∞ by the uniform Lipschitz
convergence of σJ , J ∈ N.
This yields E||aJ(Σ,m)||2L2

ρ
→ 0 as J →∞.

Analogously to the consideration of aJ(Γ) in the proof of (i), we get
E||aJ(Σ2)||2L2

ρ
→ 0 as J →∞.

So all E||aJ ||L2
ρ
-terms tend to 0 as J →∞.

Concerning the bJ -terms note that with the help of the Itô isometries w.r.t.
Wiener processes and compensated Poisson random measures and the uni-
formness of the Lipschitz properties, we get

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[E(i)
J (s,X(i)

J (s))− E
(i)
J (s,X(i)(s))] ds

∣∣∣∣∣∣∣∣2
L2

ρ

≤ c(c(T ), ce(T ))
t∫
0

E||X(i)
J (s)−X(i)(s)||2L2

ρ
ds,
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E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[M
ΣJ (s,X

(i)
J (s))

−MΣJ (s,X(i)(s))]IJ(m) ds
∣∣∣∣∣∣∣∣2
L2

ρ

≤ c(m, c(T ), cσ(T ))
t∫
0

(t− s)−ζE||X(i)
J (s)−X(i)(s)||2L2

ρ
ds,

E
∣∣∣∣∣∣∣∣ t∫

0

U(t, s)[M
ΣJ (s,X

(i)
J (s))

−MΣJ (s,X(i)(s))] dW (s)
∣∣∣∣∣∣∣∣2
L2

ρ

≤ c(c(T ), cσ(T ))
t∫
0

(t− s)−ζE||X(i)
J (s)−X(i)(s)||2L2

ρ
ds,

and

E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)[M
ΣJ (s,X

(i)
J (s))

−MΣJ (s,X(i)(s))]IJ(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2

L2
ρ

≤ c(c(T ), cσ(T ), Cq,η)
t∫
0

(t− s)−ζE||X(i)
J (s)−X(i)(s)||2L2

ρ
ds.

Thus, for any t ∈ [ 0, T ], we can estimate

E||X(i)
J (s)−X(i)(s)||2L2

ρ

≤ (E||aJ(ξ)||2L2
ρ
+E||aJ(E)||2L2

ρ
+E||aJ(Σ,m)||2L2

ρ
+E||aJ(Σ)||2L2

ρ
+E||aJ(Σ, 2)||2L2

ρ
)

+ c(m, c(T ), ce(T ), cσ(T ), Cq,η)
t∫
0

(t− s)−ζE||X(i)
J (s)−X(i)(s)||2L2

ρ
ds.

Thererfore, by the Gronwall-Bellman lemma 2.7.2 and the corresponding
Remark 2.7.3 we get

E||X(i)
J (s)−X(i)(s)||2L2

ρ

≤ (E||aJ(ξ)||2L2
ρ
+E||aJ(F )||2L2

ρ
+E||aJ(Σ,m)||2L2

ρ
+E||aJ(Σ)||2L2

ρ
+E||aJ(Σ2)||2L2

ρ
)

c(m, c(T ), cf (T ), cσ(T ), Cq,η).

Now, since the aJ -terms tend to 0 as J → ∞, we get the convergence
result (8.38) for J →∞. �

8.3 Proof of Theorem 8.1.1

Step 1: This is just Step 1 from the proof of Theorem 7.1.2, i.e. by (7.15)
and (7.16) we get functions ḡ, h̄: R → R obeying

(8.40) ḡ ≤ 0 , ḡ(v) ≤ f(t, ω, v), (t, ω, v) ∈ [ 0, T ]× Ω× R,
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(8.41) h̄ ≥ 0 , h̄(v) ≥ f(t, ω, v), (t, ω, v) ∈ [ 0, T ]× Ω× R.

Of course, (8.40), (8.41) also hold true, when f is replaced by e.
These auxiliary functions help us to estimate the integral IF (X) (defined in
Section 5.1) in the non-Lipschitz case.

Step 2: Given arbitrary N,M ∈ N, let fN,M be defined by (7.10), (7.11)
from 7.1.7. Then, fN,M obeys (LC) and (LB) and is such that fN,M is
PT ⊗ B(R)-measurable by Lemma 7.1.8. Of course, this also holds true for
functions eN,M defined analogously to the fN,M .

Thus, the theory from Sections 5.1/5.2 is applicable. By 5.2.1 there are
processes XN,M ∈ Hq(T ) solving equations (1.1) resp. (1.2), when f resp. e
is replaced by fN,M resp. eN,M .
To proceed along the lines of Manthey’s and Zausinger’s proof, we need to
find M -independent estimates for the moments of XN,M .

(i) Equation (1.1) - the Poison case

By Theorem 5.2.1 t 7→ XN,M (t) is continuous in Lq(Ω;L2
ρ). Furthermore,

we have

(8.42) XN,M (t) ≤ XN,M+1(t) for all t ∈ [ 0, T ],

P -almost surely, by Theorem 8.1.5. We denote solutions to the equations
with initial conditions ξ+, ξ− resp. 0 and drifts F0,M , F−N,M resp. 0 by
X̄0,M , XN,M resp. V . Of course, by 8.1.5 we have

(8.43) XN,M (t) ≤ XN,M (t) ≤ X̄0,M (t),
(8.44) XN,M (t) ≤ V (t) ≤ X̄0,M (t),

P -almost surely, for each t ∈ [ 0, T ] and arbitrary N,M ∈ N.

Note that similar to Section 5.2, all the solutions above are time-continuous
in Lq(Ω;L2

ρ) and, by the uniform boundedness of γ, have a càdlàg version
under the additional assumption that U obeys (A7).

In view of (8.43), we show the required M -independent estimate for XN,M

by showing M -independent estimates for X̄0,M and XN,M .

Let us fix t ∈ [ 0, T ]. To find an M -independent estimate, we note that
for each M ∈ N
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(8.45) E||X̄0,M (t)||q
L2

ρ
≤ c(q)[Ī(1)(t) + Ī

(2)
M (t) + Ī

(3)
M (t) + Ī

(4)
M (t)].

Here, Ī(1), Ī(2)
M and Ī

(3)
M are as in Step 2 of the proof of 7.1.2 (i), whereas

Ī
(4)
M is defined by

Ī(4)(t) := E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)MΓ(s,X̄0,M (s))(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
q

L2
ρ

.

Analogously to Step 2 in the proof of Theorem 7.1.2 (i), we have

Ī(1)(t) ≤ cq(T )E||ξ||q
L2

ρ
,

Ī
(2)
M (t) ≤ c(q, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)

(
1 +

t∫
0

E||X̄0,M (s)||q
L2

ρ
ds

)
and

Ī
(3)
M (t) ≤ c(q, T, ζ, c(T ), cσ(T ))

(
1 +

t∫
0

E||X̄0,M (s)||q
L2

ρ
ds

)
.

Finally, by the Bichteler-Jacod inequality 2.6.10, (QI) for η, (LC) and
(LB) for γ, (A2) for U and the fact

q < 2
ζ ⇐⇒ ζq

2 < 1,

we get

Ī
(4)
M (t) ≤ C

1
q
q,η

t∫
0

(t− s)−
ζq
2 E||Γ(s, X̄0,M (s))||q

L2
ρ
ds

≤ c(q, ζ, T, cγ(T ), Cq,η)
(

1 +
t∫
0

(t− s)−
ζq
2 E||X̄0,M (s)||q

L2
ρ
ds

)
.

Thus, by (8.45) we have

E||X̄0,M (t)||q
L2

ρ

≤ c(q, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)(1 + E||ξ||q
L2

ρ
)

+ c(q, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)
t∫
0

(t− s)−
ζq
2 E||X̄0,M (s)||q

L2
ρ
ds

for arbitrary t ∈ [ 0, T ]. Therefore, by the Gronwall-Bellman lemma we
get

E||X̄0,M (t)||q
L2

ρ
≤ c̄(q, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)
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for arbitrary M ∈ N and t ∈ [ 0, T ]. Thus, we have

sup
t∈[ 0,T ]

M∈N

E||X̄0,M (t)||q
L2

ρ
≤ c̄(q, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)(1+E||ξ||q

L2
ρ
).

Next, we considerXN,M for arbitrary N,M ∈ N. For any t ∈ [ 0, T ], we have

E||XN,M ||
q
L2

ρ
≤ c(q)(I(1)(t) + I

(2)
N,M (t) + I

(3)
N,M (t) + I

(4)
N,M (t))

with I(1), I(2)
N,M and I(3)

N,M as in the proof of Theorem 7.1.2 (i) and

I
(4)
N,M (t) := E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)MΓ(s,XN,M (s))(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
q

L2
ρ

.

Similarly to Step 2 in the proof of Theorem 7.1.2 (i), we get

I(1)(t) ≤ c(q, c(T ))E||ξ||q
L2

ρ
,

I
(2)
N,M (t) ≤ c(N, q, T, c(T ))

and

I
(3)
N,M (t) ≤ c(q, ζ, c(T ), cσ(T ))

(
1 +

t∫
0

E||XN,M (s)||q
L2

ρ

)
.

Furthermore, by the Bichteler-Jacod inequality 2.6.10, (QI) for η, (LC)
and (LB) for γ, (A2) for U and the fact

q < 2
ζ ⇐⇒ ζq

2 < 1

we get

Ī
(4)
M (t) ≤ C

1
q
q,η

t∫
0

(t− s)−
ζq
2 E||Γ(s,XN,M (s))||q

L2
ρ
ds

≤ c(q, ζ, T, cγ(T ), Cq,η)
(

1 +
t∫
0

(t− s)−
ζq
2 E||XN,M (s)||q

L2
ρ
ds

)
.

Putting the estimates together we conclude
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E||XN,M ||
q
L2

ρ
≤ c(q, c(T ))E||ξ||q

L2
ρ
+ c(N, q, T, c(T ))

c(q, c(T ), cσ(T ), cγ(T ))
(

1 +
t∫
0

(t− s)−
qζ
2 E||XN,M (s)||q

L2
ρ

)
≤ c(N, q, ζ, T, c(T ), cσ(T ), cγ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

+c(q, ζ, c(T ), cσ(T ), cγ(T ), Cq,η)
t∫
0

(t− s)−
qζ
2 E||XN,M (s)||q

L2
ρ
ds.

Herefrom, by the Gronwall-Bellman lemma we get

E||XN,M ||
q
L2

ρ
≤ c(N, q, ζ, T, c(T ), cσ(T ), cγ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
).

Since the previous estimate holds for arbitrary t ∈ [ 0, T ] and M ∈ N, we get

sup
t∈[ 0,T ]

M∈N

E||XN,M ||
q
L2

ρ
≤ c(N, q, ζ, T, c(T ), cσ(T ), cγ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
).

Finally, by (8.43) we get

sup
t∈[ 0,T ]

M∈N

E||XN,M ||qL2
ρ
≤ c(N, q, ζ, T, c(T ), cσ(T ), cγ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

with c = c̄+ c.

(ii) Equation (1.2) - the Lévy noise

Denoting solutions to (1.2) with ξ+ and E0,M resp. ξ− and E−N,M resp.
0 and 0 replacing ξ and E by X̄0,M resp. XN,M resp. V , we get relations
(8.43) and (8.44) again.

Concerning X̄0,M note that we have, for any t ∈ [ 0, T ],

(8.46) E||X̄0,M (t)||q
L2

ρ
≤ c(q)(Ī(1)(t) + Ī

(2)
M (t) + Ī

(3)
M (t))

with Ī(1) and Ī(2)
M as in Step 2 in the proof of Theorem 7.1.2 (ii) and

Ī
(3)
M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)MΣ(s,X̄0,M ) dL(s)
∣∣∣∣∣∣∣∣q
L2

ρ

.

Analogously to Step 2 in the proof of Theorem 7.1.2 (ii),

Ī(1)(t) ≤ c(q, c(T ))E||ξ||q
L2

ρ
.

and

Ī
(2)
M (t) ≤ c(q, T, c(T ), ce(T ), cσ(T ), Cq,η)

(
1 +

t∫
0

E||X̄0,M (s)||q
L2

ρ
ds

)
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hold true for any t ∈ [ 0, T ].
Applying first the Lévy-Itô decomposition 2.4.13 and then estimate (3.30)
from Proposition 3.4.1, estimate (4.5) from Proposition 4.1, the integrability
condition (QI), (LC) and (LB) for σ and the fact that

q < 2
ζ ⇐⇒ ζq

2 < 1,

we easily get

Ī
(3)
M (t) ≤ c(q, ζ, T, c(T ), cσ(T ), Cq,η)

(
1 +

t∫
0

(t− s)−
qζ
2 E||X̄0,M (s)||q

L2
ρ
ds

)
.

Thus, by (8.46) we have, for arbitrary t ∈ [ 0, T ],

E||X̄0,M (t)||q
L2

ρ
≤ c(q, ζ, T, c(T ), ce(T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

+c(q, T, c(T ), ce(T ), c(T ), Cq,η)
t∫
0

(t− s)−
qζ
2 E||X̄0,M (s)||q

L2
ρ
ds.

From this estimate, analogously to the consideration of (1.1) in (i), we get

sup
t∈[ 0,T ]

M∈N

E||X̄0,M (t)||q
L2

ρ
≤ c(q, ζ, T, c(T ), ce(T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
).

Next, we consider XN,M for arbitrary N,M ∈ N. For any t ∈ [ 0, T ],
we get

E||XN,M ||
q
L2

ρ
≤ c(q)(I(1)(t) + I

(2)
N,M (t) + I

(3)
N,M (t))

with I(1) and I(2)
N,M as in Step 2 in the proof of 7.1.2(ii) and

I
(3)
N,M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)MΣ(s,XN,M (s)) dL(s)
∣∣∣∣∣∣∣∣q
L2

ρ

.

From Step 2 in the proof of 7.1.2 (ii), we immediately get

I(1)(t) ≤ c(q, c(T ))E||ξ||q
L2

ρ

and

I
(2)
N,M (t) ≤ c(N, q, T, c(T )).

Finally, applying first the Lévy-Itô decomposition 2.4.13 and then estimate
(3.30) from Proposition 3.4.1, estimate (4.5) from Proposition 4.1, the inte-
grability condition (QI), (LC) and (LB) for σ and the fact that
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q < 2
ζ ⇐⇒ ζq

2 < 1,

we obey

I
(3)
N,M (t) ≤ c(q, ζ, T, c(T ), cσ(T ), Cq,η)

(
1 +

t∫
0

(t− s)−
qζ
2 E||XN,M (s)||q

L2
ρ
ds

)
.

Thus, putting the estimates together, we have

E||XN,M (t)||q
L2

ρ
≤ c(q, c(T ))E||ξ||q

L2
ρ
+ c(N, q, T, c(T ))

+c(q, ζ, T, cσ(T ), Cq,η)
(

1 +
t∫
0

(t− s)−
qζ
2 E||XN,M (s)||q

L2
ρ
ds

)
,

which by the Gronwall-Bellman lemma gives us

E||XN,M (t)||q
L2

ρ
≤ c(N, q, ζ, T, c(T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
).

Since the previous estimate holds for arbitrary t ∈ [ 0, T ] and M ∈ N, we get

sup
t∈[ 0,T ]

M∈N

E||XN,M ||
q
L2

ρ
≤ c(N, q, ζ, T, c(T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
).

Now, by (8.43) we get

sup
t∈[ 0,T ]

M∈N

E||XN,M ||qL2
ρ
≤ c(N, q, ζ, T, c(T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

with c = c̄+ c, which finishes Step 2.

Step 3: Recall that in Step 3 in the proof of 7.1.2 we had the following
procedure.

For N,M ∈ N, define

ZN,M (t) := XN,M (t)−XN,1(t), t ∈ [ 0, T ].

Furthermore, we set

ZN (t) := sup
M∈N

ZN,M (t), t ∈ [ 0, T ]

and

XN (t) := ZN (t) +XN,1(t), t ∈ [ 0, T ].

By the well-definedness of the XN,M , (8.42) and the M -independent es-
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timates on the XN,M shown in Step 2, by almost literally repeating Step 3
from the proof of 7.1.2 we get XN ∈ Hq(T ) for any N ∈ N both in (i) and
(ii). Furthermore, denoting X̄ and V as in Step 3 in the proof of 7.1.2, the
processes obey

XN (t) ≤ XN (t) ≤ X̄(t),
XN (t) ≤ V (t) ≤ X̄(t),

P -almost surely, for any t ∈ [ 0, T ].
Finally, we have

(8.47) lim
M→∞

E||XN,M (t)−XN (t)||q
L2

ρ
= 0, t ∈ [ 0, T ],

and

(8.48) lim
M→∞

T∫
0

E||XN,M (t)−XN (t)||q
L2

ρ
dt = 0,

both in (i) and (ii), and there are processes XN , X̄ ∈ Hq(T ) such that

lim
M→∞

T∫
0

E||XN,M (t)−XN (t)||q
L2

ρ
ds = 0

lim
M→∞

T∫
0

E||X̄0,M (t)− X̄(t)||q
L2

ρ
ds = 0.

Step 4: We show that, given arbitrary N ∈ N, the processes XN defined
in Step 3 solve (1.1) resp. (1.2) in case of F resp. E being replaced by FN
resp. EN .
Furthermore, we show that t 7→ XN (t) is continuous in Lq(Ω;L2

ρ) and that,
additionally assuming (8.2) for γ (for equation (1.1)) resp. (8.4) for σ (for
equation (1.2)) and (A7) for U , there is a càdlàg version of t 7→ XN (t).

By (8.48), there is a subsequence of (XN,M )M∈N that converges P⊗ds⊗dµρ-
almost everywhere to XN . We assume (XN,M )M∈N itself to be this sequence.

(i) Equation (1.1) - the Poisson case
We have, for each t ∈ [ 0, T ],

E
∣∣∣∣∣∣∣∣XN (t)− U(t, 0)ξ −

t∫
0

U(t, s)FN (s,XN (s)) ds−
t∫
0

U(t, s)MΣ(s,XN (s)) dW (s)

−
t∫
0

∫
L2

U(t, s)MΓ(s,XN (s))(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2

L2
ρ

≤ C(I(1)
N,M (t) + I

(2)
N,M (t) + I

(3)
N,M (t) + I

(4)
N,M (t)).
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Here, I(1)
N,M , I(2)

N,M and I(3)
N,M are as in Step 4 in the proof of Theorem 7.1.2,

whereas

I
(4)
N,M (t) := E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)[MΓ(s,XN (s)) −MΓ(s,XN,M (s))](x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2

L2
ρ

.

In view of (8.47) and (8.48), which is just (7.22) and (7.23) from Step 4
in the proof of Theorem 7.1.2(i), we immediately get (for 1 ≤ i ≤ 3)

lim
M→∞

I
(i)
N,M (t) = 0.

Applying Itô’s isometry for the stochastic integration w.r.t. compensated
Poisson random measures, (A2), (QI) and the fact that

q > 2
1−ζ ⇐⇒ qζ

q−2 < 1,

we get

I
(4)
N,M (t) ≤ c(c(T ), Cq,η)E

t∫
0

(t− s)−ζ ||Γ(s,XN (s))− Γ(s,XN,M (s))||2L2
ρ
ds

≤ c(q, ζ, T, c(T ), cσ(T ), Cq,η)
(
E

t∫
0

||XN (s)−XN,M (s)||q
L2

ρ
ds

) 2
q

,

which tends to 0 for M →∞ by (8.48).
Thus, XN solves the equation in the sense of 5.1.2 (i), when F is replaced
by FN for arbitrary N ∈ N.

Similar to Step 4 in the proof of Theorem 7.1.2 (i), to prove the required
continuity property we only need to consider the drift term, but this follows
by literally repeating the arguments from Step 4 in the proof of Theorem
7.1.2 (i).

(ii) Equation (1.2) - the Lévy case

For any fixed t ∈ [ 0, T ] we have

E
∣∣∣∣∣∣∣∣XN (t)− U(t, 0)ξ −

t∫
0

U(t, s)EN (s,XN (s)) ds−
t∫
0

U(t, s)MΣ(s,XN (s)) dL(s)
∣∣∣∣∣∣∣∣2
L2

ρ

≤ 3(I(1)
N,M (t) + I

(2)
N,M (t) + I

(3)
N,M (t))

with I(i)
N,M , i = 1, 2, as in Step 4 in the proof of 7.1.2 (ii) and
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I
(3)
N,M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)[MΣ(s,XN (s)) −MΣ(s,XN,M (s))] dL(s)
∣∣∣∣∣∣∣∣2
L2

ρ

, t ∈ [ 0, T ].

Thus, I(i)
N,M (t), i = 1, 2, tends to 0 for M → ∞ by the same arguments

as in Step 4 in the proof of 7.1.2 (ii), whereas, by first applying the Lévy-
Itô decomposition 2.4.13 and then estimate (3.30) from Proposition 3.4.1.,
estimate (4.5) from Proposition 4.1, (QI) for η, (LC) for σ and the fact

q > 2
1−ζ ⇐⇒ ζq

q−2 < 1,

we obtain

I
(3)
N,M (t) ≤ c(q, ζ, T, c(T ), cσ(T ), Cq,η)

(
t∫
0

E||XN (s)−XN,M (s)||q
L2

ρ
ds

) 2
q

,

which tends to 0 as M →∞ by (8.48).
Thus, XN solves (1.2) in the sense of 5.1.2 (i), when E is replaced by EN .
By simply replacing FN by EN , the continuity property follows analogously
to (i).

Step 5: In this final step, we first obtain N -independent estimates for
the XN .
By construction, we have

XN (t) ≤ XN (t) ≤ X̄(t) in L2
ρ(Θ).

Therefore, we have the required N -independent estimate for the moments
of XN if we show N -independent estimates for XN (t) and X̄(t).
We consider separately equations (1.1) and (1.2).

(i) Equation (1.1) - The Poisson case

Fix an arbitrary t ∈ [ 0, T ]. We estimate

E||XN (t)||q
L2

ρ
≤ c(q)(I(1)(t) + I

(2)
N (t) + I

(3)
N (t) + I

(4)
N (t))

with I(1), I(2)
N and I(3)

N as in Step 5 in the proof of Theorem 7.1.2 (i) and with

I
(4)
N (t) := E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)MΓ(s)(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
q

L2
ρ

.

Thus, from Step 5 in the proof of Theorem 7.1.2 (i) we get

I(1)(t) ≤ cq(T )E||ξ||q
L2

ρ
,
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I
(2)
N (t) ≤ c(q, T, c(T ), cf (T ))

(
1 +

t∫
0

E||XN (s)||q
L2

ρ
ds

)
and

I
(3)
N (t) ≤ c(q, ζ, T, c(T ), cσ(T ))

(
1 +

t∫
0

E||XN (s)||q
L2

ρ
ds

)
.

Finally, by the Bichteler-Jacod inequality 2.6.10, (A2) for U , the integra-
bility property (QI) for η, (LC) and (LB) for γ and the fact that

q < 2
ζ ⇐⇒ qζ

2 < 1,

we get

I
(4)
N (t) ≤ c(q, ζ, T, c(T ), cγ(T ), Cq,η)

(
1 +

t∫
0

(t− s)−
qζ
2 E||XN (s)||q

L2
ρ
ds

)
.

Putting the four estimates together we get, for all t ∈ [ 0, T ],

E||XN (t)||q
L2

ρ

≤ c(q, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)(1 + E||ξ||q
L2

ρ
)

+ c(q, ζ, T, c(T ), cf (T ), cσ(T ), cΓ(T ), Cq,η)
t∫
0

(t− s)−
qζ
2 E||XN (s)||q

L2
ρ
ds.

By the Gronwall-Bellman lemma 2.7.2/2.7.3 this yields

E||XN (t)||q
L2

ρ
≤ c(q, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

for all N ∈ N and t ∈ [ 0, T ] and hence

sup
t∈[ 0,T ]

N∈N

E||XN (t)||q
L2

ρ
≤ c1(q, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
).

(ii) Equation (1.2) - The Lévy case

For arbitrary t ∈ [ 0, T ] we have

E||XN (t)||q
L2

ρ
≤ c(q)

(
I(1)(t) + I

(2)
N (t) + I

(3)
N (t)

)
with I(1) and I(2)

N as in Step 5 in the proof of 7.1.2 (ii) and

I
(3)
N (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)MΣ(s) dL(s)
∣∣∣∣∣∣∣∣q
L2

ρ

.

Thus, from Step 5 in the proof of 7.1.2(ii), we immediately get
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I(1)(t) ≤ cq(T )E||ξ||q
L2

ρ

and

I
(2)
N (t) ≤ c(q, T, c(T ), ce(T ))

(
1 +

t∫
0

E||XN (s)||q
L2

ρ
ds

)
.

Applying first the Lévy-Itô decomposition 2.4.12 and then estimate (3.30)
from Proposition 3.4.1, estimate (4.5) from Proposition 4.1, integrability
condition (QI) for η, (LC) and (LB) for σ and the fact that

q < 2
ζ ⇐⇒ qζ

2 < 1,

we obey

I
(3)
N (t) ≤ c(q, ζ, T, c(T ), cσ(T ), Cq,η)

(
1 +

t∫
0

(t− s)−
qζ
2 E||XN,M (s)||q

L2
ρ
ds

)
.

Putting the three estimates together we get, for all t ∈ [ 0, T ],

E||XN (t)||q
L2

ρ
≤ c(q, ζ, T, c(T ), ce(T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

+c(q, T, c(T ), ce(T ), cσ(T ), Cq,η)
t∫
0

(t− s)−
qζ
2 E||XN (s)||q

L2
ρ
ds.

Herefrom, by the Gronwall-Bellman lemma 2.7.2/2.7.3 we get

sup
t∈[ 0,T ]

E||XN (t)||q
L2

ρ
≤ c2(q, ζ, T, c(T ), ce(T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
).

Since this estimate holds for any N ∈ N, we conclude

sup
t∈[ 0,T ]

N∈N

E||XN (t)||q
L2

ρ
≤ c2(q, ζ, T, c(T ), ce(T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
),

which is the required N -independent estimate on the moments of XN .

Let X̄ be as in Step 3 in the proof of 7.1.2. Recall from Step 2 that

sup
t∈[ 0,T ]

M∈N

E||X̄0,M (t)||q
L2

ρ
≤ c(q, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)(1+E||ξ||q

L2
ρ
)

in (i) resp.

sup
t∈[ 0,T ]

M∈N

E||X̄0,M (t)||q
L2

ρ
≤ c(q, ζ, T, c(T ), ce(T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

in (ii).
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Thus, we get

sup
t∈[ 0,T ]

E||X̄(t)||q
L2

ρ
≤ c3(q, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

in (i) resp.

sup
t∈[ 0,T ]

E||X̄(t)||q
L2

ρ
≤ c4(q, ζ,K, T, c(T ), ce(T ), cσ(T ), Cq,η)(1 + E||ξ||q

L2
ρ
)

in (ii).
By construction, for all t ∈ [ 0, T ] we have

XN (t) ≤ XN (t) ≤ X̄(t) in L2
ρ

and this leads to

sup
t∈[ 0,T ]

N∈N

E||XN (t)||q
L2

ρ

≤ [c1(q, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)
+c3(q, ζ,K, T, c(T ), cf (T ), cσ(T ), cγ(T ), Cq,η)] (1 + E||ξ||q

L2
ρ
)

(in (i)) and (in (ii))

sup
t∈[ 0,T ]

N∈N

E||XN (t)||q
L2

ρ

≤ [c2(q, ζ, T, c(T ), ce(T ), cσ(T ), Cq,η)
+c4(q, ζ, T, c(T ), ce(T ), cσ(T ), Cq,η)] (1 + E||ξ||q

L2
ρ
).

Thus, we have shown that there are N independent estimates for the XN

both in (i) and (ii).
Next, we define our candidates for the solution to (1.1) resp. (1.2).
Note that, by fN ↓ f resp. eN ↓ e, 8.1.5 implies

(8.49) XN+1(t) ≤ XN (t) P -a.s., t ∈ [ 0, T ], N ∈ N

both in (i) and (ii).

Analogously to Step 5 in the proof of Theorem 7.1.2, we claim that

X(t) := inf
N∈N

XN (t) , t ∈ [ 0, T ],

is a solution in the sense of 5.1.2 (i) in both cases.

With the help of the N -independent estimates shown above, we get
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(8.50) lim
N→∞

E||XN (t)−X(t)||q
L2

ρ
= 0

for all t ∈ [ 0, T ] and

(8.51) lim
N→∞

E
T∫
0

||XN (t)−X(t)||q
L2

ρ
dt = 0

both in (i) and (ii) by literally repeating the arguments from Step 5 in
the proof of Theorem 7.1.2.

Let us show that X solves equation (1.1) resp. (1.2).
Let us fix t ∈ [ 0, T ]. We denote the process in the right hand side of (5.5)
by K(X) and the process in the right hand side of (5.6) by K̄(X). Then,
by setting

I
(1)
N := E||X(t)−XN (t)||2L2

ρ
,

I
(2)
N := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)[F (s,X(s))− FN (s,XN (s))] ds
∣∣∣∣∣∣∣∣2
L2

ρ

,

Ī
(2)
N := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)[E(s,X(s))− EN (s,XN (s))] ds
∣∣∣∣∣∣∣∣2
L2

ρ

,

I
(3)
N := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)[MΣ(s,X(s)) −MΣ(s,XN (s))] dW (s)
∣∣∣∣∣∣∣∣2
L2

ρ

,

Ī
(3)
N := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)[MΣ(s,X(s)) −MΣ(s,XN (s))] dL(s)
∣∣∣∣∣∣∣∣2
L2

ρ

and

I
(4)
N := E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)[MΓ(s,X(s)) −MΓ(s,XN (s))]x Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2

L2
ρ

,

we get

E||X(t)−K(X)(t)||2L2
ρ
≤ C(I(1)

N + I
(2)
N + I

(3)
N + I

(4)
N )

for (1.1) resp. for (1.2)

E||X(t)− K̄(X)(t)||2L2
ρ

≤ 2(I(1)
N + Ī

(2)
N + Ī

(3)
N ).
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Analogously to the procedure in Step 5 in the proof of Theorem 7.1.2, we
get I(i)

N → 0 as N →∞ for i = 1, 2, 3 and Ī(i)
N → 0 as N →∞ for i = 1, 2.

Thus, it remains to consider I(4)
N and Ī(3)

N .
Concerning I(4)

N , note that, by the Bichteler-Jacod inequality 2.6.10, (A2),
(QI) and the Lipschitz property of γ, we get

I
(4)
N ≤ c(q, T, ζ, cγ(T ), Cq,η)

(
t∫
0

E||X(s)−XN (s)||q
L2

ρ
ds

) 2
q

,

which converges to 0 as N →∞ by (8.51).
Concerning Ī

(3)
N , note that applying the Lévy-Itô- decomposition 2.4.13,

analogously to Step 4, we get

Ī
(3)
N ≤ c(q, T, ζ, cσ(T ), Cq,η)

(
t∫
0

E||X(s)−XN (s)||q
L2

ρ
ds

) 2
q

,

which again converges to 0 as N →∞ by (8.51).

Thus, X solves (1.1) resp. (1.2) in the sense of 5.1.2 (i).

The required continuity property in L2ν
ρ (Θ) follows from the continuity re-

sults for stochastic convolutions presented in Section 5.1. In particular, by
Remark 5.1.11 (i) for the Bochner convolution integral we have continuity
of the mapping

[ 0, T ] 3 t 7→
t∫
0

U(t, s)F (s,X(s)) ds ∈ L2ν
ρ (Θ)

even in the case of a non-Lipschitz F .

Analogously to the proof of the estimates (7.6) and (7.7) in the proof of 7.1.2,
we get the estimates (8.1) and (8.3) with the help of the N -independent es-
timates for XN . �

8.4 Proof of Theorem 8.1.3

Step 1: This step is completely identical with Step 1 from the proof of 7.1.2.

Step 2: We show that we have M -independent estimates for XN,M , where
XN,M is the solution to (1.1) resp. (1.2) with F resp. E being replaced by
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FN,M resp. EN,M . Analogously to Step 2 in the proof of 7.1.4, we get that
the theory from Section 5.2 is applicable.
By 5.2.2 there are processes XN,M ∈ Gν(T ) solving equations (1.1) resp.
(1.2), when f resp. e is replaced by fN,M resp. eN,M . The solutions are
time-continuous in L2ν(Ω;L2ν

ρ ). In the case of γ resp. σ obeying (8.2) resp.
(8.4) and U fulfilling (A7) they have a càdlàg version.

(i) Equation (1.1) - The Poisson case

By Theorem 8.1.5 we have

XN,M (t) ≤ XN,M+1(t) P -a.s., for each t ∈ [ 0, T ],

where the processes XN,M ∈ Gν(T ) solve (1.1), when f is replaced by fN,M .
We denote solutions to the equations with initial conditions ξ+, ξ− resp. 0
and drift F0,M , F−N,M resp. 0 by X̄0,M , XN,M resp. V . Again, by Theo-
rem 8.1.5 we get (8.43) and (8.44) P -almost surely for each t ∈ [ 0, T ] and
arbitrary N,M ∈ N. This allows us to show the wanted M -independent es-
timate of XN,M by showing M -independent estimates for X̄0,M and XN,M .

Let us first consider X̄0,M . We get, for any t ∈ [ 0, T ],

E||X̄0,M (t)||2νL2ν
ρ
≤ c(ν)(Ī(1)(t) + Ī

(2)
M (t) + Ī

(3)
M (t) + Ī

(4)
M (t)).

Here, Ī(1), Ī(2)
M and Ī(3)

M are as in the proof of 7.1.4. Recall that it is crucial
to have the integrability condition (QI) with q = 2ν2 to estimate Ī(2)

M .
Finally, for any t ∈ [ 0, T ], we have

Ī
(4)
M (t) := E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)MΓ(s,·,X̄0,M (s))(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2ν
ρ

.

By Proposition 4.4, (LC) and (LB) for γ and the fact that ν < 1
ζ , we

get, for any t ∈ [ 0, T ],

Ī
(4)
M (t) ≤ c(ν, T, c(T ), C2ν,η)

t∫
0

(t− s)−ζνE||Γ(s, X̄0,M (s))||2νL2ν
ρ
ds

≤ c(ν, T, ζ, T, c(T ), cγ(T ), C2ν,η)
(

1 +
t∫
0

(t− s)−ζνE||X̄0,M (s)||2νL2ν
ρ
ds

)
.

Putting the four estimates together we get, for arbitrary t ∈ [ 0, T ].

E||X̄0,M (t)||2νL2ν
ρ

≤ c(ν, T )E||ξ||2νL2ν
ρ
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+c(ν, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)
(

1 +
t∫
0

(t− s)−ζνE||X̄0,M (s)||2νL2ν
ρ
ds

)
.

Thus, by the Gronwall-Bellman lemma 2.7.3, we get

E||X̄0,M (t)||2νL2ν
ρ
≤ c(ν, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

for arbitrary M ∈ N and t ∈ [ 0, T ]. So, the M -independence of the constant
implies

sup
t∈[ 0,T ]

M∈N

E||X̄0,M (t)||2νL2ν
ρ
≤ c(ν, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)(1+E||ξ||2νL2ν

ρ
).

Next, we consider XN,M for arbitrary N,M ∈ N. We have, for any t ∈
[ 0, T ],

E||XN,M ||2νL2ν
ρ
≤ c(ν)(I(1)(t) + I

(2)
N,M (t) + I

(3)
N,M (t) + I

(4)
N,M (t))

with I(1), I(2)
N,M and I(3)

N,M as in Step 2 in the proof of 7.1.3 and

I
(4)
N,M (t) := E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)MΓ(s,XN,M (s)) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2ν
ρ

.

By the same arguments as in the case Ī(4)
M , for any t ∈ [ 0, T ] we get

I
(4)
N,M (t) ≤ c(ν, T, c(T ), C2ν,η)

t∫
0

(t− s)−ζνE||Γ(s,XN,M (s))||2νL2ν
ρ
ds

≤ c(ν, T, ζ, T, c(T ), cγ(T ), C2ν,η)
(

1 +
t∫
0

(t− s)−ζνE||XN,M (s)||2νL2ν
ρ
dss

)
.

Putting the estimates together, we have

E||XN,M ||2νL2ν
ρ
≤ c(ν, c(T ))E||ξ||2νL2ν

ρ
+ c(N, ν, T, c(T ))

c(ν, ζ, T, c(T ), cσ(T ), cγ(T ), C2ν,η)
(

1 +
t∫
0

(t− s)−ζνE||XN,M (s)||2νL2ν
ρ

)
≤ c(N, ν,K, T, c(T ), cσ(T ), cγ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

+c(ν, ζ, T, c(T ), cσ(T ), cγ(T ))
t∫
0

(t− s)−ζE||XN,M (s)||2νL2ν
ρ
ds.

Again, by the Gronwall-Bellman lemma 2.7.3 we get

E||XN,M ||2νL2ν
ρ
≤ c(N, ν, ζ,K, T, c(T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
).

Since the previous estimate holds for arbitrary t ∈ [ 0, T ] and M ∈ N, we get
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sup
t∈[ 0,T ]

M∈N

E||XN,M ||
q
L2

ρ
≤ c(N, ν,K, T, c(T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
).

Now, by (8.43) we get

sup
t∈[ 0,T ]

M∈N

E||XN,M ||2νL2ν
ρ
≤ c(N, ν,K, T, c(T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

with c = c̄+ c.

(ii) Equation (1.2) - The Lévy case

Let us first consider X̄0,M . For any t ∈ [ 0, T ] we get

E||X̄0,M (t)||2νL2ν
ρ
≤ c(ν)(Ī(1)(t) + Ĩ

(2)
M (t) + Ĩ

(3)
M (t))

with Ī(1) and Ĩ(2)
M as in Step 2 in the proof of 7.1.4 (ii) and

Ĩ
(3)
M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)MΣ(s,·,X̄0,M (s)) dL(s)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

.

By the Lévy-Itô decomposition 2.4.13 and with the help of 3.3.5 resp. 3.4.3
(with φ = Γ and ζ = 0 since W is nuclear) resp. 4.4 and the Lipschitz
property of σ, we get

Ĩ
(3)
M (t) ≤ c(ν, T, c(T ))

t∫
0

(t− s)−ζE||Σ(s, X̄0,M (s))||2νL2ν
ρ
ds

+c(ν, ζ,m, T, c(T ), C2ν,η)
t∫
0

(t− s)−ζνE||Σ(s, X̄0,M (s))||2νL2ν
ρ
ds

≤ c(ν, ζ,m,K, T, c(T ), cσ(T ), C2ν,η)
(

1 +
t∫
0

(t− s)−ζνE||X̄0,M (s)||2νL2ν
ρ
ds

)
.

Thus, we get

E||X̄0,M (t)||2νL2ν
ρ

≤ c(ν, T )E||ξ||2νL2ν
ρ

+c(ν, ζ,m, T, c(T ), ce(T ), cσ(T ), C2ν,η)
(

1 +
t∫
0

(t− s)−ζνE||X̄0,M (s)||2νL2ν
ρ
ds

)
for arbitrary t ∈ [ 0, T ].
Therefore, by the Gronwall-Bellman lemma we have

E||X̄0,M ||2νL2ν
ρ
≤ c̄(ν, ζ,m,K, T, c(T ), ce(T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

for any t ∈ [ 0, T ] and any M ∈ N. This implies
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sup
t∈[ 0,T ]

M∈N

E||X̄0,M ||2νL2ν
ρ
≤ c̄(ν, ζ,m,K, T, c(T ), ce(T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
).

Next, we consider XN,M for arbitrary N,M ∈ N. For any t ∈ [ 0, T ] we
get

E||XN,M ||2νL2ν
ρ
≤ c(ν)(I(1)(t) + I

(2)
N,M (t) + I

(3)
N,M (t))

with I(1) and I(2)
N,M as in the proof of Theorem 7.1.4 and

I
(3)
N,M (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)MΣ(s,XN,M ) dL(s)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

.

Analogously to the consideration of Ĩ(3)
M above, we get

I
(3)
N,M (t) ≤ c(ν, ζ,m,K, T, c(T ), cσ(T ), C2ν,η)

(
1 +

t∫
0

(t− s)−ζνE||XN,M (s)||2νL2ν
ρ
ds

)
.

Putting the estimates together, we have

E||XN,M ||2νL2ν
ρ

≤ c(ν, c(T ))E||ξ||2νL2ν
ρ

+ c(N, ν, T, c(T ))

+ c(ν, ζ,K,m, T, c(T ), cσ(T ), C2ν,η)
(

1 +
t∫
0

(t− s)−ζνE||XN,M (s)||2νL2ν
ρ
ds

)
,

which by the Gronwall-Bellman lemma 2.7.3 gives us

E||XN,M ||2νL2ν
ρ
≤ c(N, ν, ζ,m,K, T, c(T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
).

Since the previous estimate holds for arbitrary t ∈ [ 0, T ] and M ∈ N, we get

sup
t∈[ 0,T ]

M∈N

E||XN,M ||
q
L2

ρ
≤ c(N, ν, ζ,m,K, T, c(T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
).

By (8.43) we get

sup
t∈[ 0,T ]

M∈N

E||XN,M ||2νL2ν
ρ
≤ c(N, ν, ζ,m,K, T, c(T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

with c = c̄+ c.

Step 3: For N,M ∈ N we define

ZN,M (t) := XN,M (t)−XN,1(t) ∈ L2ν
ρ (Θ), t ∈ [ 0, T ].
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Furthermore, we set

ZN (t) := sup
M∈N

ZN,M (t), t ∈ [ 0, T ]

and

XN (t) := ZN (t) +XN,1(t), t ∈ [ 0, T ].

By the well-definedness of the XN,M , the monotonicity property (8.42) and
the M -independent estimates on the XN,M shown in Step 2, by almost lit-
erally repeating Step 3 from the proof of 7.1.4, we get XN ∈ Gν(T ) for any
N ∈ N both in (i) and (ii). Furthermore, denoting X̄ and V as in Step 3
in the proof of 7.1.2, the processes obey

XN (t) ≤ XN (t) ≤ X̄(t),
XN (t) ≤ V (t) ≤ X̄(t),

P -almost surely, for any t ∈ [ 0, T ].
Finally,

(8.52) lim
M→∞

E||XN,M (t)−XN (t)||2νL2ν
ρ

= 0, t ∈ [ 0, T ],

and

(8.53) lim
M→∞

T∫
0

E||XN,M (t)−XN (t)||2νL2ν
ρ
dt = 0

both in (i) and (ii).
Furthermore, there exist processes XN , X̄ ∈ Gν(T ) such that

lim
M→∞

T∫
0

E||XN,M (t)−XN (t)||2νL2ν
ρ
ds = 0

lim
M→∞

T∫
0

E||X̄0,M (t)− X̄(t)||2νL2ν
ρ
ds = 0.

Step 4: The aim of this step is to show that, for any N ∈ N, the process
XN ∈ Gν(T ) defined in Step 3 solves (1.1) resp. (1.2) in case of F resp. E
being replaced by FN resp. EN .
Furthermore, by the results from Section 5.1 t 7→ XN (t) is continuous in
L2ν(Ω,F , P ;L2ν

ρ ). In particular, by Remark 5.1.11 we have the required
continuity property of the Bochner convolutions even in the case of non-
Lipschitz f resp. e.
Under the additional assumptions that γ resp. σ obeys (8.2) resp. (8.4) and
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U obeys (A7), there even exist càdlàg modifications of the solutions.

(i) Equation (1.1) - The Poisson case

For any given t ∈ [ 0, T ] we have

E
∣∣∣∣∣∣∣∣XN (t)− U(t, 0)ξ −

t∫
0

U(t, s)FN (s, ·, XN (s)) ds−
t∫
0

U(t, s)MΣ(s,·,XN (s)) dW (s)

−
t∫
0

∫
L2

U(t, s)MΓ(s,·,XN (s))(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2

L2
ρ

≤ C[I(1)
N,M (t) + I

(2)
N,M (t) + I

(3)
N,M (t) + I

(4)
N,M (t)]

with I(1)
N,M , I(2)

N,M and I(3)
N,M as in the proof of 7.1.4 and

I
(4)
N,M (t) := E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)[MΓ(s,·,XN (s)) −MΓ(s,·,XN,M (s))] Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2

L2
ρ

.

Thus, we have lim
M→∞

I
(i)
N,M (t) → 0 for each i = 1, 2, 3, by the same argu-

ments as in the proof of 7.1.4.
Finally, by Itô’s isometry w.r.t. compensated Poisson random measures, the
integrability condition (QI) (which particularly implies the square integra-
bility of η), (LC) for γ, Hölder’s inequality and the fact that

ν > 1
1−ζ ⇐⇒ νζ

ν−1 < 1,

we get

I
(4)
N,M (T ) ≤ c(c(T ), cγ(T ), C2ν,η)

t∫
0

(t− s)−ζE||XN (s)−XN,M (s)||2L2
ρ
ds

≤ c(ν, ζ, T, c(T ), cγ(T ), C2ν,η)

(
T∫
0

E||XN (s)−XN,M (s)||2νL2ν
ρ
ds

) 1
ν

,

which tends to 0 for M →∞ by (8.53).

Thus, XN solves the equation, when F is replaced by FN .

(ii) Equation (1.2) - The Lévy case

For any given t ∈ [ 0, T ] we have

E
∣∣∣∣∣∣∣∣XN (t)− U(t, 0)ξ −

t∫
0

U(t, s)EN (s, ·, XN (s)) ds−
t∫
0

U(t, s)MΣ(s,·,XN (s)) dL(s)
∣∣∣∣∣∣∣∣2
L2

ρ
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≤ C[I(1)
N,M (t) + I

(2)
N,M (t) + I

(3)
N,M (t)]

with I(1)
N,M and I(2)

N,M as in the proof of 7.1.4 and

I
(3)
N,M (t) := E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)[MΣ(s,·,XN (s)) −MΣ(s,·,XN,M (s))] dL(s)

∣∣∣∣∣
∣∣∣∣∣
2

L2
ρ

.

Thus, we have lim
M→∞

I
(i)
N,M (t) → 0 for i = 1, 2 by the same arguments as

in the proof of 7.1.4.
By the Lévy-Itô decomposition 2.4.13, the Itô isometries w.r.t. Wiener
processes and compensated Poisson random measures, the Lipschitz prop-
erty of σ, Hölder’s inequality and the fact that

ν > 1
1−ζ ⇐⇒ νζ

ν−1 < 1,

we get

I
(3)
N,M (t) ≤ c(ν, ζ, T, c(T ), cσ(T ), C2ν,η)

(
t∫
0

E||XN,M (s)−XN (s)||2νL2ν
ρ
ds

) 1
ν

,

which tends to 0 for M →∞ by (8.53).

Thus, XN is a solution to (1.2) in the sense of 5.1.2 for all N ∈ N.

Step 5: As in Step 5 in the proof of 7.1.2, we first show an N -independent
estimate for the moments of XN . Then, we get the required N -independent
estimate by the fact that P -almost surely

XN (t) ≤ XN (t) ≤ X̄(t)

for any t ∈ [ 0, T ] and N ∈ N.
From Steps 2 and 4 we already know that in (i)

sup
t∈[ 0,T ]

E||XN (t)||2νL2ν
ρ
≤ c(N, ν, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

and, resp. in (ii)

sup
t∈[ 0,T ]

E||XN (t)||2νL2ν
ρ
≤ c(N, ν, ζ,m, T, c(T ), ce(T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
).

(i) Equation (1.1) - The Poisson case

We have
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E||XN (t)||2νL2ν
ρ
≤ c(ν)

(
I(1)(t) + I

(2)
N (t) + I

(3)
N (t) + I

(4)
N (t)

)
for all t ∈ [ 0, T ] with I(1), I(2)

N and I(3)
N as in the proof of Theorem 7.1.4 (i)

and

I
(4)
N (t) := E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)MΓ(s,·,XN (s))(x) Ñ(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2ν
ρ

.

From the proof of Theorem 7.1.4 we get

I(1)(t) ≤ c(ν, T, c(T ))E||ξ||2νL2ν
ρ

,

I
(2)
N (t) ≤ c(ν, T, c(T ), cf (T ))

(
1 +

t∫
0

E||XN (s)||2νL2ν
ρ
ds

)
and

I
(3)
N (t) ≤ c(ν, T, c(T ), cσ(T ))

(
1 +

t∫
0

(t− s)−ζE||XN (s)||2νL2ν
ρ
ds

)
.

Finally, by (LC) and (LB) for γ and the integrability condition (QI) for η
we get

E

∣∣∣∣∣
∣∣∣∣∣ t∫0 ∫L2

U(t, s)MΓ(s,·,XN (s))(x)N(ds, dx)

∣∣∣∣∣
∣∣∣∣∣
2ν

L2ν
ρ

≤ c(ν, ζ, T, c(T ), cγ(T ), C2ν,η)
(

1 +
t∫
0

(t− s)−ζνE||XN (s)||2νL2ν
ρ
ds

)
,

which yields

E||XN (t)||2νL2ν
ρ
≤ c(ν, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

+c(ν, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)
t∫
0

(t− s)−ζνE||XN (s)||2νL2ν
ρ

for all t ∈ [ 0, T ]. Thus, by the Gronwall-Bellman lemma 2.7.3, we get

sup
t∈[ 0,T ]

N∈N

E||XN (t)||2νL2ν
ρ
≤ c1(ν, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
).

(ii) Equation (1.2) - The Lévy case

For all t ∈ [ 0, T ] we have

E||XN (t)||2νL2ν
ρ
≤ c(ν)

(
I(1)(t) + I

(2)
N (t) + I

(3)
N (t)

)
with I(1) and I(2)

N as in (i) and
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I
(3)
N (t) := E

∣∣∣∣∣∣∣∣ t∫
0

U(t, s)MΣ(s,·,XN (s)) dL(s)
∣∣∣∣∣∣∣∣2ν
L2ν

ρ

.

By the Lévy-Itô decomposition 2.4.13, 3.3.5, 3.4.3 (with φ = Σ and ζ = 0
since W is nuclear) and 4.4 we get

I
(3)
N (t) ≤ c(ν, ζ,m, T, c(T ), cσ(T ), C2ν,η) ≤

(
1 +

t∫
0

(t− s)−ζνE||XN (s)||2νL2ν
ρ
ds

)
.

Together with the estimates on I(1)(t) and I(2)
N (t) from above, this implies

E||XN (t)||2νL2ν
ρ
≤ c(ν, T )E||ξ||2νL2ν

ρ

+c(ν, ζ,m, T, c(T ), ce(T ), cσ(T ), C2ν,η)
(

1 +
t∫
0

(t− s)−ζνE||XN (s)||2νL2ν
ρ
ds

)
for all t ∈ [ 0, T ]. Then, by Gronwall’s lemma, we get

E||XN (t)||2νL2ν
ρ
≤ c2(ν, ζ,m, T, c(T ), ce(T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

for all N ∈ N. Therefore,

sup
t∈[ 0,T ]

N∈N

E||XN (t)||2νL2ν
ρ
≤ c(ν, ζ,m, T, c(T ), ce(T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

in (ii).

Next, let us consider the moments of X̄.
Recall from Step 2 that

E||X̄0,M (t)||2νL2ν
ρ
≤ c3(ν, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

in (i) and

E||X̄0,M (t)||2νL2ν
ρ
≤ c4(ν, T, c(T ), ce(T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

in (ii) for any t ∈ [ 0, T ] and any M ∈ N.
Thus, we get

sup
t∈[ 0,T ]

E||X̄(t)||2νL2ν
ρ
≤ c(ν, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)(1 +E||ξ||2νL2ν

ρ
)

in (i) and

sup
t∈[ 0,T ]

E||X̄(t)||2νL2ν
ρ
≤ c(ν, ζ,m,K, T, c(T ), ce(T ), cσ(T ), C2ν,η)(1 + E||ξ||2νL2ν

ρ
)

in (ii). Both in (i) and (ii) we have
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XN (t) ≤ XN (t) ≤ X̄(t) in L2ν
ρ (Θ).

Thus,

sup
t∈[ 0,T ]

N∈N

E||XN (t)||2νL2ν
ρ

≤ [c1(ν, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)
+c3(ν, ζ, T, c(T ), cf (T ), cσ(T ), cγ(T ), C2ν,η)] (1 + E||ξ||2νL2ν

ρ
)

resp.

sup
t∈[ 0,T ]

N∈N

E||XN (t)||2νL2ν
ρ

≤ [c2(ν, T, c(T ), ce(T ), cσ(T ), C2ν,η) + c4(ν, ζ, T, c(T ), ce(T ), cσ(T ), C2ν,η)] (1+
E||ξ||2νL2ν

ρ
),

which proves the required N -independent estimates for XN .

We claim that

X(t) := inf
N∈N

XN (t), t ∈ [ 0, T ],

defines a solution in the sense of 5.1.2 (ii) both for (1.1) and (1.2).

First of all, the N -independent estimates of XN give us the possibility to get

(8.54) lim
N→∞

E||XN (t)−X(t)||2νL2ν
ρ

= 0

for all t ∈ [ 0, T ] and

(8.55) lim
N→∞

E
T∫
0

||XN (t)−X(t)||2νL2ν
ρ
dt = 0

both in (i) and (ii).
Defining K, K̄, I(i)

N , 1 ≤ i ≤ 3, Ī(i)
N , 1 ≤ i ≤ 2, as in the proof of 7.1.4 and

I
(4)
N and Ī(3)

N as in the proof of 8.1.1, we get

E||X(t)−K(X)(t)||2L2
ρ
≤ C(I(1)

N + I
(2)
N + I

(3)
N + I

(4)
N )

for (1.1) resp. (for (1.2))
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E||X(t)− K̄(X)(t)||2L2
ρ

≤ 2(I(1)
N + Ī

(2)
N + Ī

(3)
N ).

Analogously to the procedure in Step 5 in the proof of Theorem 7.1.4, we
get I(i)

N → 0 as N →∞ for i = 1, 2, 3 and Ī(i)
N → 0 as N →∞ for i = 1, 2.

Thus, it remains to consider I(4)
N and Ī(3)

N .

By Itô’s isometry w.r.t. compensated Poisson random measures, (A2) for
U , (QI) for η, (LC) for γ, Hölder’s inequality and the fact that

ν > 1
1−ζ ⇐⇒ νζ

ν−1 < 1,

we get

I
(4)
N (t) ≤ c(c(T ), cγ(T ), C2ν,η)

t∫
0

(t− s)−ζE||X(s)−XN (s)||2L2
ρ
ds

≤ c(ν, ζ, T, c(T ), cγ(T ), C2ν,η)

(
T∫
0

E||X(s)−XN (s)||2νL2ν
ρ
ds

) 1
ν

,

which tends to 0 for N →∞ by (8.55).

Analogously, by the Lévy-Itô decomposition 2.4.13, the Itô isometries w.r.t.
Wiener processes and compensated poisson random measures, (A2) for U ,
(QI) for η, (LC) for γ, Hölder’s inequality and the fact that

ν > 1
1−ζ ⇐⇒ νζ

ν−1 < 1,

we get

Ī
(3)
N (t) ≤ c(ν, ζ, T, c(T ), cσ(T ), C2ν,η)

(
t∫
0

E||X(s)−XN (s)||2νL2ν
ρ
ds

) 1
ν

,

which tends to 0 for N →∞ by (8.55).

Thus, X solves (1.1) resp. (1.2) in the sense of 5.1.2 (ii).
Again, the requested continuity properties follow from Section 5.1. In partic-
ular, the continuity property for the Bochner stochastic convolution follows
from Remark 5.1.11 (ii).

Analogously to the proof of the estimates (7.8) and (7.9) in the proof of 7.1.2,
we get the estimates (8.5) and (8.6) with the help of the N -independent es-
timates for XN . �
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Appendix A

Sobolev spaces on general
domains Θ ⊂ Rd and a
version of Sobolev’s
embedding theorem

In this section, we recall the definition of Sobolev spaces Wm,p(Θ) for inte-
ger m ≥ 1 and real p ≥ 1, on domains Θ ⊂ Rd for arbitrary d ∈ N. As usual
under the term domain we understand non-empty, open subsets of Rd.
Thereafter, we discuss a version of Sobolev’s embedding theorem presented
in the paper [2] and the monograph [1] by Adams and Fournier. This version
of Sobolev’s embedding theorem holds for a large class of domains obeying
the so-called weak cone property (see Definition A.1 below for the explana-
tion of this property).
The general theory was first introduced by Sobolev in [104] and later refined
e.g. by Gagliardo in [43] and Morrey in [86]. For a more recent overview on
Sobolev’s embedding theorem, see Chapter 4 in the book [1] by Adams and
Fournier.

Let us first recall the following regularity condition for the domain Θ ⊂ Rd

(cf. Section 1 of [2]), which is supposed to hold in the main result in [2].

Definition A.1: Given θ ∈ Θ ⊂ Rd, denote by R(θ) the set of all points
ξ ∈ Θ such that the line segment joining θ to ξ lies entirely in Θ. Setting

Γ(θ) := {ξ ∈ R(θ) : |ξ − ζ| < 1},

we say that Θ fulfills the weak cone property if there exists a constant
δ > 0 such that the Lebesgue measure in Rd of Γ(θ) is at least δ for all θ ∈ Θ.
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Remark A.2: (i) Obviously, the weak cone property is fulfilled for any
open ball of finite radius in Rd. In particular, Rd itself fulfills the weak cone
property.

(ii) Let us compare the above property with similar ones that are most often
considered in the literature(see e.g. 4.3–4.7 in Chapter IV in [1] or [43] and
[86]). Recall the following three classes of domains:

1. Θ ⊂ Rd has the uniform cone property if there exists a locally finite
open cover (Un)n∈N of the boundary ∂Θ and a corresponding sequence
(Cn)n∈N of finite cones, each congruent to some fixed finite cone C,
such that

(a) For some finite M , every Un has diameter less than M .

(b) For some δ > 0, Θδ := {x ∈ Θ | d(x, ∂Θ) < δ} ⊂ ∪∞n+1Un.

(c) For every n ∈ N, ∪θ∈Θ∩Un(θ + Un) =: Qn ⊂ Θ
(d) For some finite R, every collection of R + 1 of the sets Qn from

(c) has empty intersection.

The subset C ⊂ Rd is called a finite cone if there exist x ∈ Rd and
open balls B1, B2 such that x is the center of B1, x is not contained
in B2 and C = B1 ∩ {x+ λ(y − x) | y ∈ B2, λ > 0}.

2. Θ ⊂ Rd has a strong local Lipschitz boundary if there exist posi-
tive numbers δ and M , a locally finite open cover (Un)n∈N of ∂Θ, and
for each Un a real-valued function fn of d− 1 real variables, such that
the following conditions hold:

(a) For some finite R, the collection of R+1 of the sets Un has empty
intersection.

(b) For every pair of points θ, ξ ∈ Θδ (with Θδ as in (b) in 1.) such
that |θ − ξ| < δ, there exists an n such that

θ, ξ ∈ Vn := {x ∈ Un | d(θ, ∂Θ) > δ}.

(c) Each function fn satisfies the Lipschitz condition with the same
constant M .



339

(d) For some cartesian system (ξn,1, ..., ξn,N ) in Un the set Θ∩Un is
represented by the inequality ξn,N < fn(ξn,1, ..., ξn,N−1).

3. A bounded domain Θ has the class Ck-regularity property if there
exists a locally finite open cover (Un) of ∂Θ and a corresponding se-
quence (Φn) of k-smooth one-to-one transformations (see Section 3.34
in [1] for the definition of this term) taking Un onto B1, the open ball
of radius 1 with center 0 ∈ Rd, such that

(a) For some δ > 0 and Θδ as defined in 1. we have

Θδ ⊂ ∪∞n=1Ψn({ξ ∈ Rd | |ξ| < 1
2}),

where Ψn := Φ−1
n .

(b) For some finite R, every collection of R + 1 of the sets Un has
empty intersection.

(c) For each n ∈ N, Φn(Un ∩Θ) = {ξ ∈ B1 | ξd > 0}.

(d) If (Φn,1, ...,Φn,N ) and (Ψn,1, ...,Ψn,N ) denote the components of
Φn and Ψn respectively, then there exists a finite M such that for
all α, |α| ≤ m, for every 1 ≤ i ≤ N and for evry n, we have

|DαΦn,i(θ)| ≤M , θ ∈ Un,

|DαΨn,i(ξ)| ≤M , ξ ∈ B1.

Between these three classes we have the relation 3.⇒ 2.⇒ 1., and the two-
dimensional domain

Θ := {(x, y) ∈ R2 | 0 < |x| < 1 , 0 < y < 1}

is an example of a domain obeying 1. but not 2. and 3..

(iii) Obviously, the cone condition from item 1. in (ii) implies the weak
cone property. Furthermore, there are many domains satisfying the latter
property but not the former (see e.g. Section 1 in [2]).

Next, we repeat the general definition of Sobolev spaces (cf. Section 2 of [2]).
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Definition A.3: Let Θ ⊂ Rd be a domain in Rd. For integer m ≥ 1
and real p ≥ 1, the Sobolev space Wm,p(Θ) consists of (equivalence classes
of) functions u ∈ Lp(Θ), whose distributional derivatives Dαu of orders
|α| ≤ m also belong to Lp(Θ), where the Dαu are distributional in the fol-
lowing sense (cf. the section on distribution and weak derivatives in Chapter
1 in [1], p.19–22 there):
Given α = (α1, α2, . . . , αd) ∈ Nd such that

∑d
i=1 αi = |α|, a function

vα ∈ L1
loc(Θ) is called weak or distributional derivative of u if∫

Θ

u(θ)Dαφ(θ) dθ = (−1)|α|
∫
Θ

vα(θ)φ(θ) dθ

for every φ ∈ D(Θ), where D(Θ) denotes the space of distributions on Θ.
Wm,p(Θ) is a Banach space with norm

(A.1) ||u||Wm,p(Θ) :=

( ∑
|α|≤m

||Dαu||pLp(Θ)

) 1
p

.

In the Sobolev embedding theorem, we also need the following definition
of the spaces of smooth bounded functions (cf. Section 2 in [2]):

Definition A.4: For integer j ≥ 0 we denote by Cjb (Θ) the Banach
space of functions u posessing bounded, continuous partial derivatives Dαu
on Θ for 0 ≤ |α| ≤ j. The norm on Cjb (Θ) is

||u||
Cj

b (Θ)
= max

|α|≤j
sup
y∈Θ

|Dαu(y)|.

In particular, for j = 0 we have Cb(Θ) := C0
b (Θ) with

||u||Cb(Θ) = sup
y∈Θ

|u(y)|.

Remark A.5: (i) It is well-known (see e.g. [84] and p.52 in [1]) that
the intersection Cm,p(Θ) := Wm,p(Θ) ∩ C∞ is dense in Wm,p(Θ).
This means that we can define Wm,p(Θ) as the completion of Cm,p(Θ) w.r.t.
the norm (A.1).

(ii) Given any Banach space X of functions on Θ, we write Wm,p(Θ)⊂−→X

for the embedding of Wm,p(Θ) into X. This embedding is equivalent to the
existence of a finite constant C such that, for every u ∈ Cm,p(Θ), we have

||u||X ≤ C||u||Wm,p(Θ).

C is called the embedding constant.



341

Adams and Fournier prove the following version of Sobolev’s embedding
theorem (cf. Theorem 1 in Section 2 of [2]):

Theorem A.6: Let Θ be a domain in Rd satisfying the weak cone prop-
erty.
Let H be a k-dimensional plane in Rd with 1 ≤ k ≤ d. (If k = d, then
H = Rd.)

Case 1: If either mp > d or m = d and p = 1, then

Wm+j,p(Θ)⊂−→Cjb (Θ) for j ≥ 0.

Moreover,

Wm,p(Θ)⊂−→Lq(Θ ∩H) for p ≤ q ≤ ∞.

Case 2: If mp = d, then

Wm,p(Θ)⊂−→Lq(Θ ∩H) for p ≤ q ≤ ∞,

and in particular

Wm,p(Θ)⊂−→Lq(Θ) for p ≤ q ≤ ∞.

Case 3: If mp < d and either d−mp ≤ d, or p = 1 and d−m ≤ k ≤ d, then

Wm,p(Θ)⊂−→Lq(Θ ∩H) for p ≤ q ≤ p∗ := kp
d−mp .

In particular,

Wm,p(Θ)⊂−→Lq(Θ) for p ≤ q ≤ p∗ := dp
d−mp .

The embedding constants for all the above embeddings depend only on m,
n, p, q, j, k, and the constant δ of the weak cone property.

Remark A.7: (cf. Remark 1 in [2])
(i) We stress that, in the formulation of Theorem A.6, it is not relevant
whether the domain Θ is bounded or not.
The boundedness of Θ is necessary for the compactness of the embedding
operator Wm,p(Θ)⊂−→Cjb (Θ).

(ii) It is a natural question, whether the further basic results of Sobolev’s
embedding theory are still valid for domains obeying the weak cone property.
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Such results are commonly known for the domains obeying the cone prop-
erty. Nevertheless the following claims extend to the domains obeying the
weak cone property:

• the Rellich-Kondrachov theorem, asserting the compactness of certain
embeddings of Wm,p(Θ) if Θ is bounded;

• the closure of Wm,p(Θ) under pointwise multiplication of its elements,
provided mp > d;

• the analog of Sobolev’s embedding theorem for Orlicz-Sobolev spaces.



Appendix B

The Bochner integral in
Banach spaces

We collect a general definition and some properties of Bochner integral in
Banach spaces; in our context this will be the weighted Lebesgue spaces L2ν

ρ ,
ν ≥ 1. The presentation is based on Appendix A from [97] and Chapter II
from [30], which treat the more general case of Bochner integration in (not
necessarily separable) Banach spaces.

Let (B, || · ||B) be a Banach space, B := B(B) the Borel σ-algebra of B
and (Ω,F , µ) a measure space with finite measure µ.

Definition B.1: By Sµ we denote the set of functions f : Ω → B of the form

(B.1) f =
n∑
k=1

xk1Ak
, xk ∈ B, Ak ∈ F , 1 ≤ k ≤ n, n ∈ N.

For any f ∈ Sµ there is a representation of form (B.1) such that the Ak
are pairwise disjoint. Thus, a seminorm on Sµ is defined by

||f ||Sµ :=
∫
Ω

||f ||B dµ

:=
n∑
k=1

||xk||Bµ(Ak), f ∈ Sµ.

In the following, we call elements of Sµ simple functions. Furthermore,
we define the Bochner integral w.r.t. a simple function f ∈ Sµ by

∫
Ω

f dµ :=
n∑
k=1

xkµ(Ak).

Obviously, we have the bound
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(B.2)

∣∣∣∣∣∣∣∣∫
Ω

f dµ

∣∣∣∣∣∣∣∣
B

≤
∫
Ω

||f ||B dµ,

which implies that

(Sµ, || · ||Sµ) 3 f 7→
∫
Ω

f dµ ∈ (B, || · ||B)

is a linear bounded mapping.

Definition B.2: (i) A function f : Ω → B is called (strongly) mea-
surable if it is Borel-measurable, i.e. f−1(B) ∈ F for any B ∈ B.

(ii) Given 1 ≤ p < ∞, by Lp(Ω,F , µ;B) we denote the set of equivalence
classes of measurable mappings f : Ω → B obeying

(B.3)
∫
Ω

||f ||pBdµ <∞.

Being equipped with the norm

||f ||Lp :=
(∫

Ω

||f ||pB dµ
) 1

p

,

Lp(Ω,F , µ;B) is a Banach space.

Note that Ω 3 ω 7→ ||f(ω)||B ∈ R is measurable due to the continuity
of the norm-function B 3 x 7→ ||x||H ∈ R.

Proposition B.3: The set of F/B-measurable functions from Ω to B is
closed under the formation of pointwise limits.

Proof: [22], Proposition E.1, p.350.

Furthermore, to construct the Bochner integral for (strongly) measurable
functions the following lemma is applied in [97].

Lemma B.4: Let f : Ω → B be measurable (in the sense of Definiton
B.2).
Then, there exists a sequence (fn)n∈N ⊂ Sµ such that for each ω ∈ Ω,
||fn(ω)− f(ω)||H is monotonically decreasing to 0.

Proof: [26], Lemma 1.1, p.16.

Now, the Bochner integral can be constructed with the help of the following
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result; cf. Step 2b in the construction of the Bochner integral in [97] (Ap-
pendix A, p. 106 there).

Proposition B.5: Sµ is a dense subset of L1(Ω,F , µ;B) w.r.t. || · ||L1.

Lemma B.4 and Proposition B.5 lead to the following definition.

Definition B.6: Let f : Ω → B be a measurable function (in the sense
of Definition B.2 (i)) such that f ∈ L1(Ω,F , µ;B), i.e. f obeys (B.3) with
p = 1.
By Proposition B.5 there exists a sequence (fn)n∈N ⊂ Sµ such that

||fn(ω)− f(ω)||B ↓ 0 for all ω ∈ Ω as n→∞

and thus, by Lebesgue’s dominated convergence theorem,

||fn − f ||L1 → 0 as n→∞.

We define the Bochner integral of f w.r.t. µ by

(B.4)
∫
Ω

f dµ := lim
n→∞

∫
Ω

fn dµ (in L1(Ω,F , µ;H)).

By (B.2) we see that the limit in (B.4) is the same for any sequence
(fn)n∈N ⊂ Sµ approximating f in the || · ||L1-norm.

In this thesis we crucially use the following properties of the Bochner in-
tegral, which are taken from Section A.2 in [97].

Proposition B.7: (Bochner inequality)
Let f ∈ L1(Ω,F , µ;B). Then,∣∣∣∣∣∣∣∣∫

Ω

f dµ

∣∣∣∣∣∣∣∣
B

≤
∫
Ω

||f ||Bdµ.

Proposition B.8: (Continuity)
Let f ∈ L1(Ω,F , µ;B). Then,

∫
Ω

L ◦ f dµ = L

(∫
Ω

f dµ

)
,

where L ∈ L(B, B̃) with B̃ being another Banach space.

We have an analogue of Lebesgue’s dominated convergence theorem for
Bochner integrals.
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Proposition B.9: Let (fn)n∈N be a sequence of Bochner integrable B-
valued functions on Ω.
If f = lim

n→∞
fn in µ-measure, i.e.

lim
n→∞

µ({||fn − f ||B > ε}) = 0 for all ε > 0,

and if there exists a µ-integrable function g: Ω → R+ such that ||fn||B ≤ g,
µ-a.s., then f is Bochner integrable and

lim
n→∞

∣∣∣∣∣∣∣∣∫
Ω

fn dµ−
∫
Ω

f dµ

∣∣∣∣∣∣∣∣
B

≤ lim
n→∞

∫
Ω

||fn − f ||B dµ = 0.



Appendix C

Comparison theorems in the
case of finite-dimensional
SDE with Poisson and Lévy
noise

In this chapter, we collect some comparison results for finite-dimensional
stochastic differential equations (SDEs) with jump noise.

In the theory of SDEs, comparison theorems describe the relation between
solutions for a pair of equations with the same noises but different coeffi-
cients. At first, comparison theorems have been done in the case of finite-
dimensional SDEs with Wiener noise. A standard reference here is Chapter
VI in the book [53] of Ikeda and Watanabe. These classical results can also
be extended to the case of discontinuous noise. Below we briefly review
the main contributions to the comparison theorems for jump diffusions ob-
tained independently by Galchuk (cf. [44], [45]), Krasin and Melnikov (cf.
[67]) resp. by Peng and Zhu (cf. [92] and [113]).

We divide our considerations into two subsections treating the above men-
tioned groups of results.
In Section C.1, we follow the ideas of Peng and Zhu from [92] and [113].
Peng and Zhu([92]) first in the one-dimensional and later Zhu ([113]) in the
multi-dimensional case show a comparison result for certain SDEs driven by
Wiener and Poisson noise (see equation (C.1) below) by using the concept
of viscosity solutions (which we will briefly explain below). Assuming the
unique solvability of the equations under consideration, which is achieved
by assumptions (C.2)-(C.3) below, they prove necessary(!) and suffi-
cient conditions for a one- resp. multi-dimensional comparison theorem in
the case of deterministic initial conditions and coefficients. Since the one-
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dimensional result in [92] follows from the multi-dimensional result in [113]
(cf. Corollary C.1.3 below), we just present the setting and results in the
multi-dimensional case.

In Section C.2, we consider the comparison theorem of Krasin and Melnikov
from [67]. On the one hand, in contrast to Section C.1, the results from Sec-
tion C.2 offer just sufficient but not necessary conditions on the coefficients
in the case of a finite-dimensional SDE with Wiener and Poisson noises.
On the other hand, in contrast to Section C.1, the results from Section C.2
allow for random coefficients. We stress that [67] extends the corresponding
one-dimensional comparison results obtained in the earlier papers of Rong
(cf. [101]) and Galchuk (cf. [44]). The way of proving follows the standard
scheme presented in the book [53] by Ikeda and Watanabe (cf. Chapter VI
there). This scheme is based on Itô’s formula.
As we will see, the conditions on the coefficients in Sections C.1 and C.2 will
be in full consistency with each other (see Remark C.2.2 (ii) below).

C.1 The scheme and main result from [92] and
[113]

Given some finite time horizon T > 0 and a starting time t ∈ [ 0, T ], in [113]
Zhu considers a pair of d-dimensional SDEs (with d ∈ N)

X1
s = x1 +

s∫
t

b1(r,X1
r ) dr +

s∫
t

σ1(r,X1
r ) dWr +

s∫
t

∫
Z

γ1(r,X1
r−, z) Ñ(dz, dr)

(C.1)

X2
s = x2 +

s∫
t

b2(r,X2
r ) dr +

s∫
t

σ2(r,X2
r ) dWr +

s∫
t

∫
Z

γ2(r,X2
r−, z) Ñ(dz, dr)

on the intervall [ t, T ]. Here, W is a d-dimensional standard Brownian mo-
tion and Ñ is a compensated Poisson random measure on R+ × Z, where
Z ⊂ Rl is equipped with its Borel σ-algebra B(Z) := B(Rl) ∩ Z, l ∈ N. For
the corresponding Lévy intensity measure n we have∫

Z

n(dz) <∞.

Solutions (Xi
s)s∈[ t,T ] ⊂ Rd, i = 1, 2, to (C.1) take values in the Banach

space H2
d(T ) of càdlàg adapted d-dimensional processes such that

E

[
sup

t∈[ 0,T ]
|Xt|2

]
<∞.
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Furthermore, they obey P -almost surely for all s ∈ [ t, T ]

Xi
s = xi +

s∫
t

b1(r,Xi
r) dr +

s∫
t

σ1(r,Xi
r) dWr +

s∫
t

∫
Z

γi(r,Xi
r−, z) Ñ(dz, dr).

The (nonrandom) drift and diffusion coefficients are assumed to have the
following properties:

(C.2) bi: R+ × Rm → Rm, σi: R+ × Rm → Rm×d and
γi: R+ × Rm × Rl → Rm are continuous functions in
(t, x) ∈ R+ × Rm;

(C.3) for all x, x
′ ∈ Rm, z ∈ Z and t ≥ 0,

|bi(t, x)− bi(t, x
′
)|+ |σi(t, x)− σi(t, x

′
)| ≤ µ|x− x

′ |,
|γi(t, x, z)− γi(t, x

′
, z)| ≤ ρ(z)|x− x

′ |,
|bi(t, x)|+ |σi(t, x)| ≤ µ(1 + |x|),
|γi(t, x, z)| ≤ ρ(z)(1 + |x|),

for sufficiently large µ > 0 and a function ρ: Rl → R+ with∫
Z

ρ2(z)n(dz) <∞.

It is well-known that under these assumptions there are unique solutions
to both equations in (C.1).

As already mentioned in the introduction to this appendix, the proof of
the comparison result in [95] is based on the concept of viscosity solution,
which we will now describe briefly.

Definition C.1.1: Consider the linear parabolic PDE

(C.4) Lu(t, x) +Nu(t, x)− Cu(t, x) + d2
K(x) = 0, (t, x) ∈ ( 0, T )× Rd,

u(T, x) = d2
K(x),

where C is a positive constant and dK denotes the distance function of
a closed set K ⊂ Rm. The operators L and N are defined for
ϕ ∈ C1,2([ 0, T ] × Rm) (i.e. for functions, which are continuously dif-
ferentable in t and twice continuously differentiable in x) by

Lϕ(t, x) = ∂ϕ(t,x)
∂t + < Dϕ(t, x), b(t, x) > +1

2 tr[D
2ϕ(t, x)σσT (t, x)]

and

Nϕ(t, x) =
∫
Z

[ϕ(t, x+ γ(t, x, z))− ϕ(t, x)− < Dϕ(t, x), γ(t, x, z) >]n(dz).
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A function u: [ 0, T ] × Rd → R, which is continuous in (t, x), uniformly
continuous in t and uniformly continuous in x, is called a viscosity super-
solution (resp. subsolution) to (C.4) if u(T, x) ≥ d2

K(x) (resp.
u(T, x) ≤ d2

K(x)) and for any ϕ ∈ C1,2([ 0, T ]×Rd) such that ϕ is of at most
quadratic growth in x and at any point (t, x) ∈ [ 0, T ]× Rd at which u− ϕ
attains its maximum (resp. minimum)

Lu(t, x) +Nu(t, x)− Cu(t, x) + d2
K(x) ≤ 0

resp.

Lu(t, x) +Nu(t, x)− Cu(t, x) + d2
K(x) ≥ 0.

Furthermore, u is called a viscosity solution to (C.4) if u is both a
viscosity supersolution and a viscosity subsolution.

The following proposition is crucial for the theory of Peng and Zhu in [92].

Proposition C.1.2: (cf. Proposition 2.2 in [92])
Consider the SDE (C.1), where b, σ and γ are as in (C.2), (C.3).
Setting, in (C.4),

C := 1 + 2µ+ µ2 +
∫
Z

ρ2(z)n(dz)

and

u(t, x) := E

[
T∫
t

e−C(s−t)d2
K(Xt,x

s ) ds+ e−C(T−t)d2
K(Xt,x

T )

]
, (t, x) ∈ [ 0, T ]× Rd,

for some closed set K ⊂ Rd, u is a viscosity solution to (C.4) with C as
above if and only if for each (t, x) ∈ [ 0, T ]×K we have Xt,x

s ∈ K for all
s ∈ [ t, T ] P -almost surely.

Based on Proposition C.1.2, in [113] Zhu shows the following comparison
theorem:

Theorem C.1.3: (cf. Theorem 3.1 from [113], p. 4)
Let bi, σi and γi be as above and let us set K := Rm

+ × Rm and
X̄ := (X1−X2, X2), x̄ := (x1−x2, x2), b̄ := (b1− b2, b2), σ̄ := (σ1−σ2, σ2)
and γ̄ := (γ1 − γ2, γ2).
Then, the following two properties are equivalent:

(1) X̄ solves equation (C.1) with b, σ and γ being replaced by b̄, σ̄ and γ̄.
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Furthermore, X̄t,x̄
s ∈ K for all s ∈ [ t0, T ] P -a.s.;

(2) σ1 = σ2 and for any t ∈ [ 0, T ], k = 1, 2, . . . , d,

(a) the k-th row of σi(x) only depends on the k-th component xk of
x ∈ Rd;

(b) for all x
′ ∈ Rd and x ∈ Rd

+

xk + γ1
k(t, x+ x

′
, z)− γ2

k(t, x+ x
′
, z) ≥ 0, n(dz)-a.s.;

(c) for all x
′
, δkx ∈ Rd such that δkx ≥ 0 and the k-th component of

δkx is zero, we have
b1k(t, δ

kx+x
′
)−
∫
Z

γ1
k(t, δ

kx+x
′
, z)n(dz) ≥ b2k(t, x

′
)−
∫
Z

γ2
k(t, x

′
, z)n(dz).

We proceed with two corollaries in the one-dimensional case, in order to
establish a relation to the foregoing paper [92].

Corollary C.1.4: (cf. Corollary 3.3 from [113], p. 7)
Let m = d = 1 and let the coefficients fulfill (C.2) and (C.3). Then, given
initial conditions x1 ≤ x2 ∈ R, K := R+×R and X̄, x̄, b̄, σ̄ and γ̄ as in the
formulation of Theorem C.1.3, the following are equivalent:

• X̄ solves equation (C.1) with b, σ and γ being replaced by b̄, σ̄ and γ̄.
Furthermore, X̄t,x̄

s ∈ K for all s ∈ [ t0, T ] P -a.s.;

• For any t ∈ [ 0, T ], x ∈ R,

(1) σ1(t, x) = σ2(t, x);

(2) x1 + γ1(t, x1, z) ≥ x2 + γ2(t, x2, z), for all x1 ≥ x2, n(dz)-a.s.;

(3) b1(t, x)−
∫
Z

γ1(t, x, z)n(dz) ≥ b2(t, x)−
∫
Z

γ2(t, x, z)n(dz).

Note that in Corollary C.1.4 we do not require that the jump coefficients
of the equations in (C.1) coincide as it was the case in the main result of
[92] (see Theorem 3.1, p. 375 there). Nevertheless, we also get Theorem 3.1
from [92] resp. the main comparison result in the Wiener case (cf. Theorem
6.1.1, p.352/353 in [53]) in the following way.

Corollary C.1.5: (cf. Corollary 3.4 and 3.5 in [113], p.7/8 there)
(i) Additionally assuming γ1 = γ2 in Corollary C.1.4, the necessary and
sufficient conditions change as follows:
For any t ∈ [ 0, T ], x ∈ R, we have

• σ1(t, x) = σ2(t, x);
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• x1 + γ1(t, x1, z) ≥ x2 + γ1(t, x2, z), for all x1 ≥ x2, n(dz)-a.s.;

• b1(t, x) ≥ b2(t, x).

These are just the conditions from Theorem 3.1 in [92].

(ii) Additionally assuming γ1 = γ2 = 0 in Corollary C.1.4, the necessary
and sufficient conditions become even simpler, since the second assumption
from (i) becomes superfluous and we are left with the following:
For any t ∈ [ 0, T ], x ∈ R, we have

• σ1(t, x) = σ2(t, x),

• b1(t, x) ≥ b2(t, x).

These are just the classical assumptions from Theorem 6.1.1 in [53].

Remark C.1.6: (i) Note that the equation (C.1) is particularly useful
to get comparison theorems for equation (1.2) in finite dimensions. Indeed,
assuming that (L(t))t∈[ 0,T ] is a Lévy process in Rl for some l ∈ N obeying

(C.5)
∫
Rl

|x|2 η(dx) <∞,

by the special Lévy-Itô decomposition from Lemma 2.4.13 equation (1.2)
becomes

dX(t) = b(X(t)) ds+ σ(X(t)) dL(s)
= (b(X(t)) + σ(X(t))m) dt+ σ(X(t))dW (t)

+
∫
Rl

σ(t,X(t))xÑ(dt, dx).

(ii) Obviously, the above results hold true if we consider F0-measurable ran-
dom initial conditions x1, x2 such that x1 ≤ x2 P -a.s.. This follows from the
scheme of proof in [92]. The same can also be derived from the statement of
Theorem C.1.3 by using the Markov property of the of the solution X resp.
X̄ to (C.4) resp. (C.1).
Indeed, keeping the notation from Theorem C.1.3, let us denote by pt,s(x)
the transition probability of the random initial value at time t, i.e. the dis-
tribution at time s ∈ [ t, T ] of the solution starting at point x̄ ∈ Rd

+ × Rd at
time t ∈ [ 0, T ]. Furthermore, let ν̄t be the law at time t of the initial value
x̄ and let ν̄s be the law of the corresponding solution X̄t,x̄

s at times s ≥ t.
Then, by the Markov property we have

ν̄s(dξ̄) =
∫

Rd×Rd

pt,s(x̄, dξ̄) ν̄t(dx̄).

Since by Theorem C.1.3 all pt,s(x̄,K) = 1 for x̄ ∈ K,
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ν̄s(K) =
∫

Rd×Rd

pt,s(x̄,K) ν̄t(dx̄) =
∫

Rd×Rd

IK ν̄t(dx̄) = ν̄t(K) = 1.

Thus, ν̄s is concentrated on K if ν̄t is, which means that for all s ∈ [ t, T ]

P ({X1(s) ≥ X2(s)}) = 1.

C.2 The scheme and main result from [67]

In this section, we discuss the comparison results obtained by Galchuk and
Rong in the one-dimensional case and by Melnikov in the multi-dimensional
case. These results concern a rather general setting of discontinuous semi-
martingales. Namely suppose that (cf. [67]) for 1 ≤ d ∈ N

• A = (A1, A2, ..., Ad) is a d-dimensional non-decreasing continuous process,

• M = (M1,M2, ...,Md) is a d-dimensional continuous local martingale,

• µ = (µ1, µ2, ..., µd) is a d-dimensional random jump measure with com-
pensator (ν1, ν2, ..., νd).

Furthermore, all processes are supposed to be càdlàg and the νi are sup-
posed to be continuous.

Consider a pair of SDEs (written in a coordinate form)

(C.6) dX i
l (t) =

d∑
j=1

f
(i)
lj (X(i)(t−)) dAj(t) +

d∑
j=1

glj(X
(i)
l (t−)) dMj(t)

+1|u|≤1hl(u,X
(i)
l (t−)) d(µl(t)− νl(t)) + 1|u|>1kl(u,X

(i)
l (t−)) dµl(t),

l = 1, 2, ..., d,

with different f (i)
lj and initial conditions ξ(i)l , i = 1, 2.

Here, the flj , glj ,hl and kl are predictable functions, which depend on t, y
and ω and are continuous in (t, y). So, as compared to Peng and Zhu in
[92], Krasin and Melnikov allow for random coefficients.
They extend the method of proof of Ikeda and Watanabe (see [53], Chapter
VI there), which is based on Itô’s formula, to the jump case.
Of course, one needs some additional technical assumptions to guarantee
that solutions exist and are unique.
Without loss of generality, we can assume that all coefficients are globally
Lipschitz continuous in y uniformly in (t, ω), which covers the assumptions
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from the comparison results in [53] (see Theorem 6.1.3 there) or [67] (see
Theorem 1 there).
In particular, the Lipschitz condition guarantees the existence and unique-
ness of solutions to (C.6) in the Banach space H2

d(T ) of càdlàg adapted,
square summable processes introduced above.

Under these assumptions, the following holds.

Theorem C.2.1: Assume that for all l, j = 1, 2, ..., d, the functions f (1)
l,j ,

f
(2)
l,j , gl,j, hl and k(1)

l , k(2)
l are Lipschitz continuous in x uniformly in (t, ω).

Furthermore, suppose that we have

• for the initial conditions

(C.7) ξ(1) ≥ ξ(2), P -a.s.,

• for the drift coefficients for all x̃k ≥ xk, k = 1, 2, ..., d

(C.8) f
(2)
lj (x̃1, ..., x̃l−1, xl, x̃l+1, ...) ≥ f

(1)
lj (x1, ..., xl−1, xl, x̃l+1, ...), P -a.s., and

• for the jump coefficients, for all y ≥ x and u ∈ Rd \ {0},

(C.9) hl(u, y) ≥ hl(u, x), P -a.s.,

(C.10) k
(2)
l (u, y) ≥ k

(1)
l (u, x), P -a.s..

Then, we have X1(t) ≥ X2(t) for all t ∈ [ 0, T ] P -almost surely.

Remark C.2.2: (i) In the original result [67] of Krasin and Melnikov
there is a strict inequality in (C.8) (cf. Theorem 1, p.173 in [67]). This is
a standard formulation if we have existence but not yet uniqueness of the
corresponding solutions X1, X2. In particular, this formulation also appears
in the one-dimensional comparison result for SDEs with Wiener noise in the
book of Ikeda and Watanabe (cf. Theorem 6.1.1 in [53]). As soon as we have
uniqueness of the solutions X1, X2, e.g. under the Lipschitz condition (C.3)
above, by approximating f (i) by f (i) + ε, ε > 0, we can immediately derive
the comparison theorem under the non-strict inequality (C.8) (see also the
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arguments in proving Theorem 6.1.1 in [53]).

(ii) The assumptions of Theorem C.2.1 are in full consistency with the ones
discussed in Section C.1. Namely, in both theorems we assume the inequality
b1 ≥ b2 for the drift coefficients and the monotonicity property of the jump
coefficient.

Remark C.2.3: (i) Equation (C.6) is particularly useful to get com-
parison theorems for equation (1.2) in finite dimensions. Indeed, suppose
that in the setting of Remark C.1.6 (i) the Lévy measure η corresponding to
L does not obey the square-integrability property∫

Rl

|z|2 η(dz) <∞.

Then, we do not have the special Lévy-Ito decomposition from Lemma 2.4.13
but just the one from Theorem 2.4.10.
Thus, in Rd, equation (1.2) becomes

dX(t) = b(X(t)) ds+ σ(X(t)) dL(s)
= (b(X(t)) + σ(X(t))m) dt+ σ(X(t))dW (t)

+
∫
Rl

σ(t,X(t))xN(dt, dx)

+
∫
Rl

σ(t,X(t))xÑ(dt, dx).

(ii) In this thesis, we apply Theorem C.2.1 in Section 8.1 to have a compar-
ison result for the processes Z(i)

j given for any θ ∈ Θ by (cf. equation (8.29))

Z
(i)
j (t, θ) = ξ

(i)
J (θ) +

L∑
n=1

√
an

t∫
0

σJ(s, Z
(i)
j (s, θ))en,M (θ) dwn(s)

+
t∫
0

∫
R
γJ(s, Z

(i)
j (s−, θ))u Ñθ(ds, du).

For a fixed θ ∈ Θ, we can apply Theorem C.2.1 with fj = 0, j = 1, 2, ..., d,
h = k = σ, µ = N and ν = η.
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Appendix D

Some remarks on evolution
operators fulfilling conditions
(A0)–(A8) from Section 3.1

In this chapter, we present examples of evolution operators obeying the as-
sumptions necessary to apply our main results from Chapters 7 and 8.

First, in Section D.1 we present a large class of evolution operators U obey-
ing the conditions (A0)–(A4) and (A5)*. These operators are constructed
via integral kernels obeying certain regularity properties. For such operators
we can apply e.g. the results of Chapter 5 to get existence and uniqueness
of solutions to (1.1) resp. (1.2) with Lipschitz coefficients.
Afterwards, in Section D.2 we first present a special case of a one-parameter
semigroup U obeying conditions (A0)–(A4), (A5)* and (A6)–(A8). Given
such operators we can apply the existence and uniqueness results both from
Chapter 7 and 8. Then, we generalize the previous case to the case of a
two-parameter semigroup U by allowing for additional time-dependence of
the generator. Again, the assumptions (A0)–(A4), (A5)* and (A6)–(A8)
are fulfilled. Therefore, the theory from Chapters 7 and 8 is applicable for
such operators.
The construction in Section D.2 assures that the generator A(t) is an elliptic
differential operator of order m ≥ 2 in Rd.

357
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D.1 An evolution operator obeying the conditions
of Chapter 5

Recall from Section 3.1 (cf. Remark 3.1.1) that conditions (A0)–(A4) (as
well as (A6)) have already been used in [76]. In that paper Manthey and
Zausinger present two examples (see Examples 2.4 and 2.5 there), which we
treat in the following.

Recall the notation α(θ) := (1 + |θ|2)
1
2 , θ ∈ Rd, from the Introduction.

For this weight function we have (cf. Lemma 2.4.1, p.51 in [76]) the follow-
ing lemma.

Lemma D.1.1: There exists a positive constant c(ρ) such that

αρ(ξ)α−ρ(θ) ≤ c(ρ)αρ(θ − ξ) for all θ, ξ ∈ Θ.

A large class of evolution operators U satisfying the conditions required
in Section 5.1 can be constructed in the following way (see also Example 2.4
in [76]):

Let U = (U(t, s))0≤s≤t≤T be an almost strong evolution operator fulfilling
(A0) and (A1). Given Θ ⊂ Rd, we assume that U obeys a representation

(D.1) (U(t, s)ϕ)(θ) =
∫
Θ

G(t, s, θ, ξ)ϕ(ξ) dξ, θ ∈ Θ, ϕ ∈ L2
ρ,

with some integral kernel G: {(t, s) ∈ R2
+ | 0 ≤ s < t ≤ T} ×Θ×Θ → R+.

Let us note that such construction of an almost strong evolution opera-
tor had already been applied by Kotelenez in [65], see Example 1.2 there.

Furthermore, we suppose that

(D.2)
∫
Θ

G(t, s, θ, ξ)αρ(θ − ξ) dξ +
∫
Θ

G(t, s, θ, ξ)αρ(ξ − θ)dθ ≤ c(T )

and

(D.3)
∫
Θ

G2(t, s, θ, ξ)αρ(θ − ξ) dξ +
∫
Θ

G2(t, s, θ, ξ)αρ(ξ − θ) dθ ≤ c(T )(t− s)−ζ

uniformly for any 0 ≤ s < t ≤ T , θ, ξ ∈ Θ, with some ζ ∈ [ 0, 1 ) and
c(T ) ∈ R. Finally, let U(t, s) = I if s = t.

Applying first Hölder’s inequality and (D.2) and then the definition of µρ
from the Introduction, Lemma D.1.1 and again (D.2), we have for any ϕ ∈ L2

ρ
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and 0 ≤ s ≤ t ≤ T (cf. inequality (0.3), p. 51 in [76])

(D.4) ||U(t, s)ϕ||2L2
ρ

=
∫
Θ

(∫
Θ

G(t, s, θ, ξ)ϕ(ξ) dξ
)2

µρ(dθ)

=
∫
Θ

(∫
Θ

G
1
2 (t, s, θ, ξ)G

1
2 (t, s, θ, ξ)ϕ(ξ) dξ

)2

µρ(dθ)

≤
∫
Θ

(∫
Θ

G(t, s, θ, ξ) dξ
)(∫

Θ

G(t, s, θ, ξ)ϕ2(ξ) dξ
)
µρ(dθ)

≤ c(T )
∫
Θ

∫
Θ

G(t, s, θ, ξ)ϕ2(ξ) dξµρ(dθ)

= c(T )
∫
Θ

∫
Θ

G(t, s, θ, ξ)ϕ2(ξ) dξα−ρ(θ) dθ

≤ c(T )
∫
Θ

[∫
Θ

G(t, s, θ, ξ)αρ(θ − ξ) dθ
]
ϕ2(ξ)α−ρ(ξ) dξ

≤ c(T )
∫
Θ

ϕ2(ξ)µρ(dξ)

= c(T )||ϕ||2L2
ρ
<∞.

Thus, (D.2) guarantees that we have U(t, s) ∈ L(L2
ρ) with an operator norm

uniformly bounded in 0 ≤ s ≤ t ≤ T as required in Definition 2.1.1 (iii).

Concerning (A2) note the following (see also p. 51 in [76]):
Given an arbitrary ϕ ∈ L2

ρ with the corresponding multiplication oper-
ator Mϕ: L2 → L1

ρ, for any orthonormal basis (gn)n∈N ⊂ L2 and any
0 ≤ s < t ≤ T we have

∑
n∈N

||U(t, s)Mϕgn||2L2
ρ

=
∑
n∈N

∫
Θ

(∫
Θ

G(t, s, θ, ξ)ϕ(ξ)gn(ξ) dξ
)2

µρ(dθ)

=
∫
Θ

∑
n∈N

< G(t, s, θ, ·)ϕ, gn >2
L2 µρ(dθ)

=
∫
Θ

||G(t, s, θ, ·)ϕ||2L2 µρ(dθ)

=
∫
Θ

(∫
Θ

G2(t, s, θ, ξ)ϕ2(ξ) dξ
)
α−ρ(θ) dθ

≤ c(ρ)
∫
Θ

[∫
Θ

G2(t, s, θ, ξ)αρ(θ − ξ) dθ
]
ϕ2(ξ)α−ρ(ξ) dξ

≤ c(ρ, c(T ))(t− s)−ζ ||ϕ||2L2
ρ
<∞.

Here, we used Lemma D.1.1 in the second last and (D.3) in the last step.
Thus, we have U(t, s)Mϕ ∈ L2(L2, L2

ρ) and the estimate (3.2) on its Hilbert-
Schmidt norm, so that U defined by (D.1) really obeys (A2).

Let us now check (A3) (see again p. 51 in [76]):
Given ϕ ∈ L2κ

ρ , Hölder’s inequality and (D.2) imply
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|U(t, s)ϕ|ν =
∣∣∣∣∫
Θ

G(t, s, ·, ξ)ϕ(ξ) dξ
∣∣∣∣ν

=
∣∣∣∣∫
Θ

G
ν−1

ν (t, s, ·, ξ)G
1
ν (t, s, ·, ξ)ϕ(ξ) dξ

∣∣∣∣ν
≤

(∫
Θ

G(t, s, ·, ξ) dξ
)ν−1 ∫

Θ

G(t, s, ·, ξ)|ϕ(ξ)|ν dξ

= c(ν, T )U(t, s)|ϕ|ν ,
which is just (A3).

Concerning (A4) we note that, by Remark 3.1.2.1 (iii) (see also Remark
2.3 (ii) in [76]), it suffices to consider the cylindrical case, i.e. Q = I (see
also Lemma 2.4.2, p. 52 in [76]):

Let (ϕ(t))t∈[ 0,T ] be an L2ν
ρ -valued predictable process. Similarly to the

consideration of (A2) we get (A4) by the following chain of inequalities:

E
∫
Θ

[∑
n∈N

t∫
0

(U(t, s)Mϕ(s)en)2(θ) ds
]ν

µρ(dθ)

= E
∫
Θ

[∑
n∈N

t∫
0

(∫
Θ

G(t, s, θ, ξ)ϕ(s, ξ)en(ξ) dξ
)2

ds

]ν
µρ(dθ)

= E
∫
Θ

[
t∫
0

||G(t, s, θ, ·)ϕ(s)||2L2 ds

]ν
µρ(dθ)

= E
∫
Θ

[
t∫
0

∫
Θ

G2(t, s, θ, ξ)ϕ2(s, ξ) dξ ds
]ν

µρ(dθ)

= E
∫
Θ

[
t∫
0

∫
Θ

G2− 2
ν
+ 2

ν (t, s, θ, ξ)ϕ2(s, ξ) dξ ds
]ν

µρ(dθ)

≤ E
∫
Θ

(
t∫
0

(∫
Θ

G2(t, s, θ, ξ) dξ
) ν−1

ν
(∫

Θ

G2(t, s, θ, ξ)ϕ2ν(s, ξ) dξ
) 1

ν

ds

)ν
µρ(dθ)

≤ E
∫
Θ

(
t∫
0

(t− s)−
ζ(ν−1)

ν

(∫
Θ

G2(t, s, θ, ξ)ϕ2ν(s, ξ) dξ
) 1

ν

ds

)ν
µρ(dθ)

≤
(

t∫
0

s−ζ ds

)ν−1

E
∫
Θ

(
t∫
0

∫
Θ

G2(t, s, θ, ξ)ϕ2ν(s, ξ) dξ ds
)
µρ(dθ)

≤ c(ζ, ν, T )E
∫
Θ

(
t∫
0

∫
Θ

G2(t, s, θ, ξ)ϕ2ν(s, ξ) dξ ds
)
µρ(dθ)

= c(ζ, ν, T )E
t∫
0

∫
Θ

∫
Θ

G2(t, s, θ, ξ)ϕ2ν(s, ξ) dξ α−ρ(θ) dθ ds

≤ c(ρ, ζ, ν, T )E
t∫
0

∫
Θ

∫
Θ

G2(t, s, θ, ξ)αρ(θ − ξ) dθ ϕ2ν(s, ξ)α−ρ(ξ) dξ ds

≤ c(ρ, ζ, ν, c(T ), T )E
t∫
0

(t− s)−ζ ||ϕ(s)||2νL2ν
ρ
ds.
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Here, we used Hölder’s inequality w.r.t. dξ in the fifth, (D.3) in the sixth,
Hölder’s inequality w.r.t. ds in the seventh and Lemma D.1.1 in the second
last step.
Thus, (A4) holds.

So far, we have properties (A2)– (A4) for U given by (D.1).

Recall from Section 3.1 that to deal with the jump-terms in equations (1.1)
and (1.2), we need (A5)/ (A5)*.
For our evolution operator U defined by (D.1), we first show the weaker
condition (A5)* in the following.

Lemma D.1.2: Let U be defined by (D.1) from G obeying (D.2) and (D.3).
Then, U obeys (A5)*.

Proof: Let 0 ≤ s < t ≤ T and let ϕ ∈ L2ν
ρ , ψ ∈ L2 be fixed.

We claim that U(t, s)Mϕ(ψ) ∈ L2ν
ρ .

Indeed, the following chain of inequalities holds∫
Θ

(U(t, s)Mϕ(ψ))2ν(θ)µρ(dθ)

=
∫
Θ

(∫
Θ

G(t, s, θ, ξ)ϕ(ξ)ψ(ξ) dξ
)2ν

µρ(dθ)

≤
∫
Θ


(∫

Θ

G2(t, s, θ, ξ)ϕ2(ξ) dξ
)

∫
Θ

ψ2(ξ) dξ

︸ ︷︷ ︸
=||ψ||2

L2





ν

µρ(dθ)

≤ ||ψ||2νL2

∫
Θ

[∫
Θ

G(t, s, θ, ξ)
2(ν−1)

ν G(t, s, θ, ξ)
2
νϕ2(ξ) dξ

]ν
µρ(dθ)

≤ ||ψ||2νL2

∫
Θ

[(∫
Θ

G2(t, s, θ, ξ) dξ
) ν−1

ν
(∫

Θ

G2(t, s, θ, ξ)ϕ2ν(ξ) dξ
) 1

ν

]ν
µρ(dΘ)

≤ c(ρ, ν, c(T ))||ψ||2νL2(t−s)−ζ(ν−1)
∫
Θ

[∫
Θ

G2(t, s, θ, ξ)αρ(θ − ξ)dθ
]
ϕ2ν(ξ)µρ(dξ)

≤ c(ν, T )||ψ||2νL2(t− s)−ζν ||ϕ||2νL2ν
ρ

,

which means that we have

||U(t, s)Mϕ||2νL(L2,L2
ρ) ≤ c(ν, T )(t− s)−ζν ||ϕ||2νL2ν

ρ

and thus (3.6).
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Here, we used Hölder’s inequality in the second and third, Lemma D.1.1 in
the fourth and (D.3) in the fifth and sixth step. �

Remark D.1.3: (i) Based on (A2) and (A5)* we can also show (A5).
Note that for any 0 ≤ s < t ≤ T

(D.5) ||U(t, s)Mϕ||L2(L2,L2ν
ρ ) ≤

∣∣∣∣U (t, t+s2

)∣∣∣∣
L2(L2)

∣∣∣∣U ( t+s2 , s
)∣∣∣∣

L(L2,L2ν
ρ )

,

where the second term in the right hand side of (D.5) was estimated in
(A5)*.
For the operator U(t, s), given by the integral representation (D.1), we have

(D.6) ||U(t, s)||2L2(L2) =
∫
Θ

∫
Θ

|G(t, s, θ, ξ)|2 dθ dξ.

So, additionally to (D.2) and (D.3), we have to assume that

(D.7)
∫
Θ

∫
Θ

|G(t, s, θ, ξ)|2 dθ dξ ≤ c(T )(t− s)−ζ , 0 ≤ s < t ≤ T ,

for some ζ ∈ [ 0, 1 ). Such condition is also typical for evolution families
generated by elliptic operators. Then, both (D.5) and (D.6)/(D.7) applies
(A5) with ζ ′ = 2ζ.

(ii) Another approach to (A5) is to prove the estimate

(D.8) ||U(t, s)Mϕ||L2(L2,L2ν
ρ ) ≤

∣∣∣∣U (t, t+s2

)∣∣∣∣
L2(L2,L2

ρ0
)

∣∣∣∣U ( t+s2 , s
)∣∣∣∣

L(L2
ρ0
,L2ν

ρ )
,

where ρ0 > d and ρ− ρ0 > d.
Then, the first norm in the right hand side in (D.8) is estimated by (A2)
and the second norm is estimated in full analogy with (A5)*. Again we will
get (A5) with the new exponent ζ ′ = 2ζ.

(iii) In Section D.2 below we consider the example of an operator gen-
erating a semigroup, which can be represented similar to (D.1) by setting
G(t, s, θ, ξ) := G(t− s, θ, ξ).
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D.2 Two examples of evolution operators obeying
the conditions of Chapters 7 and 8

In this section we give two examples of evolution operators obeying the
conditions from Chapters 7 and 8. The first example is a (one-parameter)
C0-semigroup. This example is built on Example 2.5 from [76], where Man-
they and Zausinger construct a C0-semigroup obeying the properties needed
in their theory on SDEs with Wiener noise. The second example is gener-
ated from the first example by assuming additional time-depenence of the
generator.

A C0-semigroup obeying the properties from Chapters 7 and 8

Let Θ = Rd and let A be a second order elliptic differential operator given by

(D.9) Aϕ(θ) :=
d∑

i,j,=1
aij(θ) ∂2

∂θi∂θj
ϕ(θ) +

d∑
i=1

bi(θ) ∂
∂θi
ϕ(θ) + c(θ)ϕ(θ), θ ∈ Rd,

ϕ ∈ D(A) := W 2,2(Rd),

with coefficient functions aij = aji, bi and c from the set C∞b (Rd) of bounded,
infinitely differentiable functions on Rd.

Note that this example has already been presented by Manthey and Zausinger
(cf. Example 2.5 in [76] or in Appendix B in [92]).

Let us assume (taking m = 1 on p.17 in [95]) that the standard elliptic-
ity conditon holds, i.e. there is some δ > 0 such that for all θ, ξ ∈ Rd

(D.10)
d∑

i,j=1
aij(θ)ξiξj ≥ δ|ξ|2.

Then, as described in Section B.2 in [95], there exists a continuous Green
function G: R+ × Rd × Rd → R corresponding to the parabolic operator
∂
∂t +A such that defining U by U(0) = I and

(D.11) (U(t)ϕ)(θ) :=
∫
Θ

G(t, θ, ξ)ϕ(ξ) dξ, θ ∈ Θ, ϕ ∈ L2
ρ(Θ), t > 0,

gives us a C0-semigroup in L2
ρ (cf. Theorem B.9 in [95]) such that (cf.

Theorem B.7 in [95])

sup
t∈[ 0,T ]

||U(t)||L(L2
ρ) <∞.

It is a well-known fact (see e.g. Lemma 2.1 in [42] (in the case
j = |α| = |β| = 0)) that G(t, θ, ξ) obeys a sub-Gaussian growth, i.e. there
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are positive constants c1, c2 such that

(D.12) 0 < G(t, θ, ξ) ≤ c1t
− d

2 exp
(
−c2 |θ−ξ|

2

t

)
, (t, θ, ξ) ∈ ( 0, T ]×Θ×Θ.

To prove the properties (A2)–(A4) and (A5)*, we want to apply the the-
ory developed in Section D.1 with G(t, s, θ, ξ) := G(t− s, θ, ξ). To this end,
cf. the conditions of Lemma D.1.2, we need (D.2) and (D.3) to hold.

Let us first show that G obeys property (D.2).
With the help of (D.12) one gets∫
Θ

G(t, θ, ξ)αρ(θ − ξ) dξ ≤
∫
Θ

c1t
− d

2 exp
(
−c2 |θ−ξ|

2

t

)
(1 + |θ − ξ|2)

ρ
2 dξ

≤ c(ρ)

[∫
Rd

t−
d
2 exp

(
− |ξ|2

t

)
dξ

+
∫
Θ

|ξ|ρt−
d
2 exp

(
− |ξ|2

t

)
dξ

]
≤ c(ρ, d, T ) <∞.

Since αρ(θ − ξ) is a symmetric function, we also get∫
Θ

G(t, θ, ξ)αρ(θ − ξ) dθ ≤ c(ρ, d, T ) <∞, t > 0,

which implies (D.2).
Thus, it remains to show the estimate (D.3). As we will see from (D.12), in
the given example this causes a restriction to the case d

2 < 1, i.e. d = 1 (cf.
also Example 2.5, p.54 in [76]).

So let us assume that d = 1. Then, (D.12) becomes

(D.13) 0 < G(t, θ, ξ) ≤ c1t
− 1

2 exp
(
− |θ−ξ|2

t

)
, (t, θ, ξ) ∈ ( 0, T ]×Θ×Θ.

Applying (D.13) we get∫
Θ

G2(t, θ, ξ)αρ(θ − ξ) dξ ≤
∫
Θ

c1t
−1exp

(
− |θ−ξ|2

t

)
(1 + |θ − ξ|2)

ρ
2 dξ

≤ c(ρ)

[∫
Rd

t−1exp
(
− |ξ|2

t

)
dξ

+
∫
Θ

|ξ|ρt−1exp
(
− |ξ|2

t

)
dξ

]
≤ c(ρ, d, T )t−

1
2 <∞, t > 0.

Similarly to the above consideration of (D.2), by the symmetry of αρ(θ− ξ),
we also get
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∫
Θ

G2(t, θ, ξ)αρ(θ − ξ) dθ ≤ c(ρ, d, T )t−
1
2 <∞, t > 0,

which implies (D.3) with ζ = 1
2 in the case d = 1.

Therefore, we can apply Lemma D.1.2 (cf. also Example 2.4 from [76])
to get the following:

Lemma D.2.2: Suppose that Θ = R. For functions a, b and c from
C∞b (R), let A be given by

A := a ∂2

∂θ2
+ b ∂∂θ + cwith D(A) := W 2,2(R).

Furthermore, suppose that a obeys (D.10), i.e. A is an elliptic operator.
Let G be the Green function corresponding to the operator ∂

∂t +A on Rd.
Then, U defined by (D.11) constitutes an almost strong evolution operator
fulfilling (A0)–(A4) and (A5)*.

So far, we have constructed a C0-semigroup in L2
ρ(Θ) obeying (A0)–(A4)

and (A5)*. These properties are just enough to apply the theory from
Chapter 5 (without having càdlàg properties of the solutions (this would
additionally require (A7))). As was shown in Remark D.1.3, (A5)* implies
(A5) with a modified parameter ζ.

To be able to apply the comparison theory from Chapter 6, we need the
approximation property (A6). We refer to Example 2.6 in [76], where Man-
they and Zausinger describe how to gain a family (AN )N∈N of operators
approximating A in the sense of (A6).

A standard way is to put

AN := N
(
U
(

1
N

)
− I
)
∈ L(L2

ρ), N ∈ N.

Then, the corresponding evolution family in L2
ρ is given by

(D.14) UN (t) := exp(tAN ) = exp
(
tNU

(
1
N

))
exp(−tN), t ∈ ( 0, T ], N ∈ N.

The operator UN is obviuosly positivity preserving if U is positivity pre-
serving. For the rest of the properties needed to have (A6), we refer to
Example 2.6, p.55 in [76] resp. Theorem 1.8.1 in [89]. Concerning the uni-
form norm bound for the UN (not being part of the condition in [76]), we
note that (as described in the proof of Theorem 6.1.4 in Section 6.3,) this
immediately follows by the Banach-Steinhaus uniform boundedness princi-
ple for linear operators (cf. e.g. Theorem III.9 in [98]).
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Thus, Lemma D.2.2 can be developed further to the following:

Lemma D.2.3: Suppose that Θ = R. Let A and G be as in Lemma
D.2.2.
Then, U defined by (D.11) is an almost strong evolution operator fulfilling
(A0)–(A4), (A5)* and (A6).

Thus, operator A defined in Lemma D.2.2 is an example of an operator
obeying all properties required on the operator family (A(t))t∈[ 0,T ] in the
comparison result of Chapter 6 (cf. Theorem 6.1.1 there).
To prove the existence of càdlàg solutions and to treat the case of multi-
plicative jump noise in equations (1.1) and (1.2), we need (A7) and (A8).
Let us analyse how to achieve these conditions.
Recall that (A7) means the pseudo contractivity of U(t, s) either in L2

ρ or
in L2. In the case d = 1 we refer to the classical results of [9].
The condition (D.10) imposed above means that there is some δ > 0 such
that

a(θ) ≥ δ for any θ ∈ Rd.

Thus, A obeys the assumptions of Proposition 2.7 in [9]. By this propo-
sition we get that the C0-semigroup in L2

ρ generated by A and having the
representation (D.11) is positive.
Furthermore, U is contractive in L2(Rd) if and only if c ≥ 0 for the function
c in (D.9). In view of Remark 3.1.2.1 (vii), this also gives us (A7).

Concerning (A8), we note the following:
By the definition of the semigroup U (see (D.11)) and the properties of
the derivatives of a convolution, we immediately get U(t)ϕ ∈ W 2,2(R) for
any ϕ ∈ L2(R). Thus, setting D(AN ) = W 2,2(R) for any N ∈ N and
AN := N

(
U
(

1
N

)
− I
)
, N ∈ N, as before, we get a family (AN )N∈N of lin-

ear bounded operators on W 2,2(R). Furthermore, for the evolution family
(D.14) we have

sup
t∈[ 0,T ]

||UN (t, s)ϕ||W 2,2 ≤ cN (T )||ϕ||W 2,2 .

Thus, (A8) is fulfilled.

So, we get the following result:

Proposition D.2.5: Let Θ = R and let

A := a ∂2

∂θ2
+ b ∂∂θ + c, D(A) := W 2,2(R)
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with coefficients a, b, c from C∞b (R) such that a obeys (D.10), i.e. A is
a strictly elliptic operator. Furthermore, suppose that c ≥ 0. Then, given
the Green function G corresponding to the operator ∂

∂θ +A on Θ, U defined
by (D.11) is an almost strong evolution operator fulfilling (A0)–(A8) (with
m = 2 in (A8)).

Unfortunately, in the above case we have ζ = 1
2 .

For such an operator we can apply the theory of e.g. Manthey and Zausinger
in the case of a stochastic evolution equation with Wiener noise (see [76]).
But recall from the main existence, uniqueness and comparison results in
this thesis that, both in the case of drifts of at most linear growth and in the
case of drifts of at most polynomial growth, we need 1

1−ζ <
1
ζ , i.e. ζ < 1

2 .
To have this property fulfilled, we can e.g. consider higher order differential
operators.

Let us assume that d = 1 and 1 < m ∈ N. Instead of A from (D.9),
we will consider the differential operator

(D.15) A(θ) =
∑

α≤2m
aα(θ) ∂

α

∂θα , θ ∈ R, D(A) := W 2m,2(R),

of order 2m. Here, the coefficient functions aα are from C∞b (R).
Let us assume that there is some δ > 0 such that (cf. e.g. Section 2.5 on
p.17 in [95])

(D.16) (−1)ma2m(θ)ξ2m ≤ −δ|ξ|2m, θ, ξ ∈ R.

(A particular case of this is (D.10) with m = 1.)
Let G : R+\{0}×R×R → R be the Greeen function corresponding to ∂

∂t+A.

To proceed, we need the following general estimate for Green functions,
which is due to Aronson (cf. Theorem 2.6 in Section 2.5 in [95]):

Lemma D.2.6: For each T > 0 and 0 ≤ |α| ≤ 2m, there exist con-
stants c1, c2 > 0 such that∣∣∣∂|α|∂ξαG(t, θ, ξ)

∣∣∣ ≤ c1t
− |α|

2m t−
d

2m exp
(
−c2|θ − ξ|

2m
2m−1 t−

1
2m−1

)
, t ∈ [ 0, T ], θ, ξ ∈ Rd.

In the particular case d = 1 and α = 0, we have

(D.17) |G(t, θ, ξ)| ≤ c1t
− 1

2m exp
(
−c2|θ − ξ|

2m
2m−1 t−

1
2m−1

)
, t ∈ [ 0, T ], θ, ξ ∈ R,

for some c1, c2 > 0.
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With the help (D.17) one gets∫
Θ

G(t, θ, ξ)αρ(θ − ξ) dξ ≤
∫
R
c1t

− 1
2m exp

(
−c2|θ − ξ|

2m
2m−1 t−

1
2m−1

)
(1 + |θ − ξ|2)

ρ
2 dξ

≤ c(ρ)
[∫

R
t−

1
2m exp

(
−c2|ξ|

2m
2m−1 t−

1
2m−1

)
dξ

+
∫
R
|ξ|ρt−

1
2m exp

(
−c2|ξ|

2m
2m−1 t−

1
2m−1

)
dξ

]
≤ c(ρ, T ) <∞.

Again by the symmetry of αρ(θ − ξ), we get∫
R
G(t, θ, ξ)αρ(θ − ξ) dθ ≤ c(ρ, d, T ) <∞, t > 0,

which implies (D.2).
Furthermore, we get∫

R
G2(t, θ, ξ)αρ(θ − ξ) dξ ≤

∫
Θ

c1t
− 1

m exp
(
−c2|ξ|

2m
2m−1 t−

1
2m−1

)
(1 + |θ − ξ|2)

ρ
2 dξ

≤ c(ρ)
[∫

R
t−

1
m expexp

(
−c2|ξ|

2m
2m−1 t−

1
2m−1

)
dξ

+
∫
R
|ξ|ρt−

1
m exp

(
−c2|ξ|

2m
2m−1 t−

1
2m−1

)
dξ

]
≤ c(ρ, T )t−

1
2m <∞, t > 0.

With the help of this estimate, we get (D.3), but with ζ = 1
2m < 1

2 (re-
call that m > 1) as requested in the main results of Chapters 7 and 8.
Again, we get a C0-semigroup by (D.11).

So we have proven the following extension of Lemma D.2.2:

Lemma D.2.7: Let the operator A be given by (D.15) with continuous,
bounded coefficient functions aα such that (D.16) is fulfilled.

Let G be the Green function corresponding to the operator ∂
∂t +A on R.

Then, U defined by (D.11) is an almost strong evolution operator fulfilling
(A0)–(A4) and (A5)*.

Similarly to the previous considerations, we also can check that (A6) and
(A8) are fulfilled. However, to check (A7), we cannot apply Proposition
2.7 from [9], since the paper of Arendt and his coauthors was directly con-
cerned with second order differential operators. But we can assume that
A is a self-adjoint positive operator in L2(R), which immediately implies
the contractivity property of the semigroup U in L2(R). Thus, we have the
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following lemma:

Lemma D.2.8: Let the operator A be as in Lemma D.2.7 and let G
be the Green function corresponding to the operator ∂

∂t +A on R.
Then, U defined by (D.11) is an almost strong evolution operator fulfilling
(A0)–(A4), (A5)*, (A6) and (A8). If A is self-adjoint and positive in
L2(R), then it also fulfills (A7).

Remark D.2.9: By Lemma D.2.8 we can apply the theory of Chapters 7
and 8 in the case Θ = Rd for differential operators of any even order greater
than 2 if the coefficient functions are from C∞b (R).

A strong evolution operator obeying the assumptions from Chapters 7 and 8

We start with an example of a general second-order elliptic differential op-
erator taken from the paper [33] by Eidelman and Porper.
Again, let Θ = Rd. Compared to (D.9), we allow the second order elliptic
operator to be time-dependent in the sense that

(D.18) A(t)ϕ(θ) :=
d∑

i,j,=1
aij(t, θ) ∂2

∂θi∂θj
ϕ(θ) +

d∑
i=1

bi(t, θ) ∂
∂θi
ϕ(θ) + c(t, θ)ϕ(θ),

t ∈ [ 0, T ], θ ∈ Θ, ϕ ∈ D(A) := W 2,2(Rd).

Here, the coefficients obey the following properties (cf. A1–A3 on p.122
in [33])

• There is a constant µ ≥ 1 such that for any (t, θ) ∈ [ 0, T ]× Rd

(D.19) 1
µ |ξ|

2 ≤ aij(t, θ)ξiξj ≤ µ|ξ|2 for all ξ ∈ Rd.

• The coefficient functions aij , bi and c are continuous and uniformly
bounded by a constant M0 > 0.

• The coefficient functions satisfy the so-called Dini condition uniformly
in (t, θ) ∈ [ 0, T ]×Rd, i.e. there is a function w: [ 0, 1 ] → R+ obeying

1∫
0

w(r)
r dr <∞

such that for the moduli wt,θ of continuity we have wt,θ(r) ≤ w(r).

By Theorem 1.1 from [33] resp. pp.23-28 in the book [32] by Eidelman,
these assumptions guarantee the existence of a Green function
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G: {(t, s) | 0 ≤ s < t ≤ T} × Rd × Rd → R

corresponding to the operators ∂
∂t +A(t) obeying the inequality

(D.20) G(t, s, θ, ξ) ≤ c1(t− s)
d
2 exp

(
−c2|θ − ξ|2(t− s)−1

)
, 0 ≤ s < t ≤ T , θ, ξ ∈ R,

with positive constants c1, c2 depending on µ, d, M0 and T .
Next, we define a family (U(t, s))0≤s<t≤T of operators by (D.1), i.e.

(U(t, s)ϕ)(θ) =
∫
Θ

G(t, s, θ, ξ)ϕ(ξ) dξ, 0 ≤ s < t ≤ T , θ ∈ Θ, ϕ ∈ L2
ρ, θ ∈ Θ.

By the construction we have, for 0 ≤ s < r < t ≤ T , (cf. Property 2
on p.125 in [33])

G(t, s, θ, ξ) =
∫

Rd

G(t, r, θ, θ̄)G(r, s, θ̄, ξ) dθ̄,

which implies U(t, s) = U(t, r)U(r, s) as required in Definition 2.2.1 (ii).
Fixing an arbitrary t ∈ [ 0, T ], analogously to the case of the C0-semigroup
discussed before (cf. (D.11)), defining U(t, t) = I gives us an evolution op-
erator (U(t, s))0≤s≤t in L2

ρ (cf. Theorem B.9 in [95]) such that (cf. Theorem
B.7 in [95])

sup
0≤s≤t

||U(t, s)||L(L2
ρ) <∞.

Completely analogously we also get a C0-semigroup (U(t, s))s≤t≤T in L2
ρ

(cf. Theorem B.9 in [95]) such that (cf. Theorem B.7 in [95])

sup
s≤t≤T

||U(t, s)||L(L2
ρ) <∞.

Thus, U is an almost strong evolution operator in the sense of Definition
2.2.1.
By Property 3 from p.125 in [33], the kernel G is positive, which immedi-
ately gives us the positivity preserving property for U defined by (D.1).
Again, to prove the properties (A2)–(A4) and (A5)*, we want to apply the
theory developed in Section D.1. To this end, cf. the conditions of Lemma
D.1.2, we need (D.2) and (D.3) to hold.

First, we fix an arbitrary t ∈ [ 0, T ] and show that property (D.2) is ful-
filled. We note that, by the above consideration, all constants below are
uniformly in t ∈ [ 0, T ].
By (D.20) we have
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∫
Θ

G(t, s, θ, ξ)αρ(θ − ξ) dξ ≤
∫
Θ

c1(t− s)−
d
2 exp

(
−c2 |θ−ξ|

2

t−s

)
(1 + |θ − ξ|2)

ρ
2 dξ

≤ c(ρ)

[∫
Rd

(t− s)−
d
2 exp

(
− |ξ|2
t−s

)
dξ

+
∫
Θ

|ξ|ρ(t− s)−
d
2 exp

(
− |ξ|2
t−s

)
dξ

]
≤ c(ρ, d, T ) <∞.

Since αρ(θ − ξ) is a symmetric function, we also get∫
Θ

G(t, s, θ, ξ)αρ(θ − ξ) dθ ≤ c(ρ, d, T ) <∞, t > 0,

which implies (D.2).
Thus, it remains to show the estimate (D.3). By the same reasoning as in
the previous example of a C0-semigroup, we have to restrict our considera-
tions to the case d = 1 in the following.

So, let d = 1. Then, (D.20) becomes (recall the positivity of G)

(D.21) 0 < G(t− s, θ, ξ) ≤ c1(t− s)−
1
2 exp

(
− |θ−ξ|2

t−s

)
, (s, θ, ξ) ∈ [ 0, t )×Θ×Θ.

Applying (D.21), we get for 0 ≤ s < t ≤ T∫
Θ

G2(t, s, θ, ξ)αρ(θ − ξ) dξ ≤
∫
Θ

c1(t− s)−1exp
(
− |θ−ξ|2

t−s

)
(1 + |θ − ξ|2)

ρ
2 dξ

≤ c(ρ)

[∫
Rd

(t− s)−1exp
(
− |ξ|2
t−s

)
dξ

+
∫
Θ

|ξ|ρ(t− s)−1exp
(
− |ξ|2
t−s

)
dξ

]
≤ c(ρ, d, T )(t− s)−

1
2 <∞.

Similarly to the above consideration of (D.2), by the symmetry of αρ(θ− ξ),
we also get∫

Θ

G2(t, s, θ, ξ)αρ(θ − ξ) dθ ≤ c(ρ, d, T )(t− s)−
1
2 <∞, 0 ≤ s < t,

which implies (D.3) with ζ = 1
2 in the case d = 1.

Thus, we can apply Lemma D.1.2 to get:

Lemma D.2.10: Suppose that Θ = R. Let a(t), b(t) and c(t), t ∈ [ 0, T ]
be functions from C∞b (R) satisfying the Dini conditions. Furthermore, let
a(t) obey (D.19). Let us define a family of uniformly elliptic operators
(A(t))t∈[ 0,T ]
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A(t) := a(t) ∂
2

∂θ2
+ b(t) ∂∂θ + c(t), D(A(t)) = W 2,2(R), t ∈ [ 0, T ].

Given t ∈ [ 0, T ], let G be a Green function corresponding to the opera-
tor ∂

∂t +A(t).
Then, U defined by (D.1) constitutes an almost strong evolution operator
fulfilling (A0)–(A4) and (A5)*.

So far, we have constructed an evolution operator in L2
ρ(Θ) obeying

(A0)–(A4) and (A5)*. Again this is just enough to apply the theory from
Chapter 5 (without càdlàg properties, which would require (A7)).

To be able to apply the comparison theory from Chapter 6, we need the
approximation property (A6). We modify Example 2.6 from [76] to gain a
family (AN (t))N∈N of operators approximating A(t) in the sense of (A6).

Given N ∈ N, we put

AN (t) := N
(
U
(
t, t− 1

N

)
− I
)
∈ L2

ρ, t ∈ [ 0, T ].

For 0 ≤ s < t ≤ T the corresponding evolution family is given by

UN (t, s) := exp(sAN (t)) = exp
(
sNU

(
t, t− 1

N

))
exp(−sN), s ∈ [ 0, t ).

The operator UN is obviously positivity preserving if U is positivity pre-
serving.

The strong convergence property follows from the uniform boundedness of
the coefficient functions a, b and c. Concerning the uniform norm bound of
the UN (not being part of the condition in [76]), we note that (as described
in the proof of Theorem 6.1.4 in Section 6.3,) this immediately follows by
the Banach-Steinhaus uniform boundedness principle for linear operators
(cf. e.g. Theorem III.9 in [98]).

Thus, Lemma D.2.10 can be developed further to the following:

Lemma D.2.11: Suppose that Θ = R. Let (A(t))t∈[ 0,T ] and G be as
in Lemma D.2.10.
Then, U defined by (D.1) is an almost strong evolution operator fulfilling
(A0)–(A4), (A5)* and (A6).

Thus, the operator family (A(t))t∈[ 0,T ] fulfills all the conditions needed in
the comparison result of Chapter 6 (cf. Theorem 6.1.1 there).
To prove the existence of càdlàg solutions and to treat the case of multi-
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plicative jump noise in equations (1.1) and (1.2), we need (A7) and (A8).
Let us analyse how to achieve these conditions.
Recall that (A7) means the pseudo contractivity of U(t, s) in L2(R) or
L2
ρ(R).

As in (D.15), we just assume that the operators (A(t))t∈[ 0,T ] are self-adjoint
and positive in L2(R). This implies the contractivity property of the cor-
reaponding semigroups (U(t, s))0≤s≤t in L2(R).
According to Remark 3.1.1 (vi), this gives us (A7).

Concerning (A8), we note that, by the definition of the evolution oper-
ator (U(t, s))0≤s≤t (see (D.1)) and the properties of the derivatives of a
convolution, we immediately get U(t, s)ϕ ∈ W 2,2(R) for any ϕ ∈ L2(R).
Thus, setting D(AN (t)) := W 2,2(R) and AN (t) := N

(
U
(
t, t− 1

N

)
− I
)

for
any N ∈ N and t ∈ [ 0, T ], we get a family (AN (t))N∈N of linear bounded
operators on W 2,2(R). Thus, (A8) is fulfilled.

Therefore, we get the following result:

Proposition D.2.12: Let Θ = R. We define a family of operators

A(t) := a(t) ∂
2

∂θ2
+ b(t) ∂∂θ + c(t), t ∈ [ 0, T ], D(A(t)) = W 2,2(R)

with coefficient functions a(t), b(t), c(t) from C∞b (R) with a uniform bound
obeying the Dini property and (a(t)){t∈[ 0,T ] fulfilling (D.19), i.e. (A(t))t∈[ 0,T ]

is a family of strictly elliptic operators. Furthermore, suppose that c(t) ≥ 0
for any t ∈ [ 0, T ]. Then, given the the function G corresponding to the fam-
ily of operators ( ∂∂θ+A(t))t∈[ 0,T ], U defined by (D.1) is an almost strong evo-
lution operator fulfilling (A0)–(A4), (A5)* and (A6)–(A8) (with m = 2
in (A8)).

If we want to avoid the case ζ = 1
2 , e.g. to apply the main existence, unique-

ness and comparison results from Chapters 5–8, which need that 1
1−ζ <

1
ζ ,

we have to consider higher order differential operators.

To this end, we refer to an example from the classical book [40] of Friedman
(cf. Chapter 9, Section 2 there).

For the rest of this section, let d = 1 and 1 < m ∈ N.
In the following let the operator family (A(t))t∈[ 0,T ] be given by

(D.22) A(t)ϕ(θ) :=
∑

|α|≤2m

aα(t)(Dα
xϕ)(θ), t ∈ [ 0, T ], θ ∈ R, D(A(t)) = W 2m,2(R),

with the coefficient functions aα(t) only depending on t. More precisely,
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the mapping t 7→ aα(t) is supposed to be continuous in [ 0, T ]. Given
the function G: {(t, s) | 0 ≤ s < t ≤ T} × Rd × Rd corresponding to the
family of operators ( ∂∂t + A(t))t∈[ 0,T ], we again get an evolution operator
U = (U(t, s))0≤s≤t≤T with the help of (D.1). Furthermore, we can estimate
G in the following way (cf. Theorem 2, (2.5) on p.241 in [40] or [28])

(D.23)|G(t, s, θ, ξ)| ≤ c1(t− s)−
1

2m exp

(
−c2

(
|θ−ξ|2m

(t−s)

) 1
2m−1

)
, 0 ≤ s < t ≤ T , θ, ξ ∈ R,

with positive constants c1, c2.

With the help (D.23), we have∫
Θ

G(t, s, θ, ξ)αρ(θ − ξ) dξ

≤
∫
Θ

c1(t− s)−
1

2m exp
(
−c2|θ − ξ|

2m
2m−1 (t− s)−

1
2m−1

)
(1 + |θ − ξ|2)

ρ
2 dξ

≤ c(ρ)
[∫

R
(t− s)−

1
2m exp

(
−c2|ξ|

2m
2m−1 (t− s)−

1
2m−1

)
dξ

+
∫
Θ

|ξ|ρ(t− s)−
1

2m exp
(
−c2|ξ|

2m
2m−1 (t− s)−

1
2m−1

)
dξ

]
≤ c(ρ, T ) <∞.

Again, by the symmetry of αρ(θ − ξ), we get∫
Θ

G(t, s, θ, ξ)αρ(θ − ξ) dθ ≤ c(ρ, d, T ) <∞, t > 0,

which implies (D.2).
Furthermore, we get∫
Θ

G2(t, θ, ξ)αρ(θ − ξ) dξ

=
∫
Θ

G2
t (t− s, θ, ξ)αρ(θ − ξ) dξ

≤
∫
Θ

c1(t− s)−
1
m exp

(
−c2|ξ|

2m
2m−1 (t− s)−

1
2m−1

)
(1 + |θ − ξ|2)

ρ
2 dξ

≤ c(ρ)
[∫

R
(t− s)−

1
m exp

(
−c2|ξ|

2m
2m−1 (t− s)−

1
2m−1

)
dξ

+
∫
Θ

|ξ|ρ(t− s)−
1
m exp

(
−c2|ξ|

2m
2m−1 (t− s)−

1
2m−1

)
dξ

]
≤ c(ρ, T )(t− s)−

1
2m <∞, t > 0.

With the help of this estimate, we get (D.3) with ζ = 1
2m < 1

2 (recall
that m > 1) as requested in the main results of Chapters 7 and 8.
Thus, U defined by (D.1) is an evolution operator with the requested prop-
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erties.

So, we have proven the following extension of Lemma D.2.2:

Lemma D.2.13: Let the operator A(t) be given by (D.22) with coeffi-
cient functions aα(t) only depending on t such that t 7→ aα(t) is continuous
in [ 0, T ].
Let G be the Green function corresponding to the operator family
( ∂∂θ +A(t))t∈[ 0,T ] on R.
Then, U defined by (D.1) is an almost strong evolution operator fulfilling
(A0)–(A4) and (A5)*.

Similarly to the previous considerations, we can also check that (A6) and
(A8) are fulfilled. However, to check (A7) we cannot apply Proposition
2.7 from [9], since the paper of Arendt and his colaborators was directly
concerned with second order differential operators. But we can assume that
A(t) is a self-adjoint positive operator in L2(R), which immediately implies
the contractivity property of the semigroup (U(t, s))0≤s≤t in L2(R). Thus,
we have:

Lemma D.2.14: Let the operator A(t) be as in Lemma D.2.13 and,
given arbitrary t ∈ [ 0, T ], let G be the Green function corresponding to the
operator family ( ∂∂θ +A(t))t∈[ 0,T ] on R.
Then, U defined by (D.1) is an almost strong evolution operator fulfilling
(A0)–(A4), (A5)*, (A6) and (A8). If A(t) is self-adjoint and positive
in L2(R) for any t ∈ [ 0, T ], then it also fulfills (A7).

Remark D.2.15: By Lemma D.2.14 we can apply the theory of Chap-
ters 7 and 8 in the case Θ = R for differential operators of any even order
greater than 2 if the coefficient functions depend only on time in a continu-
ous manner.



376 APPENDIX D. SOME REMARKS ON EVOLUTION OPERATORS



Appendix E

A general construction of
positive measures in L2(Θ)
with summable weak
moments

The aim of this appendix is to show a general method to construct examples
of (Lévy) measures in L2(Θ) fulfilling the integrability condition (4.2) from
Chapter 4 and the positivity condition (P) from Chapter 8 such that we can
claim there is a class of examples, for which we can apply Theorems 8.1.1
and 8.1.2 .

Now, let us first assume that given N 3 q ≥ 2 µ is an arbitrary σ-finite,
square-integrable measure on L2(Θ) additionally obeying∫

L2(Θ)

||x||q
L2 µ(dx) <∞.

Let Q : L2(Θ) → L2(Θ) be a symmetric nonnegative operator, which addi-
tionally fulfills Q ≥ 0, and is positivity preserving in the sense that it maps
L2

+(Θ) (for the definition of L2
+(Θ) see the introduction of Chapter 8) onto

itself. Furthermore, let Q be of form (2.4) with (en)n∈N fulfilling (3.1) and
(an)n∈N being summable, i.e. Q ∈ T (L2(Θ)).
Finally, with the help of the absolute value in R we define the following
mapping av on L2(Θ)

(E.1) (av(ψ))(θ) := |ψ(θ)| ; θ ∈ Θ , ψ ∈ L2(Θ).

Now, we have

Theorem E.1 : Under the previous assumptions

377
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(E.2) η := µ ◦Q−1 ◦ av−1

fulfills the integrability condition (4.2) from Chapter 4.
By the definition, we have for any functional F : L2(Θ) → R∫

L2(Θ)

F (x) η(dx) :=
∫

L2(Θ)

F (Q(av(x)))µ(dx).

Proof: To prove the claim it suffices to consider

∑
n∈N

(∫
L2

|(x, en)L2 |2 η(dx)

) 1
2

and

∑
n∈N

(∫
L2

|(x, en)L2 |q η(dx)

) 1
q

,

where (en)n∈N is an orthonormal basis of L2(Θ) obeying (cf. (3.1) in Chap-
ter 3)

sup
n∈N

||en||∞ <∞.

Indeed, we have

∫
L2

||x||q
L2 η(dx) =

∫
L2

(∫
Θ

( ∑
n∈N

(x, en)L2en

)2

(θ) dθ

) q
2

η(dx)

≤
(

sup
n∈N

||en||L∞
)q (∫

L2

( ∑
n∈N

|(x, en)L2 |
)q

η(dx)

)

= C

(∣∣∣∣∣∣∣∣ ∑
n∈N

|(x, en)L2 |
∣∣∣∣∣∣∣∣
Lq(L2,η)

)q
≤ C

( ∑
n∈N

|| |(x, en)L2 | ||Lq(L2,η)

)q
= C

 ∑
n∈N

(∫
L2

|(x, en)L2 |q η(dx)

) 1
q

q

with the decomposition of x in L2 used in the second and Minkowski’s in-
equality used in the fifth step , and (by analogous arguments)
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(∫
L2

||x||2L2
ρ
η(dx)

) q
2

≤


 ∑
n∈N

(∫
L2

|(x, en)L2 |2 η(dx)

) 1
2

2


q
2

=

 ∑
n∈N

(∫
L2

|(x, en)L2 |2 η(dx)

) 1
2

q

.

Let us first consider the general case. For any q ≥ 2 we have

∑
n∈N

(∫
L2

|(x, en)L2 |q η(dx)

) 1
q

=
∑
n∈N

(∫
L2

|(Qav(x), en)L2 |q µ(dx)

) 1
q

=
∑
n∈N

(∫
L2

|(av(x), Qen)L2 |q µ(dx)

) 1
q

=
∑
n∈N

an

(∫
L2

|(av(x), en)L2 |q µ(dx)

) 1
q

≤
∑
n∈N

an

 ||en||qL2︸ ︷︷ ︸
=1 for any n

∫
L2

||x||q
L2 µ(dx)


1
q

= tr Q

(∫
L2

||x||q
L2 µ(dx)

) 1
q

< ∞,

where we used (E.2) in the first, symmetry of the inner product in L2(Θ) in
the second, the Cauchy-Schwartz inequality in the fourth and the assump-
tion of finite q-th moment in the last step.
Now, by the special case q = 2, we also have finiteness of the first sum of
integrals. �

We finish the appendix by the following theorem, which we need to have
condition (P) from Chapter 8 fulfilled.

Theorem E.2 : η defined by (E.2) is a positive measure, i.e. it is con-
centrated on the cone L2

+(Θ) introduced in Chapter 8.

Proof: To prove this let us show that for

B := L2(Θ) \ L2
≥0(Θ) = {ψ ∈ L2(Θ) |ψ(θ) < 0 dθ − a.s.}

we have η(B) = 0 .
By (E.2) we have
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(E.3) η(B) =
∫

L2(Θ)

1B(x) η(dx) =
∫

L2(Θ)

1B(Q(av(x)))µ(dx).

By (E.1) it is obvious that av(x) ≥ 0 for all x ∈ L2(Θ), i.e. av(x) ∈ L2
≥0(Θ)

for any x ∈ L2(Θ). Therefore, by the fact that Q maps L2
≥0(Θ) onto itself,

we get Q(av(x)) ≥ 0 for any x ∈ L2(Θ), and hence 1B(Q(av(x))) = 0 for
any x ∈ L2(Θ). By (E.3) this implies the claim. �
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[57] H.Kawabi, M.Röckner, Essential self-adjointness of Dirichlet operators
on a path space with Gibbs measures via an SPDE approach, Journal of
Functional Analysis 242 (2007), pp.486–518.
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[59] K.Knäble, Stochastic Evolution Equations with Levy Noise and Ap-
plications to the Heath-Jarrow-Morton Model, Diploma thesis, BiBos
preprint server E06-11-235, 2006.

[60] C.Knoche, Stochastic Integration and Stochastic Differential Equation
with Respect to Compensated Poisson Random Measure in Infinite Di-
mensional Hilbert Space, BiBos preprint server 03-09-126, 2003.

[61] C.Knoche, Mild Solutions of SPDEs Driven by Poisson Noise in Infinite
Dimensions and Their Dependence on Initial Conditions, PhD thesis,
BiBos preprint server E05-10-194, 2005.

[62] C.Knoche, K.Frieler, Solutions of Stochastic Differential Equations in
Infinite Dimensional Hilbert Spaces and their Dependence on Initial
Data, Diploma thesis, BiBos preprint server E02-04-083, 2001.

[63] P.Kotelenez, A Submartingale Type Inequality With Applications to Sto-
chastic Partial Differential Equations, Stochastics 8 (1982), pp.139–
151.

[64] P.Kotelenez, A Stopped Doob Inequality for Stochastic Convolution In-
tegrals and Stochastic Evolution Equations, Stochastic Analysis and Ap-
plications 2(3) (1984), pp. 245–265.

[65] P.Kotelenez, Comparison Methods for a Class of Function Valued
Stochastic Partial Differential Equations, Probability Theory Related
Fields 93(1) (1992), pp.1–19.

[66] P.Kotelenez, Existence, Uniqueness and Smoothness for a Class of
Function Valued Stochastic Partial Differential Equations, Stochastics
and Stochastic Reports 41(3) (1992), pp.177-199.

[67] V.Krasin, A.Melnikov, On Comparison Theorem and its Applications
to Finance in Optimality and Risk, Modern Trends in Mathematical
Finance, pp. 171–181, 2009.

[68] V.Krasin, Comparison Theorem and its Applications to Finance, PhD-
thesis, University of Alberta, 2010.



386 BIBLIOGRAPHY

[69] E.Lieb, M.Loss, Analysis Second Edition, Graduate Studies in Mathe-
matics 14, 2001.
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