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Abstract

A new existence result is established for weak parabolic equations for probability measures. Suf-

ficient conditions for the existence of local and global-in-time probability solutions of the Cauchy

problem for such equations are given. Some conditions under which global-in-time solutions do not

exist are indicated.
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1. Introduction and main definitions

In this paper we study the well-posedness of the following Cauchy problem for probability

measures:

∂tµt = ∂xixj
(aij(x, t, µ)µt)− ∂xi

(bi(x, t, µ)µt), µ0 = ν, (1)

where ν is probability measure on Rd.

First and second order nonlinear parabolic equations for probability measures belong to the

most frequently used equations in physics and statistical mechanics. These equations have been

an objet of intensive studies, especially over the past decade (for example, transport equations

in [1, 2, 23]). However, they deal with coefficients like convolutions (see the Vlasov equations

[16, 19, 20] or more general equations in [11, 12]), and only few results concerning the general

case are known (see [9, 18, 22]). It should be noted that in the cases of degenerate and non-

smooth coefficients the study of such equations in the space of finite measures rather than in

function spaces seems more appropriate and allows one to extend finite-dimentional results to

differential equations on infinite-dimentional spaces. Surveys of the recent studies on linear

parabolic equations for measures are given in [8, 6, 10, 27].

Let us consider the operator Lµ defined by

Lµu = aij(x, t, µ)∂xixj
u+ bi(x, t, µ)∂xi

u,

where summation is taken over all repeated indices.

Let M(Rd× [0, τ ]) be the linear space of finite Borel measures on Rd× [0, τ ]. Given a family

of Borel measures (µt)t∈[0,τ ] on Rd, we associate to it a measure µ ∈M(Rd× [0, τ ]) (in this case

we write µ = (µt)[0,τ ]) if the mapping t 7→ µt(B) is Borel measurable on [0, τ ] for each Borel set

B and for each function u ∈ C∞
0 (Rd × (0, τ)) the following identity holds:∫

Rd×[0,τ ]

u(x, t) dµ =

∫ τ

0

∫
Rd

u(x, t) dµt dt.

It is obvious that the last identity extends to all functions of the form fu where u is the same

as before and f is integrable with respect to the measure µ on each compact set in Rd× (0, τ).

A Borel measure σ on Rd is called a probability measure if σ ≥ 0 and σ(Rd) = 1.

We shall say that µ = (µt)t∈[0,τ ] satisfies the Cauchy problem (1) if µt are probability measures

and
1
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• for all 1 ≤ i, j ≤ d we have Borel mappings

(x, t) 7→ aij(x, t, µ), (x, t) 7→ bi(x, t, µ)

are defined on Rd × [0, τ ] and aij, bi ∈ L1(U × [0, τ ], dµ) for each closed ball U ⊂ Rd,

• for all t ∈ [0, τ ] and all ϕ ∈ C∞
0 (Rd) the following identity holds:∫

ϕdµt −
∫
ϕdν =

∫ t

0

∫
Lµϕdµsds. (2)

Typical coefficients of parabolic equations for measures contain expressions like∫
K(x, y, t) dµt or

∫ t

0

∫
K(x, y, s) dµs ds,

where the kernel K grows at infinity.

We recall that M(Rd× [0, τ ]) is a normed space with respect to the Kantorovich–Rubinshtein

norm

‖µ‖ = sup
{∫

f dµ : f ∈ Lip1, |f | ≤ 1
}
,

where Lip1 is the class of Lipschitzian functions with constant 1. Moreover, the topology

generated by this norm on the space of nonnegative measures coincides with the topology of

weak convergence (see [5, Theorem 8.3.1]). We also recall that a sequence of finite measures

µn on Rd or on Rd × [0, τ ] converges weakly to a measure µ if for each continuous bounded

function f one has

lim
n→∞

∫
f dµn =

∫
f dµ.

Further, a sequence of measures µn is called a Cauchy sequence if, for every bounded continuous

function f , the sequence

∫
f dµn is a Cauchy sequence. We recall that every Cauchy sequence

of Borel measures is weakly convergent (see [5, Theorem 8.7.1]).

Our approach to the proof of the existence result for probability measures is based on the

Schauder fixed-point theorem: Let Q be a continuous mapping of a convex compact set K in a

normed space into itself. Then it has a fixed point, that is there exists x ∈ K such that Q(x) = x

(see [17]).

Let C([0, τ ]) and C+([0, τ ]) denote the spaces of continuous and nonnegative continuous

functions on [0, τ ], respectively.

Let τ0 be a fixed positive number and let V be a nonnegative function. For each function

α ∈ C+([0, τ0]) and each τ ∈ (0, τ0] let Mτ,α(V ) denote the set of nonnegative measures µ =

(µt)t∈[0,τ ] in M(Rd × [0, τ ]) such that for all t ∈ [0, τ ] the following estimate holds:∫
V (x) dµt ≤ α(t).

We observe that α belongs to C+([0, τ0]), but not to C+([0, τ ]) because this condition enables

us to choose α and τ independently.

Let us introduce the following conditions on the coefficients aij and bi.

(H1) Suppose that there is a function V ∈ C2(Rd) such that

V (x) > 0, lim
|x|→+∞

V (x) = +∞,
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two mappings Λ1 and Λ2 of the spaces C+([0, τ0]) into C+([0, τ0]) such that for all τ ∈ (0, τ0]

and every α ∈ C+([0, τ0]) the functions aij and bi are defined on Mτ,α = Mτ,α(V ) and for all

µ ∈Mτ,α and all (x, t) ∈ Rd × [0, τ ] one has

LµV (x, t) ≤ Λ1[α](t) + Λ2[α](t)V (x).

We shall call such a function V a Lyapunov function for Lµ. It will be important below that

V is strictly positive.

Example 1.1. Condition (H1) is fulfilled, for example, if V (x) = 1 + |x|2 and

Lµu = (x,∇u)G
(∫

|y|2dµt

)
,

where G is a increasing nonnegative continuous function on [0,+∞). In this case

LµV = 2|x|2G
(∫

|y|2dµt

)
≤ 2G(α(t))V (x)

and LµV ≤ Λ1 + Λ2V , Λ1[α] ≡ 0 and Λ2[α] = 2G(α).

We also note that typical examples of Λ1 and Λ2 are mappings of the type α(t) 7→ G(α(t))

or

α(t) 7→
∫ t

0

G(α(s)) ds.

As it has been mentioned, in typical cases the coefficients are the convolutions with growing

functions, so we need that our coefficients be continuous with respect to some stronger (than

weak) convergence.

We shall say that a sequence of measures µn = (µn
t )t∈[0,τ ] in Mτ,α is V -convergent (or V -

converge) to a measure µ = (µt)t∈[0,τ ] in Mτ,α if for all t ∈ [0, τ ] one has

lim
n→∞

∫
F (x)dµn

t =

∫
F (x)dµt

for every continuous function F such that lim
|x|→∞

F (x)/V (x) = 0.

(H2) For all τ ∈ (0, τ0], α ∈ C+([0, τ0]), σ ∈Mτ,α, and x ∈ Rd the mappings

t 7→ aij(x, t, σ) or t 7→ bi(x, t, σ)

are Borel measurable on [0, τ ] and for each closed ball U ⊂ Rd the mappings

x 7→ bi(x, t, σ) or x 7→ aij(x, t, σ)

are bounded on U uniformly in σ ∈Mτ,α and t ∈ [0, τ ] and are equicontinuous on U uniformly

in σ ∈ Mτ,α and t ∈ [0, τ ]. Moreover, if a sequence µn ∈ Mτ,α is V -convergent to µ ∈ Mτ,α,

then for all (x, t) ∈ Rd × [0, τ ] one has

lim
n→∞

aij(x, t, µn) = aij(x, t, µ), lim
n→∞

bi(x, t, µn) = bi(x, t, µ).

Remark 1.1. (i) The continuity of the mappings x 7→ aij(x, t, µ) and x 7→ bi(x, t, µ) and the

measurability of t 7→ aij(x, t, µ) and t 7→ bi(x, t, µ) ensure that the mappings (x, t) 7→ aij(x, t, µ)

and (x, t) 7→ bi(x, t, µ) are measurable with respect to the Borel σ-algebra B(Rd × [0, τ ]) (see

[5, Lemma 6.4.6, Exercise 6.10.39]).
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(ii) For each t ∈ [0, τ ] the sequences aij(x, t, µn) and bi(x, t, µn) are uniformly in x convergent

on all balls U ⊂ Rd. This follows from their pointwise convergence, the uniform boundedness

and equicontinuity.

Note that we do not assume that the coefficients are continuous in t.

Example 1.2. Condition (H2) is fulfilled, for example, for

b(x, t, µ) =

∫
K(x, y)dµt

with a Lyapunov function V and a continuous vector field K on Rd × [0, τ ] which satisfy the

following estimate:

|K(x, y)| ≤ C1(x) + C2(x)V
1−γ(y),

where γ ∈ (0, 1) and C1(x), C2(x) are bounded functions.

Finally, we need one more assumption.

(H3) For each τ ∈ (0, τ0], each function α ∈ C+([0, τ0]) and each measure σ ∈ Mτ,α, the

matrix A(x, t, σ) = (aij(x, t, σ))1≤i,j≤d is symmetric and nonnegative definite, that is aij = aji

and for all ξ ∈ Rd one has (A(x, t, σ)ξ, ξ) ≥ 0.

Remark 1.2. One can see from the proof of the main theorem that it is sufficient that the

conditions (H1), (H2) and (H3) be fulfilled not on every set Mτ,α , but on some of them with

certain fixed τ and α, which are completely determined by the initial data in the Cauchy

problem and the mappings Λ1 and Λ2.

The main result of this paper is the following theorem.

Theorem 1.1. Let the coefficients aij and bi have properties (H1), (H2), (H3) above. Let also

the initial data ν be a probability measure on Rd and V ∈ L1(ν). Then the following assertions

are valid:

(i) There exists τ ∈ (0, τ0] such that the Cauchy problem (1) has a solution on the inter-

val [0, τ ].

(ii) If Λ1 and Λ2 are constant, then the Cauchy problem (1) has a solution on the whole

interval [0, τ0].

(iii) If Λ1[α] = 0 and Λ2[α](t) = G(α(t)), where G is a strictly increasing continuous positive

function on [0,+∞), then the Cauchy problem (1) has a solution on each interval [0, τ ], where

τ ∈ (0, τ0], τ < T and

T =

∫ +∞

u0

1

uG(u)
du, u0 =

∫
V (x) dν.

(iv) If Λ1[α](t) = G(α(t)) and Λ2[α] = 0, where G is a strictly increasing continuous positive

function on [0,+∞), then the Cauchy problem (1) has a solution on each interval [0, τ ], where

τ ∈ (0, τ0], τ < T and

T =

∫ +∞

u0

1

G(u)
du, u0 =

∫
V (x) dν.

Moreover, in all these cases for any solution (µt)t∈[0,τ ] one has µt are probability measures and

sup
t∈[0,τ ]

∫
V (x)dµt <∞.
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It is natural to call a solution of the Cauchy problem (1) on the whole interval [0, τ0] a global

solution and a solution on an interval [0, τ ], where τ < τ0, a local solution. In these terms, in

(i) we claim the existence of a local solution and in (ii) the existence of a global one.

The assertion in (ii) was established in a special case in [9]. The assertion in (iii) with T = +∞
was established in [18], where the well-posedness of the appropriate martingale problem was

proved (applications of probabilistic methods to the study of nonlinear parabolic equations are

also considered in [3]). The main difference between our results and the known ones is that,

on the one hand, we do not restrict the growth of the coefficients of Lµ, only the existence

of a Lyapunov function is needed, and, on the other hand, we do not use the exact form of

the coefficients. Thus we cover typical cases considered in [16], [19], [20], [11], [12], [15], and

[22]. Moreover, we do not assume that the coefficients belong to a Sobolev class or the class of

functions with bounded total variation, only their continuity is assumed. Also we investigate

the existence time for the solution and give the exact estimates of the moment after which the

solution does not exist. We note that in [16] the Vlasov equation is considered in the space

of finite measures with the Kantorovich norm and the existence is established by using the

contraction mapping theorem. In our more general case this theorem cannot be used, because,

for example, generally speaking, a solution is not unique. In [11], [12], [21], and [22], nonlinear

transport equations with coefficients of the convolution form are also studied in the space with

the Kantorovich norm and the solutions are regarded as geodesics. However, this approach is

based on the specific form of the coefficients. We also note that the stationary equation was

studied in [29].

This paper consists of 3 sections. The first one is the introduction, the formulation of the

problem and the main result. In the second section we prove Theorem 1.1 and give some

examples of its application. The proof of Theorem 1.1 is divided into several steps.

1. From the Schauder fixed-point theorem and the linear theory of parabolic equations for

measures we obtain the assertion of Theorem 1.1 in the case of a non-degenerate and sufficiently

smooth matrix A .

2. By using the method of “vanishing viscosity” we obtain the assertion of Theorem 1.1 in

the case of a degenerate and sufficiently smooth matrix A.

3. Finally, we proceed to the general case.

The main reason for such division (with respect to the smoothness of A) is that we need

the uniqueness of solution to an appropriate linear equation in order to apply the Schauder

theorem, and this is possible only with additional restrictions on the smoothness of A.

Finally, the last section is concerned with the lack of global solutions.

2. Proof of the theorem 1.1

We shall deal first with the case of a nondegenerate matrix A. This assumption enables

us to apply the linear theory with its broad conditions on the coefficients and it provides the

well-posedness of the Cauchy problem for the linear equation.

2.1. Nondegenerate case. In this section and in the following one we suppose that in place

of (H3) the following stronger condition is fulfilled:
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(H3’) condition (H3) is fulfilled and for every τ ∈ (0, τ0), each function α ∈ C([0, τ0]), each

closed ball U ⊂ Rd and each σ ∈Mτ,α, there exists a number λ = λ(σ, U) > 0 such that for all

x, y ∈ U , t ∈ [0, τ ] one has detA(x, t, σ) 6= 0 and the following estimate holds:

|A(x, t, σ)− A(y, t, σ)| ≤ λ|x− y|.

Moreover, we suppose that for each measure σ ∈Mτ,α there exist numbers C1 and C2 such that

|
√
A(x, t, σ)∇V (x)| ≤ C1 + C2V (x).

Let σ ∈Mτ,α. Consider the following Cauchy problem for the linear equation:

∂tµt = ∂xixj
(aij(x, t, σ)µt)− ∂xi

(bi(x, t, σ)µt), µ0 = ν.

It is proved in [6] (see Theorem 3.1) that (H1), (H2) and (H3’) are sufficient for the existence of

a probability solution µ = (µt)t∈[0,τ ]. We also observe that the existence result in the linear case

follows from the well-posedness of the appropriate martingale problem (see [28]). It is proved

in [27, Theorem 2.3] (see also [10]) that Conditions (H1), (H2) and (H3’) are sufficient for the

uniqueness of a probability solution. A survey of the principle results concerning the local and

global properties of solutions µ can be found in [8].

Hence the mapping Q : Mτ,α 7→ M(Rd × [0, τ ])

Q(σ) = χ⇐⇒ ∂tχt = ∂xixj
(aij(x, t, σ)χt)− ∂xi

(bi(x, t, σ)χt), χ0 = ν

is well defined.

It is obvious that µ is a solution of (1) if and only if µ is a fixed point of Q. Thus, it is

natural to prove the existence result employing the Schauder fixed-point theorem.

We observe that the uniqueness of a solution to the Cauchy problem for the linear equation

will be also used when we prove the continuity of Q.

By definition, a measure µ = (µt)t∈[0,τ ] ∈Mτ,α belongs to the set Nτ,α if and only if for each

ϕ ∈ C∞
0 (Rd) and all t, s ∈ [0, τ ] the following estimate holds:∣∣∣∣∫ ϕdµt −

∫
ϕdµs

∣∣∣∣ ≤ Λ(τ, α, ϕ)|t− s|, (3)

where

Λ(τ, α, ϕ) = sup
{
|Lµϕ(x, t)| : (x, t) ∈ Rd × [0, τ ], µ ∈Mτ,α

}
does not depend on µ ∈ Nτ,α. Note that sup in this definition is finite due to (H2).

In order to use the Schauder theorem we have to find a convex compact setK inM(Rd×[0, τ ])

such that Q(K) ⊂ K. With an appropriate choice of τ and α the set Nτ,α will be the required

compact.

Lemma 2.1. Every sequence of measures µn = (µn
t )t∈[0,τ ] in Nτ,α has a subsequence {µnl} such

that {µnl} converges weakly to µ ∈ Nτ,α and {µnl
t } converges weakly to µt for all t ∈ [0, τ ].

Proof. Taking into account the definition of Nτ,α and Chebyshev’s inequality, we obtain that

the set {µn
t } is uniformly tight for each t. Let T = {t1, t2, . . .} be a countable dense set in [0, τ ].

Prohorov’s theorem yields that for each j in µn
tj

there is a weakly convergent subsequence.

Using the diagonal method, we find a subsequence µnl
t which converges weakly for each t ∈ T .
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Let us show that it is a Cauchy sequence for all t ∈ [0, τ ]. Consider t ∈ [0, τ ], s ∈ T and

ϕ ∈ C∞
0 (Rd). One has∣∣∣∣∫ ϕdµ

np

t −
∫
ϕdµnk

t

∣∣∣∣ ≤ ∣∣∣∣∫ ϕdµ
np

t −
∫
ϕdµnp

s

∣∣∣∣ +

∣∣∣∣∫ ϕdµnp
s −

∫
ϕdµnk

s

∣∣∣∣ +

+

∣∣∣∣∫ ϕdµnk
s −

∫
ϕdµnk

t

∣∣∣∣ ≤ 2Λ(τ, α, ϕ) · |t− s|+
∣∣∣∣∫ ϕdµnp

s −
∫
ϕdµnk

s

∣∣∣∣ .
Choosing s close to t, we can make the first summand less than ε/2 for every given ε > 0. As

the sequence {µnl
s } converges, it is a Cauchy sequence, hence there is a number N such that

for all p, k > N the second summand is less than ε/2. So for each function ϕ ∈ C∞
0 (Rd) the

sequence

∫
ϕ(x) dµnl

t is a Cauchy sequence. Using the uniform tightness of µnl
t for each ε > 0

we find a ball U such that µnl
t (Rd\U) < ε for all l. Let f be a continuous bounded function

with |f(x)| ≤ M . Let ψ ∈ C∞
0 (Rd) be such that |f(x) − ψ(x)| < ε for every x ∈ U and

|ψ(x)| ≤M + 1. Then∣∣∣∣∫ fdµ
np

t −
∫
fdµnk

t

∣∣∣∣ ≤ ∫
U

|f − ψ| dµnp

t +

∫
U

|f − ψ| dµnk
t +

+

∣∣∣∣∫ ψdµ
np

t −
∫
ψdµnk

t

∣∣∣∣ +

∫
Rd\U

(|f |+ |ψ|) dµnp

t +

∫
Rd\U

(|f |+ |ψ|) dµnk
t ,

which is obviously bounded by

4ε(M + 1) +

∣∣∣∣∫ ψdµ
np

t −
∫
ψdµnk

t

∣∣∣∣ .
The last summand can be made as small as required by letting p → ∞ and k → ∞. So we

obtain that the sequence {µnl
t } is a Cauchy sequence for each t ∈ [0, τ ] and thus it converges

weakly to some measure µt for each t ∈ [0, τ ]. Hence for every continuous bounded function

f the mapping t 7→
∫
f dµt is Borel measurable on [0, τ ] as a limit of measurable functions.

Consider the class Φ of bounded Borel functions φ on Rd for which the mapping t 7→
∫
φ dµt is

Borel measurable on [0, τ ]. The set Φ contains the algebra of continuous bounded functions on

Rd and is closed with respect to uniform and monotone limits. By the monotone class theorem

(see [5, Theorem 2.19.9]) the set Φ contains all bounded Borel functions on Rd. In particular,

the mapping t→ µt(B) is Borel measurable on [0, τ ] for each Borel set B.

Consider µ = (µt)t∈[0,τ ]. Let us show that {µnl} converges weakly to µ. Let h be a continuous

bounded function on Rd × [0, τ ]. As shown above, for each fixed t one has

lim
l→∞

∫
h(x, t)dµnl

t =

∫
h(x, t)dµt.

The function h is bounded and each µnl
t is a probability measure, hence the quantities

∫
h(x, t)dµnl

t

are uniformly (with respect to t and nl) bounded. The Lebesgue dominated convergence theo-

rem yields that

lim
l→∞

∫ τ

0

∫
h(x, t)dµnl

t dt =

∫ τ

0

∫
h(x, t)dµtdt.

This gives the weak convergence of µnl to µ.
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Finally, we show that µ ∈ Nτ,α. By the weak convergence of {µnl
t } to µt one has∫

min{V (x), N} dµt ≤ α(t)

for each integer N . Letting N → ∞ and using Fatou’s lemma, we obtain that µ ∈ Mτ,α.

Letting l→∞ in the estimate∣∣∣∣∫ ϕdµnl
t −

∫
ϕdµnl

s

∣∣∣∣ ≤ Λ(τ, α, ϕ)|t− s|

we get ∣∣∣∣∫ ϕdµt −
∫
ϕdµs

∣∣∣∣ ≤ Λ(τ, α, ϕ)|t− s|.

This proves the lemma. �

Corollary 2.1. The set Nτ,α is a convex compact set in M(Rd × [0, τ ]).

Lemma 2.2. If a sequence of measures µn ∈ Nτ,α converges weakly, then it V -converges.

Proof. Let the sequence µn be weakly convergent to µ. Then for all t ∈ [0, τ ] the sequence of

measures µn
t converges weakly to µt. Indeed, using Lemma 2.1, in each subsequence of indices

nl we can find a subsequence {nlk} such that {µnlk
t } weakly converges to µt. Hence the whole

sequence {µn
t } converges weakly to µt. Let F be a continuous function on Rd. Consider the

function g(x) = F (x)(1 + V (x))−1, for which lim
|x|→∞

g(x) = 0. Then, for each ε > 0, there exists

a function ψ ∈ C∞
0 (Rd) such that |g(x)− ψ(x)| < ε for all x ∈ Rd. Therefore,∣∣∣∣∫ F dµn

t −
∫
F dµt

∣∣∣∣ =

∣∣∣∣∫ g(1 + V ) dµn
t −

∫
g(1 + V ) dµt

∣∣∣∣ ≤
≤

∣∣∣∣∫ ψ(1 + V ) dµn
t −

∫
ψ(1 + V ) dµt

∣∣∣∣ + ε(2 + 2α(t)).

Finally, we observe that the following identity holds due to the weak convergence of µn
t :

lim
n→∞

∣∣∣∣∫ ψ(1 + V ) dµn
t −

∫
ψ(1 + V ) dµt

∣∣∣∣ = 0.

This completes the proof. �

Corollary 2.2. Suppose that for some τ ∈ (0, τ0] and α ∈ C+([0, τ0]) one has Q(Nτ,α) ⊆ Nτ,α.

Then Q is a continuous mapping of Nτ,α to Nτ,α.

Proof. Suppose that µn, µ ∈ Nτ,α and the sequence {µn} converges weakly to µ. Set χn = Q(µn)

by definition. To prove convergence of {χn} it is sufficient to prove that in every subsequence

in {χn} there is a subsequence convergent to one and the same measure χ and that it satisfies

the equality Q(µ) = χ. Without loss of generality we prove this for {χn}.
Using Lemma 2.1 we find a subsequence of indices nk such that {χnk} converges weakly to

some measure χ ∈ Nτ,α. Moreover, {χnk
t } converges weakly to χt for each t ∈ [0, τ ]. Combining

convergence of µnk to µ and Lemma 2.2, we obtain V -convergence of µnk to µ.

Due to (H2) for each t ∈ [0, τ ] the sequences of functions x 7→ aij(x, t, µnk) and x 7→
bi(x, t, µnk) are equicontinuous and uniformly bounded and converge pointwise to aij(x, t, µ) and

bi(x, t, µ), respectively, on each ball U ⊂ Rd. Hence the sequences aij(x, t, µnk) and bi(x, t, µnk)

converge uniformly on U ⊂ Rd to aij(x, t, µ) and bi(x, t, µ), respectively.



9

Let us show that Q(µ) = χ. Let ϕ ∈ C∞
0 (Rd) and let U be a ball containing the support of

ϕ. Since Q(µnk) = χnk , one has∫
U

ϕdχnk
t −

∫
U

ϕdν =

∫ t

0

∫
U

Lµnkϕdχnk
s ds.

Note that ∫
U

Lµnkϕdχnk
s =

∫
U

(Lµnkϕ− Lµϕ)dχnk
s +

∫
U

Lµϕdχ
nk
s ds.

Letting k → ∞ we see that the first summand tends to zero due to the uniform convergence

of aij(x, s, µnk) and bi(x, s, µnk) on U , and the second one tends to

∫
U

Lµϕdχs due to the

weak convergence of {χnk
s } to χs. We recall that |Lµnkϕ| ≤ Λ(τ, α, ϕ). Hence the quantities∫

U

Lµnkϕdχnk
s are uniformly bounded. Using Lebesgue’s dominated convergence theorem we

obtain

lim
k→∞

∫ t

0

∫
U

Lµnkϕdχnk
s ds =

∫ t

0

∫
U

Lµϕdχs.

The sequence {χnk
t } converges weakly to χt for each t, so one has

∫
ϕdχnk

t →
∫
ϕdχt. Letting

k →∞ we obtain ∫
U

ϕdχt −
∫

U

ϕdν =

∫ t

0

∫
U

Lµϕdχds.

Since ϕ was arbitrary, we conclude that Q(µ) = χ. Finally, we observe that under our assump-

tions χ is uniquely defined. �

To complete the proof of Theorem 1.1 we have to find a number τ ∈ (0, τ0] and a function

α ∈ C+([0, τ ]) such that Q(Nτ,α) ⊆ Nτ,α. We emphasize that we need only the inclusion

Q(Mτ,α) ⊆Mτ,α, because Condition (3) holds automatically for any χ such that χ = Q(µ).

Lemma 2.3. Let µ ∈ Nτ,α and χ = Q(µ) on [0, τ ]. Then for all t ∈ [0, τ ] the following estimate

holds: ∫
V (x) dχt ≤ S[α](t) +R[α](t)

∫
V (x) dν,

where

R[α](t) = exp
(∫ t

0

Λ2[α](s) ds
)
, S[α](t) = R[α](t)

∫ t

0

Λ1[α](s)

R[α](s)
ds.

The mappings Λ1 and Λ2 are defined in Condition (H1).

Applying Lemma 2.3 we can find τ and α in each of cases (i)–(iv) in Theorem 1.1. In the

next corollary we find τ and α in case(i).

Corollary 2.3. There exist τ ∈ (0, τ0] and a constant function α(t) ≡ α > 0 such that

Q(Nτ,α) ⊆ Nτ,α.

Proof. Due to Lemma 2.3 for χ = Q(µ), where µ ∈ Nτ,α, one has∫
V dχt ≤ S[α](t) +R[α](t)

∫
V (x) dν.

Let

α = 2

∫
V dν + 1
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and note that the functions S[α] and R[α] do not depend on τ , because Λ1 and Λ2 do not

depend on τ . Moreover, limt→0 S[α](t) = 0 and limt→0R[α](t) = 1. Choosing τ such that

S[α](t) < 1 and R[α](t) < 2 for all t ∈ [0, τ ], we arrive at the estimate∫
V dχt ≤ α

for all t ∈ [0, τ ]. �

Let us find τ and α in case (ii) of Theorem 1.1.

Corollary 2.4. If the mappings Λ1 and Λ2 are constant, then for every τ0 there is a constant

function α(t) ≡ α on [0, τ0] such that Q(Nτ0,α) ⊆ Nτ0,α.

Proof. Let

α = max
t∈[0,τ0]

(
S(t) +R(t)

∫
V (x) dν

)
,

where S and R are the functions from Lemma 2.3. Note that S and R do not depend on α,

because they are functions of Λ1 and Λ2, which do not depend on α, that is, Λ1[α] = Λ1[0] and

Λ2[α] = Λ2[0]. Now it is obvious that ∫
V dχt ≤ α

for all t ∈ [0, τ0]. �

Let us find τ and α in case (iii) of Theorem 1.1.

Corollary 2.5. Suppose that Λ1[α] = 0 and Λ2[α](t) = G(α(t)), where G is a strictly increasing

continuous positive function on [0,+∞). Let

T =

∫ +∞

u0

du

uG(u)
, u0 =

∫
V (x) dν.

Then for each τ ∈ (0, τ0] with τ < T there exists a function α ∈ C+([0, τ0]) such that Q(Nτ,α) ⊆
Nτ,α.

Proof. Applying Lemma 2.3 for χ = Q(µ), we obtain∫
V dχt ≤

∫
V dν exp

(∫ t

0

G(α(s)) ds
)
.

Let τ ∈ (0, τ0], τ < T , and let the function α on [0, τ ] be defined by the following identity:

t =

∫ α(t)

α(0)

du

uG(u)
, α(0) =

∫
V (x) dν.

If τ < τ0, then we set α(t) = α(τ) for all t > τ . Then the function α is continuously differentiable

and strictly increasing on [0, τ ] and continuous on [0, τ0]. Moreover, α′ = αG(α). Hence for all

t ∈ [0, τ ] we have ∫
V dν exp

(∫ t

0

G(α(s)) ds
)

= α(t)α−1(0)

∫
V dν = α(t).

Thus, for this function α the inclusion µ ∈ Nτ,α yields that χ ∈ Nτ,α. �

Let us find τ and α in case (iv) of Theorem 1.1.
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Corollary 2.6. Suppose that Λ1[α](t) = G(α(t)) and Λ2[α] = 0, where G is a strictly increasing

continuous positive function on [0,+∞). Let

T =

∫ +∞

u0

du

G(u)
, u0 =

∫
V (x) dν.

Then for each τ ∈ (0, τ0] with τ < T there exists a function α ∈ C+([0, τ0]) such that Q(Nτ,α) ⊆
Nτ,α.

Proof. Applying Lemma 2.3 to χ = Q(µ), where µ ∈ Nτ,α, we obtain∫
V dχt ≤

∫
V dν +

∫ t

0

G(α(s)) ds.

Let τ ∈ (0, τ0], τ < T , and let the function α on [0, τ ] be defined by the following identity:

t =

∫ α(t)

α(0)

1

G(u)
du, α(0) =

∫
V dν.

If τ < τ0, then we set α(t) = α(τ) for all t > τ . Then the function α is continuously differentiable

and strictly increasing on [0, τ ] and continuous on [0, τ0]. Moreover, α′ = G(α). Hence for all

t ∈ [0, τ ] we have ∫
V dν +

∫ t

0

G(α(s)) ds = α(t) +

∫
V dν − α(0) ≤ α(t).

Thus, for this function α the inclusion µ ∈ Nτ,α yields that χ ∈ Nτ,α. �

Remark 2.1. Let us observe that in Corollaries 2.3, 2.4, 2.5, and 2.6 our choice of τ and

α has been completely determined by the mappings Λ1 and Λ2. Thus, one can assume that

Conditions (H1), (H2) and (H3’) are fulfilled on some fixed (and completely determined by Λ1

and Λ2) set Mτ,α.

Proof of Theorem 1.1 in the non-degenerate case. Using Corollaries 2.3, 2.4, 2.5,

and 2.6, for each case (i)–(iv) we find appropriate α and τ . According to Corollary 2.1, the

set Nτ,α is a convex compact set in M(Rd × [0, τ ]), hence, due to Corollary 2.2, the mapping

Q : Nτ,α → Nτ,α is continuous. Taking into account the Schauder theorem, we obtain that

there exists a measure µ ∈ Nτ,α that is a fixed point of Q. Hence it is a solution of the Cauchy

problem (1). �

2.2. Degenerate case. The proof of the main theorem in the degenerate case is based on the

well-known method of “vanishing viscosity” (see, e.g., [15, 26]). We assume again that all the

hypotheses of (H3’) hold except for the nondegeneracy of the matrix A, that is, we do not need

detA to be positive.

Let % ∈ C∞(Rd) with % > 0 be such that for all x ∈ Rd the following estimate holds:

%(x)(|∆V (x)|+ |∇V (x)|2) ≤ min{V (x), 1}.

Such a function % exists, because one has minV > 0 due to (H1). For each ε > 0 we consider

the following Cauchy problem:

∂tµt = ε%(x)∆µt + ∂xixj
(aij(x, t, µ)µt)− ∂xi

(bi(x, t, µ)µt), µ0 = ν. (4)
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Let us show that all the assertions in Theorem 1.1 in the non-degenerate case are fulfilled. First

we check (H1). Let

Lµ,ε := ε%∆ + Lµ.

Let ε ∈ (0, ε0). Then one has

Lµ,εV (x, t) = ε%(x)∆V (x) + LµV (x, t) ≤ ε0 min{V (x), 1}+ Λ1[α](t) + Λ2[α](t)V (x).

Thus, (H1) is fulfilled with Λ̂1[α](t) = Λ1[α](t) + ε0 instead of Λ1[α]. If one has Λ1 = 0 (like

in assertion (iii) in Theorem 1.1), then we replace Λ2 with Λ̂2[α](t) = Λ2[α](t) + ε0. We recall

that in (iii) and (iv) we take τ < T , where

T =

∫ +∞

u0

du

uG(u)
and T =

∫ +∞

u0

du

G(u)
,

respectively. We replace Λ1 with Λ1 + ε0 or Λ2 with Λ2 + ε0, so we have a new moment Tε0

with the function G + ε0 in place of T with the function G. Note that Tε0 < T and Tε0 → T

if ε0 → 0. Let ε0 > 0 be such that τ < Tε0 < T . It is obvious that (H2) and (H3’) are also

fulfilled. Hence, for each assertion (i)–(iv) in Theorem 1.1, taking into account Corollaries 2.3,

2.4, 2.5, and 2.6, one has appropriate τ and α. We recall that τ and α depend only on Λ1 and

Λ2 and hence they do not depend on ε. Let ε = 1/n < ε0. Using the non-degenerate case, we

obtain that for each n there exists a measure µn ∈ Nτ,α that is a solution to (4).

Applying Lemma 2.1, we obtain a subsequence of indices nk such that {µnk} converges weakly

to µ ∈ Nτ,α. Using Lemma 2.2 we obtain that this sequence V -converges to the measure µ. Tak-

ing into account (H2), we observe that for each t ∈ [0, τ ] the sequences of functions aij(x, t, µnk)

and bi(x, t, µnk) converge uniformly on every ball U ⊂ Rd. Let ϕ ∈ C∞
0 (Rd) and let U be a ball

containing the support of ϕ. The following identity holds:∫
U

ϕdµnk
t −

∫
U

ϕdν =

∫ t

0

∫
U

[n−1
k %∆ϕ+ Lµnkϕ]dµnk

s ds. (5)

Taking into account the uniform convergence of aij(x, s, µnk), bi(x, s, µnk) and the weak conver-

gence of µnk
s for each s ∈ [0, t], one has

lim
k→∞

∫
U

Lµnkϕdµnk
s =

∫
U

Lµϕdµs.

Since |Lµnkϕ| ≤ Λ(τ, α, ϕ), applying Lebesgue’s dominated convergence theorem we obtain

lim
k→∞

∫ t

0

∫
U

Lµnkϕdµnk
s ds =

∫ t

0

∫
U

Lµϕdµs ds.

It is obvious that

lim
k→∞

∫ t

0

∫
U

n−1
k %∆ϕdµs ds = 0.

Letting k →∞ in (5), we arrive at the equality∫
ϕdµt −

∫
ϕdν =

∫ t

0

∫
Lµϕdµsds.

Thus, µ is the required solution of (1).
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2.3. The case of a non-smooth matrix A. Now suppose that Conditions (H1), (H2), and

(H3) are fulfilled.

Let us begin with an important special case. We suppose that there exists a number R > 0

such that A(x, t, σ) ≡ 0 for all x if |x| > R. Then, taking into account (H2), for each τ ∈ (0, τ0]

and α ∈ C+([0, τ0]) there exists a number C(α, τ) > 0 such that |aij(x, t, σ)| ≤ C(α, τ) for all

x ∈ Rd, t ∈ [0, τ ] and σ ∈Mτ,α. Moreover, the mappings x 7→ aij(x, t, σ) are continuous on Rd

uniformly in σ ∈Mτ,α and t ∈ [0, τ ] .

Let ω ∈ C∞(Rd), ω ≥ 0, ω(x) = 0 if |x| > 1 and ‖ω‖L1(Rd) = 1. Whenever 0 < δ < 1, we set

ωδ(x) = δ−dω(x/δ) and Aδ = (aij
δ ), where

aij
δ (x, t, σ) = aij ∗ ωδ(x, t, σ) =

∫
aij(y, t, σ)ωδ(x− y) dy.

Note that Aδ(x, t, σ) ≡ 0 if |x| > R + 1. It is obvious that (H2) is fulfilled for Aδ and for

every measure σ the mapping Aδ(x, t, σ) is Lipschitzian uniformly in t. Moreover, the mapping

x 7→ A(x, t, σ) is equicontinuous in σ and t, hence for each ε > 0 there exists δ ∈ (0, 1) such

that for every x ∈ Rd, t ∈ [0, τ ] and σ ∈Mτ,α the following inequalities hold:

|A(x, t, σ)− Aδ(x, t, σ)| ≤
∫
|A(x, t, σ)− A(x+ y, t, σ)|ωδ(y) dy < ε.

Therefore, for each τ and α one can find a sequence δn > 0 such that for every σ ∈ Mτ,α the

following estimate holds:

max
(x,t)∈Rd×[0,τ ]

|A(x, t, σ)− An(x, t, σ)| < 1

n
, An = Aδn .

Let us consider a new operator

Ln,µu := aij
n ∂xi

∂xj
u+ bi∂xi

u.

Let ε0 > 0. Let Λ̂1[α](t) = Λ1[α](t) + ε0 and Λ̂2[α] = Λ2[α]. If one has Λ1 = 0 (like in assertion

(iii) in Theorem 1.1), the we replace Λ2 with Λ̂2[α](t) = Λ2[α](t) + ε0. We recall that in (iii)

and (iv) we take τ < T , where

T =

∫ +∞

u0

du

uG(u)
and T =

∫ +∞

u0

du

G(u)
,

respectively. We replace Λ1 with Λ1 + ε0 or Λ2 with Λ2 + ε0, so we have a new moment Tε0

with the function G+ ε0 in place of T with the function G. Note that Tε0 < T and Tε0 → T if

ε0 → 0. Let ε0 > 0 be such that τ < Tε0 < T . Hence for every assertion (i)–(iv) in Theorem 1.1,

taking into account Corollaries 2.3, 2.4, 2.5, and 2.6, one has appropriate τ and α. According

to Remark 2.1, it suffices to have Conditions (H1), (H2) and (H3’) only on this set Mτ,α.

There is an index N such that for every n > N and every measure µ ∈Mτ,α one has

|Ln,µV (x, t)− LµV (x, t)| = |(aij
n (x, t)− aij(x, t))∂xi

∂xj
V (x)| ≤ ε0 min{V (x), 1}.

We recall that Condition (H1) holds for Lµ . Let µ ∈Mτ,α and n > N . Then

Ln,µV = LµV +
(
Ln,µV − LµV

)
≤ Λ1 + Λ2V + ε0 min{V, 1} ≤ Λ̂1 + Λ̂2V.

Hence Condition (H1) is fulfilled on Mτ,α for Ln,µ if n > N . Moreover, τ and α are such that

Q(Nτ,α) ⊆ Nτ,α. We recall thatAn = 0 if |x| > R+1. Hence the condition |
√
An∇V | ≤ C1+C2V

is fulfilled for some constants C1 and C2. Therefore, Conditions (H1), (H2), and (H3’) hold and
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for each n > N there exists a solution µn to the Cauchy problem (1) with the operator Ln,µ

and the measures µn belong to Nτ,α. Also, as before, one can find a subsequence {µnk} that

is weakly and V -convergent to some measure µ ∈ Nτ,α. Let us show that for every function

ϕ ∈ C∞
0 (Rd) one has

lim
k→∞

∫ t

0

∫
Lnk,µnkϕdµnk

s ds =

∫ t

0

∫
Lµϕdµs ds. (6)

Indeed, we have∫ t

0

∫
Lnk,µnkϕdµnk

s ds =

∫ t

0

∫
(Lnk,µnkϕ − Lµnkϕ) dµnk

s ds +

∫ t

0

∫
Lµnkϕdµnk

s ds.

The first summand can be estimated as follows:∣∣∣∣∫ t

0

∫
Lnk,µnkϕ− Lµnkϕdµnk

s ds

∣∣∣∣ ≤ n−1
k tmax

x
|∂xi

∂xj
ϕ(x)|,

Hence it tends to zero. Repeating the reasoning from Subsection 2.2, we obtain

lim
k→∞

∫ t

0

∫
Lµnkϕdµnk

s ds =

∫ t

0

∫
Lµϕdµs ds.

This proves (6). For each k and every function ϕ ∈ C∞
0 (Rd) one has∫

ϕdµnk
t −

∫
ϕdν =

∫ t

0

∫
Lnk,µnkϕdµnk

s ds.

Letting k →∞, we arrive at the equality∫
ϕdµt −

∫
ϕdν =

∫ t

0

∫
Lµϕdµsds.

Hence µ is the required solution of (1).

Finally, we proceed to the general case and reduce it to the already studied case. Let

ψ ∈ C∞(Rd), 0 ≤ ψ ≤ 1, ψ(x) = 1 if |x| < 1 and ψ(x) = 0 if |x| > 2. Set ψn(x) = ψ(x/n)

and Ln,µ := ψnLµ. One can easily see that the matrix An of Ln,µ vanishes outside of the ball

|x| < n. It is obvious that Conditions (H2) and (H3) are fulfilled for Ln,µ. In addition, one has

Ln,µV = ψnLµV ≤ ψnΛ1 + ψnΛ2V ≤ Λ1 + Λ2V,

so (H1) is fulfilled. Let µn be a solution to the Cauchy problem with the operator Ln,µ. One

can assume again that µn belong to one and the same set Nτ,α. Repeating the same reasoning

with weak- and V -converging subsequence {µnk}, letting k →∞ and taking into account that

Ln,µϕ(x) = Lµϕ(x) if |x| < n, we complete the proof of Theorem 1.1.

2.4. Examples. Consider the following Cauchy problem:

∂tµt = div
(
µt

∫
∇W (x− y) dµt

)
, µ0 = ν. (7)

Proposition 2.1. Let W (x) = K(|x|), where K ∈ C2([0,+∞)), K(0) = 0, K ′(0) = 0,

K ′(u) > 0, K ′′(u) > 0 for u > 0 and there exist constants C1 > 0, C2 > 0 such that for all

u, v > 0 one has

K ′(u+ v) ≤ C1K(u) + C2K(v).
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Suppose also that Km(|x|) ∈ L1(ν) for some m > 1. Then there exists a positive number τ such

that the Cauchy problem (7) has a probability solution µ = (µt)t∈[0,τ ] on [0, τ ]. Moreover, one

has

sup
t∈[0,τ ]

∫
Km(|x|) dµt <∞.

Proof. It follows from our assumptions that aij = 0 and

b(x, t, µ) = −
∫
K ′(|x− y|)(x− y)

|x− y|
dµt.

Let V (x) = Km(|x|) + 1 . Note that

K ′(|x− y|) ≤ C1K(|x|) + C2K(|y|) ≤ C1K(|x|) + C2V
1−γ(y),

where γ = (m− 1)/m. Hence Condition (H2) is fulfilled and, as before, we only have to ensure

Condition (H1). Let f(u) = K ′(u). One has

(b(x, t, µ), x) = −
∫
f(|x− y|)(x− y, x)

|x− y|
dµt ≤

≤ −
∫
f(|x− y|)|x− y| dµt +

∫
f(|x− y|)|y| dµt.

We recall that for c, d > 0 the following Young inequality holds:

cd ≤
∫ c

0

f−1(s) ds+

∫ d

0

f(t) dt,

where f−1 is the inverse function to f . Applying this inequality to f(|x− y|)|y| and using that∫ f(|x−y|)

0

f−1(u) du ≤ |x− y|f(|x− y|),

one obtains

(b(x, t, µ), x) ≤
∫ (∫ |y|

0

f(u) du
)
dµt.

Notice that ∇V (x) = mKm−1(|x|)f(|x|)x/|x|. Hence for some c1 > 0 and c2 > 0 one has

LµV (x, t) ≤
(
c1 + c2V (x)

)(∫
V (y) dµt

)1/m

=
(
c1 + c2V (x)

)
α1/m(t).

This yields (H1). Finally, we apply assertion (i) in Theorem 1.1. �

Let τ0 > 0 and let a(x, t) be a nonnegative continuous function on Rd × [0, τ0] and b(x, t) be

a continuous vector field on Rd× [0, τ0]. Let F be a continuous nonnegative function on Rd and

let G be a strictly increasing continuous positive function on [0,+∞), G(0) > 1. Let us set

b(x, t, µ) = b(x, t)G
(∫

F (y) dµt

)
.

Consider the following Cauchy problem:

∂tµt = a(x, t)∆µt + div
(
µtb(x, t, µ)

)
, µ0 = ν, (8)
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Proposition 2.2. Suppose that there exists a function V ∈ C2(Rd) such that

V ≥ 1, lim
|x|→+∞

V (x) = +∞, lim
|x|→+∞

F (x)/V (x) = 0

and for some constants C1 and C2 and all (x, t) ∈ Rd × [0, τ0] one has

a(x, t)|∆V (x)|+ (b(x, t),∇V (x)) ≤ C1 + C2V (x).

Let V ∈ L1(ν). Then there exists τ ∈ (0, τ0] such that on [0, τ ] the Cauchy problem (8) has a

probability solution µ = (µt)t∈[0,τ ]. Moreover, one has

sup
t∈[0,τ ]

∫
V (x) dµt <∞.

Furthermore, if one has ∫ +∞

u0

du

uG(u)
= +∞, u0 =

∫
V dν.

then a solution exists on the whole interval [0, τ0].

Proof. Let µ ∈Mτ,α. Note that

LµV (x, t) = a(x, t)∆V + (b(x, t),∇V (x))G(α(t)) =

= a(x, t)∆V + (b(x, t),∇V (x)) + (b(x, t),∇V (x))(G(α(t))− 1) ≤ (C1 + C2V )G(α(t)).

The required assertion follows immediately from Theorem 1.1. �

For example, let a = 1 and V (x) = exp(M |x|r), where M > 0 and r ≥ 2. To ensure the

hypotheses of Proposition 2.2 we need the following two estimates:

exp(M |x|r) ∈ L1(ν), |F (x)| ≤ exp(M ′|x|r), M ′ < M

and, for some c1 and c2 > drM and all (x, t) ∈ Rd × [0, τ0],

(b(x, t), x) ≤ c1 − c2|x|r.

3. The absence of global solutions

In this section we obtain sufficient conditions for the absence of global solutions. Let us

observe that there is an extensive literature concerned with the so-called “blow-up” of solutions

to such equations, see [24, 25, 4, 12, 21].

We recall that if one has Λ1[α] = 0 and Λ2[α](t) = G(α(t)) in (H1), then, under Conditions

(H2) and (H3), assertion (iii) in Theorem 1.1 gives the existence of solutions on each interval

[0, τ ], where

τ <

∫ +∞

u0

du

uG(u)
.

A similar assertion is given in (iv). Our next theorem shows that, in a sense, such estimates

for the existence time are exact.

Theorem 3.1. Let V ∈ C2(Rd), V ≥ 0, lim
|x|→∞

V (x) = +∞. Let G be a continuous positive

increasing function on [0,+∞). Suppose that the coefficients of the operator

Lµ = aij(x, t, µ)∂xi
∂xj

+ bi(x, t, µ)∂xi

are defined on every set Mτ,α(V ) and for all µ ∈Mτ,α(V ) and all (x, t) ∈ Rd × [0, τ ] one has
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(i) LµV (x, t) ≥ G

(∫
V (x)dµt

)
V (x)

or

(ii) LµV (x, t) ≥ G

(∫
V (x)dµt

)
.

Suppose that |
√
A(x, t, µ)∇V (x)|2 ≤ C1 + C2V (x) for some C1 > 0 and C2 > 0. Suppose

that u0 =

∫
V dν > 0 and in case (i) one has

T =

∫ ∞

u0

du

uG(u)
< +∞,

and in case (ii) one has

T =

∫ ∞

u0

du

G(u)
< +∞.

Then the Cauchy problem (1) has no probability solution µ = (µt)t∈[0,T ] on [0, τ ] with τ ≥ T

and

sup
t∈[0,T ]

∫
V (x) dµt <∞.

Proof. We first consider (i). Let τ > 0. If µ = (µt)t∈[0,τ ] is a solution to the Cauchy problem,

then for every ϕ ∈ C∞
0 (Rd) one has∫

ϕdµt −
∫
ϕdν =

∫ t

0

∫
Lµϕdµsds.

Let ζm ∈ C∞[0,+∞) be such that 0 ≤ ζ
′
m(z) ≤ 1, ζ

′′
m ≤ 0, ζm(z) = z for z ≤ m − 1, and

ζm(z) = m for z > m. Set ϕ(x) = ζm(V (x))−m. We note that

Lµζm(V ) = ζ
′

m(V )LµV + ζ
′′

m(V )(A∇V,∇V ).

Hence∫
ζm(V )dµt =

∫
ζm(V (x))dν +

∫ t

0

∫
ζ

′

m(V )LµV dµsds+

∫ t

0

∫
ζ

′′

m(V )|
√
A∇V |2dµsds,

which has a lower bound∫
ζm(V )dν +

∫ t

0

∫
ζ

′

m(V )V G

(∫
V dµs

)
dµsds−

∫ t

0

∫
|V |≥m

|ζ ′′

m(V )|(C1 + C2V )dµsds.

Letting m→∞ and taking into account that V ∈ L1(µ), we obtain that∫
V dµt ≥

∫
V dν +

∫ t

0

G

(∫
V dµs

) ∫
V dµsds.

Let

H(u) = G(u)u, g(t) :=

∫
V dν +

∫ t

0

H

(∫
V dµs

)
ds.

Then the inequality can be rewritten as H−1(g
′
(t)) ≥ g(t) or, in other words, g

′
(t) ≥ H(g(t)).

Dividing it by H(g) = gG(g) and integrating over [0, t], we arrive at the following inequality

for all t:

t ≤
∫ g(t)

g(0)

du

uG(u)
≤

∫ +∞

g(0)

du

uG(u)
= T.
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We recall that g(0) =

∫
V (x) dν. Let τ ≥ T . Then for t = T we have g(t) = +∞ and this

contradicts the estimate sup
t∈[0,τ ]

∫
V (x) dµt <∞. The proof in case (ii) is analogous. �

Example 3.1. Consider the Cauchy problem (1) with

aij = 0, b(x, t, µ) = x

∫
|y|2dµt.

Suppose that |x|p ∈ L1(ν) for some p > 2. Let m ∈ (2, p). Then

Lµ|x|m = (b,∇|x|m) = m|x|m
∫
|y|2 dµt.

Thus, for V (x) = δ + |x|m with δ > 0 one has

LµV ≤ mV

(∫
V dµt

)2/m

and hence, according to assertion (iii) of Theorem 1.1, there exists a solution (µ)[0,τ ] on [0, τ ]

whenever

τ <

∫ +∞

u0

du

mu1+2/m
=

1

2u
2/m
0

, u0 = δ +

∫
|x|m dν.

Taking into account that m is an arbitrary number in (2, p) and δ is an arbitrary positive

number, letting m → 2 and δ → 0, we obtain that a solution exists on [0, τ ] for each moment

τ <
(
2

∫
|x|2 dν

)−1

. If

∫
|x|2 dν > 0 (that is, ν is not Dirac’s measure δ0 at the origin), then

the hypotheses in assertion (i) in Theorem 3.1 with the function V (x) = |x|2 are fulfilled. Hence

there is no solution on [0, τ ] for τ ≥
(
2

∫
|x|2 dν

)−1

. It can be easily proved that µt ≡ δ0 is a

solution of the Cauchy problem with the initial measure ν = δ0 on each [0, τ ].
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