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Abstract

We consider Fokker–Planck–Kolmogorov equations with unbounded coefficients and obtain
upper estimates of solutions. We also obtain new estimates involving Lyapunov functions.

1. Introduction

The goal of this work is to obtain upper estimates of solutions of the Fokker–Planck–
Kolmogorov equation

∂tµ = ∂xi
∂xj

(
aijµ

)
− ∂xi

(
biµ

)
+ cµ. (1.1)

Throughout the summation over repeated indices is meant. Let T > 0. We shall say that a
locally finite Borel measure µ on Rd×(0, T ) is given by a flow of Borel measures (µt)t∈(0,T )

if for every Borel set B ⊂ Rd the mapping t→ µt(B) is measurable and for every function
u ∈ C∞

0 (Rd × (0, T )) one has∫
Rd×(0,T )

u(x, t)µ(dx dt) =

∫ T

0

∫
Rd

u(x, t)µt(dx) dt.

A typical example is µ(B) = P (xt ∈ B) dt, where xt is a random process. Set

Lu = aij∂xi
∂xj

u+ bi∂xi
u+ cu.

We shall say that a measure µ = (µt)t∈(0,T ) satisfies equation (1.1) if aij, bi and c are
locally integrable with respect to the measure |µ| (the total variation of µ) and∫ T

0

∫
Rd

[
∂tu(x, t) + Lu(x, t)

]
µt(dx) dt = 0

for every u ∈ C∞
0 (Rd × (0, T )). The measure µ satisfies the initial condition µ|t=0 = ν,

where ν is a Borel locally finite measure on Rd, if for every function ζ ∈ C∞
0 (Rd) there

holds the equality

lim
t→0

∫
Rd

ζ(x)µt(dx) =

∫
Rd

ζ(x) ν(dx).

The following assertion is trivial and can be found in [3], [9].

Lemma 1.1. Let µ = (µt)t∈(0,T ) be a solution of equation (1.1), let u ∈ C1,2(Rd × (0, T ))
be such that u(t, x) = 0 if x 6∈ U for some ball U ⊂ Rd. Then there exists a set Ju ⊂ (0, T )
of full Lebesgue measure in (0, T ) such that for all s, t ∈ Ju∫

Rd

u(x, t)µt(dx) =

∫
Rd

u(x, s)µs(dx) +

∫ t

s

∫
Rd

[
∂τu(x, τ) + Lu(x, τ)

]
µτ (dx) dτ.

Moreover, if, in addition, u ∈ C(Rd × [0, T )), the measure µ = (µt)0<t<T satisfies the
initial condition µ|t=0 = ν and aij, bi, c ∈ L1(U × [0, T ], µ), then we may assume that for
every t ∈ Ju∫

Rd

u(x, t)µt(dx) =

∫
Rd

u(x, 0) ν(dx) +

∫ t

0

∫
Rd

[
∂τu(x, τ) + Lu(x, τ)

]
µτ (dx) dτ.
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We shall say that a Borel measure σ is a subprobability on Rd if σ ≥ 0 and σ(Rd) ≤ 1.
A subprobability measure σ on Rd is probability if σ(Rd) = 1.

A function V ∈ C1,2(Rd× (0, T ))
⋂
C(Rd× [0, T )) is termed a Lyapunov function if for

every closed interval [a, b] ⊂ (0, J) one has

lim
|x|→+∞

min
t∈[a,b]

V (x, t) = +∞.

We shall obtain Lp and L∞ local and global estimates of the densities of solutions of
equation (1.1). Our main interest is in the case of unbounded coefficients of the operator L.
If the coefficients are globally bounded or have a linear growth, then there are well-known
Gaussian estimates (see, e.g., [1] and [13]).

Global boundedness of the densities (with upper estimates) for solutions of the Cauchy
problem for equation (1.1) without any restrictions on the growth of coefficients is estab-
lished in [6] for sufficiently regular initial conditions. More precisely, the existence of a
density of the initial condition with finite entropy is required. In [2], [10], [11] and [16]
the transition kernels of the semigroup {Tt} are investigated such that for every nonnega-
tive bounded continuous function f the function Ttf is the minimal nonnegative solution
of the Cauchy problem ∂tu = Lu, u|t=0 = f . It is assumed there that the coefficients
are locally Hölder continuous and the diffusion matrix A is uniformly nondegenerate and
continuously differentiable. Moreover, the coefficients do not depend on t. The principal
results of the cited papers give certain upper estimates of the kernel densities and the con-
tinuity of semigroup Tt in various functional classes. The conditions on the coefficients in
these papers are formulated in terms of certain Lyapunov functions. The kernel of {Tt}
satisfies equation (1.1), but the initial condition is Dirac’s measure, so the results from
[6] do not apply.

In [14] and [15], some estimates of densities are obtained for arbitrary initial conditions.
The main idea of these works is to deduce global bounds from local estimates in [4] by
using appropriate scalings. Note that in [14] and [15] the coefficients b and c are assumed
to be only integrable, but the diffusion matrix is assumed to uniformly bounded, uniformly
nondegenerate and uniformly Lipschitzian.

In the present work we generalize the results from [14] and [15] to the case where
the diffusion matrix can be unbounded and need not be uniformly elliptic. Moreover,
we generalize the estimates from [11] and [16] involving Lyapunov functions. The main
difference between the estimates from [11], [16] and the usual estimates with Lypunov
functions is that the former do not depend on the initial condition.

It is worth mentioning that various lower estimates are considered in [7]. The existence
and uniqueness problems are investigated in [3] and [9]. A recent survey on elliptic and
parabolic equations for measures is given in [5].

The next section is concerned with estimates involving Lyapunov functions. In the last
section we obtain local and global Lp and L∞ estimates and investigate the behavior of
densities at infinity.

2. Estimates with Lyapunov functions

In this section we assume that c ≤ 0 and investigate a solution µ that is given by a
family of nonnegative measures µt such that |c| ∈ L1(µ) and

µt(Rd) ≤ ν(Rd) +

∫ t

0

∫
Rd

c(x, s)µs(dx) ds. (2.1)

In particular, µt are subprobability measures on Rd. There are no other restrictions on
the coefficients aij, bi and c.
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Note that the kernels considered in [10] satisfy condition (2.1). Moreover, in the case of
globally bounded coefficients any solution µ which is given by a family of subprobability
measures (µt)t∈(0,T ) satisfies condition (2.1). Note also that if c is continuous and µt is a
weak limit of a sequence of measures µn

t satisfying (2.1), then condition (2.1) is fulfilled
for each µt. Hence this condition is fulfilled for every solution µ obtained as a limit of
solutions of equations with bounded coefficients. Thus, this is a natural condition that is
a generalization of the hypothesis that µt is a subprobability measure for almost all t in
the case c = 0.

Theorem 2.1. Let µ = (µt)0<t<T be a solution of the Cauchy problem ∂tµ = L∗µ,
µ|t=0 = ν such that c ≤ 0, µt and ν are subprobability measures on Rd and condition (2.1)
holds. Assume that there exists a Lyapunov function V such that for some positive func-
tions K,H ∈ L1((0, T )) one has

∂tV (x, t) + LV (x, t) ≤ K(t) +H(t)V (x, t).

Assume also that V ( · , 0) ∈ L1(ν). Then for almost all t ∈ (0, T )

µt(Rd) = ν(Rd) +

∫ t

0

∫
Rd

c(x, s)µs(dx) ds

and ∫
Rd

V (x, t)µt(dx) ≤ Q(t) +R(t)

∫
Rd

V (x, 0) ν(dx),

where

R(t) = exp
(∫ t

0

H(s) ds
)
, Q(t) = R(t)

∫ t

0

K(s)

R(s)
ds.

Proof. Let ζN ∈ C2([0,+∞)) be such that 0 ≤ ζ ′ ≤ 1, ζ ′′ ≤ 0, and ζN(s) = s if s ≤ N − 1
and ζ(s) = N if s > N + 1. Substitute the function u = ζN(V ) − N in the equality in
Lemma 1.1. We obtain∫

Rd

ζN(V (x, t))µt(dx) =

∫
Rd

ζN(V (x, s))µs(dx)+

+

(
µt(Rd)− ν(Rd)−

∫ t

0

∫
Rd

c(x, τ)µτ (dx) dτ

)
N+

+

∫ t

s

∫
Rd

(
ζ ′N(V )(∂tV + LV + ζ ′′N(V )|

√
A∇V |2

)
µτ (dx) dτ+

+

∫ t

s

∫
Rd

c (ζN(V )− ζ ′N(V )V ) µτ (dx) dτ.

Noting that zζ ′N(z) ≤ ζN(z), we have∫
Rd

ζN(V (x, t))µt(dx) ≤
∫

Rd

ζN(V (x, s))µs(dx)+(
µt(Rd)− ν(Rd)−

∫ t

0

∫
Rd

c(x, τ)µτ (dx) dτ

)
N+

+

∫ t

s

K(τ) +H(τ)

∫
Rd

ζN(V (x, τ))µτ (dx) dτ,
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Letting s→ 0, we arrive at the inequality∫
Rd

ζN(V (x, t)) dµt ≤

≤
∫

Rd

ζN(V (x, 0)) dν +

(
µt(Rd)− ν(Rd)−

∫ t

0

∫
Rd

c(x, τ)µτ (dx) dτ

)
N+

+

∫ t

0

K(τ) +H(τ)

∫
Rd

ζN(V (x, τ))µτ (dx) dτ. (2.2)

Since

µt(Rd) ≤ ν(Rd) +

∫ t

0

∫
Rd

c(x, τ)µτ (dx) dτ,

the last inequality can be rewritten as∫
Rd

ζN(V (x, t))µt(dx) ≤
∫

Rd

ζN(V (x, 0)) ν(dx)+

+

∫ t

0

K(τ) +H(τ)

∫
Rd

ζN(V (x, τ))µτ (dx) dτ.

Applying Gronwall’s inequality we obtain∫
Rd

ζN(V (x, t))µt(dx) ≤ Q(t) +R(t)

∫
Rd

ζN(V (x, 0)) ν(dx).

Letting N →∞, we obtain the required estimate. Note that if

µt(Rd) < ν(Rd) +

∫ t

0

∫
Rd

c(x, τ)µτ (dx) dτ,

then∫
Rd

V (x, t)µt(dx)−
∫

Rd

V (x, 0) ν(dx)−
∫ t

0

K(τ) +H(τ)

∫
Rd

V (x, τ)µτ (dx) dτ = −∞,

which is impossible. Hence

µt(Rd) = ν(Rd) +

∫ t

0

∫
Rd

c(x, τ)µτ (dx) dτ,

which completes the proof. �

Corollary 2.2. Let µ = (µt)0<t<T be a solution of the Cauchy problem ∂tµ = L∗µ,
µ|t=0 = ν, where c ≤ 0, µt and ν are subprobability measures on Rd and condition (2.1)
holds. Let a positive function W ∈ C2(Rd) be such that lim

|x|→+∞
W (x) = +∞.

(i) If for some number C > 0 and almost every (x, t) ∈ Rd × (0, T ) there holds the
inequality

LW (x, t) ≤ C + CW (x),

then for almost every t ∈ (0, T ) we have∫
Rd

W (x)µt(dx) ≤ exp(Ct) + exp(Ct)

∫
Rd

W (x) ν(dx).

(ii) Let G be a positive continuous increasing function on [0,+∞) such that∫ +∞

1

ds

sG(s)
< +∞.
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Let η be a continuous function on [0, T ) defined by the equality

t =

∫ η(t)

0

ds

sG(s−δ)
, δ ∈ (0, 1).

If for some number C > 0 and almost every (x, t) ∈ Rd × (0, T ) there holds the inequality

LW (x, t) ≤ C −W (x)G(W (x)),

then for almost every t ∈ (0, T ) we have∫
Rd

W (x)µt(dx) ≤
1

(1− δ)ηδ(t)
+

C

η(t)

∫ t

0

η(s) ds.

(iii) Let G and η be the functions mentioned in (ii). Assume that for some number
C > 0 and almost every (x, t) ∈ Rd × (0, T ) there holds the inequality

LW (x, t) + η(t)|
√
A(x, t)∇W (x)|2 ≤ C −W (x)G(W (x)).

Then for almost every t ∈ (0, T )∫
Rd

exp
(
η(t)W (x)

)
µt(dx) ≤ exp

(
(1− δ)−1η1−δ(t) + C

∫ t

0

η(s) ds
)
.

Proof. In order to prove (i) it is enough to apply Theorem 2.1 with H(t) = K(t) = C and
V (x, t) = W (x).

Let us prove (ii). Let V (x, t) = η(t)W (x). Set

∂tV (x, t) + LV (x, t) ≤ η′(t)W (x)− η(t)W (x)G(W (x)) + Cη(t).

Note that for all nonnegative numbers α and β

αβ ≤ αG−1(α) + βG(β),

where G−1 is the inverse function to G. Applying this inequality with α = η′/η and
β = W , we obtain

∂tV (x, t) + LV (x, t) ≤ η′(t)G−1
(
η′(t)/η(t)

)
+ Cη(t) =

η′(t)

ηδ(t)
+ Cη(t),

because our assumptions imply that η′(t) = η(t)G(η−δ(t)).

Applying Theorem 2.1 with H(t) = 0 and K(t) = η′(t)
ηδ(t)

+ Cη(t), we arrive at to the

required inequality.
Let us prove (iii). Let V (x, t) = exp

(
η(t)W (x)

)
. Then

∂tV (x, t) + LV (x, t) ≤
[
η′(t)W (x)− η(t)W (x)G(W (x)) + Cη(t)

]
exp

(
η(t)W (x)

)
.

Hence

∂tV (x, t) + LV (x, t) ≤
[ η′(t)
ηδ(t)

+ Cη(t)
]
exp

(
η(t)W (x)

)
.

Applying Theorem 2.1 with K(t) = 0 and

H(t) =
η′(t)

ηδ(t)
+ Cη(t),

we obtain the required assertion. �

Let us consider several examples.
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Example 2.3. Set V (x, t) = |x|r, where r ≥ 2. Then

LV (x, t) = r|x|r−2traceA(x, t)+r(r−2)|x|r−4(A(x, t)x, x)+r|x|r−2(b(x, t), x)+ |x|rc(x, t).
Assume that for some numbers C1 > 0, C2 > 0 and all (x, t) ∈ Rd × [0, T ] we have

rtraceA(x, t) + r(r − 2)|x|−2(A(x, t)x, x) + r(b(x, t), x) + |x|2c(x, t) ≤ C1 + C2|x|2.
Let |x|r ∈ L1(ν). Then ∫

Rd

|x|r µt(dx) ≤ eC3t + eC3t

∫
Rd

|x|r ν(dx)

for almost every t ∈ (0, T ) and some C3 > 0.

Example 2.4. Set V (x, t) = exp(α|x|r), where r ≥ 2. Then

LV (x, t) = exp(α|x|r)
[
αr|x|r−2traceA(x, t)+

+ αr(r − 2)|x|r−4(A(x, t)x, x) + α2r2|x|2r−4(A(x, t)x, x)+

+ αr|x|r−2(b(x, t), x) + c(x, t)
]
.

Suppose that there exists a number C1 such that for every (x, t) ∈ Rd × [0, T ] we have

αr|x|r−2traceA(x, t)+

+ αr(r − 2)|x|r−4(A(x, t)x, x) + α2r2|x|2r−4(A(x, t)x, x)+

+ αr|x|r−2(b(x, t), x) + c(x, t) ≤ C1.

If exp(|x|r) ∈ L1(ν), then∫
Rd

exp(α|x|r)µt(dx) ≤ eC2t + eC2t

∫
Rd

exp(α|x|r) ν(dx).

for almost all t ∈ (0, T ).

Example 2.5. Let k > 2 and r ≥ 2. Assume that

rtraceA(x, t) + r(r − 2)|x|−2(A(x, t)x, x) + r(b(x, t), x) + |x|2c(x, t) ≤ C1 − C2|x|k,
where C1 > 0 and C2 > 0. Then

L|x|r ≤ C3 − C3|x|r+k−2

for some C3 > 0. Set W (x) = |x|r and G(z) = C3z
σ, where σ = (k − 2)/r > 0. Hence

LW (x, t) ≤ C3 −WG(W (x)).

Then η(t) = C4t
1

δσ , where C4 depends on C3, δ and σ. By Corollary 2.2 we obtain the
estimate ∫

Rd

|x|r µt(dx) ≤
γ

t
r

k−2

,

where γ depends on C1, C2, δ, σ.

Example 2.6. Let r > 2 and k > r. Assume that

αr|x|r−2traceA(x, t)+

+ αr(r − 2)|x|r−4(A(x, t)x, x) + α2r2|x|2r−4(A(x, t)x, x)+

+ αr|x|r−2(b(x, t), x) + c(x, t) ≤ C1 − C2|x|k,
where C1 > 0 and C2 > 0. Then

L exp(α|x|r) ≤ C3 − C3|x|k exp(α|x|r)
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for some C3 > 0. Set W (x) = exp(α|x|r) and G(z) = C3| ln z|σ if z ≥ 2, where σ = k
r
> 1.

We obtain
LW (x, t) ≤ C3 −WG(W (x)).

Then η(t) = C4 exp(−C5t
−1

σ−1 ), where C4 > 0 and C5 > 0 depend on C3, δ and σ. By
Corollary 2.2 we have ∫

Rd

exp(α|x|r)µt(dx) ≤ γ1 exp
( γ2

t
r

k−r

)
,

where γ1 and γ2 depend on C1, C2, δ and σ.

Example 2.7. Let r > 2, k > 2 and α > 0. Assume that

αrtraceA(x, t) + αr(r − 2)|x|−2(A(x, t)x, x)+

+ αr(b(x, t), x) + α|x|2c(x, t) + α2r2|x|r−2(A(x, t)x, x) ≤ C1 − C2|x|k,
where C1 > 0 and C2 > 0. Then

αL|x|r + α2r2|x|2r−4(A(x, t)x, x) ≤ C3 − C3|x|k+r−2.

Set W (x) = α|x|r and G(z) = C3α
−(1+σ)/σzσ, where σ = k−2

r
> 0. We obtain

LW (x, t) + |
√
A(x, t)∇W (x)|2 ≤ C3 −WG(W (x)).

Hence we can apply Corollary 2.2 with δ ∈ (0, 1), η(t) = C4t
1

δσ , where C4 depends on C3,
δ and σ. Thus, for every β > r

k−2
we obtain the estimate∫

Rd

exp(αtβ|x|r)µt(dx) ≤ γ1 exp
(
γ2(t

β− r
k−2 + tβ+1)

)
,

where the numbers γ1 and γ2 depend on C1, C2, r and β.

Note that the estimates in Examples 2.6 and 2.7 do not depend on the initial condition.
If we apply these estimates to the transition probabilities P (y, 0, t, dx) of the correspond-
ing processes, then the resulting estimates will be uniform in y. Such estimates for kernels
of diffusion semigroups (with possibly rapidly growing drifts) were first obtained in [11]
and [16].

3. Local and global bounds of solutions

In this section we obtain local and global Lp and L∞ estimates of densities of solutions.
The main idea is to use a modification of Moser’s iteration method (see [12]). We start
with local estimates and then we obtain global estimates by using local one and a suitable
scaling.

Let µ = (µt)t∈(0,T ) be a nonnegative solution of equation (1.1).
We assume that A = (aij) is a symmetric matrix satisfying the following condition:
(H1) for some number p > d+ 2, every ball U ⊂ Rd and every segment J ⊂ (0, T ) one

has
sup
t∈J

‖ai,j( · , t)‖W 1,p(U) <∞

and
0 < λ(U, J) := inf

{
(A(x, t)ξ, ξ) : |ξ| = 1, (x, t) ∈ U × J

}
.

We also suppose that
(H2) for some number p > d+2, every ball U ⊂ Rd and every closed interval J ⊂ (0, T )

one has
b, c ∈ Lp(U × J) or b, c ∈ Lp(U × J, µ).

According to [4, Corollary 3.9] and [8, Corollary 2.2], conditions (H1) and (H2) yield
existence of a Hölder continuous density % of the solution µ with respect to Lebesgue
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measure. Moreover, for every ball U ⊂ Rd and every closed interval J ⊂ (0, T ) we have
%( · , t) ∈ W 1,p(U) and ∫

J

‖%( · , t)‖p
W 1,p(U) dt <∞.

Set Bi = bi − ∂xj
aij. Then we can rewrite equation (1.1) in the divergence form

∂t% = div
(
A∇%−B%

)
+ c%, (3.1)

which is understood in the sense of the integral identity∫ T

0

∫
Rd

[
−%∂tϕ+ (A∇%,∇ϕ)

]
dx dt =

∫ T

0

∫
Rd

[
(B,∇ϕ)%+ c%ϕ

]
dx dt (3.2)

for every function ϕ ∈ C∞
0 (Rd × (0, T )).

Recall the following embedding theorem (see [6, Lemma 3.1] or [1]).

Lemma 3.1. Let J be a closed interval in (0, T ) and let u( · , t) ∈ W 1,2(Rd) be such that
x 7→ u(x, t) has compact support for almost all t ∈ J . Then there exists a constant C > 0
depending only on d such that

‖u‖L2(d+2)/2(Rd×J) ≤ C
(
sup
t∈J

‖u( · , t)‖L2(Rd) + ‖∇u‖L2(Rd×J)

)
.

Note that now we do not assume that c is a nonpositive function.
Let c+(x, t) = max{c(x, t), 0}.
The following lemma is the key step of our proof.

Lemma 3.2. Let m ≥ 1. Let U ⊂ Rd be a ball and let [s1, s2] ⊂ (0, T ). Assume
that ψ ∈ C∞

0 (Rd × (0, T )) is such that the support of ψ is contained in U × (0, T ) and
ψ(x, s1) = 0 for every x. Then there exists a constant C(d) depending only on d such that(∫ s2

s1

∫
U

|%mψ|2(d+2)/d dx dt
)d/(d+2)

≤

≤ 32C(d)m2(1 + λ−1)

∫ s2

s1

∫
U

[
|ψ||ψt|+ ‖A‖|∇ψ|2 + |

√
A−1B|2ψ2 + c+ψ2

]
%2m dx dt,

(3.3)

where ‖A(x, t)‖ = min|ξ|=1(A(x, t)ξ, ξ) and λ = λ(U, [s1, s2]) is defined as above.

Proof. Let f be a smooth function on [0,+∞) such that f ≥ 0, f ′ ≥ 0, f ′′ ≥ 0. Substi-
tuting the function ϕ = f ′(%)ψ2 in equality (3.2), for any t ∈ [s1, s2] we obtain∫

Rd

f(%(x, t))ψ2(x) dx−
∫

Rd

f(%(x, s1))ψ
2(x) dx+

+
1

3

∫ t

s1

∫
Rd

|
√
A∇%|2f ′′(%)ψ2 dx dτ ≤∫ t

s1

∫
Rd

2|ψ||ψt|f(%) + 3|
√
A∇ψ|2f

′(%)2

f ′′(%)
+ 3|

√
A−1B|2%2f ′′(%)ψ2+

+ 2|(B,∇ψ)|ψ%f ′(%) + c+%f ′(%)ψ2 dx dτ.

To this end, it is enough to note that

2(A∇%,∇ψ)ψf ′(%) ≤ 3−1|
√
A∇%|2f ′′(%)ψ2 + 3|

√
A∇ψ|2f

′(%)2

f ′′(%)
,

(B,∇%)%f ′′(%)ψ2 ≤ 3−1|
√
A∇%|2f ′′(%)ψ2 + 3|

√
A−1B|2%2f ′′(%)ψ2.
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Set f(%) = %2m. Recall that ψ(x, s1) = 0. We have

sup
t∈[s1,s2]

∫
Rd

%2m(x, t)ψ2(x) dx+
4m− 2

3m

∫ s2

s1

∫
Rd

|
√
A∇(%mψ)|2 dx dτ ≤

≤ 32m2

∫ s2

s1

∫
Rd

[
|ψ||ψt|+ |

√
A∇ψ|2 + |

√
A−1B|2ψ2 + c+ψ2

]
% dx dτ.

Now our assertion follows from Lemma 3.1. �

Theorem 3.3. (Lp-estimates) Let p ≥ 2(d + 2)/d. Let U and U ′ be balls in Rd with
U ′ ⊂ U . Let also [s1, s2] ⊂ (0, T ). Then, for every s ∈ (s1, s2), there exists a number
C > 0 depending on U , U ′, s, s1, d and p such that

‖%‖Lp(U ′×[s,s2]) ≤ C(1 + λ−1)γ

∫ s2

s1

∫
U

[
1 + ‖A‖γ + |c+|γ + |

√
A−1B|2γ

]
% dx dt,

where γ = (d+ 2)/2p′, p′ = p/(p− 1) and λ = λ(U, [s1, s2]), ‖A‖ are defined as above.

Proof. Set m = dp/2(d+ 2) and

α = 1 +
4m

(2m− 1)d
, α′ = 1 +

(2m− 1)d

4m
, δ =

4

d(2m− 1) + 4m
.

Note that m ≥ 1. Let us fix a function ψ = ζ(x)η(t), where ζ ∈ C∞
0 (U), ζ(x) = 1 if

x ∈ U ′, 0 ≤ ψ ≤ 1, η ∈ C∞
0 ((s1, T )), η(t) = 1 if t ∈ [s, s2], 0 ≤ η ≤ 1 and

|∂tη(t)| ≤ Kη1−δ(t), |∇ζ(x)| ≤ Kζ1−δ(x)

for some number K > 0 and every (x, t) ∈ U × [s1, s2]. Note that K depends only on U ,
U ′, s and s1. Applying Lemma 3.2 we obtain(∫ s2

s1

∫
U

|%mψ|2(d+2)/d dx dt
)d/(d+2)

≤

≤ 32C(d)m2(1 + λ−1)

∫ s2

s

∫
U

[
|ψ||ψt|+ ‖A‖|∇ψ|2 + |

√
A−1B|2ψ2 + c+ψ2

]
%2m dx dt.

Using Hölder’s inequality with exponents α and α′, we estimate the integral in the right
side of the last inequality by the following expression:

K2
(∫ s2

s1

∫
U

(
1 + ‖A‖+ |

√
A−1B|2 + c+

)α′
%2m dx dt

)1/α′(∫ s2

s1

∫
U

|%mψ|2(d+2)/d dx dt
)1/α

.

Applying the inequality xy ≤ εxα + C(α, ε)yα′ with sufficiently small ε > 0, we obtain
our assertion. �

Theorem 3.4. (L∞-estimates) Let γ > (d + 2)/2. Let U and U ′ be balls in Rd with
U ′ ⊂ U . Let also [s1, s2] ⊂ (0, T ). Then, for every s ∈ (s1, s2), there exists a number
C > 0 depending on U , U ′, s, s1, d and γ such that

‖%‖L∞(U ′×[s,s2]) ≤ C(1 + λ−1)γ

∫ s2

s1

∫
U

[
1 + ‖A‖γ + |c+|γ + |

√
A−1B|2γ

]
% dx dt,

where λ = λ(U, [s1, s2]), ‖A‖ are defined as above.

Proof. If % ≡ 0 on U × [s1, s2], then the assertion is trivial. Let us consider the case where
% 6≡ 0. Multiplying the solution % by the number

(1 + λ−1)−γ
(∫ s2

s1

∫
U

[
1 + ‖A‖γ + |c+|γ + |

√
A−1B|2γ

]
% dx dt

)−1

,
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we can assume that

(1 + λ−1)γ

∫ s2

s1

∫
U

[
1 + ‖A‖γ + |c+|γ + |

√
A−1B|2γ

]
% dx dt = 1.

In this case in order to prove the theorem it is enough to find a number C depending only
on U , U ′, s, s1, s2, d and γ such that

‖%‖L∞(U ′×[s,s2]) ≤ C.

Let U = U(x0, R), U ′ = U(x0, R
′) and R′ < R. Set Rn = R′ + (R − R′)2−n, sn =

s − (s − s1)2
−n and Un = U(x0, Rn). Let us consider the following system of increasing

domains:
Qn = Un × [sn, s2], Q0 = U × [s1, s2].

For each n we fix a function ψn ∈ C∞
0 (Rd × (0, T )) in the same way as in the proof of

Theorem 3.3, that is, ψ(x, t) = 1 if (x, t) ∈ Qn+1, 0 ≤ ψ ≤ 1, the support of ψ is contained
in Un × (sn, T ) and |∂tψn(x, t)| + |∇ψn(x, t)| ≤ Kn for all (x, t) ∈ Rd and some number
K > 1 depending only on the numbers s, s1, R, R′.

Applying Lemma 3.2 and Hölder’s inequality with exponents γ and γ′, we obtain(∫
Qn

|%mψn|2(d+2)/d dx dt
)d/(d+2)

≤ 32m2C(d, s)K2n
(∫

Qn

%(2m−1)γ′+1 dx dt
)1/γ′

.

Set
pn+1 = βpn + (γ′ − 1)γ′−1, p1 = γ′ + 1, β = (d+ 2)d−1γ′−1.

Note that βn−1p1 ≤ pn ≤ βn−1(p1 + 1). Taking m = pn+1d/(2d+ 4), we obtain

‖%‖Lpn+1 (Qn+1) ≤ Cnβ−n‖%‖pn/(pn+γ′−1)
Lpn (Qn) ,

where the number C depends only on K, d, and γ. Finally, note that
∑

n nβ
−n <∞ and

according to Theorem 3.3 the norm ‖%‖Lp1 (Q1) is estimated by a number depending only
on the numbers p1, d, s, s1, U , and U1. �

Remark 3.5. (i) Note that the constant C in Theorem 3.3 and Theorem 3.3 does not
depend on s2.

(ii) If c ≤ 0, then all the inequalities above will be true without the coefficient c in the
right-hand side.

Corollary 3.6. Let γ > (d + 2)/2, κ > 0 and t0 ∈ (0, T ). Then there exists a number
C > 0 depending only on κ, t0, d and γ such that for all (x, t) ∈ Rd × (t0, T )

%(x, t) ≤ C(1 + λ−1(x, t))γ

∫ t

t0/2

∫
U(x,κ)

(1 + ‖A‖γ + |c+|γ + |
√
A−1B|2γ)% dy dτ,

where
λ(x, t) = inf

{
(A(y, τ)ξ, ξ) : |ξ| = 1, (y, τ) ∈ U(x, κ)× [t0/2, t]

}
.

In particular, if µt(dx) = %(x, t) dx is a subprobability measure for almost all t ∈ (0, T ),
the functions ‖A‖γ, |c+|γ, |B|2γ are in L1(Rd × (t0/2, T ), µ) and the function ‖A‖−1 is
uniformly bounded, then % ∈ L∞(Rd × (t0, T )).

Proof. Let us shift the point x to 0 and apply Theorem 3.4 with the balls U = U(x, κ)
and U ′ = U(x, κ/2) and points s1 = t0/2, s = t0, s2 = t. �

Corollary 3.7. Let γ > (d + 2)/2 and Θ ∈ (0, 1). Then there exists a number C > 0
depending only on γ, d and Θ such that for all (x, t) ∈ Rd × (0, T )

%(x, t) ≤ C(1+λ−1(x, t))γt−(d+2)/2

∫ t

Θt

∫
U(x,

√
t)

(1+‖A‖γ + t2γ|c+|γ + t2γ|
√
A−1B|2γ)% dy dτ,
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where

λ(x, t) = inf
{
(A(y, τ)ξ, ξ) : |ξ| = 1, (y, τ) ∈ U(x,

√
t)× [Θt, t]

}
.

In particular, if µt(dx) = %(x, t) dx is a subprobability measure for almost all t ∈ (0, T ), the
functions ‖A‖γ, |c+|γ, |B|2γ are in L1(Rd× (0, T ), µ) and the function ‖A‖−1 is uniformly

bounded, then there exists a number C̃ > 0 such that

%(x, t) ≤ C̃t−d/2 for all (x, t) ∈ Rd × (0, T ).

Proof. In order to prove the estimate at a point (x0, t0) it suffices to change variables
x 7→ (x − x0)/

√
t0 and t 7→ t/t0 and apply Theorem 3.4 with the balls U = U(0, 1) and

U ′ = U(0, 1/2) and points s1 = Θ, s = (1 + Θ)/2, s2 = 1. �

Corollary 3.8. Let Φ ∈ C2,1(Rd × (0, T )) and Φ > 0. Set

c̃ = c+
(
∂tΦ + div(A∇Φ) +B∇Φ

)
Φ−1, B̃ = B + Φ−1A∇Φ.

Let γ > (d + 2)/2 and Θ ∈ (0, 1). Then there exists a number C > 0 depending only on
γ, d and Θ such that for all (x, t) ∈ Rd × (0, T )

%(x, t) ≤ CΦ(x, t)−1(1 + λ−1(x, t))γ×

× t−(d+2)/2

∫ t

Θt

∫
U(x,

√
t)

(1 + ‖A‖γ + t2γ|c̃+|γ + t2γ|
√
A−1B̃|2γ)Φ% dy dτ,

where λ is defined in the previous corollary. In particular, if

sup
t∈(0,T )

∫
Rd

Φ(x, t)%(x, t) dx <∞,

the functions ‖A‖γΦ, |c̃+|γΦ, |B̃|2γΦ are in L1(Rd × (0, T ), µ) and the function ‖A‖−1 is

uniformly bounded, then there exists a number C̃ > 0 such that

%(x, t) ≤ C̃t−d/2Φ(x, t)−1 for all (x, t) ∈ Rd × (0, T ).

Proof. It suffices to observe that the function Φ% satisfies equation (3.1) with the new

coefficients c̃ and B̃. �

Let us now consider two typical examples. We shall assume that c ≤ 0 and that
µt(dx) = %(x, t) dx is a subprobability solution of the Cauchy problem for equation (1.1)
with the initial condition ν such that |c| ∈ L1(µ) and

µt(Rd) ≤ ν(Rd) +

∫ t

0

∫
Rd

c(x, s)µs(dx) ds.

We obtain upper estimates of % in several different situations.

Example 3.9. Let α > 0, r > 2 and k > r. Assume that c ≤ 0 and

αr|x|r−2traceA(x, t)+

+ αr(r − 2)|x|r−4(A(x, t)x, x) + α2r2|x|2r−4(A(x, t)x, x)+

+ αr|x|r−2(b(x, t), x) + c(x, t) ≤ C − C|x|k

for some C > 0 and all (x, t) ∈ Rd × (0, T ). Suppose also that for all (x, t) ∈ Rd × (0, T )
we have

C1 exp(−κ1|x|r−δ) ≤ ‖A(x, t)‖ ≤ C2 exp(κ2|x|r−δ),

and

|bi(x, t)|+ |∂xj
aij(x, t)| ≤ C3 exp(κ3|x|r−δ)
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with some positive numbers C1, C2, C3, κ1, κ2, κ3 and δ ∈ (0, r). Let α′ ∈ (0, α). Then
the density % satisfies the inequality

%(x, t) ≤ C4 exp(−α′|x|r) exp(C5t
− r

k−r )

for all (x, t) ∈ Rd × (0, T ) and some positive numbers C4 and C5.

Proof. According to Example 2.6 we have∫
Rd

exp
(
α|x|r

)
dµt ≤ γ1 exp

(
γ2t

− r
k−r

)
for almost every t ∈ (0, T ) and some numbers γ1 and γ2. Set Φ(x) = exp(α′|x|r). Note
that c̃+ ≤ γ3 and

(1 + ‖A‖γ + t2γ|
√
A−1B̃|2γ)Φ ≤ γ4 exp(α|x|r)

for all (x, t) ∈ Rd × (0, T ) and some number γ3. Now the desired estimates follow from
Corollary 3.8. �

Example 3.10. Let r > 2, k > 2, γ > d+ 2, α > 0 and β > r/(k − 2). Assume that

αrtraceA(x, t) + αr(r − 2)|x|−2(A(x, t)x, x)+

+ αr(b(x, t), x) + |x|2c(x, t) + α2r2|x|r−2(A(x, t)x, x) ≤ C − C|x|k,

where C > 0. Suppose also that for all (x, t) ∈ Rd × (0, T ) we have

C1(1 + |x|
m
γ )−1 ≤ ‖A(x, t)‖ ≤ C2(1 + |x|

m
γ )

and

|bi(x, t)|2γ + |∂xj
aij(x, t)|2γ ≤ C3(1 + |x|m)

with some positive numbers C1, C2, C3 and m ≥ γmax{r − 1, rβ−1}. Let α′ ∈ (0, α).
Then the density % satisfies the inequality

%(x, t) ≤ C4t
− 8mβ+rd−4γr

2r exp(−α′tβ|x|r)

for all (x, t) ∈ Rd × (0, T ) and some positive numbers C4 and C5.

Proof. According to Example 2.7 we have∫
Rd

exp(αtβ|x|r) dµt ≤ γ1

for all t ∈ (0, T ) and some number γ1. Note that for every p ≥ 1 and ε > 0 one has

|x|p ≤ γ2t
−βp

r exp(εtβ|x|r),

so we can apply Corollary 3.8 with Φ(x, t) = exp(αtβ|x|r). �
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