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Abstract. In this paper we prove a comparison theorem for the stochastic
di¤erential equation
dX(t) = (A(t)X(t) + F (t;X(t))) dt+M�(t;X(t)) dW (t)

+
R
L2
M�(t;X(t))x ~N(dt; dx), t 2 [ 0; T ],

driven by a Wiener noise W and a Poisson noise ~N . The di¤usion coe¢ -
cients M� and M� are given by multiplication operators. The equation is
considered in Lp- spaces with a �nite weight measure �� over a (possibly un-
bounded) domain � � Rd. With the help of this comparison theorem we prove
an existence result for the above equation in the case of non-Lipschitz drift F
being a Nemytski-type operator of (at most) polynomial growth.

1. Introduction

In recent years there has been large interest in SDEs with general, not necessarily
continuous, semimartingales as driving noises. This is re�ected in a growing number
of papers going beyond the well-known framework of SDEs with Wiener noise, e.g.
by considering compensated Poisson random measures or Lévy processes as noise.
Stochastic evolution equations in in�nite dimensions are often used to describe
complex models in natural sciences. Numerous examples of SDEs with Wiener
noise in in�nite dimensions can be found e.g. in the introductory chapter of the
monograph by DaPrato and Zabczyk [11].
SDEs with compensated Poisson random measures or Lévy processes as driving

random forces are candidates to model situations, where the system does not
develop in a time-continuous way. The theory of SDEs with jumps in in�nite-
dimensional spaces plays a role in modelling critical phenomena. Among areas of
application let us mention neurophysiology, environmental pollution and mathe-
matical �nance.
Consider Rd, d 2 N, with Euclidean norm j � j, Borel �-algebra B(Rd) and

Lebesgue measure d�. Let us �x a (possibly unbounded) � 2 B(Rd) and � = 0
(in the case of bounded �) resp. � > d (for unbounded �). Denote by �� a �nite
measure on (Rd;B(Rd)) given by
(1.1) ��(d�) := (1 + j�j2)�

�
2 d�:

Given some � � 1, let L2�� := L2�� (�) be the Banach space of Borel-measurable,
2�-integrable functions w.r.t. the measure �� on �. Such weighted spaces are of
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common use in the theory of (deterministic and stochastic) parabolic di¤erential
equations, see e.g. [12], [22] resp. [26].
In this paper, given some �xed T > 0, we study the following SDE in L2��

dX(t) =(A(t)X(t) + F (t;X(t)))dt+M�(t;X(t))dW (t)(Eq.1)

+

Z
L2

M�(t;�;X(t))x ~N(dt; dx); t 2 [ 0; T ];

X(0) =�:

We will look for solutions to Eq. (1) in the Banach space G�(T ) of all predictable
processes [ 0; T ] 3 t 7�! X(t) 2 L2�� such that

jjXjjG�(T ) := sup
t2[ 0;T ]

�
EjjX(t)jj2�L2��

� 1
2�

<1:

The precise setting will be given in Section 2 below. Here, we only point out, what
kind of coe¢ cients and noises are present in Eq.(1). For simplicity, we we shall
supress explicit dependence on ! 2 
 of all random elements, if no confusion can
arise.
Everywhere below, we assume that:

� the family (A(t))t2[ 0;T ] generates a strong evolution operator
U = (U(t; s))0�s�t�T in L2�;

� F , � and � are time-dependent, random Nemitskii-type nonlinear operators
de�ned through predictable functions f , �, : [ 0; T ]� 
� R! R;

� M� andM� are the multiplication operators corresponding to � and �;
� (W (t))t2[ 0;T ] is a Q-Wiener process in L2 with a trace class correlation
operator Q � 0;

� ~N : [ 0; T ]�
�L2 ! R is a compensated Poisson random measure with a
Lévy intensity measure � on L2.

All necessary technical assumptions on the growth of coe¢ cients and regularity
properties of noises will be given in Section 2. Note that by the Lévy-Itô decomposi-
tion it will be possible to have similar results also for stochastic evolution equations
with Lèvy noise, see Remark 2.11 below.
The solutions to Eq.(1) will be understood in the mild sense (see De�nition

2.6). In the particular case � = 0 such type of in�nite dimensional equation was
considered in [26]. Compared to [26], Eq.(1) has an additional multiplicative (i.e.
solution-dependent) jump noise, which needs a careful analysis.
In this paper, we will extend the comparison method of [26] to the case of

Poisson noise. Such extension is non-trivial, since now we are dealing with di¤usion
processes with jumps. To control the e¤ect caused by a Poisson noise, we need
additional assumptions (as compared to the Wiener case) on the jump di¤usion
terms (e.g., their monotonicity in (�) below).
Thus, in Section 2 (see De�nition 2.6 there) we formulate a solution term, which

di¤ers from the one applied in [26] (cf. De�nition 2.7, p. 55 there) in a more
restrictive integrability condition and a weaker pathwise property (càdlàg paths vs.
pathwise continuity).
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Note that, given a strong evolution operator (U(t; s))0�s�t�T generated by
(A(t))t2[ 0;T ], we have to ensure the well-de�nedness of the so-called Poisson sto-
chastic convolution

(1.2) I
~N
� (t) :=

tZ
0

Z
L2

U(t; s)M�(s;X(s))x ~N(ds; dx); t 2 [ 0; T ];

in L2�� . This is done in Section 3 below. In particular, we prove a norm estimate
in L2�� (see (3.9) in Theorem 3.1).
The main results of this paper are:

� an existence and uniqueness result for Eq.(1) in the case of Lipschitz coef-
�cients;

� a comparison theorem for solutions X(i), i = 1; 2, with initial conditions
�(i) and drifts F (i), i = 1; 2, in the case of Lipschitz coe¢ cients;

� an existence result for Eq.(1) in the case of polynomially growing drift F
and the other coe¢ cients being Lipschitzian.

The most delicate step will be to prove the comparison result, since, to the
best of our knowledge, there is no in�nite-dimensional comparison theorem for
SDEs with jump noise applicable so far. In this paper, we solve this problem by
applying related comparison results for SDEs with jumps which are known in �nite
dimensions, see e.g. [15], [34],[35] (Chapter 10 there)), [24], [30], [39]).
In order to apply �nite-dimensional comparison results to prove an in�nite-

dimensional comparison result in the Lipschitz case, we have to de�ne a family of
�nite-dimensional equations, whose solutions approximate the solution to Eq.(1).
The key step is to consider the approximating equations in appropriate Sobolev
spaces. The idea behind is that we want to apply the so-called Sobolev embed-
ding theorem, which particularly implies the necessity to consider domains � � Rd
obeying the weak cone property.
In this paper, for given m � 1 and p � 1, we denote by Wm;p := Wm;p(�)

the Sobolev space consisting of (equivalence classes of) functions u 2 Lp(�) := Lp,
whose distributional derivatives D�u of orders j�j � m also belong to Lp and by
jj � jjWm;p its norm given by

jjujjWm;p =

0@ X
j�j�m

jjD�ujjpLp

1A 1
p

:

Furthermore, �xing p = 2 and T > 0, we denote byW2
m(T ) the space of predictable

processes (Z(t))t2[ 0;T ] s.t.

sup
t2[ 0;T ]

EjjZ(t)jj2Wm;2 <1

with norm jj � jjG�(T ) given by

jjZjjG�(T ) := sup
t2[ 0;T ]

(EjjZ(t)jj2�L2�� )
1
2� :

By the by Sobolev embedding theorem (see e.g. [1]) the approximating equations
are embedded into the space Cb := Cb(�) of continuous bounded functions u on �
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equipped with norm jj � jjCb given by

jjujjCb := sup
�2�

ju(�)j <1:

This gives us the possibility to evaluate the approximating equations pointwise
at any � 2 � and to apply one-dimensional comparison results for the evaluated
equations.
The structure of the paper is as follows: In Section 2, we present the exact

setting, the main results of this paper and some examples of SDEs, which are
covered by this theory. Section 3 is devoted to the well-de�nedness of the Poisson
stochastic convolution (1.2) in weighted L2-spaces. In Section 4 we prove our main
results. Section 5 is devoted to some illustrative examples.

2. Setting and main results

As usual, let (
;F ;P) be a complete probability space equipped with a right
continuous �ltration (Ft)t�0 such that F0 contains all P -null sets of F . In what
follows, we �x a �nite time horisont T > 0: Let PT denote the �-�eld of all pre-
dictable subsets of [0; T ]� 
:

2.1. Assumptions on coe¢ cients and noises. For the nonlinear coe¢ cients in
Eq.(1) we suppose that F;� and � are Nemytskii -type (i.e., superposition) operators
de�ned for predictable, i.e., PT � B(R)=B(R)-measurable, functions

f; �;  : [0; T ]� 
� R! R

by setting, for any ' : R! R,

F (t; !; ')(�) := f(t; !; '(�)); �(t; !; ')(�) := �(t; !; '(�)),(NEM)

�(t; !; ')(�) := (t; !; '(�)), � 2 R.

Multiplication operators corresponding to � and � will be denoted by M� and
M�, respectively.
Below we specify conditions on the generating functions f; � and :

(F) The mapping f(t; !; �) : R ! R is continuous, one-sided linearly bounded
and of at most polynomial growth, uniformly with respect to (t; !) 2
[ 0; T ] � 
. More precisely, there exist some � � 1 and cf (T ) > 0 such
that
(i) jf(t; !; y)j � cf (T )(1 + jyj�); y 2 R;
(ii) f(t; !; y) � cf (T )(1 + y) if y � 0,

f(t; !; y) � �cf (T )(1� y) if y � 0.
(�) The mapping �(t; !; �) : R ! R is Lipschitz continuous, uniformly in the

other variables: there exists some c�(T ) > 0 such that
(i) j�(t; !; y1)� �(t; !; y2)j � c�(T )jy1 � y2j, y1; y2 2 R;
(ii) j�(t; !; 0)j � c�(T ).

(�) The mapping (t; !; �) : R ! R is Lipschitz continuous, bounded and
monotonically increasing, uniformly with respect to (t; !) 2 [ 0; T ] � 
.
There exists some c(T ) > 0 such that
(i) j(t; !; y1)� (t; !; y2)j � c(T )jy1 � y2j, y1; y2 2 R;
(ii) j(t; !; y)j � c(T ), y 2 R;
(iii) (t; !; y1) � (t; !; y2) whenever y1 � y2.
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Remark 2.1. (i) It is easy to see that (F) (ii) is equivalent (up to a positive
constant cf (T )) to claiming that

(2.1) f(t; !; y) � y � cf (T )(1 + y
2); y 2 R

In particular, the class of functions with one-sided linear growth includes all quasi-
dissipative functions, i.e., those obeying

(2.2) (f(t; !; y1)� f(t; !; y2)) (y1 � y2) � cf (T ) (y1 � y2)2 ; y1; y2 2 R
A typical example of drifts f ful�lling the above conditions with � := 2n + 1 is
given by polynomials of the form

(2.3) f(t; !; y) =
2n+1X
k=0

bk(t; !)y
k

with PT -measurable and bounded coe¢ cients b2n+1(t; !) < 0, bk(t; !) 2 R, 0 �
k � 2n, and n 2 N [ f0g:
(ii) Condition (�) (ii) is imposed to ensure existence of càdlàg versions of the
solution process to Eq. (1.1) (see Step 3 in the proof of Theorem 3.1 below),
whereas (�) (iii) will play a crucial role in proving our main comparison result (cf.
Theorem 2.8 and Section 4 below).
(iii) For the functions f and � generating the drift and di¤usion coe¢ cients, it
would su¢ ces to assume only progressive measurability.

For the whole paper, let � be an open (possibly unbounded) subset of the Euclid-
ean space

�
Rd; j � j

�
, d � 1. Furthermore, we assume that � obeys the weak cone

property, i.e., there exists � > 0 such that for each � 2 � the Lebesgue measure of
the set K� is smaller than �. Here, K� := f� 2 B1(�) j [�; �] � �g 2 B(�) denotes
the set of all points � in the open unit ball around � such that the line segment [�; �]
joining � to � lies entirely in �. This property is ful�lled by a wide class of domains
in Rd including those with local Lipschitz or Ck-regular boundaries, in particular
by any open ball or cube in Rd as well as by Rd itself (see e.g. Section 1 in [2] or
Appendix A in [29]).

Remark 2.2. The weak cone property allows a well-developed theory of Sobolev
spaces on the underlying domain � (see e.g. [?]). By Sobolev�s embedding theorem
we have a dence continuous embedding Wm;2(�)��!Cb(�) for any m > d=2. This
fact will be used in the proof of the comparison Theorem 2.2.3 in order to evaluate
approximating equations for Eq. (1.1) pointwise at any � 2 �:

Remark 2.3. The PT � B(R)=B(R)-measurability of the generating function f :
[0; T ] � 
 � R ! R and its continuity in the last variable allow for applying the
well-known Krasnoselskii�s theorem for the corresponding Nemytskii operator F (cf.
e.g. [16], Section 3.4). So, if f satis�es the polynomial bound (F)(ii) for some � � 1
then the mapping F : [0; T ] � 
 � L2�� ! L2� is well de�ned, PT � B(L2�� )=B(L2�)
measurable and continuous in the last variable. Furthermore, one can standardly
check by the monotone class theorem that, for any predictable X : [0; T ] ! L2�� ,
the process [0; T ] 3 t! F (t;X(t)) 2 L2� is again predictable.
Concerning the linear drift coe¢ cients, we assume that A := (A(t))t2[0;T ] is

the generator of a strong evolution family U := (U(t; s))0�s�t�T . More precisely,
U : �(T )! L(L2�) is an operator-valued function de�ned on

�(T ) := f(t; s) j t � sg � [0; T ]� [0; T ]
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and such that

(2.4) U(t; r)U(r; s) = U(t; s); U(t; t) = I; 0 � s � r � t � T;

where I stands for the identity operator in L2�. Furthermore, the operator family
U is strongly continuous, i.e., the mapping

(2.5) U(�; �)' : �(T )! L2� is continuous for any ' 2 L2�;

and hence U is uniformly bounded, i.e.,

(2.6) jjU jjL(L2�) := sup
0�s�t�T

jjU(t; s)jjL(L2�) <1:

It is supposed that each A(t) : D(A(t)) ! L2� is a linear (possibly unbounded)
operator closely de�ned on D(A(t)) � L2� and that their common domain

D(A) :=
\

t2[ 0;T ]

D(A(t))

is dense in L2�: We say that (A;D(A)) is a generator for U if for any ' 2 D(A) and
t > s

(2.7)
@

@t
U(t; s)' = A(t)U(t; s)';

@

@s
U(t; s)' = �U(t; s)A(s)':

For a general theory of evolution operators in Banach spaces see, e.g., [38] or [?].
More speci�c assumptions on (A(t))t2[0;T ] and on the associated evolution family

U are as follows:

(A1) U is positivity preserving, i.e, L2� 3 ' � 0 implies U(t; s)' � 0 for any
0 � s � t � T .

(A2) U is pseudo contractive in L2�, i.e., there exists a constant � � 0 such that

(2.8) jjU(t; s)jjL(L2�) � e�(t�s); 0 � s � t � T:

(A3�) For a given � � 1, there exists a constant c�(T ) > 0 such that for any
' 2 L2�� and 0 � s � t � T

(2.9) (U(t; s)j'j)� � c�(T )U(t; s)j'j� :

Combined with the positivity preserving, cf. (A1), this implies that U is
bounded in L2�� and

(2.10) jjU jjL(L2�� ) := sup
0�s�t�T

jjU(t; s)jjL(L2�� ) �
h
c�(T ) � jjU jjL(L2�)

i1=�
:

Additionally we assume that U is strongly continuous in L2�� , i.e., the map-
ping

(2.11) U(�; �)' : �(T )! L2�� is continuous for any ' 2 L2�� :

(A4�) For � � 1 from (A3�) and 0 � s < t � T , the operator U(t; s) extends to
the domain

M� := fh 2 L�� j h =M' ; ' 2 L2�� ;  2 L2g;

where
M' : L

2 3  !M' := � 2 L��
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denotes the multiplication operator corresponding to ' 2 L2�� . Further-
more, there exist � 2 [0; 1) and c�;�(T ) > 0 such that

(2.12) jjU(t; s)M' jj2L2�� � c�;�(T )(t� s)�� jj'jj2L2�� jj jj
2
L2 :

(A4) Assumption (A4�) holds with � = 1, � 2 [0; 1) and the corresponding
constant c�(T ) > 0, i.e.,

(2.13) jjU(t; s)M'jj2L(L2;L2�) � c�;�(T )(t� s)�� jj'jj2L2� ; ' 2 L2�:

(A5) For a �xed m > d=2, there exists an approximating system of bounded
operators (AN (t))t2[0;T ]

N2N
� L(L2�) \ L(Wm;2) such that for any N 2 N

jjAN jjL(L2�) : = sup
t2[0;T ]

jjAN (t)jjL(L2�) <1;(2.14)

jjAN jjL(Wm;2) : = sup
t2[0;T ]

jjAN (t)jjL(Wm;2) <1.

Each AN :=(AN (t))t2[ 0;T ] generates a strong evolution family UN :=

(UN (t; s))0�s�t�T in the both spaces L2� and W
m;2 that is positivity pre-

serving. Furthermore, for any ' 2 L2�
(2.15) sup

0�s�t�T
jj(UN (t; s)� U(t; s))'jj2L2� ! 0; N !1:

In some cases it would be enough to assume a weaker version of (A4�) corre-
sponding to the particular choise ' � 1 in (2.12).
(A4

�
�) For 0 � s < t � T , the operator U(t; s) continuously maps L2 into L2�� and
obeys the estimate with proper � 2 [ 0; 1 ) and c�;�(T ) > 0

(2.16) jjU(t; s)jj2L(L2;L2�� ) � c�;�(T )(t� s)�� :

Remark 2.4. (i) Clearly, the inequalities in (A1) and (A3�) are understood d�-
almost surely. Assumptions (A1); (A3�) and (A4) have been introduced in the
paper [26] dealing with SPDEs driven by a Wiener noise. The only reason to impose
(A2) is to ensure existence of càdlàg versions of the Poisson convolution I ~N� (cf.
Section 3 below). Assumption (A4�) with � � 1 is already needed to prove unique
solvability in L2�� for Eq.(1) with Lipschitz coe¢ cients, whereas the conditions in
(A5) concerning Wm;2 will be relevant later when proving the comparison theorem
in Section 4.
(ii) Observe that by the de�nition of UN := (UN (t; s))0�s�t�T in (A5)

jjUN jjL(L2�) : = sup
0�s�t�T

jjUN (t; s)jjL(L2�) <1;(2.17)

jjUN jjL(Wm;2) : = sup
0�s�t�T

jjUN (t; s)jjL(Wm;2) <1;(2.18)

whereas (2.15) and (2.6) yield the uniform bound

(2.19) sup
N2N

sup
0�s�t�T

jjUN (t; s)jjL(L2�) <1:

(iii) The above conditions on (A(t))t2[0;T ] are satis�ed by a large class of elliptic
di¤erential operators with smooth enough coe¢ cients.(see Section 2.3 below).

We �nish this subsection by specifying the properties of the noise terms in Eq.(1):
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(W) (W (t))t2[ 0;T ] is a Q-Wiener process on (
;F ; P ) taking values in L2. Its
correlation operator Q 2 L+1 (L2) is of trace class with the eigenvectors
(en)n2N building a complete orthonormal system in L2 and with the corre-
sponding nonnegative eigenvalues (an)n2N obeying

(2.20) Qen = anen, trQ =
X
n2N

an <1:

(E1) The eigenvectors (en)n2N are equibounded in the sup-norm, i.e.,

sup
n2N

jjenjjL1 <1:

(N�) (
~N(t; dx))t2[ 0;T ];) is a compensated Poisson random measure on (L2;B(L2)),
de�ned on the same stochastic basis and independent of (W (t))t2[ 0;T ]. Fur-
thermore, we assume that, for a given � � 1, the corresponding Lévy in-
tensity measure � on (L2;B(L2)) obeys the integrability propertyZ

L2

jjxjj2�L2 �(dx) +
Z
L2

jjxjj2L2 �(dx) <1:

As usual we set ~N(t; f0g) = �(f0g) = 0 for all t 2 [ 0; T ]:
To prove the comparison theorem for solutions of Eq. (1) with di¤erent drift

coe¢ cients, we should assume that the corresponding Poisson process has positive
jumps.
(P) The intensity measure � is supported by the cone of nonnegative functions

L2+ :=
�
x 2 L2 j x(�) � 0; d�-a. e.

	
Remark 2.5. (i) Obviously, we have a coordinate representation convergent a.s.
in L2

W (t) =
X
n2N

p
an � wn(t)en; t 2 [ 0; T ];

where (wn(t) := (W (t); en)L2)t2[ 0;T ], n 2 N, is a family of independent real-valued
Brownian motions. Assumption (E1) on the eigenvectors (en)n2N is satis�ed in
several important cases. A typical example is the Laplace operator with Dirichlet
boundary conditions on a cube. Furthermore, by a general result (cf. e.g. p. 40 in
[26]), the space L2(�) always possesses a uniformly bounded othonormal system
(en)n2N, so that we can introduce a large class of correlation operators Q 2 L(L2)
directly by (2.20).
(ii) The integrability condition (N�) is imposed to get the stochastic convolution
integral I ~N� well-de�ned, see Section 3 below.
(iii) Assumption (P) is related to the case of increasing jump coe¢ cients , cf.
(�)(iii). Equivalently we can assume that  is decaying and � is supported by L2�:

2.2. De�nition of solutions and main results. As was mentioned in the In-
troduction, we look for mild solutions to Eq.(1) in the space G�(T ) of predictable
processes X : [0; T ]! L2�� (�).

De�nition 2.6. Given an L2�� -valued, F0-measurable initial condition � such that
Ejj�jj2�L2�� < 1 for some � � 1, a process X = (X(t))t2[ 0;T ] 2 G�(T ) is called a
mild solution to Eq.(1) if
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� the following identity in L2� holds P-a. s for any t 2 [ 0; T ]

X(t) = U(t; 0)� +

tZ
0

U(t; s)F (s;X(s))ds(2.21)

+

tZ
0

U(t; s)M�(s;X(s))dW (s) +

tZ
0

Z
L2

U(t; s)M�(s;X(s))(x) ~N(ds; dx);

whereby all integrals on the right-hand side exist;
� [ 0; T ] 3 t 7! X(t) 2 L2� obeys a càdlàg version.

Note that the càdlàg modi�cation ~X(t) of X(t) satis�es P-a.s. the following
identity for all t 2 [ 0; T ]

~X(t) = U(t; 0)� +

tZ
0

U(t; s)F (s; ~X(s))ds(2.22)

+

tZ
0

U(t; s)M�(s; ~X(s))dW (s) +

tZ
0

Z
L2

U(t; s)M�(s; ~X(s�))(x)
~N(ds; dx);

Below we present our main results in this setting:

1) an existence and uniqueness result for solutions of Eq.(1) with the Lipschitz
coe¢ cients F , �, �;

2) a comparison result for solutions X(i) to Eq.(1) with varying F (i), i = 1; 2;

3) an existence theorem for Eq.(1) under the one-sided linear growth assump-
tion (F) on the drift term F .

As a preliminary step, we start with the existence and uniqueness result in the
case of Lipschitz coe¢ cients.

Theorem 2.7. (Lischitz case) Let the initial condition � 2 L2�� be as in De�ni-
tion 2.6, whereby we choose � 2 [ 1; 1� ) with � 2 [ 0; 1 ) from (A4�) and assume that
~N satis�es (N�). Let � and  are Lipschitz continuous and satisfy all conditions in
Assumptions (�) and (�) respectively (except the monotonicity condition (�)(iii)).
Furthermore, let the drift coe¢ cient F is Lipschitz, i.e., it obeys (�) with � := f
and a proper cf (T ) > 0 . Then, there exists a unique mild solution X 2 G�(T )
to Eq.(1). The mapping t 7! X(t) is continuous in L2�(
;L2�� ). Furthermore, we
have a moment estimate

(2.23) sup
t2[ 0;T ]

EjjX(t)jj2�L2�� � K(1 + Ejj�jj2�L2�� )

with a certain constant K > 0 depending on T; �, �, c(T ), cf (T ), c�(T ) and c(T )

Next, we state the comparison result in the Lipschitz case.

Theorem 2.8. (Comparison of solutions) Suppose that Theorem 2.7 holds for
� = 1 and assume additionally (�)(iii) and (P): Consider di¤erent initial conditions
�(1), �(2) 2 L2� and Lipschitz drift functions f (1); f (2). Then,

�(1) � �(2); P-a:s.,
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and
f (1)(t; y) � f (2)(t; y) for all (t; y) 2 [ 0; T ]� R; P-a:s.,

imply, for any t 2 [0; T ],

X(1)(t) � X(2)(t); P-a:s:,

where X(i); i = 1; 2; are the corresponding solutions to Eq.(1).

Finally, we formulate the most general existence result.

Theorem 2.9. (Existence in the general case) Let (A1), (A2), (A5) hold as
well as (A3�) and (A4�) with some � 2 [ 0; 1 ). Let �, � and F ful�ll respectively
Assumptions (�), (�) and (F) with some � 2 [ 1; 1� ). Suppose that the initial
condition � 2 L2�� is as in De�nition 2.6 with the same �. Finally, assume the Lévy
measure � corresponding to ~N obeys the integrability property (N�0) with �

0 :=
�2and the support property (P). Then, there exists a mild solution X 2 G�(T ) to
Eq.(1) such that t 7! X(t) is continuous in L2(
;L2�).

These theorems will be proven in Sections 4.1�4.3 respectively.

Remark 2.10. One can drop Assumption (A4�) by assuming that ~N(t; dx) is con-
centrated on the Sobolev space Wm;2 with some m > d=2 and satis�es the integra-
bility condition (N�) with jj � jjWm;2 standing for jj � jjL2 , see Remark ?? below.

We �nish this subsection by the following remark concerning a similar SDE
driven by a Lévy noise

dX(t) = (A(t)X(t) + F (t; �; X(t)))dt(2.24)

+ M�(t;�;X(t))dL(t); t 2 [0; T ];
X(0) = �:

Remark 2.11. Let (L(t))t2[ 0;T ] be an L2-valued Lévy process (for its de�nition see
e.g. the monograph [31]). Then, as was shown e.g. in [4], [6], [7], it obeys the
Lévy-Itô decomposition

(2.25) L(t) = mt+W (t)+

Z
fjjxjjL2<1g

x ~N(t; dx)+

Z
fjjxjjL2�1g

xN(t; dx); t 2 [0; T ];

with a drift vector m 2 L2, a Q-Wiener process W with Q 2 L+1 (L2) and a
Poisson random measure N(t; dx) on (L2;B(L2nf0g)), whereby W is indepen-
dent of N(�; A) for all A 2 B(L2nf0g). By setting �(A) := E [N(1; A)] and
�(f0g) := 0, we de�ne the associated Levy intensity measure � on (L2;B(L2)) with
the property

R
L2

�
jxjj2L2 ^ 1

�
�(dx) < 1: If � additionally ful�lls (N�) with � = 1,

the above decomposition simpli�es as

(2.26) L(t) = ~mt+W (t) +

Z
L2

x ~N(t; dx); t 2 [0; T ];

with

~m := m+

Z
fjjxjjL2�1g

x �(dx) 2 L2:
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Furthermore, by Proposition 6.9 in [31], (N�) with � � 1 implies that EjjL(t)jj2� <
1 for all t 2 [ 0; T ]. Thus, Eq.(2) can be seen as a particular case of the initial Eq.
(1). However, Assumption (E1) on the eigenvector basis (en)n2N in (2.20) may fail
in general. Nevertheless, this problem can be overcome by imposing an additional
constraint on the parameters & and �.

3. Well-definedness of Poisson stochastic convolutions

In Section 3.1 we brie�y introduce stochastic integration with respect to com-
pensated Poisson random measures ~N(ds; dx) in general Hilbert spaces, while in
Section 3.2 we study in more detail the well-de�nedness of the Poisson stochastic
convolution

(3.1) I
~N
� (Z)(t) :=

tZ
0

Z
L2

U(t; s)M�(s;Z(s))(x) ~N(ds; dx); t 2 [0; T ]:

and its properties in the weighted spaces L2�� , � � 1. A main technical problem
here is that M�(s;Z(s)) cannot be de�ned as a bounded operator sending L2 into
L2�� , � > 1. So, the desired properties of the stochastic convolution (3.1) should be
achieved by additional regularity assumptions on U = (U(t; s))0�s�t�T like that in
(A4�):

3.1. Poisson stochastic integrals in L2. Here we brie�y summarize the def-
inition and properties of the stochastic integral w.r.t. the compensated Poisson
measure ~N(dt; dx) for vector-valued integrands � : 
� [0; T ]� L2 ! L2�.
The Poisson integral

I
~N
� (t) :=

tZ
0

Z
L2

�(s; x) ~N(ds; dx)(3.2)

=

TZ
0

Z
L2

1(0;t](s)�(s; x) ~N(ds; dx) 2 L2�; t 2 [0; T ];(3.3)

is de�ned by the Itô-isometry

(3.4) E


tZ
0

Z
L2

�(s; x) ~N(ds; dx)


2

L2�

= E
tZ
0

Z
L2

jj�(s; x)jj2L2� �(dx)ds

extended (from simple processes) to all predictable processes � 2 L2T (L2=L2�), where

(3.5) L2T (L2=L2�) := L2([0; T ]� 
� L2;PT 
 B(L2); dt
 P
 � ; L2�):

The process
�
I
~N
� (t)

�
t2[0;T ]

is a square-integrable càdlàg Ft-martingale in L2�, with
mean zero and predictable quadratic variation (i.e., Meyer process)

hI ~N� it =
tZ
0

Z
L2

jj�(s; x)jj2L2� �(dx)ds:
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All necessary details about such a construction in general Hilbert spaces can be
found e.g. in [6], [36].
Maximal Lp-estimates for the Poisson integral (3.2) can be obtained by means

of an in�nite-dimensional version of Bichteler-Jacod inequality, see Lemma 3.1 in
[27]. More precisely, one has for p � 2

E

0B@ sup
0�t�T


tZ
0

Z
L2

�(s; x) ~N(ds; dx)


L2�

1CA
p

(3.6)

� C � E
TZ
0

264Z
L2

jj�(s; x)jjpL2� �(dx) +

0@Z
G

jj�(s; x)jj2L2� �(dx)

1A
p
2

375 ds <1;
whereby (p; T ) ! C := C(p; T ) 2 R+ is continuous. Estimate (3.6) holds for any
� 2 L2T (L2=L2�) such that the expectation on the right-hand side is �nite. A lower
bound for the left-hand side in (3.6) was established in the recent work [13]
To �nish this subsection let us check the well-de�nedness of the Poisson stochastic

convolution (3.1) in L2�: For a �xed Z 2 G�(T ) and t 2 [0; T ], let us de�ne

� : [ 0; T ]� 
� L2 ! L2�;(3.7)

�(s; x) := 1(0;t](s)U(t; s)M�(s;Z(s))x; (s; x) 2 [ 0; T ]� L2:

It is easy to see (cf. Lemma 4.5 in [19]) that the PT 
 B(L2)=B(L2�)-measurability
required for � would be a sequel of the same measurability property valid for

(3.8) [ 0; T ]� 
� L2 3 (s; !; x) 7!M�(s;Z(s))x 2 L2�;

Note that the multiplication operator

x!M�(s;Z(s))x = (s; Z(s))x

is continuous in L2 for any �xed (s; !), since by (�)(ii) the generating function 
is assumed to be bounded. On the other hand, for any �xed x 2 L2; the process

(s; !)! (s; Z(s; !))x 2 L2�

is PT -measurable. Indeed, by Remark 2.3 s ! (s; Z(s))y 2 L2� is predictable
for each y 2 L1: Approximating x 2 L2 by fyngn�1 � L1 and using bound-
edness of �, we get the required predictability of s ! (s; Z(s))x as a point-
wise limit of (s; Z(s))yn in L2�: Thus, by Theorem 6.1 from [17], there exists a
PT 
B(L2)=B(L2�)-measurable realization of (3.8) and hence of the integrand func-
tion (3.7), which we again denote by �. By (�)(ii), (N�) and (2.6) we have

E
TZ
0

Z
L2

jj�(s; x)jj2L2� �(dx)ds � Tc2(T )jjU jjL(L2�)
Z
L2

jjxjj2L2 �(dx) <1;
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which shows that � 2 L2T (L2=L2�): This allows us to de�ne for each �xed t 2 [0; T ]
a random variable

I
~N
� (Z)(t) :=

tZ
0

Z
L2

U(t; s)M�(s;Z(s))(x) ~N(ds; dx)

=

TZ
0

Z
L2

�(s; x) ~N(ds; dx) 2L2� (P-a:s:):

3.2. Poisson stochastic convolution in L2�� . Next we prove even more that, for
any Z 2 G�(T ), the Poisson convolution I ~N� (Z) obeys a predictable modi�cation in
the weighted spaces L2�� � L2.

Theorem 3.1. Let us �x some � � 1 and let � corresponding to ~N obeys (N�)
with the same �. For Z 2 G�(T ), the process I ~N� (Z) is well-de�ned in G�(T ). In
particular, we have the estimate

sup
t2[0;T ]

EjjI ~N� (Z)(t)jj2�L2��(3.9)

� C(�; T )

8<:E
tZ
0

Z
L2

jjU(t; s)M�(s;Z(s))xjj2�L2�� �(dx)

+E
tZ
0

0@Z
L2

jjU(t; s)M�(s;Z(s))xjj2L2�� �(dx)

1A�

ds)

9=;
� C

24Z
L2

jjxjj2�L2� �(dx) +

0@Z
L2

jjxjj2L2� �(dx)

1A�35 <1
with a positive constant C depending on �, �, T , jjU jjL(L2�) and on the uniform
bound c(T ) on . Furthermore, [ 0; T ] 3 t 7! I

~N
� (Z)(t) is continuous in L

2�(
;L2�� )

and obeys a càdlàg modi�cation in L2�.

Proof: Let us �x an arbitrary t 2 [ 0; T ]. To shorten notation, let us write
I�:=I

~N
� (Z):The key issues in the proof are the following:

Step 1 Finding a measurable representative ~� of the mapping (3.7), i.e. a PT 

B(L2)
 B(�)=B(R)-measurable function

~� : 
� [ 0; T ]� L2 ��! R

such that

(3.10) E
TZ
0

Z
L2

jj�(s; x)� ~�(s; x; �)jj2L2��(dx) ds = 0
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Step 2 Proving that for each t 2 [0; T ]

I�(t) = ~I(t) :=

tZ
0

Z
L

~�(s; x; �) ~N(ds; dx) 2 L2�� ; P-a:s:;

whereby ~I(t) 2 G�(T ) and satis�es the Bichteler-Jacod inequality (3.9).

Step 3 Showing that t 7! I�(t) is continuous in L2�(
;L2�� ) and obeys a càdlàg
modi�cation in L2�.

Step 1: Let us denote by (�k)k2N � L1(Rd) a (general-) Dirac sequence (for
its de�nition and properties see e.g. Chapter 2 in [5]) constructed from a function
' 2 C10 (Rd) by

(3.11) �k(�) :=

�
1

k

��d
'(k�); � 2 Rd:

Then we can approximate �(s; x) 2 L2� by standard convolutions

(3.12) �m(s; x) := ��1� conv(�m ; ���(s; x)) 2 L2�
\
C(Rd)

in such a way that, for all (s; !; x) 2 [ 0; T ]� 
� L2,

(3.13) lim
m!1

jj�m(s; x)� �(s; x)jj2L2� = 0

and

(3.14) sup
m2N

jj�m(s; x)jjL2� � jj�(s; x)jjL2� :

Since �m(s; x) 2 C(Rd), we can evaluate �m(s; x; �) for any � 2 �. Furthermore,
Theorem 6.1 from [17] guarantees that there exists a PT 
 B(L2) 
 B(�)=B(R)-
measurable realization of (s; !; x; �) 7! �m(s; !; x; �). Su¢ cient conditions to apply
this theorem are:

(i) continuity of the mapping

� 3 � 7! �m(s; !; x; �) 2 R

for almost any (s; !; x) 2 [ 0; T ] � 
 � L2. (Note that this property holds
by (3.12);

(ii) PT 
 B(L2)-measurability of

[ 0; T ]� 
� L2 3 (s; !; x) 7! �m(s; !; x; �) 2 R

for any �xed � 2 �.
The latter readily follows by Fubini�s theorem from the de�nition (3.12) saying

that

�m(s; !; x; �) = �
� 1
2

� (�) < �m(� � �); �
1
2
� F (s; x) >L2 :

Next, by (3.13), (3.14) and Lebesgue�s theorem, we observe that the corresponding
sequence of measurable realizations �m, m 2 N, is a Cauchy sequence in the Hilbert
space

L2 := L2([0; T ]� 
� L2 ��; PT 
 B(L2)
 B(�); dt
 P
 � 
 ��; L2�):
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Indeed, for all n;m 2 N

E
TZ
0

Z
L2

Z
�

j�m(s; x; �)� �n(s; x; �)j2��(d�) �(dx) ds

= E
TZ
0

Z
L2

jj�m(s; x)� �n(s; x)jj2L2� �(dx) ds

with the uniform bound

sup
m2N

jj�m(s; x)jjL2� � jj�(s; x)jjL2� ; jj�jjL2� 2 L
2([ 0; T ]� 
� L2):

Thus, there exists a limit function ~� 2 L2 such that

lim
m!1

E
TZ
0

Z
L2

Z
�

j~�(s; x; �)� �m(s; x; �)j2 ��(d�) �(dx) ds(3.15)

= lim
m!1

E
TZ
0

Z
L2

jj~�(s; x)� �m(s; x)jj2L2� �(dx) ds = 0:

Combining (3.13)�(3.15), we conclude that

E
TZ
0

Z
L2

jj�(s; x)� ~�(s; x)jj2L2� �(dx); ds = 0;

i.e. ~�(s; x; �) is a measurable realization of �(s; x) that obeys (3.10). 4

Step 2: This step involves the following two claims:

Claim 1: For each t 2 [0; T ]; consider the stochastic integral

(3.16) ~I(t; �) :=

tZ
0

Z
L2

~�(s; x; �) ~N(ds; dx) 2 R;

depending on the parameter � 2 �. Then:
(i) ~I(t; �) allows an Ft 
B(�)-measurable modi�cation (which will be denoted

by ~I again);

(ii) ~I(t; �) coincides P-a.s. with the L2�-valued random variable

I ~�(t) :=

tZ
0

Z
L2

~�(s; x; �) ~N(ds; dx);

i.e.,

(3.17) Ejj~I(t)� I~�(t)jj
2
L2�
= E

Z
�

j~I(t; �)� (I ~�(t))(�)j
2 ��(d�) = 0:
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Claim 2: ~I(t; �), as a function of � 2 �, belongs P-a.s. to L2�� , whereby
supt2[0;T ]Ejj~I(t)jj2�L2�� is �nite and can be estimated by the constant on the right-

hand side in (3.9).

Claim 1 (i) readily follows from a general measurability result for Poisson sto-
chastic integrals depending on parameters (which in an explicit form can be found
e.g. in [10], A.1.(b)) . To prove Claim 1 (ii), let us consider cylinder functions
F 2 L2(
;L2�) of the form

F (!; �) = F1(!)

0@ JX
j=1

dj1Bj
(�)

1A
with F1 2 L2(
), dj 2 R and disjoint Bj 2 B(�) for 1 � j � J 2 N: By the
stochastic Fubini theorem for Poisson integrals (see again [10], A.1.(b)) one can
check that

hI ~�(t); F iL2(
;L2�) = E
Z
�

F (!; �)

0@ tZ
0

Z
L2

~�(s; x; �) ~N(ds; dx)

1A (�)��(d�)
= E

tZ
0

Z
L2

Z
�

F1(!)F2(�)~�(s; x; �)��(d�) ~N(ds; dx)

= E
Z
�

F (!; �)~I(t; �)��(d�) = h~I(t); F iL2(
;L2�):

Since such F constitute a total set in L2(
;L2�), this proves (3.17). 4
To prove Claim 2 we make use of a scalar variant of the Bichteler-Jacod inequal-

ity, cf. (3.6),

E

0@ tZ
0

Z
L2

~�(s; x; �) ~N(ds; dx)

1A2�

��(d�)(3.18)

� C(�; T )

8<:E
Z
�

tZ
0

Z
L2

j~�(s; x; �)j2� �(dx) ds��(d�)

+

Z
�

tZ
0

E

0@Z
L2

j~�(s; x; �)j2�(dx)

1A�

ds��(d�)

9=; :

Let us estimate the two integrals in the right hand side of (3.18), which we shall
call I1(t) and I1(t). By the measurabilty property of ~� and Fubini�s theorem we
get

I1(t) = E
tZ
0

Z
L2

jjU(t; s)M�(s;Z(s))xjj2�L2�� �(dx) ds(3.19)

� [c(T )]
2� [c�;�(T )]

�

tZ
0

(t� s)�&�ds
Z
L2

jjxjj2�L2��(dx) <1;
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where in the last line we have used (�)(ii), (A4�) and (N�):
Applying the same arguments and additionally Minkowski�s inequality (Theorem

2.4 in [25]), for the second integral on the right-hand side of (3.18) we get

I2(t) � E
TZ
0

0B@Z
L2

0@Z
�

j~�(s; x; �)j2���(d�)

1A1=�

�(dx)

1CA
�

ds(3.20)

= E
tZ
0

0@Z
L2

jjU(t; s)M�(s;Z(s))xjj2L2�� �(dx)

1A�

ds

� [c(T )]2� [c�;�(T )]�
tZ
0

(t� s)�&�ds

0@Z
L2

jjxjj2L2��(dx)

1A�

<1:

Thus, combining (3.19) and 3.20 we get the upper bound required in (3.9), which
completes the proof of Claim 2. 4

Step ·3 Let us �rst show the continuity of t 7! I�(t) in L2�(
;L2�� ). To this
end, we extend a method of proving mean-square continuity, which was used e.g.
in [19], to the case of non-Hilbert-Schmidt operator valued coe¢ cients M�(s;Z(s))

and two-parameter evolution operators U(t; s).
For � > 1; consider the process

(3.21) ��(t) :=

t
�Z
0

Z
L2

U(t; s)M�(s;Z(s))x ~N(ds; dx) 2 L2�� ; t 2 [ 0; T ]:

We claim that t 7! ��(t) is continuous in L2�(
;L2�� ). Indeed, similarly to (3.18)�
(3.20) we have for 0 � r � t � T

Ejj��(t)� ��(r)jj2�L2��(3.22)

� C(�; T )

8><>:E
r
�Z
0

24Z
L2

jj[U(t; �s)� U(r; �s)]U(�s; s)M�(s;Z(s))xjj2�L2u� �(dx)

+

0@Z
L2

jj[U(t; �s)� U(r; �s)]U(�s; s)M�(s;Z(s))xjj2L2�� �(dx)

1A� 35 ds
+ E

t
�Z

r
�

24Z
L2

jj[U(t; s)M�(s;Z(s))xjj2�L2u� �(dx)

+

0@Z
L2

jj[U(t; s)M�(s;Z(s))xjj2L2�� �(dx)

1A�35 ds
9=; :

By (A4��) we see that U(�s; s)M�(s;Z(s))x 2 L2�� for any x 2 L2. Therefore, by the
continuity assumption (A3�) on U we have, for any x 2 L2 and s 2 [ 0; T ],

jj1[ 0; r� ](s)[U(t; �s)� U(r; �s)]U(�s; s)M�(s;Z(s))(x)jjL2�� ! 0
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as r " t resp. t # r. Furthermore, by (�)(i)=(ii), (A3), (A4��), (N�) and Hölder�s
inequality we have the following estimate

E

r
�Z
0

Z
L2

jj[U(t; �s)� U(r; �s)]U(�s; s)M�(s;Z(s))xjj2�L2�� �(dx)

� C1(; T )

r
�Z
0

[(�� 1)s]�& ds

0@Z
L2

jjxjj2�L2� �(dx)

1A � sup
t2[ 0;T ]

Ejj�(t; Z(t))jj2�L2��

!
<1:

Thus, we can apply Lebesgue�s dominated convergence theorem to show that the
�rst integral on the right-hand side of (3.22) vanishes for r " t resp. t # r. The proof
for the second integral runs completely analogous. Thus, it remains to consider the
third and the fourth integral on the right-hand side of (3.22. Concerning the third
integral we have

E

t
�Z

r
�

Z
L2

jjU(t; s)M�(s;Z(s))xjj2�L2�� �(dx) ds

� C2(; T )

t
�Z

r
�

(t� s)�&� ds

0@Z
L2

jjxjj2�L2� �(dx)

1A � sup
t2[ 0;T ]

Ejj�(t; Z(t))jj2�L2��

!
;

which vanishes as r " t resp. t # r. By similar arguments also the last integral in
(3.22) tends to 0.
Finally, we observe that for any � > 1

sup
t2[ 0;T ]

EjjI�(t)� ��(t)jj2�L2�� = sup
t2[ 0;T ]

tZ
t
�

Z
L2

EjjU(t; s)M�(s;Z(s))xjj2�L2�� �(dx) ds

� C3(; T )

T (1� 1
� )Z

0

s�&� ds

0@Z
L2

jjxjj2�L2� �(dx)

1A sup
t2[ 0;T ]

Ejj�(t; Z(t))jj2�L2��

!

with some positive constant C3(; T ): Since the right-hand side tends to 0 as � # 1;
the process I� is L2�(
;L2�� )-continuous as a uniform limit in C([ 0; T ];L2�(
;L2�� ))
of I� as � # 1. 4
Concerning the càdlàg property note that by the uniform boundedness of , the

multiplication operatorsM�(t;X(t)) are bounded both in L2 and L2� with

sup
t2[ 0;T ]

EjjM�(t;X(t))jjL � c(T ) <1:

Hence, by setting

M(t) :=

Z
L2

M�(s;X(s))x ~N(t; dx); t 2 [ 0; T ];
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we get a square integrable càdlàg (Ft)-martingale in L2, which gives us the identity
for all t 2 [ 0; T ]; P-a.s.,

(3.23) I
~N
� (t) =

tZ
0

U(t; s) dM(s)

(see e.g. Proposition 3.10 in [19]). Now, by the pseudo-contractivity of U in L2� (cf.

Assumption (A2)), we readily get the càdlàg property of I ~N� in L2� by a general
result from Corollary 2.1 in [20] resp. Remark 1.2 1. in [21], which �nishes Step 3.
4
It remains to show that I ~N� 2 G�(T ), which in particular requires existence of a

predictable modi�cation of (I�(t))t2[ 0;T ]. By Claim 1(i) in Step 2 we know that,
for each t 2 [ 0; T ]; there is an Ft
B(�)-measurable version of the random variable
~I(t; �); cf. (3.16). On the other hand, the continuity of t 7! I�(t) in L2(
;L2�) just
proved implies that [ 0; T ] 3 t 7! ~I(t; !; �) 2 R is mean-square continuous (and
hence continuous in probability) with respect to P 
 ��: Let us recall a general
fact (see e.g. Proposition 3.6 (ii) in [11]) that any adapted and stochastically
continuous process in a separable Banach space obeys a predictable modi�cation.
In our setting, this means existence of the PT 
 B(�)-measurable modi�cation of
the Poisson convolution I�. The norm jjI�jjjG�(T ) := sup

t2[ 0;T ]
(EjjI�(t)jj2�L2�� )

1
2� <1

was estimated in Step 2. �.

4. Proofs of the main results

In this section, we prove the main results of this paper, Theorems 2.7�2.9.

4.1. Proof of Theorem 2.7. The existence result in this theorem can be shown
by the Picard iteration method. Note that in the case of Wiener noise, i.e. when
� = 0 in Eq.(1), such procedure has been applied e.g. in the proof of Theorem 3.2.1
in [26]. Since the proof is rather standard, we mainly outline the issues related with
the presence of a jump noise.
Given an initial condition � 2 L2�� , we de�ne a sequence of processes (Xn)n2N

by

Xn(t) := X0(t) +

tZ
0

U(t; s)F (s;Xn�1(s)) ds

+

tZ
0

U(t; s)M�(s;Xn�1(s)) dW (s)

+

tZ
0

Z
L2

U(t; s)M�(s;Xn�1(s))(x)
~N(ds; dx); t 2 [ 0; T ]; n � 1;

where
X0(t) := U(t; 0)�; t 2 [ 0; T ]:

It is an immediate consequence of Theorem 3.1 and the results known in the Wiener
case (see e.g. [26]) that each Xn again belongs to G�(T ). Obviously, for any n 2 N
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and t 2 [ 0; T ]

EjjXn+1(t)�Xn(t)jj2�L2�� � c(�)

8><>:E
������
������
tZ
0

U(t; s)[F (s;Xn(s))� F (s;Xn�1(s))] ds)

������
������
2�

L2��

+E

������
������
tZ
0

U(t; s)[M�(s;Xn(s)) �M�(s;Xn�1(s))] dW (s)

������
������
2�

L2��

+E

������
������
tZ
0

U(t; s)[M�(s;Xn(s)) �M�(s;Xn�1(s))]x
~N(ds; dx)

������
������
2�

L2��

9>=>; :

Now, we are arive at the point where we need (A4�), since to estimate Xn+1�Xn in
terms of Xn�Xn�1 we can only use the Lipschitz property but not the boundedness
of . By means of the Burkholder-Davis-Gundy inequality for Wiener integrals (cf.
e.g. Lemma 7.2 in [11]) and the Bichteler-Jacod inequality (cf. Eqs. (3.18)-(3.20))
we get that

(4.1) EjjXn+1(t)�Xn(t)jj2�L2�� � C

tZ
0

(t� s)���EjjXn(s)�Xn�1(s)jj2�L2�� ds;

where C is a certain constant that depends on �, �, T and the Lipschitz constants
from (F), (�) and (�). Next, we use the Gronwall-Bellman lemma (see Lemma
3.2.4 in [26]), whose formulation is given below for the reader�s convenience.

Lemma 4.1. Let (gn)n2N be a sequence of measurable functions gn: R+ ! R+
obeying for any t 2 [ 0; T ] and n 2 N

gn(t) � q + b

tZ
0

(t� s)��gn�1(s) ds;

with some � 2 [ 0; 1 ), b > 0 and q � 0. Then,

gn(t) � q

n�1X
k=0

qk t
k(1��) + qn t

n(1��) � sup
s2[ 0;T ]

g0(s)

with

q0 = 1; q1 =
b

1� � ; qk =
ck(b; �)

�(k(1� �) + 1) , k � 2;

where � is the Euler Gamma-function. Furthermore,
1P
k=0

qk T
k(1��) < 1 and in

particular lim
k!1

qk = 0:

Applying Lemma 4.1 to (4.1) we get that for all n 2 N

sup
t2[ 0;T ]

EjjXn+1(t)�Xn(t)jj2�L2��

� CTn(1���) sup
t2[ 0;T ]

EjjX1(t)�X0(t)jj2�L2�� ;
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whereas by Hölder�s inequality

sup
t2[ 0;T ]

EjjX1(t)�X0(t)jj2�L2�� � c(�)

8><>: sup
t2[ 0;T ]

E

������
������
tZ
0

U(t; s)F (s; U(s; 0)� ds)

������
������
2�

L2��

+ sup
t2[ 0;T ]

E

������
������
tZ
0

U(t; s)M�(s;U(s;0)�)]dW (s)

������
������
2�

L2��

(4.2)

+ sup
t2[ 0;T ]

E

������
������
tZ
0

U(t; s)[M�(s;U(s;0)�)x ~N(ds; dx)

������
������
2�

L2��

9>=>;
� C(1 + jj�jj2�L2�� ):

Finally, this leads to the following bound

jjXn+1 �Xnjj2�G�(T ) � Tn(1���)C(�) <1:

Since 0 < � < 1
� , the right-hand side vanishes as n!1, which shows that (Xn)n2N

is a Cauchy sequence the Banach space G�(T ) and hence gives us the existence of
a mild solution X 2 G�(T ) to Eq.(1) on the whole intervall [ 0; T ]. Assuming that
X and Y are two di¤erent solutions to Eq.(1) with the same initial condition �, we
get in a similar way

EjjX(t)� Y (t)jj2�L2�� � C

tZ
0

(t� s)���EjjX(s)� Y (s)jj2�L2�� ds:

The Gronwall lemma then yields for each t 2 [ 0; T ] that jjX(t) � Y (t)jj2�L2�� = 0;

P-a:s:, which proves the uniqueness in G�(T ).
Recall that by De�nition 2.2.1 [ 0; T ] 3 t 7! X(t) 2 L2� should obey a càdlàg

modi�cation. While the càdlàg property of the Poisson stochastic convolution (3.1)
was shown in Theorem 3.1, with the help of Remark 1.2 1 in [23] we even get a
continuous modi�cation of the Wiener stochastic convolution

(4.3) [ 0; T ] 3 t 7!
tZ
0

U(t; s)M�(s;X(s)) dW (s)

being considered as a process in L2�. Furthermore, the above mapping is continuous
in L2�(
;L2�� ) by the arguments similar to those used in the Poisson case (see the
proof of Theorem 3.1 and also Proposition 3.3.5 from [29]). Under the polynomial
growth assumptions imposed on f (cf. Remark 2.3), it is straighforward to prove
that the Bochner integral

(4.4) [ 0; T ] 3 t 7!
tZ
0

U(t; s)F (s;X(s)) ds

is pathwise continuous in L2� as well as continuous in L
2�(
;L2�� ). Thus, X con-

structed above is reallly a solution to Eq.(1) in the sense of De�niton 2.6.
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It remains to show the moment bound (2.23). To this end, we note that for any
t 2 [ 0; T ]

EjjX(t)jj2�L2�� � c(�)

8><>:E jjU(t; 0)�jj2�L2�� + E

������
������
tZ
0

U(t; s)F (s;X(s))ds)

������
������
2�

L2��

+E

������
������
tZ
0

U(t; s)M�(s;X(s)) dW (s)

������
������
2�

L2��

+E

������
������
tZ
0

U(t; s)M�(s;X(s))x ~N(ds; dx)

������
������
2�

L2��

9>=>;
� C

241 + Ejj�jj2�L2�� +

tZ
0

(t� s)���EjjX(s)jj2�L2�� ds:

35 ;
where again C > 0 is some constant whose explicit value is not relevant. Herefrom,
by Lemma 4.1 we get the required estimate (2.23). �
Remark 4.2. It is also possible to drop the most restrictive condition (A4�) (and
hence (A4��) by assuming that the Lévy measure � is concentrated on the Sobolev
space Wm;2 with some m > d=2 and obeys the integrability condition

(4.5)
Z

Wm;2

jjxjj2�Wm;2 �(dx) +

Z
Wm;2

jjxjj2Wm;2 �(dx) <1:

Indeed,Wm;2
b � Cb

!
by Sobolev�s embedding theorem (see e.g., Theorem 1 in Section

2 of [2]) and hence there exists some cm > 0 such that for all x 2Wm;2

sup
�2�

jx(�)j =: jjxjj2�Cb � cmjjxjj2�Wm;2 :

Then, our basic estimate (4.1) change for Z1; Z2 2 G�(T ) as follows

sup
t2[0;T ]

EjjI ~N� (Z1 � Z2)(t)jj2�L2��

� C(�; T )c(T )jjU jj2�L(L2�� )

24 Z
Wm;2

jjxjj2�L1 �(dx) +

0@ Z
Wm;2

jjxjj2L1 �(dx)

1A�35 :(4.6)

Here, in the last step we have used (A3�) and the Lipschitz property of . Sim-
ilar modi�cations are also required in the Bichteler-Jacod inequality (3.9). This
guarantees that all claims proven above for remain true.

4.2. Proof of Theorem 2.8. In general, we will follow a scheme developed in [26]
to prove comparison theorems for SPDEs with Wiener noises. A new issue is to take
care of an additional jump term coming from Poisson integration. To control this
term we will construct approximations of Eq.(1) by similar equations but with more
regular coe¢ cients and noises taking values in Sobolev spaces Wm;2: This has the
following two reasons. First, we would like to keep a Hilbert space setting in order
to develop a proper stochastic analysis and de�ne Wiener and Poisson stochastic
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integrals via Itô�s isometry (which is not evident in general Banach spaces). Second,
we need to evaluate the equations pointwise at any � 2 �, which then allows us to
apply �nite-dimensional comparison results for jump di¤usions obtained e.g. in [24],
[30], [39]. Thus, a natural choise for our purposes is the Sobolev spaces Wm;2 with
m > d

2 , so thatW
m;2 is densely continuously embedded in Cb.After establishing the

comparison result for the regularized equations that are unique solvable in Wm;2

and then taking limits in L2�; we readily get a similar result for the initial equation.
Below we desribe the approximation scheme. For any �xed i = 1; 2 andN;M;L; J 2

N, we consider the following equations

dX
(i)
J (t) = (A(t)X

(i)
J (t) + F

(i)
J (t;X

(i)
J (t)))dt

+M�J (t;XJ (t)) dW (t) +

Z
L2

M
�J (t;X

(i)
J (t))

IJ(x) ~N(dt; dx);(4.7)

X
(i)
J (0) = �

(i)
J ;

dX
(i)
L;J(t) = (A(t)X

(i)
L;J(t) + F

(i)
J (t;X

(i)
L;J(t)))dt

+M
�J (t;X

(i)
M;J (t))

dWL(t) +

Z
L2

M
�J (t;X

(i)
L;J (t))

IJ(x) ~N(dt; dx);(4.8)

X
(i)
L;J(0) = �

(i)
J ;

dX
(i)
M;L;J(t) = (A(t)X

(i)
M;L;J(t) + F

(i)
J (t;X

(i)
M;M;J(t)))dt

+M�J (t;XM;L;J (t)) dWM;L(t) +

Z
L2

M
�J (t;X

(i)
M;L;J (t))

IJ(x) ~N(dt; dx);(4.9)

X
(i)
M;L;J(0) = �

(i)
J ;

dX
(i)
N;M;L;J(t) = (AN (t)X

(i)
N;M;L;J(t) + F

(i)
J (t;X

(i)
N;M;L;J(t)))dt

+M�J (t;XN;M;L;J (t)) dWM;L(t) +

Z
L2

M
�J (t;X

(i)
N;M;L;J (t))

IJ(x) ~N(dt; dx);(4.10)

X
(i)
N;M;L;J(0) = �

(i)
J :

Analogously to the proof of Theorem 3.3.1 in [26], (AN (t))t2[ 0;T ] � L(L2�) \
L(Wm;2) is an element of the approximating family corresponding to (A(t))t2[ 0;T ],
cf. (A5); and WL is a �nite-dimensional Wiener process de�ned by

(4.11) WL(t) :=
LX
n=1

p
anenwn(t); wn(t) := hW (t); eni; t 2 [ 0; T ]:

Compared to [26], we also need smooth approximations for the coe¢ cient func-
tions f (i); �; , basis vectors en and initial conditions �

(i). To this end, we shall
use standard convolution operators in Rd: So, for �(i) 2 L2�(�) (trivially extended
outside �) we set

(4.12) �
(i)
J := (1 + j � j2)

�
4 � conv

�
�J(j � j)(1 + j � j2)�

�
4 �(i) ; �J

�
; J 2 N;
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where (�J)J2N is a Dirac sequence on Rd de�ned in (3.11) and (�J)J2N is a sequence
of cut-o¤ functions �J : R+ ! [ 0; 1 ]; �J 2 C1b (R+); with the properties �J(r) = 1
for r 2 [0; J ], �J(r) = 0 for r � J + 1 and �J+1(r) = �J(r � 1) for r � 1. Then,
each �(i)J is an F0-measurable random variable inWm;2 such that Ejj�(i)J jj2Wm;2 <1:
Obviously, Ejj�(i) � �(i)J jj2L2� ! 0 as J !1 and �(1) � �(2) implies �(1)J � �

(2)
J :

We next approximate each basis vector en 2 L2 by a sequence

(4.13) en;M := conv (�M (j � j)en ; �M ) 2 C10 (Rd); M 2 N;

and respectively de�ne

(4.14) WM;L(t) :=
LX
n=1

p
anen;Mwn(t); t 2 [ 0; T ]:

Similarly, the mappings

(4.15) L2 3  7! IJ( ) := conv( ; �J); J 2 N;

form an approximation of the identity function I( ) :=  in L2:
Finally, using cut-o¤ and convolution operators in Rd, we approximate f (i), �

and  by smooth functions with the following properties:

� The k-th derivatives of f (i)J , �J and J w.r.t. y 2 R are bounded and
continuous for k = 0; 1; :::;m+ 1 and i = 1; 2;

� f (1)J (t; y) � f
(2)
J (t; y) for all (t; y) 2 [ 0; T ]� R, P-a.s.;

� f (i)J (t; !; y)! f (i)(t; !; y) as J !1 for any (t; !; y) 2 [ 0; T ]� 
� R and
i = 1; 2.
The same holds for �J and J .

� The functions f (i)J , �J and J are Lipschitz continuous and locally bounded
at 0 (like as in (�)(i),(ii)), uniformly in J 2 N.

A crucial moment here is that the convolution operator is contraction not only
in L2 but also in the Lipschitz norm (see e.g. [37]), which guarantees that all f (i)J ,
J 2 N, are Lipschitzian with the same constant. Furthermore, the convolution
operator also preserves the monotonicity property, which implies that f (1)J � f

(2)
J

and �(1)J � �
(2)
J :

Theorem 2.7 gives us existence of the unique mild solutions to Eqs. (4.7)�
(4.10) in the space L2�. Furthermore, since all generating functions wetre chosen
to have bounded smooth derivatives up to order m + 1, the associated Nemitskii
operators are Lipschitz continuous in Wm;2. So, we also have the unique strong
(=mild) solution X(i)

N;M;L;J 2 W2
m(T ) to (4.10), where W2

m(T ) is the Banach space
of all predictable (up to a stochastic modi�cation) Wm;2-valued processes X =
(X(t))t2[ 0;T ] such that

(4.16) sup
t2[ 0;T ]

EjjX(t)jj2Wm;2 <1:

The solution process X(i)
N;M;L;J 2 W2

m(T ) obeys a càdlàg modi�cation in W
m;2.

Furthermore, all solutions to (4.7)�(4.10) have càdlàg versions in L2�.
The proof of the comparison theorem can be divided into two consecutive steps:



SPDE WITH LEVY NOISE IN Lp-SPACES 25

Step 1 Given any N; M; L; J 2 N, for the càdlàg mild solutions Y (i) := X
(i)
N;M;L;J ,

i = 1; 2, we show that

Y (1)(t) � Y (2)(t); for all t 2 [ 0; T ]; P-a:s::

Step 2 We check the following convergence for the solutions to Eq.(1) and (4.7)�
(4.10)

lim
N!1

EjjX(i)
N;M;L;J(t)�X

(i)
M;L;J(t)jj

2
L2�
= 0; lim

M!1
EjjX(i)

M;L;J(t)�X
(i)
L;J(t)jj

2
L2�
= 0;

lim
L!1

EjjX(i)
L;J(t)�X

(i)
J (t)jj

2
L2�
= 0; lim

J!1
EjjX(i)

J (t)�X
(i)(t)jj2L2� = 0:

Proof of Step 1: Adapting the time-discretization scheme proposed in [26], we
�x j 2 N and take a partition tk := kT=j; 0 � k � j; of the interval [0; T ]: Consider
the following equations

Z
(i)
0;j(t) := �

(i)
J +

tZ
0

M
�J (s;Z

(i)
0;j(s))

dWM;L(s) +

tZ
0

Z
L2

M
�J (s;Z

(i)
0;j(s))

IJ(x) ~N(ds; dx);

V
(i)
0;j (t) := Z

(i)
0;j(t1) +

tZ
0

(AN (s)V
(i)
0;j (s) + F

(i)
J (s; V

(i)
0;j (s))) ds

for t 2 [ 0; t1 ] and

Z
(i)
k;j(t) := V

(i)
k�1;j(tk) +

tZ
tk

M
�J (s;Z

(i)
k;j(s))

dWM;L(s) +

tZ
tk

Z
L2

M
�J (s;Z

(i)
k;j(s))

IJ(x) ~N(ds; dx);

V
(i)
k;j (t) := Z

(i)
k;j(tk+1) +

tZ
tk

(AN (s)V
(i)
k;j (s) + F

(i)
J (s; V

(i)
k;j (s))) ds

for t 2 [tk; tk+1] and k = 1; 2; :::; j�1. Due to the Lipschitz continuity of the coe¢ -
cients, the above equations obey unique strong solutions V (i)k;j , Z

(i)
k;j 2 W2

m([ tk; tk+1 ]).

Next, we de�ne processes V (i)j ; Z
(i)
j 2 W2

m(T ) by setting

Z
(i)
j (t) := Z

(i)
k;j(t); t 2 [ tk; tk+1 ); k = 0; 1; 2; :::; j � 1;(4.17)

V
(i)
j (0) := �

(i)
J ;

V
(i)
j (t) := V

(i)
k;j (t); t 2 (tk; tk+1]; k = 0; 1; :::; j � 1;

Z
(i)
j (T ) := V

(i)
j (T ):

Because of the continuous embedding Wm;2��!Cb, we can evaluate V
(i)
j (t; �) resp.

Z
(i)
j (t; �) for any t 2 [ 0; T ] and � 2 �.
Merely speaking, the idea of such discretization is to separate stochastic and

deterministic (i.e., operator) terms in Eq. (1), since their analysis require quite dif-
ferent methods. Below we will check that this approximation preserves the odering
and that Z(i)j (t) and V

(i)
j (t) both converge to Y (i) := X

(i)
N;M;L;J as j !1:
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Claim 1: For Vj , Zj de�ned as above we have, P-a.s., for any � 2 � and
t 2 [ 0; T ].

(i) V
(1)
j (t; �) � V

(2)
j (t; �);(4.18)

(ii) Z
(1)
j (t; �) � Z

(2)
j (t; �):

Proof: Let us start with the intervall [0; t1]. By construction, for all t 2 [0; t1)

Z
(i)
j (t) = Z

(i)
0;j(t) = �

(i)
J +

tZ
0

M
�J (s;Z

(i)
j (s))

dWM;L(s)(4.19)

+

tZ
0

Z
L2

M
�J (s;Z

(i)
j (s))

IJ(x) ~N(ds; dx):

To estimate the values of Z(i)j (t; �) pointwise, we consider the pairing of Z
(i)
j (t) 2

Wm;2 with ��, which is the �-function at a �xed �. As �� is a linear bounded
functional on Wm;2; we get

Z
(i)
j (t; �) = hZ(i)j (t); ��iL2(4.20)

= �
(i)
J (�) +

LX
n=1

p
an

tZ
0

hM
�J (s;Z

(i)
j (s))

en;M ; ��iL2 dwn(s)

+

tZ
0

Z
L2

hM
�J (s;Z

(i)
j (s))

IJ(x); ��iL2 ~N(ds; dx):

Obviously, for any � 2 � we have P-a.s.
tZ
0

hM
�J (s;Z

(i)
j (s))

en;M ; ��iL2 dwn(s) =
tZ
0

�J(s; Z
(i)
j (s; �))en;M (�) dwn(s):

The integral w.r.t. ~N in (4.20) can be rewritten as

(4.21)

tZ
0

Z
L2

[J(s; Z
(i)
j (s))IJ(x)](�)

~N(ds; dx):

Note that

IJ(x)(�) :=

Z
Rd

x(y)�J(� � y) dy = hx ; ��;JiL2 ;

where 0 � ��;J 2 C10 (Rd) is de�ned by ��;J(y) := �J(� � y), y 2 Rd, whereby
(�J)J2N is a Dirac sequence on Rd, cf. (3.11). Thus, we have the identity
(4.22)

tZ
0

Z
L2

hM
�J (s;Z

(i)
j (s))

IJ(x); ��iL2 ~N(ds; dx) =
tZ
0

Z
R

J(s; Z
(i)
j (s; �))u

~N�(ds; du);
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where ~N�(s; du) is the projection of ~N(s; dx) on L2� �= R; which is a one-dimensional
subspace in L2 de�ned by

L2� := fhx; �J;�iL2 � �J;� jx 2 L
2
(�)g:

Obviously, ~N�(s; du) is a Poisson random measure on [0; T ] � R with the Lévy
intensity measure �� being the corresponding projection of �. Since by Assumption
(P) the measure � is supported on L2�0, the measure �� is respectively supported
on R+. Here, we took into account that < x; �J;� >L2� 0 for any x 2 L2�0.
Now, by the Lipschitz properties of � and  and the monotonicity of , we can

apply the comparison results for càdlàg solutions of �nite dimensional SDEs from
[24], [30], [39]. According to its de�nition in (4.17), Z(i)j obeys a càdlàg version in

Wm;2. Then by (4.20)�(4.22), Z(i)j (t; �) =< Z
(i)
j (t); �� >L22 R is a càdlàg solution

to the equation

Z
(i)
j (t; �) = �

(i)
J (�) +

LX
n=1

p
an

tZ
0

�J(s; Z
(i)
j (s; �))en;M (�) dwn(s)(4.23)

+

tZ
0

Z
R

J(s; Z
(i)
j (s�; �))u ~N�(ds; du):

Thus, for each �xed � 2 �, we have Z(1)j (t; �) � Z
(2)
j (t; �), P-a.s., for all t 2 [ 0; t1 ).

Since � 7! Z
(i)
j (t; �) is a continuous function, there exists a subset 
t of full P-

measure such that
Z
(1)
j (t; !; �) � Z

(2)
j (t; !; �)

for all � 2 � and ! 2 
t. By considering a càdlàg version of Z
(i)
j (t) 2 Wm;2,

we conclude that the above inequality holds, for all t 2 [ 0; t1) and � 2 �, on a
universal subset 
0 of full P-measure. The same reasoning applied to a cadlag
version of Z(i)0;j(t) 2Wm;2 shows that for all � 2 � and ! 2 
t1 with P(
t1) = 1

Z
(1)
0;j (t1; !; �) � Z

(2)
0;j (t1; !; �):

Now we consider the terms V (1)j (t); V
(2)
j (t) 2 Wm;2 � L2�; t 2 [0; t1]. Obviously,

V
(1)
j (0) � V

(2)
j (0), P�a:s:. To this end, we de�ne linear operators BJ(t) : L2� ! L2�

by

BJ(t)' :=
F
(2)
J (t; V (2)(t))� F (2)J (s; V (1)(t))

V
(2)
j (t)� V (1)j (t)

'; ' 2 L2�;

in the case of V (2)j (t) 6= V
(1)
j (t) and

BJ(t)' := cf (T )'; ' 2 L2�;

otherwise, where cf (T ) > 0 is a Lipschitz constant common for all F (i)J , J 2 N;
i = 1; 2. Now we can apply general arguments from the perturbation theory of
evolution operators (see pp. 64-65 in [26]) to get

V
(1)
j (t) � V

(2)
j (t) in Wm;2(�) for all t 2 [ 0; t1 ]; P�a:s::

By the continuous embedding property Wm;2��!Cb, this gives us the pointwise in-
equality (4.18) (ii) on [ 0; t1 ].
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By repeating the previous procedure on all intervalls [tk; tk+1], k = 1; 2; :::; j� 1,
and we get (4.18) on the whole [ 0; T ]: 4
Claim 2: For i = 1; 2

lim
j!1

Z
(i)
j = Y (i)

in H2(T ) := G�(T ) =Wm;2 for � = 1 and m = 0, that is

(4.24) lim
j!1

sup
t2[ 0;T ]

EjjZ(i)j (t)� Y (i)(t)jj2L2� = 0:

Hence, inequality (4.18) (cf. Claim 1) implies that Y (1)(t) � Y (2)(t), P-a.s., for all
t 2 [ 0; T ].

Proof: Actually, in (4.24) we have the pointwise estimate Y (1)(t; �) � Y (2)(t; �),
P-a.s., for all t 2 [ 0; T ] and � 2 �. This will follow for the càdlàg solutions Y (1),
Y (2) due to the continuous embedding Wm;2��!Cb.
Analogously to the proof of Theorem 3.3.1 in [26], we express Z(i)j (t) � Y (i)(t)

in terms of V (i)j (t) � Y (i)(t). Since  is Lipschitz continuous in R and unifomly
bounded, one can check by Gronwall�s lemma that

(4.25) EjjV (i)j (t)� Y (i)(t)jj2L2� � C(T ) � �j(tk+1)

for any t 2 [ tk; tk+1 ), k 2 f0; 1; : : : ; j � 1g and some C(T ) > 0 depending on M ,
N;L 2 N and cf (T ), c�(T ), c(T ). Here,
(4.26)

�j(tk+1) :=

Z tk+1

0

EjjZ(i)j (t)� Y (i)(t)jj2L2�ds+
1

j

 
sup

t2[ 0;T ]
EjjY (i)(t)jj2L2� + 1

!
:

On the other hand,

EjjZ(i)j (t)� Y (i)(t)jj2L2�(4.27)

� C
n
EjjV (i)j (t)� Y (i)(t)jj2L2�

+E


tZ

tk

�
M

�J (s;Z
(i)
j (s))

�M�J (s;Y (i)(s))

�
dWM;L(s)


2

L2�

+E


tZ

tk

Z
L2

�
M

�J (s;Z
(i)
j (s))

�M�J (s;Y (i)(s))

�
IJ(x) ~N(ds; dx)


2

L2�

+ E
tZ

tk

�
jjAN jj2L(L2�)jjY

(i)(s)jj2L2� + jjF
(i)(s; Y (i)(s)jjL2�

�
ds

9=; :

Except the term with Poisson integral, all other terms in (4.27) can be estimated
similarly to [26]. Using that all J are uniformly Lipschitz and that jjIJ(x)jj2L2 �
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jjxjj2L2 , by Itô�s isometry we get that

E


tZ

tk

Z
L2

M
�J (s;Z

(i)
j (s))��J (s;Y (i)(s))

IJ(x) ~N(ds; dx)


2

L2�

� c2(T )

0@Z
L2

jjxjj2�L2 �(dx)

1A tZ
tk

EjjZ(i)j (s)� Y (i)(s)jj2L2� ds:

Summing up in (4.27), we get with some constant C(T;M;N;L) > 0

EjjZ(i)j (t)� Y (i)(t)jj2L2� � C(T;M;N;L) �

0@1
j
+

tZ
0

EjjZ(i)j (s)� Y (i)(s)jj2L2� ds

1A :

Gronwall�s lemma �nally implies

lim
j!1

EjjZ(i)j (t)� Y (i)(t)jj2L2� = 0;

which was needed to prove Claim 2. 4
Thus, we are �nished with Step 1.
Proof of Step 2: We only sketch how to check the J-convergence, while the

M -, N - and L-convergence can be established in the spirit of the proof of Theorem
3.3.1 in [26]. So, for a �xed J 2 N we have

X
(i)
J �X(i) = a�;J + aF;J + bF;J + a�;J + b�;J + a�;J + b�;J ;

with the corresponding terms de�ned for t 2 [0; T ] by

a�;J(t) : = U(t; 0)[�
(i)
J � �(i)];

aF;J(t) : =

tZ
0

U(t; s)[F
(i)
J (s;X(i)(s))� F (i)(s;X(i)(s))] ds;

bF;J (t) : =

tZ
0

U(t; s)[F
(i)
J (s;X

(i)
J (s))� F

(i)
J (s;X(i)(s))] ds;

a�;J(t) : =

tZ
0

U(t; s)[M�J (s;X(i)(s)) �M�(s;X(i)(s))] dW (s);

b�;J(t) : =

tZ
0

U(t; s)[M
�J (s;X

(i)
J (s))

�M�J (s;X(i)(s))] dW (s);

and

a�;J(t) : =

tZ
0

Z
L2

U(t; s)[M�J (s;X(i)(s))IJ(x)�M�(s;X(i)(s))x] ~N(ds; dx);

b�;J(t) : =

tZ
0

Z
L2

U(t; s)[M
�J (s;X

(i)
J (s))

�M�J (s;X(i)(s))]IJ(x) ~N(ds; dx):
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Below we prove that, for any t 2 [ 0; T ], the aJ -terms tend to 0 in L2(
;L2�) as
J !1 and that

EjjbF;J (t) jj2L2� � CF

tZ
0

EjjX(i)
J �X(i)jj2L2� ds;(4.28)

Ejjb�;J(t)jj2L2� � C�

tZ
0

EjjX(i)
J �X(i)jj2L2� ds;(4.29)

Ejjb�;J(t)jj2L2� � C�

tZ
0

(t� s)�&EjjX(i)
J �X(i)jj2L2� ds(4.30)

with positive constants CF , C� and C� that are uniform for all J 2 N. Indeed,
since

� IJ(x) !
J!1

x in L2 and jjIJ(x)jjL2 � jjxjjL2 ,
� fJ ! f as J !1, (fJ)J2N uniformly Lipschitz in J;
� �J ! � as J !1, (�J)J2N unifomly Lipschitz in J;

we immediately get the required property for a�;J , aF;J and a�;J . Using (A4)
we obtain

EjjaJ(�)jj2L2� =

tZ
0

Z
L2

E
M�J (s;X(i)(s))IJ(x)�M�(s;X(i)(s))x

2
L2�

�(dx) ds

� 2

8<:
tZ
0

Z
L2

E
U(t; s)[M�J (s;X(i)(s))(IJ(x)� x)]

2
L2�

�(dx) ds

+

tZ
0

Z
L2

E
U(t; s)[M�J (s;X(i)(s)) �M�(s;X(i)(s))]x

2
L2�

�(dx) ds

9=;
� 2

8<:TC2(T )jjU jj2L(L2�)
0@Z
L2

jjIJ(x)� xjj2L2 �(dx)

1A
+ c1;&

0@Z
L2

jjxjj2L2 �(dx)

1A tZ
0

(t� s)�&E
J(s;X(i)(s))� (s;X(i)(s))

2
L2�

ds

9=; ;

which by Lebesgue�s dominated convergence theorem tends to 0 as J !1.
Estimates (4.28) and (4.29) for bF;J and b�;J follow by standard properties of

Bochner and Wiener integrals. Furthermore, (A4) and (N�) with � = 1 lead to

Ejjb�;J(t)jj2L2�

� c1;&

0@Z
L2

jjIJ(x)jj2L2 �(dx)

1A tZ
0

(t� s)�&E
J(s;X(i)

J (s))� J(s;X
(i)(s))

2
L2�

ds

� c1;&c
2
(T )

0@Z
L2

jjxjj2L2 �(dx)

1A tZ
0

(t� s)�&E
X(i)

J (s))�X
(i)(s)

2
L2�

ds;
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which holds uniformly in J 2 N. The Gronwall-Bellman lemma now gives the �nal
result. �

4.3. Proof of Theorem 2.9. The proof of the existence result is strongly based on
the comparison result established in the previous theorem. To this end, we adapt a
standard scheme used for similar SPDEs in weighted Lp-spaces driven by a Wiener
noise in [23] and [26]. For convenience, we devide the proof into several steps.
Step 1: For N;M 2 N de�ne

fN (t; y) : = f(t; y) _ (�N);(4.31)

fN;M (t; y) : = inf
u2R

f fN (t; u) +M ju� yjg; (t; y) 2 [0; T ]� R,(4.32)

such that

fN;M " fN as M !1; fN # f as N !1;(4.33)

jfN;M (t; y)� fN;M (t; y)j �M ju� vj; u; v 2 R:

Hence, for each N; M 2 N there exists a unique solution XN;M 2 G�(T ) to Eq.(1)
with F being replaced by the Nemytskii operator FN;M generated by function
fN;M : Furthermore, by the monotonicity property of fN;M and Theorem 2.7, for
any t 2 [ 0; T ] we have P� a:s.

(4.34) XN;M (t) � XN;M+1(t):

Similarly to the proof of Theorem 3.4.1 in [26], we intend to prove anM -independent
estimate for the XN;M . To this end, let us also consider

� �X0;M �the unique solution to Eq.(1) with initial condition �+ := � _ 0 and
drift F0;M ,

� XN;M �the unique solution to Eq.(1) with initial condition �� := �^0 and
drift F�N;M := FN;M ^ 0,

� V � the unique solution to Eq.(1) with initial condition � = 0 and drift
F = 0.

Theorem 2.7 tells us that P-a:s.

XN;M (t) � XN;M (t) � �X0;M (t);(4.35)

XN;M (t) � V (t) � �X0;M (t);

for each t 2 [ 0; T ] and N;M 2 N. We �rst prove that

(4.36) sup
t2[ 0;T ]
M2N

Ejj �X0;M (t)jj2�L2�� <1:

Indeed,

Ejj �X0;M (t)jj2�L2�� � c(�)
n
�I(1)(t) + �I

(2)
M (t) + �I

(3)
M (t) + I

(4)
M (t)

o
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with
�I(1)(t) := EjjU(t; 0)�+jj2�L2�� ;

�I
(2)
M (t) := E

������
������
tZ
0

U(t; s)F0;M (s; �X0;M (s)) ds

������
������
2�

L2��

;

�I
(3)
M (t) := E

������
������
tZ
0

U(t; s)M�(s; �X0;M (s)) dW (s)

������
������
2�

L2��

;

�I
(4)
M (t) := E

������
������
tZ
0

Z
L2

U(t; s)M�(s; �X0;M (s))(x)
~N(ds; dx)

������
������
2�

L2��

:

Here, �I(2)M (t), �I(2)M (t) and �I
(3)
M (t) are the same as on page 73 in [26]. A crucial

moment is the estimate

�I
(2)
M (t) : = E

������
������
tZ
0

U(t; s)F0;M (s; �X0;M (s)) ds

������
������
2�

L2��

� c(�; T; cf (T ))

241 + tZ
0

Ejj �X0;M (s)jj2�L2�� ds+
TZ
0

EjjV (s)jj2�
2

L2��
ds

35 ;
where V 2 G�(T ) is the solution to

V (t) =

tZ
0

U(t; s)M�(s;V (s))dW (s) +

tZ
0

Z
L2

U(t; s)M�(s;V (s))(x) ~N(ds; dx):

To derive it one uses the one-sided growth condition on f: Next, similarly to the
proof of (4.1) one can show that supt2[0;T ] EjjV (t)jj2�

2

L2��
ds < 1 provided (N�0)

holds with �0 = �2: Furthermore, supM2N supt2[0;T ] Ejj�I
(4)
M (t)jj2�L2�� ds < 1 due to

the boundedness assumption imposed on of . By the Gronwall-Belmann lemma
we �nally arrive at (4.36).
In a similar way one can derive an M -independent estimate for XN;M ; which

then by (4.35) implies

(4.37) sup
M2N

sup
t2[0;T ]

EjjXN;M (t)jj2�L2�� ds � C�(T;N) <1:

Step 2: For N 2 N we de�ne processes (XN )t2[0;T ] by

(4.38) XN (t) := ZN (t) +XN;1(t); t 2 [ 0; T ];
with

0 � ZN (t) := sup
M2N

ZN;M (t); t 2 [ 0; T ]; N 2 N;

and
ZN;M (t) := XN;M (t)�XN;1(t); t 2 [ 0; T ]; N;M 2 N.

Note that by (4.34)
0 � ZN;M (t) � ZN;M+1(t):
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Actually, for each t 2 [ 0; T ] and N 2 N, the random variable ZN (t) is uniquely
de�ned up to a P
 ��-zero set in 
�� (which depends on the B(
)
 B(�) rep-
resentations chosen for ZN;M (t)). Furthermore, by (4.37) and B. Levi�s monotone
convergence theorem

sup
t2[0;T ]

EjjZN (t)jj2�L2�� ds = sup
M2N

sup
t2[0;T ]

EjjZN;M (t)jj2�L2�� ds <1

and hence

(4.39) sup
t2[0;T ]

EjjXN (t)jj2�L2�� ds �
�C�(T;N) <1:

By construction t! XN (t) 2 L2�� obeys a predictable modi�cation. Thus, (XN (t))t2[ 0;T ]
is a process in G�(T ). Furthermore, by Lebegue�s dominated convergence theorem
we have
(4.40)

lim
M!1

TZ
0

EjjXN;M (t)�XN (t)jj2�L2�� dt = lim
M!1

TZ
0

EjjZN;M (t)� ZN (t)jj2�L2�� dt = 0:

Analogously we de�ne the processes XN , �X 2 G�(T ) such that

(4.41) XN (t) � XN (t) � �X(t)

and
(4.42)

lim
M!1

TZ
0

EjjXN;M (t)�XN (t)jj2�L2�� dt = 0; lim
M!1

TZ
0

Ejj �X0;M (t)� �X(t)jj2�L2�� dt = 0:

Step 3: We next show that the processes XN solves Eq.(1) with F being replaced
by FN . Let us denote by E(XN ) resp. E(XN;M ) the right-hand side of Eq.(1) after
substituting there XN resp. XN;M . Then,

EjjXN (t)� E(XN )(t)jj2L2�(4.43)

= EjjXN (t)� E(XN )(t) +XN;M (t)� E(XN;M )(t)jj2L2�

= E

XN (t)� U(t; 0)� +
tZ
0

U(t; s)FN (s;XN (s))ds

�
tZ
0

U(t; s)M�(s;X(s))dW (s) +

tZ
0

Z
L2

U(t; s)M�(s;X(s))(x) ~N(ds; dx)


2

L2�

� C
n
I
(1)
N;M (t) + I

(2)
N;M (t) + I

(3)
N;M (t) + I

(4)
N;M (t)

o
;
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where we set

I
(1)
N;M (t) := EjjXN (t)�XN;M (t)jj2L2� ;

I
(2)
N;M (t) := E

������
������
tZ
0

U(t; s)[FN (s;XN (s))� FN;M (s;XN;M (s))] ds

������
������
2

L2�

;

I
(3)
N;M (t) := E

������
������
tZ
0

U(t; s)[M�(s;XN (s)) �M�(s;XN;M (s))] dW (s)

������
������
2

L2�

;

I
(4)
N;M (t) := E

������
������
tZ
0

Z
L2

U(t; s)[M�(s;XN (s)) �M�(s;XN;M (s))]x
~N(ds; dx)

������
������
2

L2�

:

With the help of (4.39) and (4.40) it follows that lim
M!1

I
(i)
N;M (t) = 0 for i = 1; 2; 3

analogously to pp. 76�77 in [26]. Finally, we deal with I(4)N;M (t) and show that by
Hölder�s inequalty

I
(4)
N;M (t) � C�;&(T )

0@ tZ
0

(t� s)�&EjjXN;M (s)�XN (s)jj2L2� ds

1A
� C�;&(T )

0@ tZ
0

s�&
�

��1 ds

1A1� 1
�
0@ tZ
0

EjjXN;M (s)�XN (s)jj2�L2�� ds

1A
1
�

;

which tends to 0 for M !1 by (4.40). The above estimates show that XN solves
obeys Eq.(1) and that

lim
M!1

sup
t2[0;T ]

EjjXN;M (t)�XN (t)jj2�L2�� = 0:

Along the same lines one proves that XN 2 G�(T ) solves Eq.(1) with �� and F�N
2 G�(T ) respectively with �+ := � _ 0 and F+.Similar arguments
Step 4: In this �nal step, we shall check that

(4.44) X(t) := inf
N2N

XN (t)

is a solution to Eq.(1). First we obtain an N -indpendent estimate of the G�(T )-
norms of XN , N 2 N. Similarly to proving the M -independent estimate in Step 1,
we have

EjjXN (t)jj2�L2�� � c(�)
n
I(1)(t) + I

(2)
N (t) + I

(3)
N (t) + I

(4)
N (t)

o
;
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where

I(1)(t) := EjjU(t; 0)��jj2�L2�� ;

I
(2)
N (t) := E

������
������
tZ
0

U(t; s)F�N (s;XN (s)) ds

������
������
2�

L2��

;

I
(3)
N (t) := E

������
������
tZ
0

U(t; s)M�(s;XN (s))
dW (s)

������
������
2�

L2��

;

I
(4)
M (t) := E

������
������
tZ
0

Z
L2

U(t; s)M�(s;XN (s))
(x) ~N(ds; dx)

������
������
2�

L2��

:

The terms I(i)(t) for i = 1; 2; 3 are dealt with on p. 79 in [26]. Concerning I(4)N
note that by (3.9)

EjjI(4)(t)jj2�L2�� � C

24Z
L2

jjxjj2�L2� �(dx) +

0@Z
L2

jjxjj2L2� �(dx)

1A�35 :
Summing up we get for each t 2 [ 0; T ]

EjjXN (t)jj2�L2�� � c(�; T; cf (T ))

241 + Ejj�jj2�L2�� +

tZ
0

EjjXN (s)jj2�L2�� ds

35 ;
which by Gronwalls lemma gives us the N -independent estimate for XN . Together
with (4.41) this yields

(4.45) sup
t2[0;T ]

EjjXN (t)jj2�L2�� ds � C�(T ) <1:

Finally, we check that X(t) := inf
N2N

XN (t), t 2 [ 0; T ], de�nes a solution to Eq.(1)
in the sense of De�nition 2.2.1. By (4.45) we have

lim
N!1

EjjXN (t)�X(t)jj2�L2�� = 0; t 2 [ 0; T ];(4.46)

lim
N!1

E
TZ
0

jjXN (t)�X(t)jj2�L2�� dt = 0:
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In full analogy to the previous step, cf. (4.43), we estimate the following terms

I
(1)
N := EjjXN (t)�X(t)jj2L2� ;

I
(2)
N :=

I
(3)
N := E

������
������
tZ
0

U(t; s)[M�(s;XN (s)) �M�(s;X(s)) dW (s)

������
������
2

L2�

;

I
(4)
N := E

������
������
tZ
0

Z
L2

U(t; s)[M�(s;XN (s)) �M�(s;X(s))
~N(ds; dx)

������
������
2

L2�

and by Gronwall�s lemma show that they vanishes as N ! 1:Thus, X solves Eq.
(1). The required mean-square continuity properties of t 7! X(t) follow from the
similar properties of the Wiener and Poisson convolution integrals.. �

4.4. Examples of SPDEs. Here we present an example of SPDEs to which the
above results are applicable. So, let � � Rd obey the weak cone property and �x
m 2 N s.t. m > d=2.
Let us consider a second order elliptic partial di¤erential operator A such that

for ' 2 D(A) :=Wm;2

(4.47) A'(�) :=
X

1�i;j�d
ai;j(�)

@2

@�i@�j
'(�) + bi(�)

@

@�i
'(�) + c(�)'(�), � 2 Rd;

where ai;j , bi, c 2 C1b (= the set of bounded, in�nitely di¤erentiable functions on
�). Furthermore, suppose that c � 0 and that ai;j ful�ll the standard ellipticity
condition, i.e. there is some � > 0 such that for all �; � 2 Rd

(4.48)
dX

i;j=1

aij(�)�i�j � �j�j2:

Proposition 4.3. Operator A de�ned by (4.47), (4.48) obeys conditions (A1)� (A3)
and (A5) from Section 2.1. Furthermore, (A4�) is ful�lled in the case d = 1:

Proof: By Section B.2 in [31], there exists a continuous Green function G:
R+�R�R! R corresponding to the parabolic operator @

@t +A such that de�ning
U by U(0) = I and

(4.49) (U(t)')(�) :=

Z
�

G(t; �; �)'(�) d�; � 2 Rd; ' 2 L2�; t > 0;

gives us a C0-semigroup in L2� (cf. Theorem B.9 in [31]) obeying (cf. Theorem B.7
in [31])

sup
t2[ 0;T ]

jjU(t)jjL(L2�) <1:

It is a well-known fact (see e.g. Lemma 2.1 in [14]) that G(t; �; �) obeys a sub-
Gaussian growth, i.e. there are positive constants c1, c2 such that

(4.50) 0 < G(t; �; �) � c1t
� d

2 exp

�
�c2

j� � �j2
t

�
; (t; �; �) 2 ( 0; T ]� Rd � Rd:



SPDE WITH LEVY NOISE IN Lp-SPACES 37

Furthermore, by (4.48) we have for 0 < t � T
(4.51)Z

�

G(t; s; �; �)(1 + j� � �j2)
�
2 d� +

Z
�

G(t; s; �; �)(1 + j� � �j2)
�
2 d� � c(T ) <1:

As was shown in Example 2.5 in [26] with the help of (4.51) one gets (A3). By
(4.48), A obeys the assumptions of Proposition 2.7 in [8] and thus the C0-semigroup
in L2� generated by A and having the representation (4.49) is positive, i.e. (A1) is
ful�lled. Furthermore, since c � 0, U is contractive in L2 by Proposition 2.7 from
[8], so A also obeys (A2).
Thus, for the general claim it remains to consider (A5). Concerning the ap-

proximation property in Wm;2, we note the following. By the de�nition of the
semigroup U (see (2.11)) and the properties of the derivatives of a convolution, we
immediately get U(t)' 2 Wm;2 for any ' 2 L2. Thus, setting D(AN ) = Wm;2 for
any N 2 N and AN := N � (U (1=N)� I), N 2 N, we get a family (AN )N2N of
linear bounded operators on Wm;2. Then, the corresponding evolution family in
L2� is given by

UN (t) := exp(tAn) = exp(tN � U(1=N)) exp(�tN):

Furthermore, for this evolution family we have

sup
t2[ 0;T ]

jjUN (t; s)'jjW 2;2 � cN (T )jj'jjW 2;2 :

Thus, the approximation property in Wm;2 is ful�lled.
Finally, let us show (A4�) in the special case d = 1. In this case (4.50) becomes

(4.52) 0 < G(t; �; �) � c1t
� 1
2 exp

�
�c2

j� � �j2
t

�
; (t; �; �) 2 ( 0; T ]� R� R;

which yields that

Z
�

G(t; s; �; �)��(� � �) d�

� c(�)

24Z
R

t�1exp

�
�j�j

2

t

�
d�+

Z
�

t�1j�j
�

exp

�
�j�j

2

t

�
d�

35�c(�; T )t� 1
2<1; t > 0:

Similarly to the above considerations, by the symmetry of ��(� � �), we also get

Z
�

G2(t; �; �)��(� � �) d� � c(�; T )t�
1
2 <1; t > 0:
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Setting � = 1
2 , by (4.52) we get the following chain of estimatesZ

�

(U(t; s)M'( ))
2�(�)��(d�) =

Z
�

0@Z
�

G(t; s; �; �)'(�) (�) d�

1A2�

��(d�)

� jj jj2�L2
Z
�

24Z
�

G(t; s; �; �)
2(��1)

� G(t; s; �; �)
2
� '2(�) d�

35� ��(d�
� jj jj2�L2

Z
�

264
0@Z
�

G2(t; s; �; �) d�

1A
��1
�
0@Z
�

G2(t; s; �; �)'2�(�) d�

1A 1
�

375
�

��(d�)

� c(�; �; c(T ))jj jj2�L2(t� s)�(��1)�
Z
�

24Z
�

G2(t; s; �; �)��(� � �)d�

35'2�(�)��(d�)
� c(�; �; c(T ))(t� s)��� jj jj2�L2 jj'jj2�L2�� :

Thus, (A4�) holds, which �nishes the proof. �

Remark 4.4. Setting ai;i � 1, ai;j � 0, i 6= j, bi � 0 and ci � 0, 1 � i � d in
(4.47) gives us A = � such that by Proposition 4.3 the Laplace operator obeys
(A1)� (A3) and (A5). In the special case d = 1, (A4�) is ful�lled with � = 1

2 .
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