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Abstract

Let X be a locally compact Polish space. A random measure on X is a probability
measure on the space M(X) of all (nonnegative) Radon measures on X. For n ∈ N, the n-th
moment of a random measure µ is a Radon measure M (n) on Xn which satisfies∫

M(X)

∫
Xn

f (n) dη⊗n dµ(η) =

∫
Xn

f (n) dM (n)

for each measurable, bounded, compactly supported function f (n) : Xn → R. In this paper,

we are interested in moments of a random discrete measure. Denote by K(X) the cone of all

(nonnegative) Radon measures η on X which are of the form η =
∑

i siδxi . Here, for each

i, si > 0 and δxi is the Dirac measure at xi ∈ X. Note that the set {xi} is not necessarily

locally finite in X, but can even be dense in X. A random discrete measure µ is a random

measure on X which satisfies µ(K(X)) = 1, i.e., µ is a probability measure on K(X). The

main result of this paper is a theorem that states a necessary and sufficient condition for a

random measure µ to be a random discrete measure. This condition is formulated solely in

terms of moments M (n) of the random measure µ.

1 Preliminaries and formulation of the problems

Let X be a locally compact Polish space, and let B(X) denote the Borel σ-algebra on
it. For example, X can be the Euclidean space Rd, d ∈ N. Let M(X) denote the
space of all (nonnegative) Radon measures on (X,B(X)). The space M(X) is equipped
with the vague topology, i.e., the coarsest topology making all mappings

M(X) 3 η 7→ 〈η, f〉 :=

∫
X

f(x) dη(x), f ∈ C0(X),
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continuous. Here C0(X) is the space all continuous functions on X with compact
support. Let B(M(X)) denote the Borel σ-algebra on M(X). A random measure on
X is a probability measure on (M(X),B(M(X))), see e.g. [6, 7, 10].

An important characteristic of a random measure is its moment sequence. We say
that a random measure µ has finite moments if, for each n ∈ N and any f1, . . . , fn ∈
C0(X), we have ∫

M(X)

∣∣〈η, f1〉 · · · 〈η, fn〉
∣∣ dµ(η) <∞.

Then, the n-th moment of µ is the functional

C0(X)n 3 (f1, . . . , fn) 7→
∫
M(X)

〈η, f1〉 · · · 〈η, fn〉 dµ(η).

For each n ∈ N, we equip the space C0(Xn) of all continuous, compactly supported
functions on Xn with a natural topology of uniform convergence on compact sets from
Xn. Clearly, for each f (n) ∈ C0(Xn), the function

M(X) 3 η 7→ 〈η⊗n, f (n)〉 :=

∫
Xn

f (n)(x1, . . . , xn) dη(x1) · · · dη(xn)

is measurable. By the dominated convergence theorem, the n-th moment of the random
measure µ can be extended, by linearity and continuity, to a continuous functional

C0(Xn) 3 f (n) 7→M (n)(f (n)) :=

∫
M(X)

〈η⊗n, f (n)〉 dµ(η). (1)

By the Riesz representation theorem, the dual space of C0(Xn) can be identified with
the space of all signed Radon measures on Xn. For each f (n) ∈ C0(Xn) such that
f (n) ≥ 0, we clearly have 〈η⊗n, f (n)〉 ≥ 0 for all η ∈ M(X), hence M (n)(f (n)) ≥ 0.
Therefore, each moment functional M (n) can be identified with a nonnegative Radon
measure on Xn, i.e., an element of M(Xn). We also set M (0) :=

∫
M(X)

dµ(η) = 1. The

(M (n))∞n=0 is called the moment sequence of the random measure µ.
As follows from (1), for each n ≥ 2,

M (n)(f (n)) = M (n)(Symn f
(n)), f (n) ∈ C0(Xn), (2)

where Symn f
(n) denotes the symmetrization of the function f (n):

Symn f
(n) :=

∑
σ∈Sn

1

n!
f(xσ(1), . . . , xσ(n)), (3)

Sn being the group of all permutations of 1, . . . , n. Hence, M (n) is a symmetric measure
on Xn, i.e., the measure M (n) remains invariant under the natural action of permuta-
tions σ ∈ Sn on Xn.
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In this paper, we will be interested in the so-called random discrete measures. The
cone of (nonnegative) discrete Radon measure on X is defined as

K(X) :=

{
η =

∑
i

siδxi ∈M(X) | si > 0, xi ∈ X

}
.

Here, δxi is the Dirac measure with mass at xi, the atoms xi are assumed to be distinct,
and their total number is at most countable. By convention, the cone K(X) contains
the null mass η = 0, which is represented by the sum over an empty set of indices i. One
refers to the points xi as positions, and to the si as weights. For η =

∑
i siδxi ∈ K(X)

we denote τ(η) := {xi}. Note that the closure of K(X) in the vague topology coincides
with M(X). As shown in [9], K(X) ∈ B(M(X)). A random discrete measure on X is
a probability measure on (K(X),B(K(X))), where B(K(X)) is the trace σ-algebra of
B(M(X)) on K(X). Equivalently, a random discrete measure µ is a random measure
which satisfies µ(K(X)) = 1.

In most interesting examples of random discrete measures, the set of positions, τ(η),
is almost surely a countable dense subset of X. We note that a study of countable
dense random subsets of X leads to “situations in which probabilistic statements about
such sets can be uninformative” [11], see also [2]. It is the presence of the weights si
in random discrete measures that makes a real difference.

Further on we will need the notion of a point process. The configuration space over
X is defined as the set of all locally finite subsets of X:

Γ(X) := {γ ⊂ X | |γ ∩ Λ| <∞ for each compact Λ ⊂ X}.

Here, |γ ∩ Λ| denotes the number of points in the set γ ∩ Λ. One usually identifies
a configuration γ = {xi} ∈ Γ(X) with a Radon measure γ =

∑
i δxi . Thus, we get

the inclusions Γ(X) ⊂ K(X) ⊂ M(X). We denote by B(Γ(X)) the trace σ-algebra of
B(M(X)) on Γ(X). A point process in X is a probability measure on (Γ(X),B(Γ(X))).
Equivalently, a point process µ is a random measure which satisfies µ(Γ(X)) = 1.

A point process is often characterized by its correlation measure. Let us recall the
latter notion. Let Γ0(X) denote the space of all finite configurations in X:

Γ0(X) := {γ ⊂ X | |γ| <∞}.

Note that Γ0(X) =
⋃∞
n=0 Γ(n)(X), where Γ(n)(X) is the space of all n-point config-

urations (subsets) in X. Clearly, Γ0(X) ⊂ Γ(X), and we denote by B(Γ0(X)) the
trace σ-algebra of B(Γ(X)) on Γ0(X). The σ-algebra B(Γ0(X)) admits the following
description: for each n ∈ N, Γ(n)(X) ∈ B(Γ0(X)) and the restriction of B(Γ0(X)) to
Γ(n)(X) coincides (under a natural isomorphism) with the collection of all symmetric

(i.e., invariant under the action of σ ∈ Sn) Borel-measurable subsets of X̃n, where

X̃n := {(x1, . . . , xn) ∈ Xn | xi 6= xj if i 6= j}.
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Let now µ be a point process in X, i.e., a probability measure on (Γ(X),B(Γ(X))). The
correlation measure of µ is defined as the (unique) measure ρ on (Γ0(X),B(Γ0(X)))
which satisfies ∫

Γ(X)

∑
λbγ

G(λ) dµ(γ) =

∫
Γ0(X)

G(λ) dρ(λ) (4)

for each measurable function G : Γ0(X) → [0,∞]. In formula (4), the summation∑
λbγ is over all finite subsets λ of γ. Under a very mild condition on the correlation

measure ρ, it uniquely identifies the point processes µ, see [13].
For example, let ζ be a Radon, non-atomic measure on X. The Lebesgue–Poisson

measure Lζ is defined as the measure on (Γ0(X),B(Γ0(X))) which satisfies∫
Γ0(X)

G(λ) dLζ(λ) = G(∅) +
∞∑
n=1

1

n!

∫
X̃n

G({x1, . . . , xn}) dζ(x1) · · · dζ(xn)

for each measurable function G : Γ0(X) → [0,∞]. Then the Poisson point process
in X with intensity ζ can be characterized as the unique point process in X whose
correlation measure is Lζ .

Let us now briefly mention the problems we are going to discuss in this paper.
Denote R∗+ := (0,∞), the upper index ∗ in R∗+ denoting that point 0 is removed

from the set R+ = [0,∞). We introduce a logarithmic metric on R∗+: for a, b ∈ R∗+,
dist(a, b) :=

∣∣ln (a
b

)∣∣. Then R∗+ becomes a locally compact Polish space, and any set of
the form [a, b], with 0 < a < b <∞, is compact. Thus, Y := X × R∗+ is also a locally
compact Polish space, and we can consider the configuration space over Y , i.e., Γ(Y ).

Let µ be a random discrete measure on X. It is often convenient to interpret µ as
a point process in Y . More precisely, take any discrete Radon measure η =

∑
i siδxi ∈

K(X) and set
Eη := {(xi, si)}.

As easily seen Eη ∈ Γ(Y ). Furthermore, it can be shown that the mapping E : K(X)→
Γ(Y ) is measurable. (Note, however, that the range of the mapping E is not the whole
space Γ(Y ).) We denote ν := E(µ), i.e., the pushforward of µ under E . Thus, ν is a
point process in Y . Thus, one can study the random discrete measure µ through the
point process ν.

For example, the remarkable Gamma measure, see e.g. [8, 16, 18], is the random
discrete measure µ on X = Rd for which E(µ) = ν is the Poisson point process in
Rd × R∗+ with intensity measure dx s−1e−s ds.

Assume now that we know the moment sequence (M (n))∞n=0 of the random discrete
measure µ. The first problem we are going to solve in this paper is how to recover the
correlation measure of the point process ν from the moment sequence (M (n))∞n=0. A
solution to this problem is given in Section 2. Our approach is significantly influenced
by the paper of Rota and Wallstrom [15], which combines ideas of probability theory
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and combinatorics. Additionally, to find the correlation measure of ν, one has to solve
a sequence of finite-dimensional moment problems.

The second problem can be formulated as follows: Assume that µ is a random
measure on X, whose moment sequence (M (n))∞n=0 is known. Give a necessary and
sufficient condition, in terms of the moments (M (n))∞n=0, for µ to be a random discrete
measure, i.e., for the random measure µ to be concentrated on K(X). A solution to
this problem is given in Section 3. The main idea of our approach is that, in order
that µ be a random discrete measure, the correlation measure of a corresponding point
process ν on Y must exist.

2 Recovering the correlation measure of ν

Recall that a partition of a nonempty set Z is any finite collection π = {A1, . . . , Ak},
where A1, . . . , Ak are mutually disjoint subsets of Z such that Z =

⋃k
i=1Ai. The sets

A1, . . . , Ak are called blocks of the partition π.
For each n ∈ N, denote by Π(n) the set of all partitions of the set {1, 2, . . . , n}. For

each partition π = {A1, . . . , Ak} ∈ Π(n), we denote by X
(n)
π the subset of Xn which

consists of all (x1, . . . , xn) ∈ Xn such that, for any 1 ≤ i < j ≤ n, xi = xj if and
only if i and j belong to the same block of the partition π, say Al. For example, for
the so-called zero partition 0̂ =

{
{1}, {2}, . . . , {n}

}
, the set X

(n)

0̂
consists of all points

(x1, . . . , xn) ∈ Xn whose all coordinates are different. For the so-called one partition

1̂ =
{
{1, 2, . . . , n}

}
, the set X

(n)

1̂
consists of all points (x1, . . . , xn) ∈ Xn such that

x1 = x2 = · · · = xn. Clearly, the sets X
(n)
π with π running over Π(n) form a partition

of Xn.
Let m(n) be any nonnegative Radon measure on Xn, i.e., m(n) ∈ M(Xn). For each

partition π ∈ Π(n), we denote by m
(n)
π the restriction of the measure m(n) to the set

X
(n)
π . Note that we may also treat m

(n)
π as a measure on Xn by setting

m(n)
π (Xn \X(n)

π ) := 0.

Then we get

m(n) =
∑

π∈Π(n)

m(n)
π .

Let us fix a partition π = {A1, A2, . . . , Ak} ∈ Π(n) and assume that the blocks of
this partition are enumerated so that

minA1 < minA2 < · · · < minAk.

We denote |π| := k, the number of blocks in the partition π. We construct a measurable,
bijective mapping

Bπ : X(n)
π → X

(k)

0̂
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as follows. For any (x1, . . . , xn) ∈ X(n)
π , we set

Bπ(x1, . . . , xn) = (y1, . . . , yk),

where, for i = 1, 2, . . . , k, yi = xj with j ∈ Ai. (Note that, if π = 0̂, then Bπ is just

the identity mapping.) We denote by Bπ(m
(n)
π ) the pushforward of the measure m

(n)
π

under Bπ.
Let us now additionally assume that the initial measure m(n) is symmetric, i.e.,

the measure m(n) remains invariant under the natural action of permutations σ ∈ Sn

on Xn. For a partition π as in the above paragraph, we set, for each l = 1, 2, . . . , k,
il := |Al|, the number of elements of the block Al. Note that i1 + i2 + · · · + ik = n.

Since m(n) is symmetric, it is clear that the measure Bπ(m
(n)
π ) is completely identified

by the numbers i1, . . . , ik. That is, if π′ = {A′1, . . . , A′k} is another partition from Π(n),
for which

minA′1 < minA′2 < · · · < minA′k

and |A′l| = il, l = 1, . . . , k, then Bπ(m
(n)
π ) = Bπ′(m

(n)
π′ ). Hence, we will denote

mi1,...,ik := Bπ(m(n)
π ), (5)

and we may assume that, in formula (5), the partition π = {A1, . . . , Ak} is given by

A1 = {1, . . . , i1}, A2 = {i1 + 1, . . . , i1 + i2}, A3 = {i1 + i2 + 1, . . . , i1 + i2 + i3}, . . . (6)

Note that, since m(n) is a Radon measure on Xn, each measure mi1,...,ik is a Radon

measure on X
(k)

0̂
, i.e., for each ∆ ∈ Bc(X(k)

0̂
), we have mi1,...,ik(∆) <∞. Here Bc(X(k)

0̂
)

denotes the collection of all sets ∆ ∈ B(X
(k)

0̂
) which have a compact closure in Xk, and

B(X
(k)

0̂
) is the trace σ-algebra of B(Xk) on X

(k)

0̂
. Thus, a given sequence of symmetric

Radon measures m(n) on Xn, n ∈ N, uniquely identifies a sequence of Radon measures
mi1,...,ik on X

(k)

0̂
, where i1, . . . , ik ∈ N, k ∈ N. As easily seen the inverse implication

is also true, i.e., any sequence of Radon measures mi1,...,ik on X
(k)

0̂
, with i1, . . . , ik ∈ N

and k ∈ N uniquely identifies a sequence of symmetric Radon measures m(n) on Xn,
n ∈ N.

Let now µ be a random discrete measure on X which has finite moments, and let
(M (n))∞n=0 be its moment sequence. So, below we will deal with the measures Mi1,...,ik

derived from the the moment sequence (M (n))∞n=0.
It is clear that a result we wish to derive can only hold under an appropriate

estimate on the growth of the measures M (n). Below we will assume that the following
condition is satisfied:

(C1) For each Λ ∈ Bc(X), there exists a constant CΛ > 0 such that

M (n)(Λn) ≤ Cn
Λ n! , n ∈ N. (7)
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Here Bc(X) denotes the collection of all sets from B(X) which have compact
closure

Consider the locally compact Polish space Y = X × R∗+ (see Section 1), and con-
sider the configuration space Γ(Y ). Denote by Γp(Y ) the set of so-called pinpointing
configurations in Y . By definition, Γp(Y ) consists of all configurations γ ∈ Γ(Y ) such
that if (x1, s1), (x2, s2) ∈ γ and (x1, s1) 6= (x2, s2), then x1 6= x2. Thus, a configura-
tion γ ∈ Γp(Y ) can not contain two points (x, s1) and (x, s2) with s1 6= s2. For each
γ ∈ Γp(Y ) and Λ ∈ Bc(X), we define a local mass by

MΛ(γ) :=

∫
Y

χΛ(x)s dγ(x, s) =
∑

(x,s)∈γ

χΛ(x)s ∈ [0,∞]. (8)

Here χΛ denotes the indicator function of the set Λ. The set of pinpointing configura-
tions with finite local mass is then defined by

Γf (Y ) :=
{
γ ∈ Γp(Y ) |MΛ(γ) <∞ for each compact Λ ⊂ X

}
. (9)

As easily seen, Γf (Y ) ∈ B(Γ(Y )) and we denote by B(Γf (Y )) the trace σ-algebra of
B(Γ(Y )) on Γf (Y ).

We construct a bijective mapping E : K(X) → Γf (Y ) by setting, for each η =∑
i siδxi ∈ K(X), Eη := {(xi, si)}. By [9, Theorem 6.2], we have

B(Γf (Y )) = {EA | A ∈ B(K(X)} .

Hence, both E and its inverse E−1 are measurable mappings.
We denote by ν := E(µ) the pushforward of the measure µ under the mapping E .

Thus ν is a probability measure on Γp(Y ), in particular, it is a point process in Y .
Let ρ denote the correlation measure of the point process ν. In particular, ρ is a

measure on Γ0(Y ). For each n ∈ N, we denote by ρ(n) the restriction of the measure

ρ to Γ(n)(Y ). The measure ρ(n) can be identified with the symmetric measure on Y
(n)

0̂
which satisfies ∫

Γf (Y )

∑
{(x1,s1),...,(xn,sn)}⊂γ

f (n)(x1, s1, . . . , xn, sn) dν(γ)

=

∫
Y

(n)

0̂

f (n)(x1, s1, . . . , xn, sn) dρ(n)(x1, s1, . . . , xn, sn) (10)

for each symmetric measurable function f (n) : Y
(n)

0̂
→ [0,∞]. Since ν(Γp(Y )) = 1, the

measure ρ(n) is concentrated on the smaller set

Yn :=
{

(x1, s1, . . . , xn, sn) ∈ Y n | (x1, . . . , xn) ∈ X(n)

0̂

}
. (11)

Note that Y1 = Y .
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Theorem 1. Let µ be a random discrete measure on X which has finite moments. Let
(M (n))∞n=0 be the moment sequence of µ, and assume that condition (C1) is satisfied.

(i) For each n ∈ N and ∆ ∈ Bc(X(n)

0̂
), there exists a unique finite measure ξ

(n)
∆ on

(R∗+)n which satisfies∫
(R∗+)n

si11 · · · sinn dξ
(n)
∆ (s1, . . . , sn) =

1

n!
Mi1+1,...,in+1(∆), (i1, . . . , in) ∈ Zn+. (12)

Here Z+ := N ∪ {0}.

(ii) For each n ∈ N, there exists a unique measure ξ(n) on Yn which satisfies

ξ
(n)
∆ (A) =

∫
Yn

χ∆(x1, . . . , xn)χA(s1, . . . , sn) dξ(n)(x1, s1, . . . , xn, sn). (13)

for all ∆ ∈ Bc(X(n)

0̂
) and A ∈ B((R∗+)n).

(iii) For each n ∈ N, let ρ(n) be the measure on Yn given by

dρ(n)(x1, s1, . . . , xn, sn) := (s1 · · · sn)−1 dξ(n)(x1, s1, . . . , xn, sn). (14)

Then ρ(n) is the restriction of the correlation measure ρ of the point process
ν = E(µ) to Γ(n)(X).

Remark 2. Note that, by the definition of a correlation measure, one always has ρ(∅) =
1. Thus, Theorem 1 gives a three-step way of recovering the correlation measure ρ of
the point process ν = E(µ) from the moment sequence (M (n))∞n=0.

Proof. We start the proof with the following

Lemma 3. Assume that, for each n ∈ N, m(n) is a symmetric measure on Xn. Assume
that, for each Λ ∈ Bc(X), there exists a constant CΛ > 0 such that m(n)(Λn) ≤ Cn

Λ n!
for all n ∈ N. Then, for any i1, . . . , in ∈ N, n ∈ N, and Λ ∈ Bc(X),

1

n!
mi1,...,in(Λ

(n)

0̂
) ≤ i1! · · · in!Ci1+···+in

Λ .

Proof. Fix any i1, . . . , in ∈ N and Λ ∈ Bc(X). Let π = {A1, . . . , An} ∈ Π(i1 + · · ·+ in)
be as in (6). By the construction of the measure mi1,...,in , we get

mi1,...,in(Λ
(n)

0̂
)

=

∫
X

(i1+···+in)
π

χΛn(x1, xi1+1, . . . , xi1+···+in−1+1) dm(i1+···+in)(x1, . . . , xi1+···+in)
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=

∫
Xi1+···+in

χ
Λi1+···+in∩X(i1+···+in)

π
(x1, . . . , xi1+···+in) dm(i1+···+in)(x1, . . . , xi1+···+in)

=

∫
Xi1+···+in

χ
Λ
(i1+···+in)
π

dm(i1+···+in)

=

∫
Xi1+···+in

Symi1+···+in χΛ
(i1+···+in)
π

dm(i1+···+in). (15)

Let ψ ∈ Π(i1 + · · ·+ in) be a partition having exactly n blocks:

ψ = {B1, . . . , Bn},

where the blocks B1, . . . , Bn are enumerated so that minB1 < minB2 < · · · < minBn.
Set jl := |Bl|, l = 1, . . . , n. Denote by Ψi1,...,in the set of all such partitions ψ which
satisfy

(i1, . . . , in) = (jσ(1), . . . , jσ(n))

for some permutation σ ∈ Sn. An easy combinatoric argument shows that the number
of all partitions in Ψi1,...,in is equal to

Ni1,...,in =
(i1 + · · ·+ in)!

i1! · · · in! r1! r2! r3! · · ·
.

Here for l = 1, 2, 3, . . . , rl denotes the number of coordinates in the vector (i1, i2, . . . , in)
which are equal l. In particular,

r1 + r2 + r3 + · · · = n,

which implies
r1! r2! r3! · · · ≤ n! .

Therefore,

Ni1,...,in ≥
(i1 + · · ·+ in)!

i1! · · · in!n!
. (16)

For each ψ ∈ Ψi1,...,in ,

Symi1+···+in χΛ
(i1+···+in)
ψ

= Symi1+···+in χΛ
(i1+···+in)
π

.

Hence, by (15) and (16),

1

n!
mi1,...,in(Λ

(n)

0̂
)

=
1

n!Ni1,...,in

∑
ψ∈Ψi1,...,in

∫
Xi1+···+in

χ
Λ
(i1+···+in)
ψ

dm(i1+···+in)

9



≤ i1! · · · in!

(i1 + · · ·+ in)!

∫
Xi1+···+in

∑
ψ∈Ψi1,...,in

χ
Λ
(i1+···+in)
ψ

dm(i1+···+in)

≤ i1! · · · in!

(i1 + · · ·+ in)!
m(i1+···+in)(Λi1+···+in)

≤ i1! · · · in!Ci1+···+in
Λ .

To prove statements (i)–(iii) of the theorem, let us first carry out some considera-
tions. Note that, for each n ∈ N and each measurable function f (n) : Xn → [0,∞], the
functional

K(X) 3 η 7→ 〈η⊗n, f (n)〉 ∈ [0,∞]

is measurable and ∫
K(X)

〈η⊗n, f (n)〉 dµ(η) =

∫
Xn

f (n) dM (n). (17)

As easily seen, equality (10) can be extended to the class of all measurable (not
necessarily symmetric) functions f (n) : Yn → [0,∞] as follows:∫

Γf (Y )

1

n!

∑
(x1,s1),...,(xn,sn)∈γ
x1, . . . , xn different

f (n)(x1, s1, . . . , xn, sn) dν(γ)

=

∫
Yn

f (n)(x1, s1, . . . , xn, sn) dρ(n)(x1, s1, . . . , xn, sn). (18)

If we extend the function f (n) by zero to the whole space Y n, we can rewrite (18) in
the equivalent form:∫

Γf (Y )

1

n!

∑
(x1,s1),...,(xn,sn)∈γ

f (n)(x1, s1, . . . , xn, sn) dν(γ)

=

∫
Yn

f (n)(x1, s1, . . . , xn, sn) dρ(n)(x1, s1, . . . , xn, sn). (19)

In particular, for any measurable function g(n) : Xn → [0,∞] which vanishes outside

X
(n)

0̂
and any i1, . . . , in ∈ N, we get∫

Γf (Y )

1

n!

∑
(x1,s1),...,(xn,sn)∈γ

g(n)(x1, . . . , xn)si11 · · · sinn dν(γ)

=

∫
Yn

g(n)(x1, . . . , xn)si11 . . . , s
in
n dρ

(n)(x1, s1, . . . , xn, sn). (20)
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For simplicity of notation, we will write below

δ(x1, . . . , xn) := χ
X

(n)

1̂

(x1, . . . , xn), (x1, . . . , xn) ∈ Xn.

Thus, δ(x1, . . . , xn) is equal to 1 if x1 = x2 = · · · = xn, and is equal to zero otherwise.
For i1, . . . , in ∈ N, we define a function Ii1,...,in : X i1+···+in → {0, 1} by setting

Ii1,...,in(x1, . . . , xi1+···+in)

:= δ(x1, . . . , xi1)δ(xi1+1, . . . , xi1+i2) · · · δ(xi1+···+in−1+1, . . . , xi1+···+in).

For a measurable function g(n) : Xn → [0,∞) which vanishes outside X
(n)

0̂
, we define a

measurable function Ri1,...,ing
(n) : X i1+···+in → [0,∞] by

(Ri1,...,ing
(n))(x1, . . . , xi1+···+in)

:= g(n)(x1, xi1+1, xi1+i2+1, . . . , xi1+···+in−1+1)Ii1,...,in(x1, . . . , xi1+···+in). (21)

Note that the function Ri1,...,ing
(n) vanishes outside the set X

(i1+···+in)
π , where π =

{A1, . . . , An} with the sets A1, . . . , An being as in (6). For each η ∈ K(X),

〈η⊗(i1+···+in),Ri1,...,ing
(n)〉

=
∑

x1,...,xi1+···+in∈τ(η)

(Ri1,...,ing
(n))(x1, . . . , xi1+···+in)s1 · · · si1+···+in

=
∑

x1,...,xn∈τ(η)

g(n)(x1, . . . , xn)si11 · · · sinn . (22)

By (20), (22), and the definition of the measure ν, we get

1

n!

∫
K(X)

〈η⊗(i1+···+in),Ri1,...,ing
(n)〉 dµ(η)

=

∫
Yn

g(n)(x1, . . . , xn)si11 . . . , s
in
n dρ

(n)(x1, s1, . . . , xn, sn).

Hence, by (17), ∫
Yn

g(n)(x1, . . . , xn)si11 . . . , s
in
n dρ

(n)(x1, s1, . . . , xn, sn).

=
1

n!

∫
Xi1+···+in

Ri1,...,ing
(n) dM (i1+···+in)

=
1

n!

∫
X

(i1+···+in)
π

Ri1,...,ing
(n) dM (i1+···+in),

11



where the partition π is as above. From here we conclude,∫
Yn

g(n)(x1, . . . , xn)si11 . . . , s
in
n dρ

(n)(x1, s1, . . . , xn, sn).

=
1

n!

∫
X

(n)

0̂

g(n)(x1, . . . , xn) dMi1,...,in(x1, . . . , xn). (23)

We define a symmetric measure ξ(n) on Yn by setting

dξ(n)(x1, s1, . . . , xn, sn) := s1 · · · sn dρ(n)(x1, s1, . . . , xn, sn). (24)

Then, equality (23) can be rewritten as follows:∫
Yn

g(n)(x1, . . . , xn)si11 . . . , s
in
n dξ

(n)(x1, s1, . . . , xn, sn).

=
1

n!

∫
X

(n)

0̂

g(n)(x1, . . . , xn) dMi1+1,...,in+1(x1, . . . , xn), (i1, . . . , in) ∈ Zn+. (25)

For any ∆ ∈ Bc(X(n)

0̂
), let ξ

(n)
∆ be the finite measure on (R∗+)n which satisfies (13).

Denote

ξ∆
i = ξ∆

i1,...,in
:=

1

n!
Mi1+1,...,in+1(∆), i = (i1, . . . , in) ∈ Zn+. (26)

Then, by (25) and (26),

ξ∆
i =

∫
(R∗+)n

si11 · · · sinn dξ
(n)
∆ (s1, . . . , sn), i = (i1, . . . , in) ∈ Zn+. (27)

Thus, (ξ∆
i )i∈Zn+ is the moment sequence of the finite measure ξ

(n)
∆ .

Choose any Λ ∈ Bc(X) such that ∆ ⊂ Λ
(n)

0̂
. By formulas (7), (26) and Lemma 3,

ξ∆
i1,...,in

≤ 1

n!
Mi1+1,...,in+1(Λ

(n)

0̂
)

≤ (i1 + 1)! · · · (in + 1)!Ci1+···+in+n
Λ

≤ (i1 + · · ·+ in + n)!Ci1+···+in+n
Λ , (i1, . . . , in) ∈ Zn+. (28)

We are now ready to finish the proof of the theorem. Since (ξ∆
i )i∈Zn+ is the moment

sequence of the finite measure ξ
(n)
∆ on (R∗+)n, and since this moment sequence satisfies

estimate (28), we conclude from e.g. [4, Chapter 5, Subsec. 2.1, Examples 2.1, 2.2] that

the moment sequence (ξ∆
i )i∈Zn+ uniquely identifies the measure ξ

(n)
∆ . Hence, statement

(i) holds. Next, equality (13) evidently holds. Note also that the values of the measure
ξ(n) on the sets of the form{

(x1, s1, . . . , xn, sn) ∈ Yn | (x1, . . . , xn) ∈ ∆, (s1, . . . , sn) ∈ A
}

where ∆ ∈ Bc(X(n)

0̂
) and A ∈ B((R∗+)n), completely identify the measure ξ(n) on Y n.

Thus, statement (ii) holds. Finally, statement (iii) trivially follows from (24).
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3 A characterization of random discrete measure in

terms of moments

In this section, we assume that µ is a random measure on X which has finite moments.
Let (M (n))∞n=0 be its moment sequence. We assume that condition (C1) is satisfied.
Additionally, we will assume that the following condition holds:

(C2) For each Λ ∈ Bc(X), there exists a constant C ′Λ > 0 such that

M (n)(Λ
(n)

0̂
) ≤ (C ′Λ)nn! , n ∈ N, (29)

and for any sequence {Λk}∞k=1 ∈ Bc(X) such that Λk ↓ ∅, we have C ′Λk → 0 as
k →∞.

Remark 4. Assumption (C2) is usually satisfied by a measure µ being concentrated on
the cone K(X). In the latter case, by the proof of Theorem 1, we have

M (n)(Λ
(n)

0̂
) = n! ξ(n)(Yn ∩ (Λ× R∗+)n)

= n!

∫
Yn∩(Λ×R∗+)n

s1 · · · sn dρ(n)(x1, s1, . . . , xn, sn),

so that estimate (29) becomes∫
Yn∩(Λ×R∗+)n

s1 · · · sn dρ(n)(x1, s1, . . . , xn, sn) ≤ (C ′Λ)n.

For example, in the case of the Gamma measure (see Section 1), we have∫
Yn∩(Λ×R∗+)n

s1 · · · sn dρ(n)(x1, s1, . . . , xn, sn) =
1

n!

(∫
Λ

dx

)n
,

so condition (C2) is trivially satisfied.
Note also that one should not expect that the constant CΛ in estimate (7) becomes

small as set Λ shrinks to an empty set. This, for example, is not even true in the case
of the Gamma measure.

We fix a sequence (Λl)
∞
l=1 of compact subsets of X such that Λ1 ⊂ Λ2 ⊂ Λ3 ⊂ · · ·

and
⋃∞
l=1 Λl = X. For example, in the case X = Rd, one may choose Λl = [−l, l]d.

Theorem 5. Let µ be a random measure on X, i.e., a probability measure on
(M(X),B(M(X))). Assume that µ has finite moments, and let (M (n))∞n=0 be its mo-
ment sequence. Further assume that conditions (C1) and (C2) are satisfied. Then µ
is a random discrete measure, i.e., µ(K(X)) = 1 if and only if the moment sequence
(M (n))∞n=0 satisfies the following conditions:

13



(i) For any n ∈ N, ∆ ∈ Bc(X(n)

0̂
), and i = (i1, . . . , in) ∈ Zn+, let ξ∆

i = ξ∆
i1,...,im

be

defined by (26). Then the sequence (ξ∆
i )i∈Zn+ is positive definite, i.e., for any finite

sequence of complex numbers indexed by elements of Zn+, (zi)i∈Zn+, |i|≤N , we have∑
i, j∈Zn+

max{|i|, |j|}≤N

ξ∆
i+j zi zj ≥ 0.

Here |i| := max{i1, . . . , in} and N ∈ N.

(ii) For each ∆ ∈ Bc(X(n)

0̂
) of the form ∆ = (Λl)

(n)

0̂
with l ∈ N, set

r∆
i := ξ∆

i,0,0,...,0 , i ∈ Z+. (30)

Then, for any finite sequence of complex numbers, (zn)Nn=0, we have

N∑
i,j=0

r∆
i+j+1 zi zj ≥ 0, (31)

and furthermore

∞∑
k=1

(D∆
k−1D

∆
k )−1/2 det


r∆

1 r∆
2 . . . r∆

k

r∆
2 r∆

3 . . . r∆
k+1

...
...

...
...

r∆
k r∆

k+1 . . . r∆
2k−1

 =∞, (32)

where

Dk := det


r∆

0 r∆
1 . . . r∆

k

r∆
1 r∆

2 . . . r∆
k+1

...
...

...
...

r∆
k r∆

k+1 . . . r∆
2k

 , k ∈ Z+.

Proof. Assume that µ(K(X)) = 1 and let us show that conditions (i) and (ii) are

satisfied. Let ∆ ∈ Bc(X(n)

0̂
). It follows from the proof of Theorem 1 (see in particular

formula (27)) that the sequence (ξ∆
i )i∈Zn+ is the moment sequence of the finite measure

ξ
(n)
∆ . Hence, condition (i) is indeed satisfied (see e.g. [4, Chapter 5, Subsec. 2.1]).

Next, let ∆ ∈ B(X
(n)

0̂
) be of the form ∆ = (Λl)

(n)

0̂
. Clearly, (r∆

i )∞i=0 is the moment

sequence of the first coordinate projection of the measure ξ
(n)
∆ , which we denote by

P1ξ
(n)
∆ . The measure P1ξ

(n)
∆ is concentrated on [0,∞), hence (31) follows (see e.g. [1,

Chapter 2, Subsec. 6.5]). By (7), (13), (25), and Lemma 3,

r∆
i =

∫
(R∗+)n

si1 dξ
(n)
∆ (s1, . . . , sn)
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=

∫
Yn

χ∆(x1, . . . , xn)si1 dξ
(n)(x1, s1, . . . , xn, sn)

=
1

n!

∫
X

(n)

0̂

χ∆(x1, . . . , xn) dMi+1,1,1,...,1(x1, . . . , xn)

=
1

n!
Mi+1,1,1,...,1((Λl)

(n)

0̂
)

≤ (i+ 1)!Cn+i
Λ , i ∈ Z+. (33)

Hence, by the Carleman criterion (see e.g. [1]), the measure P1ξ
(n)
∆ is the unique measure

on R which has moments (r∆
i )∞i=0. Therefore, by [1, formula (4) in Chapter I, Sect.1;

Chater II, Subsec. 4.1; Theorem 2.5.3], (32) follows from the fact that the measure

P1ξ
(n)
∆ has no atom at point 0. Thus, condition (ii) is satisfied.

Remark 6. Note that, in this part of the proof, we have not used condition (C2).

Let us now prove the inverse statement. So, we assume that (M (n))∞n=0 is the
moment sequence of a probability measure µ on (M(X),B(M(X))). We assume that
conditions (i), (ii) are satisfied, and we have to prove that µ(K(X)) = 1.

Fix any n ∈ N and ∆ ∈ Bc(X(n)

0̂
). Choose any Λ ∈ Bc(X) such that ∆ ⊂ Λ

(n)

0̂
. By

(7), (26) and Lemma 3,

ξ∆
i1,...,in

=
1

n!
Mi1+1,...,in+1(∆)

≤ 1

n!
Mi1+1,...,in+1(Λ

(n)

0̂
)

≤ (i1 + 1)! · · · (in + 1)!Ci1+···+in+n
Λ

≤ (i1 + · · ·+ in + n)!Ci1+···+in+n
Λ , (i1, . . . , in) ∈ Zn+. (34)

Furthermore, by condition (i), the sequence (ξ∆
i )i∈Zn+ is positive definite. Hence, using

e.g. [4, Chapter 5, Subsec. 2.1, Examples 2.1, 2.2], we conclude that there exists a

unique measure ξ
(n)
∆ on Rn such that (ξ∆

i )i∈Zn+ is its moment sequence, i.e.,

ξ∆
i =

∫
Rn
si11 · · · sinn dξ

(n)
∆ (s1, . . . , sn), i = (i1, . . . , in) ∈ Zn+. (35)

Lemma 7. Let n ∈ N. Let {∆k}∞k=1 be a sequence of disjoint sets from Bc(X(n)

0̂
).

Denote ∆ :=
⋃∞
k=1 ∆k and assume that ∆ ∈ Bc(X(n)

0̂
). We then have

∞∑
k=1

ξ
(n)
∆k

= ξ
(n)
∆ . (36)
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Proof. Consider the measure

ψ
(n)
∆ :=

∞∑
k=1

ξ
(n)
∆k
.

Fix any i1, . . . , in ∈ Z+. Since M (i1+···+in) is a measure, we easily get∫
Rn
si11 · · · sinn dψ

(n)
∆ (s1, . . . , sn) =

∞∑
k=1

∫
Rn
si11 · · · sinn dξ

(n)
∆k

(s1, . . . , sn)

=
∞∑
k=1

1

n!
Mi1+1,...,in+1(∆k)

=
1

n!
Mi1+1,...,in+1(∆)

=

∫
Rn
si11 · · · sinn dξ

(n)
∆ (s1, . . . , sn).

Hence, the measures ψ
(n)
∆ and ξ

(n)
∆ have the same moments. But the measure ξ(n) is

uniquely identified by its moments, so ψ
(n)
∆ = ξ

(n)
∆ .

Fix any l ∈ N and set ∆ = (Λl)
(n)

0̂
. By (30) and (35),

r∆
i =

∫
Rn
si1 dξ

(n)
∆ (s1, . . . , sn), i ∈ Z+.

Thus, the numbers (r∆
i )∞i=0 form the moment sequence of the first coordinate projection

of the measure ξ
(n)
∆ , which we denote, as above, by P1ξ

(n)
∆ . As easily follows from (34)

and the Carleman criterion, the measure P1ξ
(n)
∆ is uniquely identified by its moment

sequence. Then, by (31), the measure P1ξ
(n)
∆ is concentrated on R+ = [0,∞), and by

(32), (P1ξ
(n)
∆ )({0}) = 0, see [1]. Therefore, the measure P1ξ

(n)
∆ is concentrated on R∗+.

Evidently, for any (i1, . . . , in) ∈ Zn+ and any σ ∈ Sn, we get∫
Rn
si1σ(1) · · · s

in
σ(n) dξ

(n)
∆ (s1, . . . , sn) =

∫
Rn
s
iσ−1(1)

1 · · · s
iσ−1(n)
n dξ

(n)
∆ (s1, . . . , sn)

=

∫
Rn
si11 · · · sinn dξ

(n)
∆ (s1, . . . , sn).

Hence, the measure ξ
(n)
∆ is symmetric on Rn. Therefore, for each j = 1, . . . , n, the j-th

coordinate projection of ξ
(n)
∆ is concentrated on R∗+. This implies that the measure

ξ
(n)
∆ is concentrated on (R∗+)n. In view of Lemma 7, we easily conclude that the latter

statement holds, in fact, for each set ∆ ∈ Bc(X(n)

0̂
).
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Lemma 8. For each n ∈ N, there exists a unique measure ξ(n) on Yn which satisfies
(13) for all ∆ ∈ Bc(X(n)

0̂
) and A ∈ B((R∗+)n).

Proof. For each ∆ ∈ Bc(Xn), we define a measure ξ
(n)
∆ on (R∗+)n by

ξ
(n)
∆ := ξ

(n)

∆∩X(n)

0̂

.

(Note that ∆ ∩ X(n)

0̂
∈ Bc(X(n)

0̂
).) Clearly, the statement of Lemma 7 remains true

when the sets ∆k, k ∈ N, and ∆ belong to Bc(Xn). So, it suffices to prove that there
exists a unique measure ξ(n) on Y n which satisfies

ξ
(n)
∆ (A) =

∫
Y n
χ∆(x1, . . . , xn)χA(s1, . . . , sn) dξ(n)(x1, s1, . . . , xn, sn)

for all ∆ ∈ Bc(Xn) and A ∈ B((R∗+)n). By changing the order of the variables, we
will equivalently prove that there exists a unique measure ξ(n) on Xn × (R∗+)n which
satisfies

ξ(n)(∆× A) = ξ
(n)
∆ (A), ∆ ∈ Bc(Xn), A ∈ B((R∗+)n). (37)

Our proof of this fact is a modification of the proof of [3, 4.4 Theorem]. We denote
by R(n) the ring of subsets of Xn × (R∗+)n which are finite, disjoint unions of sets of
the form ∆ × A, where ∆ ∈ Bc(Xn) and A ∈ B((R∗+)n). We define a content ξ(n) on
R(n) through formula (37).

By [3, Sections 3 and 5], to prove the lemma it suffices to prove the following
statement: Let (Fk)

∞
k=1 be a sequence of sets from R(n) such that F1 ⊃ F2 ⊃ F3 ⊃ · · ·

and
⋂∞
k=1 Fk = ∅. Then limk→∞ ξ

(n)(Fk) = 0.
Hence, it suffices to prove the following statement: Let (Fk)

∞
k=1 be a sequence of sets

from R(n) such that F1 ⊃ F2 ⊃ F3 ⊃ · · · . Assume that

δ := lim
k→∞

ξ(n)(Fk) = inf
k∈N

ξ(n)(Fk) > 0. (38)

Then
⋂∞
k=1 Fk 6= ∅.

We state that, for each k ∈ N, there exists a set Gk ∈ R(n) such that Gk is a
compact set in Xn × (R∗+)n, Gk ⊂ Fk, and

ξ(n)(Fk)− ξ(n)(Gk) ≤ 2−kδ. (39)

Indeed, in order to prove (39), it suffices to show that, for any ∆ ∈ Bc(X), A ∈
B((R∗+)n), and ε > 0, there exist a compact set ∆′ ⊂ ∆ and a compact set A′ ⊂ A such
that

ξ(n)(∆× A)− ξ(n)(∆′ × A′) ≤ ε. (40)
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Let ∆ denote the closure of ∆ in X. Note that ∆ is a compact set in Xn, hence
ξ

(n)

∆
((R∗+)n) <∞. Denote by B(∆) the trace σ-algebra of B(Xn) on ∆. By Lemma 7,

the mapping
B(∆) 3 Ψ 7→ ξ

(n)
Ψ (A) = ξ(n)(Ψ× A)

is a finite measure. By e.g. [3, 26.2 Lemma], this measure is regular. Hence, there
exists a compact set ∆′ ⊂ ∆ such that

ξ
(n)
∆ (A)− ξ(n)

∆′ (A) = ξ(n)(∆× A)− ξ(n)(∆′ × A) ≤ ε

2
. (41)

Next, ξ
(n)
∆′ is a finite measure on (R∗+)n. Hence, it is regular, too. Thus, there exists a

compact set A′ ⊂ A such that

ξ
(n)
∆′ (A)− ξ(n)

∆′ (A
′) = ξ(n)(∆′ × A)− ξ(n)(∆′ × A′) ≤ ε

2
. (42)

Formulas (41) and (42) imply (40).
Next, analogously to the proof of [3, 4.4 Lemma], we conclude from (39) by induction

that
ξ(n)(Hk) ≥ ξ(n)(Fk)− (1− 2−k)δ, (43)

where Hk := G1 ∩ G2 ∩ · · · ∩ Gk. By (38) and (43), we get ξ(n)(Hk) ≥ 2−kδ. Hence,
Hk 6= ∅. Since Hk are compact sets and H1 ⊃ H2 ⊃ H3 ⊃ · · · , we therefore conculde
that

⋂∞
k=1 Hk 6= ∅, see e.g. [17, p. 118]. But

⋂∞
k=1 Hk ⊂

⋂∞
k=1 Fk, so that

⋂∞
k=1 Fk 6=

∅.

We define the measures ρ(n) on Yn by setting

dρ(n)(x1, s1, . . . , xn, sn) := (s1 · · · sn)−1 dξ(n)(x1, s1, . . . , xn, sn), n ∈ N. (44)

Note that ρ(n) is a symmetric measure on Yn. We next define a measure ρ on (Γ0(Y ),
B(Γ0(Y ))) which satisfies ρ(Γ(0)(Y )) = 1, and for each n ∈ N, the restriction of the
measure ρ to Γ(n)(Y ) can be identified with ρ(n), i.e., for each measurable function
G : Γ0(Y )→ [0,∞]∫

Γ(n)(Y )

G(λ) dρ(λ) =

∫
Yn

G({x1, s1, . . . , xn, sn}) dρ(n)(x1, s1, . . . , xn, sn).

Lemma 9. There exists a unique point process ν in Y whose correlation measure is ρ.

Proof. We divide the proof of this lemma into several steps.
Step 1. By [14, Corollary 1] and its proof (see also [5, 12]), to prove the lemma it

suffices to show that the conditions (LB) and (PD) below are satisfied.
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(LB) Local bound: For any Λ ∈ Bc(X) and A ∈ Bc(R∗+), there exists a constant
constΛ,A > 0 such that

ρ(n)((Λ× A)n ∩ Yn) ≤ constnΛ,A, n ∈ N,

and for any sequence Λk ∈ Bc(X) such that Λk ↓ ∅ and A ∈ Bc(R∗+), we have
constΛk,A → 0 as k →∞.

To formulate condition (PD) we first need to give some definitions. For any mea-
surable functions G1, G2 : Γ0(Y ) → R, we define their ?-product as the measurable
function G1 ? G2 : Γ0(Y )→ R given by

G1 ? G2(λ) :=
∑

λ1⊂λ, λ2⊂λ
λ1∪λ2=λ

G1(λ1)G2(λ2), λ ∈ Γ0(Y ). (45)

We denote by S the class of all functions G : Γ0(Y ) → R which satisfy the following
assumptions:

(i) There exists N ∈ N such that G(n) := G � Γ(n)(Y ) = 0 for all n > N .

(ii) For each n = 1, . . . , N , the function G(n) := G � Γ(n)(Y ) can be identified with a
finite linear combination of functions of the form

Symn(χB1 ⊗ · · · ⊗ χBn),

where for i = 1, . . . , n Bi = Λi × Ai with Λi ∈ Bc(X) and Ai ∈ Bc(R∗+), Symn

denotes the operator of symmetrization of a function, and

(χB1 ⊗ · · · ⊗ χBn)(x1, s1, . . . , xn, sn) := χB1(x1, s1) · · ·χBn(xn, sn),

with (x1, s1), . . . , (xn, sn) ∈ Y and (xi, si) 6= (xj, sj) if i 6= j.

It is evident that each function G ∈ S is bounded and integrable with respect to
the measure ρ, and for any G1, G2 ∈ S, we have G1 ? G2 ∈ S.

(PD) ?-positive definiteness: For each G ∈ S, we have∫
Γ0(Y )

G ? Gdρ ≥ 0. (46)

Remark 10. For a function G ∈ S, denote

(KG)(γ) :=
∑
λbγ

G(λ), γ ∈ Γ(Y ).
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Then, according to Section 1 (see, in particular, formula (4)), if ρ is the correlation
measure of a point process µ in Y , then∫

Γ0(Y )

Gdρ =

∫
Γ(Y )

KGdµ.

Furthermore, an easy calculation shows that, for any G1, G2 ∈ S, we have

K(G1 ? G2) = KG1 ·KG2.

Hence, in this case, formula (46) becomes∫
Γ(Y )

(KG)2 dµ ≥ 0.

Step 2. Let A ∈ Bc(R∗+). By (44), there exists a constant C, depending only on A,
such that

ρ(n)((Λ× A)n ∩ Yn) ≤ C ξ(n)((Λ× R∗+)n ∩ Yn) (47)

for each Λ ∈ Bc(X). By (26), (35), Lemma 8, and condition (C2),

ξ(n)((Λ× R∗+)n ∩ Yn) = ξ
(n)

Λ
(n)

0̂

((R∗+)n)

= ξ
Λ
(n)

0̂
0,...,0

=
1

n!
M1,...,1(Λ

(n)

0̂
)

≤ (C ′Λ)n. (48)

Condition (LB) now follows from (47) and (48).
Step 3. We denote

Φ(Y ) :=
∞⋃
n=0

Φ(n)(Y ),

where the set Φ(0)(Y ) contains just one element, and for n ∈ N, Φ(n)(Y ) := Yn. We
define a σ-algebra B(Φ(Y )) on Φ(Y ) so that, for each n = 0, 1, 2, . . . , Φ(n)(Y ) ∈
B(Φ(Y )) and for each n ∈ N, the restriction of B(Φ(Y )) to Φ(n)(Y ) coincides with
B(Yn). We can equivalently treat ρ as a measure on Φ(Y ), so that ρ(Φ(0)(Y )) = 1 and,
for n ∈ N, the restriction of ρ to Φ(n)(Y ) is ρ(n). We call a function G : Φ(Y ) → R
symmetric if, for each n ∈ N, the restriction of G to Φ(n)(Y ) is a symmetric function.
Clearly, each function G on Γ0(Y ) determines a symmetric function on Φ(Y ), for which
we preserve the notation G. Furthermore, for an integrable function G, we then have∫

Γ0(Y )
Gdρ =

∫
Φ(Y )

Gdρ.

Let m,n ∈ N. Denote by Pair(m,n) the set of all possible collections of pairs of
numbers κ = {(αi, βi)}ki=1 such that αi ∈ {1, . . . ,m} and βi ∈ {m + 1, . . . ,m + n}.
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We also set |κ| := k. We assume than an empty collection belongs to Pair(m,n), for
which |κ| = 0.

Let G
(m)
1 : Ym → R, G

(n)
2 : Yn → R, and let κ = {(αi, βi)} ∈ Pair(m,n). We define

a function (G
(m)
1 ⊗G(n)

2 )κ : Ym+n−k → R as follows. Assume that, in κ,

β1 < β2 < · · · < βk.

Take the function

(G
(m)
1 ⊗G(n)

2 )(y1, . . . , ym+n) = G
(m)
1 (y1, . . . , ym)G

(n)
2 (ym+1, . . . , ym+n).

For each i ∈ {1, . . . , k}, replace the variable yβi with yαi . After this, replace the vari-
ables yj with j ∈ {m+1, . . . ,m+n}\{β1, . . . , βk} with the variables ym+1, ym+2, . . . , ym+n−k,
respectively. Here, yl := (xl, sl).

For example, for m = 3, n = 4, κ = {(3, 5), (2, 6)}, we have

(G
(3)
1 ⊗G

(4)
2 )κ(y1, y2, y3, y4, y5) = G

(3)
1 (y1, y2, y3)G

(4)
2 (y4, y3, y2, y5), (y1, y2, y3, y4, y5) ∈ Y5.

Let us interpret G
(m)
1 : Ym → R and G

(n)
2 : Yn → R as functions defined on Φ(Y )

which vanish outside Φ(m)(Y ) and Φ(n)(Y ), respectively. We then define a function

G
(m)
1 �G(n)

2 : Φ(Y )→ R

by

G
(m)
1 �G(n)

2 :=
∑

κ∈Pair(m,n)

(m+ n− |κ|)!
m!n!

(G
(m)
1 ⊗G(n)

2 )κ. (49)

In the above formula, each (G
(m)
1 ⊗G(n)

2 )κ is also treated as a function on Φ(Y ).

Note that a function G
(0)
1 : Φ(0)(Y ) → R is just a real number. We set, for each

function G2 : Φ(Y )→ R,

G
(0)
1 �G2 = G2 �G(0)

1 := G
(0)
1 ·G2. (50)

Extending formulas (49), (50) by linearity, we identify, for any functions G1, G2 :
Φ(Y )→ R, their �-product G1 �G2 as a function on Φ(Y ).

Step 4. Claim. Assume that G1 and G2 are symmetric functions on Φ(Y ) which
vanish outside the set

⋃N
n=0 Φ(n)(Y ) for some N ∈ N. Then∫

Φ(Y )

G1 ? G2 dρ =

∫
Φ(Y )

G1 �G2 dρ,

provided the integrals in the above formulas make sense.
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To prove the claim, it suffices to consider the case where G1 = G
(m)
1 : Ym → R,

G2 = G
(n)
2 : Yn → R, and m,n ∈ N. Using (45), we have∫

Φ(Y )

G
(m)
1 ? G

(n)
2 dρ

=
m∧n∑
k=0

∑
(θ1,θ2,θ3)∈P3(m+n−k)
|θ1|=m−k, |θ2|=k, |θ3|=n−k

∫
Ym+n−k

G
(m)
1 (yθ1 , yθ2)G

(n)
2 (yθ2 , yθ3) dρ

(m+n−k)(y1, . . . , ym+n−k).

Here P3(m + m − k) denotes the set of all ordered partitions (θ1, θ2, θ3) of the set
{1, . . . ,m + n − k} into three parts, |θi| denotes the number of elements in block θi,
and, for block θi = {r1, r2, . . . , r|θi|}, yθi denotes yr1 , yr2 , . . . , yr|θi| . Evidently, the set

P3(m + n − k) contains (m+n−k)!
(m−k)! (n−k)! k!

elements (θ1, θ2, θ3) such that |θ1| = m − k,

|θ2| = k, |θ3| = n− k. Hence∫
Φ(Y )

G
(m)
1 ? G

(n)
2 dρ =

m∧n∑
k=0

(m+ n− k)!

(m− k)! (n− k)! k!

×
∫
Ym+n−k

G
(m)
1 (x1, . . . , xm)G

(n)
2 (xm−k+1, . . . , xm+n−k) dρ

(m+n−k)(x1, . . . , xm+n−k).

(51)

On the other hand, by (49),∫
Φ(Y )

G
(m)
1 �G(n)

2 dρ =
m∧n∑
k=0

(m+ n− k)!

m!n!

∑
κ∈Pair(m,n)
|κ|=k

∫
Ym+n−k

(G
(m)
1 ⊗G(n)

2 )κ dρ
(m+n−k).

An easy combinatoric argument shows that there are

m!

(m− k)! k!
× n!

(n− k)! k!
× k! =

m!n!

(m− k)! (n− k)! k!

elements κ ∈ Pair(m,n) such that |κ| = k. Hence∫
Φ(Y )

G
(m)
1 �G(n)

2 dρ =
m∧n∑
k=0

(m+ n− k)!

m!n!
× m!n!

(m− k)! (n− k)! k!

×
∫
Ym+n−k

G
(m)
1 (x1, . . . , xm)G

(n)
2 (xm−k+1, . . . , xm+n−k) dρ

(m+n−k)(x1, . . . , xm+n−k).

(52)

By (51) and (52) the claim follows.
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Step 5. We denote

Ψ(X) :=
∞⋃
n=0

Ψ(n)(X),

where the set Ψ(0)(X) contains one element, and for n ∈ N, Ψ(n)(X) := Xn. Anal-
ogously to B(Φ(Y )), we define a σ-algebra B(Ψ(X)). We next define a measure M
on (Ψ(X),B(Ψ(X))) so that M(Ψ(0)(X)) := M (0) = 1 and, for n ∈ N, the restriction

of M to Ψ(n)(X) is M (n). For any functions F
(m)
1 and F

(n)
2 on Ψ(m)(X) and Ψ(n)(X),

respectively, their tensor product F
(m)
1 ⊗F (n)

2 is a function on Ψ(m+n)(X). (In the case
where either m or n is equal to zero, the tensor product becomes a usual product.)
Extending the tensor product by linearity, we define, for any functions F1 and F2 on
Ψ(X), their tensor product F1 ⊗ F2 as a function on Ψ(X).

We next note that the measure M on Ψ(X) is ⊗-positive definite. More precisely,
assume that a function F on Ψ(X) vanishes outside a set

⋃N
n=0 Ψ(n)(X) for some N ∈ N.

Assume that the function F ⊗F is integrable with respect to M . Then, it immediately
follows from (17) that ∫

Ψ(X)

F ⊗ F dM ≥ 0. (53)

Step 6. Let a function g(n) : X
(n)

0̂
→ R be bounded, measurable, and having support

from Bc(X(n)

0̂
). For i1, . . . , in ∈ N, we set

G(n)(x1, s1, . . . , xn, sn) := g(n)(x1, . . . , xn)si11 · · · sinn , (x1, s1, . . . , xn, sn) ∈ Yn. (54)

We extend the function g(n) by zero to the whole space Xn. We define a function
Ri1,...,ing

(n) : X i1+···+in → R by using formula (21). We denote

KG(n) :=
1

n!
Ri1,...,ing

(n). (55)

We denote by Q the class of all functions on Φ(Y ) which are finite sums of functions
as in (54). Extending K by linearity, we define, for each G ∈ Q, KG as a function on
Ψ(X).

Let ∆ ∈ Bc(X(n)

0̂
), let g(n) = χ∆, and let G(n) be given by (54). By Lemma 8 and

formulas (26), (35), (44), and (55),∫
Yn

G(n) dρ(n) =

∫
Yn

χ∆(x1, . . . , xn)si11 · · · sinn dρ(n)(x1, s1, . . . , xn, sn)

=

∫
Yn

χ∆(x1, . . . , xn)si1−1
1 · · · sin−1

n dξ(n)(x1, s1, . . . , xn, sn)

=

∫
(R∗+)n

si1−1
1 · · · sin−1

n dξ
(n)
∆ (s1, . . . , sn)

23



= ξ∆
i1−1,...,in−1

=
1

n!
Mi1,...,in(∆)

=

∫
Xi1+···+in

1

n!
Ri1,...,inχ∆ dM

(i1+···+in)

=

∫
Ψ(X)

KG(n) dM.

From here it easily follows by approximation that, for each G ∈ Q, we have∫
Φ(Y )

Gdρ =

∫
Ψ(X)

KGdM. (56)

Step 7. Let functions g
(m)
1 : X

(m)

0̂
→ R and g

(n)
2 : X

(n)

0̂
→ R be bounded, measurable,

and having support from Bc(X(m)

0̂
) and Bc(X(n)

0̂
), respectively. Let i1, . . . , im, j1, . . . , jn ∈

N. Let

G
(m)
1 (x1, s1, . . . , xm, sm) : = g

(m)
1 (x1, . . . , xm)si11 · · · simn , (x1, s1, . . . , xm, sm) ∈ Ym

G
(n)
2 (x1, s1, . . . , xn, sn) : = g

(n)
2 (x1, . . . , xn)sj11 · · · sjnn , (x1, s1, . . . , xn, sn) ∈ Yn.

Then, by (21) and Step 6,

(KG(m)
1 ⊗KG(n)

2 )(x1, . . . , xi1+···+im+j1+···+jn)

=
1

m!n!
(Ri1,...,img

(m)
1 ⊗Rj1,...,jng

(n)
2 )(x1, . . . , xi1+···+im+j1+···+jn)

=
1

m!n!
g

(m)
1 (x1, xi1+1, . . . , xi1+···+im−1+1)

× g(n)
2 (xi1+···+im+1, xi1+···+im+j1+1, . . . , xi1+···+im+j1+···+jn−1+1)

× Ii1,...,im(x1, . . . , xi1+···+im)Ij1,...,jm(xi1+···+im+1, . . . , xi1+···+im+j1+···+jn). (57)

By (49), (54)–(57) and recalling that the measure M is symmetric on each Ψ(k)(X),∫
Ψ(X)

KG(m)
1 ⊗KG(n)

2 dM =

∫
Ψ(X)

K(G
(m)
1 �G(n)

2 ) dM.

Hence, for any G1, G2 ∈ Q,∫
Ψ(X)

KG1 ⊗KG2 dM =

∫
Ψ(X)

K(G1 �G2) dM. (58)

(Note that G1 �G2 ∈ Q.) Hence, by (53) and (58), for each G ∈ Q∫
Ψ(X)

K(G �G) dM ≥ 0.
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Therefore, by (56), for each G ∈ Q,∫
Φ(Y )

G �Gdρ ≥ 0.

Step 8. Fix any Λ ∈ Bc(X). For each i ∈ N, denote ∆i := Λ
(i)

0̂
. Fix any n,N ∈ N

such that n ≤ N . We define a measure ζn,N on (R∗+)n as follows:

ζn,N :=
2N∑
i=n

Pnξ
(i)
∆i
. (59)

Here Pnξ
(i)
∆i

denotes the projection of the (symmetric) measure ξ
(i)
∆i

onto its first n
coordinates. Note that ζn,N is a symmetric measure on (R∗+)n. We next define a
measure Zn,N on (R∗+)n by

dZn,N(s1, . . . , sn) := dζn,N(s1, . . . , sn)
∑

A∈P(n)

∏
j∈A

sj. (60)

Here P(n) denotes the power set of {1, . . . , n} and
∏

j∈∅ := 1. Clearly, Zn,N is also
a symmetric measure. By (35), (59), and (60), the moments of the measure Zn,N are
given by∫

(R∗+)n
si11 · · · sinn dZn,N(s1, . . . , sn) =

2N∑
i=n

∑
A∈P(n)

ξ∆i

i1+χA(1),...,in+χA(n),0...,0, (i1, . . . , in) ∈ Zn+.

Hence, by (34),∫
(R∗+)n

si11 · · · sinn dZn,N(s1, . . . , sn) ≤ (2N−n−1)2n(i1+· · ·+in+n+2N)!Ci1+···+in+n+2N
Λ .

(61)
By (61) and [4, Chapter 5, Subsec. 2.1, Examples 2.1, 2.2], the set of polynomials is
dense in L2((R∗+)n, dZn,N).

Let us fix a function G : Φ(Y )→ R of the form

G =
J∑
j=1

G
(nj)
j , (62)

where each function G
(nj)
j : Φ(nj) → R is of the form

G
(nj)
j (x1, s1, . . . , xnjsnj) = g

(nj)
j (x1, . . . , xnj)f

(nj)
j (s1, . . . , snj)s1 · · · snj , (63)
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unless nj = 0. Here the functions g
(nj)
j and f

(nj)
j are measurable and bounded, the

support of g
(nj)
j is a subset of ∆nj , and all nj ≤ N . For each j = 1, . . . , J , we clearly

have f
(nj)
j ∈ L2((R∗+)nj , Znj ,N). Hence, there exists a sequence of polynomials (p

(nj)
j,k )∞k=1

such that
p

(nj)
j,k → f

(nj)
j in L2((R∗+)nj , Znj ,N) as k →∞. (64)

Set Gk :=
∑J

j=1G
(nj)
j,k , where

G
(nj)
j,k := g

(nj)
j (x1, . . . , xnj)p

(nj)
j,k (s1, . . . , snj)s1 · · · snj .

We then have Gk ∈ Q for each k ∈ N. By Step 7,∫
Φ(Y )

Gk �Gk dρ ≥ 0, k ∈ N. (65)

Claim. We have∫
Φ(Y )

Gk �Gk dρ→
∫

Φ(Y )

G �Gdρ as k →∞. (66)

To prove the claim, it suffices to fix any i, j ∈ {1, . . . , J} with ni + nj ≥ 1 and any
κ ∈ Pair(ni, nj) with |κ| = l, and prove that∫
Yni+nj−l

(G
(ni)
i,k ⊗G

(nj)
j,k )κ dρ

(ni+nj−l) →
∫
Yni+nj−l

(G
(ni)
i ⊗G(nj)

j )κ dρ
(ni+nj−l) as k →∞.

(67)
For simplicity of notation, let us assume that κ is of the form

{(ni − l + 1, ni + 1), (ni − l + 2, ni + 2), (ni − l + 3, ni + 3) . . . , (ni, ni + l)}.

Then ∫
Yni+nj−l

(G
(ni)
i,k ⊗G

(nj)
j,k )κ dρ

(ni+nj−l)

=

∫
Yni+nj−l

g
(ni)
i (x1, . . . , xni)p

(ni)
i,k (s1, . . . , sni)

× g(nj)
j (xni−l+1, xni−l+2, . . . , xni+nj−l)p

(nj)
j,k (sni−l+1, sni−l+2, . . . , sni+nj−l)

× sni−l+1sni−l+2 · · · sni dξ(ni+nj−l)(x1, s1, . . . , xni+nj−l, sni+nj−l). (68)

Hence, there exists C > 0 such that∣∣∣∣ ∫
Yni+nj−l

(G
(ni)
i,k ⊗G

(nj)
j,k )κ dρ

(ni+nj−l) −
∫
Yni+nj−l

(G
(ni)
i ⊗G(nj)

j,k )κ dρ
(ni+nj−l)

∣∣∣∣
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≤
∫
Yni+nj−l

∣∣g(ni)
i (x1, . . . , xni)g

(nj)
j (xni−l+1, xni−l+2, . . . , xni+nj−l)

∣∣
× |p(ni)

i,k (s1, . . . , sni)− p
(ni)
i (s1, . . . , sni)|

× |p(nj)
j,k (sni−l+1, sni−l+2, . . . , sni+nj−l)|

× sni−l+1sni−l+2 · · · sni dξ(ni+nj−l)(x1, s1, . . . , xni+nj−l, sni+nj−l)

≤ C

∫
Yni+nj−l

χ
Λ
(ni+nj−l)
0̂

(x1, . . . , xni+nj−l)

× |p(ni)
i,k (s1, . . . , sni)− p

(ni)
i (s1, . . . , sni)|

× |p(nj)
j,k (sni−l+1, sni−l+2, . . . , sni+nj−l)|

× sni−l+1sni−l+2 · · · sni dξ(ni+nj−l)(x1, s1, . . . , xni+nj−l, sni+nj−l)

≤ C

(∫
Yni+nj−l

χ
Λ
(ni+nj−l)
0̂

(x1, . . . , xni+nj−l)

× |p(ni)
i,k (s1, . . . , sni)− p

(ni)
i (s1, . . . , sni)|2

× sni−l+1sni−l+2 · · · sni dξ(ni+nj−l)(x1, s1, . . . , xni+nj−l, sni+nj−l)

)1/2

×
(∫

Yni+nj−l

χ
Λ
(ni+nj−l)
0̂

(x1, . . . , xni+nj−l)

× |p(nj)
j,k (sni−l+1, sni−l+2, . . . , sni+nj−l)|2

× sni−l+1sni−l+2 · · · sni dξ(ni+nj−l)(x1, s1, . . . , xni+nj−l, sni+nj−l)

)1/2

≤ C ‖p(ni)
i,k − p

(ni)
i ‖L2((R∗+)ni ,dZni,N ) ‖p

(nj)
j,k ‖L2((R∗+)nj ,dZnj,N ) → 0 as k →∞, (69)

where we used the Cauchy inequality and (64). Analogously,∣∣∣∣ ∫
Yni+nj−l

(G
(ni)
i ⊗G

(nj)
j,k )κ dρ

(ni+nj−l)−
∫
Yni+nj−l

(G
(ni)
i ⊗G

(nj)
j )κ dρ

(ni+nj−l)
∣∣∣∣→ 0 as k →∞.

(70)
By (69) and (70), formula (67) follows.

Step 9. By Steps 7 and 8, for each function G : Φ(Y ) → R as in formulas (62),
(63), we have ∫

Φ(Y )

G �Gdρ ≥ 0. (71)

As a special case, formula (71) holds for each function G ∈ S (recall Step 1). Now, by
Step 4, we conclude that condition (PD) is satisfied.
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Since the correlation measure ρ of the point process ν from Lemma 9 is concentrated
on Φ(Y ), it immediately follows from the proof of [14, Corollary 1] that the point
process ν is concentrated on Γp(Y ), the set of pinpointing configurations in Y . Recall
formula (8). For each Λ ∈ Bc(X),∫

Γp(Y )

MΛ dν =

∫
Γp(Y )

∑
(x,s)∈γ

χΛ(x)s dν(γ)

=

∫
Y

χΛ(x)s dρ(1)(x, s)

=

∫
Y

χΛ(x) dξ(1)(x, s) <∞. (72)

Hence, MΛ < 0 ν-a.s. From here, it follows that MΛ < 0 ν-a.s. Therefore ν(Γf (Y )) =
1, see (9). Recall the bijective mapping E : K(X) → Γf (Y ). As we already discussed
in Section 2, the inverse mapping E−1 is measurable. So we can define a probability
measure µ′ on K(X) as the pushforward of ν under E−1. Thus, to finish the proof of
the theorem, it suffices to show that µ = µ′.

Let Λ ∈ Bc(X). Recall that, for any i1, . . . , ik ∈ N, k ∈ N,∫
Yk

χ
Λ
(k)

0̂

(x1, . . . , xk)s
i1
1 · · · s

ik
k dρ

(k)(x1, s1, . . . , xk, sk) <∞.

Hence, using the definition of a correlation measure, we easily see that, for each n ∈ N,∫
Γf (Y )

( ∑
(x,s)∈γ

χΛ(x)s

)n
dν(γ) <∞

(compare with (72)). Therefore, for each n ∈ N,∫
K(X)

η(Λ)n dµ′(η) <∞.

Here η(Λ) := 〈η, χΛ〉, i.e., the η-measure of Λ. Hence, µ′ has finite moments. We

denote by (M
(n)
µ′ )∞n=0 the moment sequence of the point process µ′. By Theorem 1 and

the construction of the measure ρ, it follows that

M ′
i1,...,in

= Mi1,...,in , i1, . . . , in ∈ N, n ∈ N, (73)

where the measures M ′
i1,...,in

are defined analogously to Mi1,...,in , by starting with the

moment sequence (M
(n)
µ′ )∞n=0 , rather than (M (n))∞n=0. By virtue of (73), the moment

sequence (M
(n)
µ′ )∞n=0 coincides with the moment sequence (M (n))∞n=0.

Now, fix any sets Λ1, . . . ,Λn ∈ Bc(X). For any i1, . . . , in ∈ Z+, we get

28



∫
K(X)

η(Λ1)i1 · · · η(Λn)in dµ′(η) =

∫
M(X)

η(Λ1)i1 · · · η(Λn)in dµ(η)

=

∫
Xi1+···+in

(
χ⊗i1Λ1

⊗ · · · ⊗ χ⊗inΛn

)
(x1, . . . , xi1+···+in) dM (i1+···+in)(x1, . . . , xi1+···+in). (74)

By (C1), (74), and the Carleman criterion, the joint distribution of the random vari-
ables η(Λ1), . . . , η(Λn) under µ′ coincides with the joint distribution of the random
variables η(Λ1), . . . , η(Λn) under µ. But it is well known (see e.g. [10]) that B(M(X))
coincides with the minimal σ-algebra on M(X) with respect to which each function
η 7→ η(Λ) with Λ ∈ Bc(X), is measurable. Therefore, we indeed get the equality
µ = µ′.

As a consequence of our results, we also obtain a characterization of point processes
in terms of their moments.

Corollary 11. Let µ be a random measure on X, i.e., a probability measure on
(M(X),B(M(X))). Assume that µ has finite moments, and let (M (n))∞n=0 be its mo-
ment sequence. Further assume that conditions (C1) and (C2) are satisfied. Then µ is
a point process, i.e., µ(Γ(X)) = 1, if and only if, for any n ∈ N and any i1, . . . , in ∈ N,

we have Mi1,...,in = M1,...,1, i.e., for each ∆ ∈ B(X
(n)

0̂
),

Mi1,...,in(∆) = M (n)(∆), i1, . . . , in ∈ N. (75)

In the latter case, the correlation measure ρ of µ is given by

ρ(n)(∆) =
1

n!
M (n)(∆), ∆ ∈ B(X

(n)

0̂
), (76)

where ρ(n) is the restriction of ρ to Γ(n)(X), ρ(n) being identified with a measure on

X
(n)

0̂
.

Proof. Assume that µ is a point process in X. Hence, µ is a random discrete measure
on X. The corresponding point process ν = E(µ) is concentrated on

Γ(X × {1}) =
{
{(x, 1)}x∈γ | γ ∈ Γ(X)

}
.

Hence, Γ(X×{1}) can naturally be identified with Γ(X), and under this identification
we get µ = ν. Furthermore, the correlation measure ρ of µ coincides with the correlation
measure of ν, provided we have identified Γ0(X) with Γ0(X×{1}). Now, formulas (75),
(76) follow from Theorem 1.

Next, assume that µ is a random measure which satisfies (75). Hence, for any n ∈ N
and ∆ ∈ Bc(X(n)

0̂
), we get

ξ∆
i1,...,in

= ξ∆
1,...,1 , i1, . . . , in ∈ Z+.
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Hence, conditions (i) and (ii) Theorem 5 are satisfied, and so µ is a random discrete

measure. By (12) and (75), for each n ∈ N and ∆ ∈ Bc(X(n)

0̂
), the measure ξ

(n)
∆ on

(R∗+)n is concentrated at one point, (1, . . . , 1). Hence, by (13) and (14), the measure
ρ(n) is concentrated on the set{

(x1, 1, . . . , xn, 1) | (x1, . . . , xn) ∈ X(n)

0̂

}
.

Therefore, the point process ν = E(µ) is concentrated on Γ(X × {1}). Hence, µ is a
point process in X.
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