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Abstract We consider conservative, non-equilibrium stochastic jump dynam-
ics of interacting particles in continuum. These dynamics have a (grand canon-
ical) Gibbs measure as invariant measure. The problem of existence of these
dynamics is studied. The corresponding time evolution of correlation functions
is constructed.
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1 Introduction

The field of interacting particle systems began as a branch of probability theory
in the late 1960s. The original motivation came from statistical mechanics but
later it became evident that the theory of interacting particle systems can be
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very useful in several other fields, e.g. in biology and economics (see [4] and
the references therein). Interacting particle systems can be divided into lattice
and continuous systems. Lattice systems are already a classical object. For a
detailed discussion of lattice systems we refer e.g. to [14], [15]. Continuous
systems are those in which particles can appear at any point x ∈ Rd. A
configuration of such a system is a subset γ ⊂ Rd which is locally finite and
the elements of γ describe the location of the particles. The family of all such
sets γ forms the configuration space Γ (Rd) ≡ Γ .

In this article, we study the dynamics of an infinite system of point particles
in the Euclidean space Rd which randomly hop over the space Rd and interact
with each other. Since every particle x ∈ γ can jump to some point y ∈ Rd,
the heuristic generator of such a process has the following form

(LF )(γ) =
∑
x∈γ

∫
Rd

dy c(x, y, γ)(F (γ\{x} ∪ {y})− F (γ)), γ ∈ Γ. (1)

The coefficient c(x, y, γ) describes the rate at which the particle x of the con-
figuration γ jumps to y. To simplify notation we continue to write x for the
set {x}. In this paper, we will restrict our discussion to the dynamics with

c(x, y, γ) = a(x− y)e−E
φ(y,γ). (2)

Here a ∈ L1(Rd) is a positive function and φ : Rd → R+ is a (translation
invariant) positive pair potential which satisfies the integrability condition:

Cφ :=
∫

Rd
|e−φ(x) − 1|dx <∞. (3)

For particles located at x ∈ Rd resp. y ∈ Rd, φ(x−y) describes the interaction
energy between x and y. Hence, φ should be an even function. Due to the
additive character of energy, the interaction energy between a particle located
at x ∈ Rd and a configuration γ ∈ Γ is defined by

Eφ(x, γ) :=
∑
y∈γ

φ(x− y). (4)

This ansatz implies that a transition from x ∈ γ to y ∈ Rd is more likely if
the relative energy Eφ(y, γ) at the arrival point y is low.

The main reason for us to consider the rates of the form (2) is that any
(grand canonical) Gibbs measure with potential φ (provided it exists) is sym-
metrizing (and hence invariant) for the dynamics generated by (1) with such
rates, see [7]. This means that the formal generator (1) with rates (2) is sym-
metric in L2(µ), where µ is a Gibbs measure with respect to (w.r.t. for short)
the pair potential φ. We call the model of jumping particles defined by (1)
and (2) the Kawasaki dynamics in continuum. In [7], the problem of existence
of such dynamics was left open. The existence problem was solved in [11] (by
using Dirichlet-form techniques) but only for so-called equilibrium dynamics.
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In particular one obtains an existence result for almost all starting configura-
tions w.r.t. the given stationary measure. The latter means that we can start
the dynamics with any initial state which is absolutely continuous w.r.t. the
symmetrizing measure (see [11]). In applications, however, one often needs to
analyze the time development for different classes of initial states of the sys-
tem. In these cases absolute continuity of initial states w.r.t. the stationary
measure is very restrictive assumption.

In the present work we propose a construction of the non-equilibrium
Kawasaki dynamics in continuum. It is worth noting that the methods used
in [11] are not applicable for the construction of the corresponding evolution
of states discussed in this article. Our strategy is roughly the following: we de-
rive an evolution equation which describes the time evolution for correlation
functions (Section 3). This evolution equation is an analog to the BBGKY-
hierarchy for Hamiltonian dynamics, see e.g. [2], [3]. As in the case of (infinite)
Hamiltonian dynamics, the computation of the n-th correlation function re-
quires the knowledge of correlation functions of order above n. A certain dual
evolution equation describes the time evolution of the objects dual to corre-
lation functions, the so-called quasi-observables. Section 4 is devoted to the
study of evolution of quasi-observables (Theorem 2). The corresponding evolu-
tion equation has the feature that the computation of the n-th component of a
quasi-observable requires the knowledge of the components of order less than
n. This makes a recursive computation of the evolution of the components of
quasi-observables possible. The duality between quasi-observables and corre-
lation functions allows us to transfer this evolution to correlation functions.
Our main results are stated and proved in Section 5 (Theorem 3).

2 General Facts and Notions

2.1 The configuration spaces

Let B(Rd) be the family of all Borel sets in the d-dimensional Euclidean space
Rd and Bb(Rd) the subfamily of all bounded Borel sets. The n-particle space
is defined by

Γ
(n)
0 = Γ

(n)

0,Rd := {η ⊂ Rd
∣∣|η| = n}, n ∈ N0 = {0, 1, 2, . . . },

where | · | means the cardinality of a finite set. For Λ ∈ Bb(Rd) one defines the
set Γ (n)

0,Λ ≡ Γ
(n)
Λ analogously. For short we write ηΛ := η ∩ Λ. We can identify

the set Γ (n)
0 with the symmetrization of

(̃
Rd
)n := {(x1, . . . , xn) ∈

(
Rd
)n∣∣xi 6= xj if i 6= j},

i.e. Γ (n)
0
∼=
(̃
Rd
)n
/Sn, where Sn denotes the permutation group over {1, . . . , n}.

Due to this identification we can introduce a topology T (Γ (n)
0 ) and the corre-
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sponding Borel σ-algebra B(Γ (n)
0 ) on Γ (n)

0 . The space of finite particle config-
urations is defined by

Γ0 :=
⊔
n∈N0

Γ
(n)
0 .

This set is equipped with the topology T (Γ0) of disjoint unions. The space
Γ0,Λ = ΓΛ, Λ ∈ Bb(Rd) is defined analogously.

The configuration space is defined by

Γ := {γ ⊂ Rd
∣∣ |γ ∩ Λ| <∞, for all Λ ∈ Bb(Rd)}.

The space Γ is equipped with the vague topology, i.e. the smallest topology
for which all mappings

Γ 3 γ 7→ 〈γ, f〉 :=
∑
x∈γ

f(x) ∈ R

are continuous for any function f on Rd with compact support; note that the
summation in

∑
x∈η f(x) is taken over finitely many points of γ that belong

to the support of f . In [10], it was shown that Γ with the vague topology is
metrizable and becomes a Polish space (i.e. a complete separable metric space).
Corresponding to this topology, the Borel σ-algebra B(Γ ) is the smallest σ-
algebra for which all mappings NΛ : Γ → N0, NΛ(γ) = |γ∩Λ| are measurable,
i.e.

B(Γ ) = σ(NΛ|Λ ∈ B(Rd).

For every Λ ∈ Bb(Rd) one can define a projection

pΛ : Γ → ΓΛ, pΛ(γ) := γ ∩ Λ

and with respect to this projection, Γ is the projective limit of the spaces
{ΓΛ}Λ∈Bb(Rd), see [1] and the references therein.

2.2 Measures and functions

On Γ
(n)
0 we introduce a measure λ(n) by

λ(n) :=
1
n!
σ(n), λ(0) := δ∅

where σ(n) is the restriction of the Lebesgue product measure (dx)n (on (Rd)n)
to (Γ (n)

0 ,B(Γ (n)
0 )). The combinatorial 1

n! factor takes into account the indis-
tinguishability of the n particles. We extend the measures λ(n) to a measure
λ on Γ0 by setting

λ|
Γ

(n)
0

= λ(n),

i.e. λ = δ∅ +
∑
n∈N

1
n!σ

(n). The measure λ is called the Lebesgue-Poisson
measure. For any Λ ∈ Bb(Rd) the restriction of λ to ΓΛ will be denoted by
λΛ. It holds λΛ(ΓΛ) = em(Λ), where m(Λ) denotes the Lebesgue measure of
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Λ ∈ Bb(Rd). We define a probability measure πΛ on ΓΛ by πΛ := e−m(Λ)λΛ. It
can be shown [1] that the family {πΛ}Λ∈Bb(Rd) is consistent, and hence there
exists a unique probability measure, π, on B(Γ ) such that

πΛ = π ◦ p−1
Λ , Λ ∈ Bb(Rd).

The measure π is called the Poisson measure.
By L0

ls(Γ0) we denote the set of all measurable functions on Γ0 with local
support, i.e. G ∈ L0

ls(Γ0) if and only if G|Γ0\ΓΛ ≡ 0 for some Λ ∈ Bb(Rd). A set
M ∈ B(Γ0) is called bounded if there exist Λ ∈ Bb(Rd) and N ∈ N such that
M ⊂

⊔N
n=0 Γ

(n)
Λ . We denote the set of all bounded and measurable functions

with bounded support by Bbs(Γ0), i.e. G ∈ Bbs(Γ0) if G is bounded and
G|Γ0\M ≡ 0 for some bounded M ∈ B(Γ0). We also consider the set Fcyl(Γ ) of
all cylinder functions on Γ . Each F ∈ Fcyl(Γ ) is characterized by the following
property: F (γ) = F |ΓΛ(γΛ) for some Λ ∈ Bb(Rd). Further, by FcylP(Γ ) we
denote the subspace of all cylinder functions which are polynomially bounded,
i.e. F ∈ FcylP(Γ ), if and only if F ∈ Fcyl(Γ ) and there exists a polynomial P
on R such that |F (γΛ)| ≤ P (|γΛ|).

For any measurable function f : Rd → R we define a Lebesgue-Poisson
exponent corresponding to the one particle function f by

eλ(f, η) :=
∏
x∈η

f(x), η ∈ Γ0.

There is the following mapping from Bbs(Γ0) to Fcyl(Γ ) which plays a key
role in our further considerations:

KG(η) :=
∑
ηbγ

G(η), γ ∈ Γ. (5)

This mapping can be interpreted as a combinatorial version of the Fourier
transform and is called K-transform, see [9], [12], [13] for details. The sum-
mation in (5) is taken over all finite subconfigurations η ∈ Γ0 of the (infinite)
configuration γ ∈ Γ ; we denote this by the symbol η b γ. The K-transform is
linear, positivity preserving and invertible, with

K−1F (η) :=
∑
ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0. (6)

Here and in the sequel inclusions like ξ ⊂ η hold for ξ = ∅ as well as for ξ = η.
Expression (6) for the inverse K-transform is obtained by an application of
the Möbius inversion formula, see e.g. [20]. Further, the K-transform maps
Bbs(Γ0) into FcylP(Γ ).

Let M1
fm(Γ ) be the set of all probability measures µ that have finite local

moments of any orders, i.e.
∫
Γ
|γΛ|nµ(dγ) <∞ for all Λ ∈ Bb(Rd) and n ∈ N.

A measure ρ on Γ0 is called locally finite iff ρ(M) < ∞ for all bounded sets
M ∈ B(Γ0). The set of such measures is denoted by Mlf(Γ0). One can define
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a transform K∗ : M1
fm(Γ ) → Mlf(Γ0) which is dual to the K-transform, i.e.

for every µ ∈M1
fm(Γ ), G ∈ Bbs(Γ0) holds

∫
Γ

KG(γ)µ(dγ) =
∫
Γ0

G(η)(K∗µ)(dη). (7)

The measure ρµ := K∗µ is called the correlation measure of µ. If ρµ has a
density w.r.t. the Lebesgue-Poisson measure λ, i.e. dρµ = kµdλ, the functions

k(n)
µ :

(
Rd
)n → R+, n ∈ N,

k(n)
µ (x1, . . . , xn) :=

{
kµ({x1, . . . , xn}) if (x1, . . . , xn) ∈

(̃
Rd
)n

0 otherwise.

are the well-known correlation functions of statistical physics, see e.g. [17],
[18].

As shown in [9], for µ ∈M1
fm(Γ ) and G ∈ L1(Γ0, ρµ), the series

KG(η) :=
∑
ηbγ

G(η)

is µ-a.s. absolutely convergent. Furthermore, KG ∈ L1(Γ, µ) and (7) holds.
Thus, we can extend the K-transform to a mapping

Kµ : L1(Γ0, dρµ)→ L1(Γ, dµ). (8)

The following lemma will play a crucial role in many computations:

Lemma 1 (Minlos lemma) Let G : Γ0 7→ R, H : Γ0 × · · · × Γ0 7→ R be
positive and measurable, then for n ∈ N, n ≥ 2:

∫
Γ0

· · ·
∫
Γ0

G(η1 ∪ . . . ∪ ηn)H(η1, . . . , ηn)λ(dη1) · · ·λ(dηn) (9)

=
∫
Γ0

G(η)
∑

(η1,...,ηn)∈P∅n(η)

H(η1, . . . , ηn)λ(dη),

where P∅n(η) denotes the family of all ordered partitions of η into n parts,
which may be empty.

A proof of the Minlos lemma can be found e.g. in [16].



Construction of a State Evolution for Kawasaki Dynamics in Continuum 7

3 Hierarchical Equations for Kawasaki Dynamics

In this section we derive the hierarchical equations for Kawasaki dynamics
which are the analog of the BBGKY-hierarchy for Hamilton dynamics. Let
φ : Rd → R+ be a pair potential (i.e. φ is a symmetric, measurable function)
and µ ∈M1

fm(Γ ). In [6] it was shown, that under some mild assumptions (e.g.
µ is a Gibbs measure corresponding to φ for which the correlation functions
fulfill the Ruelle bound) the generator

(LF )(γ) =
∑
x∈γ

∫
Rd
dy a(x− y)e−E

φ(y,γ)
(
F (γ\x ∪ y)− F (γ)

)
(10)

is µ-a.e. well defined for all cylinder functions F ∈ K(Bbs(Γ0)), moreover LF
is an element in L1(Γ, dµ) but we will not need this statement in the sequel.

As already mentioned, the K-transform can be regarded as a combinato-
rial Fourier transform. It is well known that a differential operator on Rd in
Fourier representation is simply given by multiplication by a polynomial. More
generally, a pseudo-differential operator in Fourier representation is given by
multiplication by a symbol, see e.g.[8], [19]. Within our framework, we can pro-
ceed in a similar fashion. In the sequel, we define an operator L̂ := K−1LK
which we will also call the symbol corresponding to L. The advantage will be
that the symbol acts on quasi-observables, i.e. on functions depending only on
finitely many coordinates. The following informal consideration links the sym-
bol with the infinitesimal generator for the evolution of correlation functions:
the evolution of the initial state µ0 of the system is informally given by

d

dt

∫
Γ

F (γ) dµt(γ) =
∫
Γ

LF (γ) dµt(γ), t > 0, F ∈ K
(
Bbs(Γ0)

)
, (11)

µt
∣∣
t=0

= µ0.

Suppose that the correlation function kt of µt exists for each moment of time
t ≥ 0 and that (7) can be applied to both sides of (11). Then, equation (11)
can be rewritten in the following form

d

dt
〈〈K−1F, kt〉〉 = 〈〈K−1LF, kt〉〉, t > 0, F ∈ K

(
Bbs(Γ0)

)
,

kt
∣∣
t=0

= k0, (12)

where the duality between functions on Γ0 is given by

〈〈G, k〉〉 :=
∫
Γ0

G · k dλ (13)

Next, if we substitute F = KG, G ∈ Bbs(Γ0) in (12), we derive

d

dt
〈〈G, kt〉〉 = 〈〈K−1LKG, kt〉〉, t > 0, kt

∣∣
t=0

= k0 (14)
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for all G ∈ Bbs(Γ0). The above heuristic computation shows, that if we define
L̂ := K−1LK, the dual operator L4 := L̂∗ should describe the time evolution
of correlation functions. For details we refer to [6].

In [6] it was shown, that for the Kawasaki system the operators L̂ and L4

are given by

(
L̂G
)
(η) =

∑
x∈η

∑
ξ⊂η\x

∫
Rd
dy a(x− y)e−E

φ(y,ξ∪x)eλ(e−φ(·−y) − 1, (η\x)\ξ)

×
(
G(ξ ∪ x)−G(ξ ∪ y)

)
=
∑
ξ⊂η

∑
x∈ξ

∫
Rd
dy a(x− y)e−E

φ(y,ξ)

×
∏
z∈η\ξ

(e−φ(y−z) − 1)
(
G(ξ\x ∪ y)−G(ξ)

)
, η ∈ Γ0. (15)

(L4k)(η) =
∑
y∈η

∫
Rd
dx

∫
Γ0

λ(dξ) k(η\y ∪ x ∪ ξ)eλ(e−φ(y−·) − 1, ξ)

−
∑
x∈η

∫
Rd
dy

∫
Γ0

λ(dξ) k(η ∪ ξ)eλ(e−φ(y−·) − 1, ξ). (16)

The above considerations suggest that the evolution of correlation functions
should be described by the evolutionary problem{

∂
∂tkt = L4kt

kt|t=0 = k0.
(17)

Consequently, the corresponding hierarchical structure is given by the count-
able infinite system of equations

∂

∂t
k

(n)
t =

(
L4kt

)(n)
,

k
(n)
t := kt|Γ (n)

0
,
(
L4kt

)(n) :=
(
L4kt

)
|
Γ

(n)
0
, n ∈ N.

To solve (17), we will use the following strategy. We begin by solving a pre-dual
w.r.t. the duality (13) initial value problem

∂

∂t
Gt = L̂Gt, t > 0, Gt

∣∣
t=0

= G0. (18)

The evolution dual to the solution of (18) w.r.t. (13) will be a weak solution
to (17).
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4 Evolution Equation for Quasi-Observables

4.1 The setting

We consider the evolution equation (18) in a proper space. To each function
G on Γ0 we associate a sequence (G(n))n∈N of symmetric functions G(n) on
(Rd)n by defining

G(n) := G|
Γ

(n)
0
.

We refer to the sequence (G(n))n∈N as components or coordinates of the func-
tion G. Next, we rewrite equation (18) in components:{

d
dtG

(n)
t = (L̂Gt)(n)

G
(n)
t |t=0 = G

(n)
0 , n ∈ N.

(19)

Using (15), we obtain for (L̂G)(n):

(L̂G)(n)(η) = (L(n)
0 G(n))(η) +

(
W (n)(G0, . . . , G(n−1))

)
(η), η ∈ Γ (n)

0
(20)

with

(L̂(n)
0 G(n))(η) =

∑
x∈η

∫
Rd
dy a(x− y)e−E

φ(y,η)(G(n)(η\x ∪ y)−G(n)(η)) (21)

and
W (n)(G0, . . . , G(n−1)) =

∑
k<n

W (n,k)G(k),

where(
W (n,k)G(k)

)
(η) =

∑
ξ⊂η
|ξ|=k

∑
x∈ξ

∫
Rd
dy a(x− y)

∏
z∈ξ

e−φ(y−z)

×
∏
z∈η\ξ

(e−φ(y−z) − 1)
(
G(k)(ξ\x ∪ y)−G(k)(ξ)

)
, η ∈ Γ (n)

0 .

Hence, equation (18) consists of a diagonal part and lower diagonal parts. Due
to the special structure of (19), the following strategy for the construction of
a solution of (18) is reasonable:

Fix n ∈ N and assume that L(n)
0 generates a semigroup (in some proper

Banach space). If G(0)
t , . . . G

(n−1)
t are already known, the solution of (19) is

given by

G
(n)
t = etL

(n)
0 G(0) +

∫ t

0

e(t−s)L
(n)
0 W (n)(G0

s, . . . G
(n−1)
s )ds, t > 0, (22)

where the above integral is interpreted in Bochner’s sense. Hence, given G0,
we can compute the components of the solution Gt of (19) successively. In the
following we realize this approach.
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To solve equation (18) we need some preparations and we have to introduce
the spaces where the solution will be localized at each moment of time t. As
already mentioned above, we have to ensure that the operators L(n)

0 , n ∈ N
induce semigroups. In the lemmas below, we verify that this is the case.

Lemma 2 Let n ∈ N. The operator

(L(n)
0 G(n))(η) =

∑
x∈η

∫
Rd

dy a(x− y)e−E
φ(y,η)(G(n)(η\x ∪ y)−G(n)(η)),

G(n) ∈ Fb(Γ (n)
0 )

is the generator of a Markov (jump) process (with the state space Γ (n)
0 ). Here

Fb(Γ (n)
0 ) stands for the set of all bounded and measurable (w.r.t. B(Γ (n)

0 ))
functions G(n) : Γ (n)

0 → R.

Proof: We can rewrite the operator L(n)
0 in the following way:

(L(n)
0 G(n))(η) =

∫
Γ

(n)
0

(G(n)(η̃)−G(n)(η))qn(η, dη̃),

where qn is given by

qn(η,A) =
∑
x∈η

∫
Rd
dy c(x, y, η)δη\x∪y(A), η ∈ Γ (n)

0 , A ∈ B(Γ (n)
0 ). (23)

One easily shows that

qn : Γ (n)
0 × B(Γ (n)

0 )→ R+

is a kernel on (Γ (n)
0 ,B(Γ (n)

0 )). Further, “the total rate of jumping away from
η” given by

λn(η) := qn(η, Γ (n)
0 \η), η ∈ Γ (n)

0 ,

defines an element of Fb(Γ (n)
0 ). Hence

L
(n)
0 : Fb(Γ (n)

0 )→ Fb(Γ (n)
0 )

is a bounded operator (w.r.t. the sup-norm) and an application of the pure
Markov jump process theory (see e.g. [5]) shows that L(n)

0 is indeed the gen-
erator of a Markov process. �

The above lemma ensures that the generator L(n)
0 induces a contraction

semigroup (pt)t≥0 on Fb(Γ (n)
0 ). But in the sequel we will need that L(n)

0 gen-
erates also a contraction semigroup in a proper L1-space. Therefore we search
for an invariant measure. Motivated by the Gibbsian approach to statistical
mechanics, this measure should have the form given in the lemma below.
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Lemma 3 Define a measure λ(n),φ on
(
Γ

(n)
0 ,B(Γ (n)

0 )
)

by

λ(n),φ(dη) = e−E
φ(η)σ(n)(dη)

where Eφ(η) denotes the energy of the configuration η ∈ Γ (n)
0 given by

Eφ(η) :=
∑
{x,y}⊂η

φ(x− y).

Then
(
L

(n)
0

)∗
λ(n),φ = 0 in the distribution sense, i.e.

∫
Γ

(n)
0

L
(n)
0 G(n)dλ(n),φ = 0

for all functions G(n) ∈ D(L(n)
0 ) = Fb(Γ (n)

0 ).

Proof: By means of the Minlos lemma (Lemma 1) we derive:

∫
Γ

(n)
0

L
(n)
0 G(n)dλ(n),φ

=
∫
Γ

(n)
0

λ(n)(dη)e−E
φ(η\x∪y)

∑
x∈η

∫
Rd
dy a(x− y)e−E

φ(x,η\x∪y)G(n)(η)

−
∫
Γ

(n)
0

λ(n)(dη)eE
φ(η)

∑
x∈η

∫
Rd
dy a(x− y)e−E

φ(y,η)G(n)(η)

=
∫
Γ

(n)
0

λ(n)(dη)e−E
φ(η)

∑
x∈η

∫
Rd
dy a(x− y)e−E

φ(y,η)G(n)(η)

−
∫
Γ

(n)
0

λ(n)(dη)e−E
φ(η)

∑
x∈η

∫
Rd
dy a(x− y)e−E

φ(y,η)G(n)(η) = 0,

where we have used the identity

e−E
φ(x,η\x∪y)e−E

φ(η\x∪y) = e−E
φ(y,η)e−E

φ(η). �

The above lemma implies that the measure λ(n),φ is infinitesimally invariant.
Since the domain D(L(n)

0 ) is the whole space Fb(Γ (n)
0 ), the generator L(n)

0

induces a C0-semigroup in Fb(Γ (n)
0 ). Further, the space Fb(Γ (n)

0 ) separates
probability measures, hence it follows from the above lemma that the mea-
sure λ(n),φ is also global invariant. Therefore the generator L(n)

0 induces a
contraction semigroup in Lp(dλ(n),φ), p ≥ 1.

Next, we solve a general evolution problem in which the evolution operator
has a diagonal and lower diagonal parts (as in (20)). We assume certain bounds
and a special additive structure of the lower diagonal part. Afterwards we show
that the evolution problem for the Kawasaki dynamics fits in this scheme.
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4.2 Abstract statements

Given a constant C > 0 and a pair potential φ we define the space

LC,φ := L1(Γ0, dλ
φ
C),

where the measure λφC has the density C |·|e−E
φ(·) w.r.t. the Lebesgue-Poisson

measure λ. By Xφ
n we denote the space

Xφ
n := L1(Γ (n)

0 , dλ(n),φ).

We denote the norm of the space Xφ
n by ‖ · ‖Xφn . Moreover, we define for α > 0

and C > 0 a Banach space Iφα,C consisting of all functions G = (G(n))n∈N ∈⊕
n∈N X

φ
n for which the norm

‖G‖Iφα,C := sup
n∈N

‖G(n)‖XφnC
n

αnn!
(24)

is finite. In the next theorem, we study an abstract evolutionary problem on
quasi-observables, having in mind the application to the Kawasaki dynamics
w.r.t. a pair potential φ.

Theorem 1 Consider the evolution problem (18) and assume that the com-
ponents of L̂G have the following form:

(L̂G)(n) = L
(n)
0 G(n) +

∑
k<n

W (n,k)G(k),

where L(n)
0 generates a contraction semigroup in Xφ

n (for some positive pair
potential φ) and the following bound holds

‖W (n,k)G(k)‖Xφn ≤ Ak
(
n

k

)
Bn−k‖G(k)‖Xφk , n ∈ N, k < n (25)

for some A,B > 0. Let α,C > 0 and define Ct, t ∈ R+ by

Ct :=
C

1 +Ae
CB
α t

. (26)

Then the following holds: if G0 is an element of Iφα,C then Gt is an element
of Iφα,Ct , t > 0 and the bound

‖Gt‖Iφα,Ct
≤ ‖G0‖Iφα,C (27)

holds for all t > 0.
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Proof: Consider the component-wise solution

G
(n)
t = etL

(n)
0 G(0) +

∫ t

0

e(t−s)L
(n)
0 W (n)(G(0)

s , . . . G(n−1)
s )ds, t > 0

G
(0)
t = G

(0)
0

of (18). We proof by induction that for all n ∈ N it holds:

‖G(n)
t ‖Xφn ≤ ‖G0‖Iφα,Cn!

(
α

Ct

)n
, t ≥ 0. (28)

Clearly, from (28) follows (27). Since G0 ∈ Iφα,C , it follows

‖G(n)
0 ‖Xn ≤ ‖G0‖Iφα,C

(
α

C

)n
n!. (29)

Suppose that

‖G(k)
t ‖Xφk ≤ ‖G0||Iφα,Ck!

(
α

Ct

)k
(30)

for t > 0 and k < n holds.
Using (30) and the assumptions, we get for t > 0:

‖
∫ t

0

e(t−s)L
(n)
0 W (n,k)G(k)

s ds‖Xφn

≤
∫ t

0

‖W (n,k)G(k)
s ‖Xφn ds

≤ Ak
(
n

k

)
Bn−k

∫ t

0

‖G(k)
s ‖Xφk ds

≤ Ak
(
n

k

)
Bn−k

∫ t

0

‖G0‖Iφα,Ck!
(
α

C

)k
(1 +Ae

BC
α s)k ds

= Ak

(
n

k

)
k!Bn−k

(
α

C

)k
‖G0‖Iφα,C

(
(1 +Ae

CB
α t)k+1 − 1

(k + 1)Ae
CB
α

)
≤ An!

(
α

C

)n
‖G0‖Iφα,C

(
CB

α

)n−k 1
(n− k)!

(
(1 +Ae

CB
α t)k+1 − 1

Ae
CB
α

)
(31)

As a consequence

‖
∑
k<n

∫ t

0

e(t−s)L
(n)
0 W (n,k)G(k)

s ds‖Xφn

≤ An!
(
α

C

)n
‖G0‖Iφα,C

(
(1 +Ae

CB
α t)n − 1

Ae
CB
α

)∑
k<n

Bn−k

(n− k)!
Cn−k

αn−k

≤ An!
(
α

C

)n
‖G0‖Iφα,C

(
(1 +Ae

CB
α t)n − 1

Ae
CB
α

)
e
CB
α

= n!
(
α

C

)n
‖G0‖Iφα,C

(
(1 +Ae

CB
α t)n − 1

)
. (32)
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By means of (32) and the initial bound (29), we can estimate the norm of the
component G(n)

t :

‖G(n)
t ‖Xφn ≤ ‖G

(n)
0 ‖Xφn + n!‖G0‖Iφα,C

(
α

C

)n(
(1 +Ae

CB
α t)n − 1

)
≤ ‖G0‖Iφα,C

(
α

C

)n
n!

+ n!‖G0‖Iφα,C

(
α

C

)n(
(1 +Ae

CB
α t)n − 1

)
= ‖G0‖Iφα,Cn!

(
α

Ct

)n
.

This shows (28). �

4.3 The Kawasaki system

In this subsection we will show that the Kawasaki dynamics w.r.t. a positive
pair potential φ fulfills all assumptions of Theorem 1. To this end, we write

W (n,k) = W
(n,k)
1 +W

(n,k)
2

with

(W (n,k)
1 G(k))(η) =

∑
ξ⊂η
|ξ|=k

∑
x∈ξ

∫
Rd
dy a(x− y)

∏
z∈ξ

e−φ(y−z)

×
∏
z∈η\ξ

(e−φ(y−z) − 1)G(k)(ξ\x ∪ y)

and

(W (n,k)
2 G(k))(η) = −

∑
ξ⊂η
|ξ|=k

∑
x∈ξ

∫
Rd
dy a(x− y)

∏
z∈ξ

e−φ(y−z)

×
∏
z∈η\ξ

(e−φ(y−z) − 1)G(k)(ξ).

In the following we use the abbreviations dx(n) for dx1 . . . dxn, n ∈ N and
dx(n−k) for dxk+1 . . . dxn, k < n. Without loss of generality we can assume that
the Euclidean mean 〈a〉 of a is equal to 1. Further, for η = {x1, . . . , xn} and y ∈
Rd we use the notation E(η) = En(x1, . . . , xn) resp. E(y, η) = E(y|x1, . . . xn).
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Now we are in a position to estimate the second term of W (n,k):

‖W (n,k)
2 G(k)‖Xφn ≤

(
n

k

)
k

∫(
Rd
)n dx(n)

∫
Rd
dy a(x1 − y)

k∏
i=1

e−φ(xi−y)

×
n∏

i=k+1

|e−φ(xi−y) − 1|e−En(x1,...,xn)|G(k)(x1, . . . , xk)|

≤
(
n

k

)
k

∫(
Rd
)n−k dx(n−k)

n∏
i=k+1

|e−φ(xi−y) − 1|

×
∫(

Rd
)k dx(k)|G(k)(x1, . . . , xk)|e−Ek(x1,...,xk)

∫
Rd
dy a(x1 − y)

≤
(
n

k

)
kCn−kφ 〈a〉‖G(k)‖Xφk =

(
n

k

)
kCn−kφ ‖G(k)‖Xφk . (33)

For W (n,k)
1 we obtain the same bound, since it holds:∫(

Rd
)n dx(n)e−En(x1,...,xn)

∫
Rd
dy a(x1 − y)G(k)(x2, . . . xk, y)

×
k∏
i=1

e−φ(xi−y)
n∏

i=k+1

|e−φ(xi−y) − 1|

≤
∫(

Rd
)n−k dx(n−k)

n∏
i=k+1

|e−φ(xi−y) − 1|
∫

Rd
dy

∫
R(k−1)d

dx2 . . . dxk

× e−E(y|x2...,xk)e−Ek−1(x2...,xk)G(k)(x2, . . . xk, y)
∫

Rd
dx1 e

−φ(x1−y)a(x1 − y)

≤ Cn−kφ

∫(
Rd
)k dz1 . . . dzk e−Ek(z1,...,zk)G(k)(z1, . . . , zk)

= Cn−kφ ‖G(k)‖Xφk . (34)

Combining (33) and (34) yields

‖W (n,k)G(k)‖Xφn ≤ 2
(
n

k

)
kC

(n−k)
φ ‖G(k)‖Xφk . (35)

The estimate (35) implies that all assumptions of Theorem 1 are fulfilled for
a Kawasaki dynamics (with B = Cφ, φ the interacting potential and A = 2)
and we get the following

Theorem 2 Let C > 0, α > 0 be arbitrary and fixed. Consider the evolution-
ary problem (18) (Kawasaki dynamics w.r.t. a positive pair potential φ) with
initial data G0 ∈ Iφα,C . Then the solution Gt = (G(n)

t )n∈N of (18) given by
(22) belongs to Gt ∈ Iφα,Ct , t > 0 where Ct is given by

Ct =
C

1 + 2e
CCφ
α t

(36)
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and Cφ is given by (3). Further the bound

‖Gt‖Iφα,Ct
≤ ‖G0‖Iφα,C

holds for all t ≥ 0.

Remark 1 We can define a propagator P̂t by

P̂t : Iφα,C → I
φ
α,Ct

, P̂tG := Gt

where Gt is the solution of (18) with initial data G. This propagator describes
the time evolution of quasi-observables.

5 Evolution of Correlation Functions

In this section we construct the time evolution for correlation functions. Since
quasi-observables and correlation functions are dual to each other (in the same
manner as observables and states are dual to each other), we will construct
this evolution as dual evolution to quasi-observables.

The natural space in which the evolution of correlation functions (for a
Kawasaki dynamics w.r.t. a potential φ) takes place is the space KC,φ, C > 0
and φ the interacting potential, defined by

KC,φ := {k : Γ0 → R| k · C−|·|eE
φ(·) ∈ L∞(Γ0, dλ)},

with the norm ‖k‖KC,φ := ‖k(·)C−|·|eEφ(·)‖L∞(Γ0,dλ). For technical reasons we
have to introduce some additional spaces. Recall that for C > 0 the space LC,φ
was defined as

LC,φ := L1(Γ0, C
|·|dλφC).

Then KC,φ is the dual space to LC,φ w.r.t. to the duality (13). We also remind
that the space Iφα,C consists of all measurable functions G on Γ0, such that
‖G‖Iφα,C <∞ holds (cf.(24)). For α ∈ (0, 1), we obtain the inclusion

LC
α ,φ
⊂ Iφα,C ⊂ LC,φ (37)

since it holds firstly:

Cn

n!
‖G(n)‖Xφn ≤ α

n‖G‖Iφα,C , n ∈ N, G ∈ Iφα,C ,

which implies

‖G‖LC,φ ≤
1

1− α
‖G‖Iφα,C <∞.

Because of that we obtain
Iφα,C ⊂ LC,φ. (38)
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Secondly, it holds for G ∈ LC
α ,φ

‖G‖Iφα,C ≤ ‖G‖LCα ,φ
,

and hence
LC
α ,φ
⊂ Iφα,C .

Altogether we obtain (37).

We also consider a functional space J φα,C which consists of all functions
k = (k(n))n∈N ∈

⊕
n∈N Xφn for which

‖k‖J φα,C :=
∞∑
n=0

αn

Cn
‖k(n)‖Xφn <∞

holds. Here

Xφn := {k(n) : Γ (n)
0 → R | k(n)eE

φ
n ∈ L∞(Γ (n)

0 , dσ(n))}

and ‖k(n)‖Xφn := ‖k(n)eE
φ
n‖

L∞(Γ
(n)
0 ,σ(n))

. Let G ∈ Iφα,C and k ∈ J φα,C . It follows

|〈〈k,G〉〉| ≤
∞∑
n=0

1
n!

∫
Γ

(n)
0

|k(n)||G(n)|dσ(n)

=
∞∑
n=0

1
n!

∫
Γ

(n)
0

|k(n)|eE
φ
n |G(n)|dλ(n),φ

≤
∞∑
n=0

1
n!
‖G(n)‖Xφn‖k

(n)‖Xφn

≤
∞∑
n=0

Cn

αnn!
‖G(n)‖Xφn

αn

Cn
‖k(n)‖Xφn

≤
(

sup
n∈N
‖G(n)‖Xφn

Cn

αnn!

)( ∞∑
n=0

αn

Cn
‖k(n)‖Xφn

)
= ‖G‖Iφα,C‖k‖J φα,C . (39)

Hence G 7→ 〈〈k,G〉〉 is a bounded linear functional on Iφα,C and therefore

J φα,C ⊂ (Iφα,C)∗.

Next we observe that for k ∈ J φα,C holds:

αn

Cn
‖k(n)‖Xφn ≤ ‖k‖J φα,C , n ∈ N.

It follows
‖k‖KC

α
,φ
≤ ‖k‖J φα,C
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which implies
J φα,C ⊂ K

φ
C
α

.

At the same time, for k ∈ KC,φ

‖k(n)‖Xφn ≤ C
n‖k‖KC,φ , n ∈ N.

Using this we conclude

‖k‖J φα,C =
∞∑
n=0

αn

Cn
‖k(n)‖Xφn ≤

∞∑
n=0

αn

Cn
Cn‖k‖KC,φ =

1
1− α

‖k‖KC,φ .

Therefore
KC,φ ⊂ J φα,C ⊂ KC

α ,φ
. (40)

Further by means of (37) we get

KC,φ ⊂ (Iφα,C)∗ ⊂ KC
α ,φ

. (41)

Altogether
KC,φ ⊂ J φα,C ⊂ (Iφα,C)∗ ⊂ KC

α ,φ
.

Having disposed of these preliminary steps, we can now turn to the con-
struction of the evolution of correlation functions:

Theorem 3 Let C0 > 0 and α ∈ (0, 1) be arbitrary and fixed. Define a time
horizon T > 0 by

T :=
1
2
e−

C0Cφ
α .

Let k0 ∈ KC0,φ. Then for all t < T there exists kt ∈ KC∗t
α ,φ

, where

C∗t :=
C0

1− 2e
C0Cφ
α t

, (42)

such that for all G ∈ Iφα,C∗t it holds

〈〈kt, G〉〉 = 〈〈k0, Gt〉〉. (43)

Here Gt is the solution (Gs)s≥0 of (18) with initial data G0 = G evaluated at
s = t.

Proof: Let k0 ∈ KC0,φ ⊂
(
Iφα,C0

)∗ and t < T . Take any G0 ∈ Iφα,C∗t . By
Theorem 2, there exists an evolution G0 → Gτ for any τ > 0 such that
Gτ ∈ Iφα,Cτ , where

Cτ =
C∗t

1 + 2e
CφC

∗
t

α τ
.
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From the definition of C∗t we conclude that Ct = Cτ |τ=t = C0. Thus, Gt ∈
Iφα,C0

. Moreover, since k0 ∈ KC0,φ ⊂ J
φ
α,C0

and Gt ∈ Iφα,C0
, we obtain by

means of (27) and (39):

|〈〈k0, Gt〉〉| ≤ ‖k0‖J φα,C0
‖Gt‖Iφα,C0

≤ ‖k0‖J φα,C0
‖G0‖Iφ

α,C∗t

.

Therefore, the mapping G0 → 〈〈k0, Gt〉〉 is a linear continuous functional on
the space Iφα,C∗t . Consequently, there exists kt ∈

(
Iφα,C∗t

)∗ ⊂ KC∗t
α ,φ

(cf. (41))

such that, for any G ∈ Iφα,C∗t

〈〈kt, G〉〉 = 〈〈k0, Gt〉〉. �

Remark 2 The evolution kt, t ∈ [0, T ) describes the time evolution of the
initial correlation function k0. We can regard kt as the weak solution to (17),
i.e.

d

dt
〈〈kt, G〉〉 = 〈〈k0, L̂Gt〉〉

provided 〈〈k0, Gt〉〉 is differentiable on any [0, T ′] ⊂ [0, T ) and the correspond-
ing derivative can be represented in the form 〈〈k0, L̂Gt〉〉.
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