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Abstract. We prove well-posedness results for stochastic nonlinear

Schrödinger equations with linear multiplicative Wiener noise inclu-

ding the non-conservative case. Our approach is different from the

standard literature on stochastic nonlinear Schrödinger equations. By

a rescaling transformation we reduce the stochastic equation to a ran-

dom nonlinear Schrödinger equation with lower order terms and treat

the resulting equation by a fixed point argument, based on genera-

lizations of Strichartz estimates proved by J. Marzuola, J. Metcalfe

and D. Tataru in 2008. This approach allows to improve earlier well-

posedness results obtained in the conservative case by a direct ap-

proach to the stochastic Schrödinger equation. In contrast to the

latter, we obtain well-posedness in the full range [1, 1+4/d) of admis-

sible exponents in the non-linear part (where d is the dimension of the

underlying Euclidean space), i.e. in exactly the same range as in the

deterministic case.
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1 Introduction

We are here concerned with the stochastic nonlinear Schrödinger equation

idX(t, ξ) = ∆X(t, ξ)dt− iµ(ξ)X(t, ξ)dt+ λ|X(t, ξ)|α−1X(t, ξ)dt

+iX(t, ξ)dW (t, ξ), t ∈ (0, T ), ξ ∈ Rd,

X(0) = x ∈ L2(Rd) := L2(Rd;C),
(1.1)

where W is the Wiener process

W (t, ξ) =
N∑
j=1

µjej(ξ)βj(t), t ≥ 0, ξ ∈ Rd, (1.2)

µ(ξ) =
1

2

N∑
j=1

|µj|2|ej(ξ)|2, ξ ∈ Rd. (1.3)

Here, {ej}Nj=1 ⊂ C∞(Rd)∩L2(Rd;R), {µj}Nj=1 are complex valued and {βj}Nj=1

is a family of independent real valued Brownian motions on a probability
space (Ω,F ,P) with normal (in particular right-continuous) filtration (Ft)t≥0.
In addition, λ ∈ R and α ≥ 1.

The physical significance of (1.1) is well known. X = X(t, ξ, ω), ξ ∈ Rd,
t ≥ 0, ω ∈ Ω, represents the quantum state at time t, while the stochastic
perturbation iXdW represents a stochastic continuous measurement via the
quantum observables µjej. A better insight in equation (1.1) can be gained
from the analysis in [3], [4]. Then, an (at this stage) heuristic application of
Itô’s formula implies that

|X(t)|2L2 = |x|L2 + 2
N∑
j=1

Re(µj)

∫ t

0

⟨X(s), X(s)ej⟩L2 dβj(s), t ≥ 0. (1.4)

Applying Itô’s formula to log |X(t)|2L2 , we see that

|X(t)|2L2 = |x|22 exp

{
N∑
j=1

[∫ t

0

vj(s)dβj(s)−
1

2

∫ t

0

v2j (s)ds

]}
,

where vj(t) = 2Re ⟨X(t), µjejX(t)⟩L2 |X(t)|−2
L2 . Clearly, by (1.4), t→ |X(t)|2L2

is a continuous martingale and so, if |x|L2 = 1,

P̂T
x (F ) =

∫
F

|X(T, ω)|2L2dP(dω), F ∈ FT ,
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defines a probability law on {Ω,FT} (the physical probability law) and, under
this law by Girsanov’s theorem the continuous process

β̃j(t) = βj(t)−
∫ t

0

vj(s)ds, t ∈ [0, T ], j = 1, ..., N, (1.5)

are independent Gaussian processes with respect to the filtration (Ft) (Theo-

rem 2.14 in [1]). Here P̂ T
x is the physical probability law of the events oc-

curring in time [0, T ], while ψ̂(t, ω) = X(t, ω)|X(t, ω)|−1
2 is the state of the

quantum system conditioned by observation of s→ βj(s, ω), 0 ≤ s < t.
In the particular case (conservative case), µj = −iµ̃j, with µ̃j real, which

is considered in [5], [6], we have vj(t) = 0, |X(t)|L2 = |x|L2 , ∀t and P̂ T
x = P|FT

.

Then, by (1.5), β̃j = βj, ∀j, and so, in this case, the randomness is inde-
pendent of the quantum system, and the measurement does not provide any
information on the quantum system.

Here, we shall study existence and uniqueness of solutions to (1.1) under
the following key assumption on the basis {ej}Nj=1

(H1) ej ∈ C∞
b (Rd) such that

lim
|ξ|→∞

ζ(ξ)(|ej(ξ)|+ |∇ej(ξ)|+ |∆ej(ξ)|) = 0,

where j ∈ {1, ..., N} and

ζ(ξ) =

{
1 + |ξ|2, if d ̸= 2,

(1 + |ξ|2)(ln(1 + |ξ|2))2, if d = 2.

The assumption that each ej is smooth is made only for simplicity, in
order to be able to apply results from [9] directly (see Lemma 3.3 below) on
well posedness of linear Schrödinger equations with lower order terms. But,
as in [14], an approximation procedure allows to weaken (H1) and to just
assume that ej ∈ C2

b (Rd) for all j ∈ N.
Under assumption (H1), one shows in Theorem 2.2 below that, for each

x ∈ L2(Rd) and 1 ≤ α < 1 + 4
d
, equation (1.1) has a unique global solution

in a sense to be made precise later. In the critical case α = 1 + 4
d
there is a

unique local solution (Corollary 5.2). These results improve an earlier result
of A. de Bouard and A. Debussche [5] obtained by a direct approach under
the more restrictive condition: 1 < α < 1 + 2

d−1
if d ≥ 3. (See, also, [6], [7].)
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It should be mentioned, however, that the results from [5] are concerned with
the stochastic equation

idX = ∆X dt− iµX dt+ λ|X|α−1X dt+ iX dW, (1.6)

where W is given by (1.2) and µj = −iµ̃j, µ̃j ∈ R, 1 ≤ j ≤ N , i.e., the
conservative case discussed above.

The sharper existence and uniqueness result we prove here is the same
as for the deterministic Schrödinger equation (see, e.g., [13], p. 92) and it is
a direct consequence of our rescaling approach which reduces the stochastic
equation to a random Schrödinger equation for which pointwise for P-a.e.
ω ∈ Ω estimates similar to that in the classical theory can be obtained. As a
matter of fact, this is one of the main advantages of this rescaling approach:
one can replace the L1(Ω) estimates by pointwise P-a.s. estimates. In a
different context, this approach was used in [1], [2].

The main existence result, Theorem 2.2, is presented in Section 2 and
proved in Sections 3 and 4. In Section 5 we briefly discuss the critical case
α = 1+ 4

d
. We conclude the paper with some final remarks in Section 6 and

some calculational details in the Appendix.

2 Notations and the main result

For 1 ≤ p ≤ ∞, we denote by Lp(Rd) = Lp the space of all Lebesgue p-
integrable (complex valued) function on Rd. The Hilbert space L2(Rd) is
endowed with the scalar product

⟨·, ·⟩2 =
∫
Rd

u(ξ)v̄(ξ)dξ; u, v ∈ L2(Rd).

The norm of Lp is denoted by | · |Lp . For p ∈ [1,∞], p′ ∈ [1,∞] denotes the
unique number such that 1

p
+ 1

p′
= 1.

We also set | · |L2 = | · |2. By Lq(0, T ;Lp) we denote the space of all
integrable Lp-valued functions u : (0, T ) → Lp with norm

∥u∥Lq(0,T ;Lp) =

(∫ T

0

(∫
Rd

|u(t, ξ)|pdξ
) q

p

dt

) 1
q

.

By C([0, T ];Lp) we denote the standard space of all Lp-valued continuous
functions on [0, T ] with the sup norm in t. Finally, Hk(Rd), k = 1, 2, are the
classical Sobolev spaces of complex valued functions on Rd.
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Definition 2.1 Let α ∈
[
1, 1 + 4

d

]
and fix T > 0. A solution to equation

(1.1) is an L2-valued continuous (Ft)-adapted process X = X(t), t ∈ [0, T ],
such that |X|α ∈ L1([0, T ], (H2(Rd))′) and it satisfies

X(t) = x−
∫ t

0

(i∆X(s) + µX(s) + λi|X(s)|α−1X(s))ds

+

∫ t

0

X(s)dW (s), ∀t ∈ [0, T ], P-a.s.
(2.1)

Here, the integral∫ t

0

X(s)dW (s) =
N∑
j=1

∫ t

0

µjejX(s)dβj(s)

is taken in sense of Itô, ∆X ∈ L2(0, T ; (H2(Rd))′) and (2.1) is understood as
an equation in (H2(Rd))′ = H−2(Rd).

Theorem 2.2 is the main result.

Theorem 2.2 Assume W is as in (1.2) and satisfies (H1), λ ∈ R and
1 ≤ α < 1 + 4

d
, 1 ≤ d <∞. Then, for each x ∈ L2 and 0 < T < ∞, there is

a unique solution X = X(t, x) to (1.1) in the sense of Definition 2.1, which
satisfies

X ∈ L2(Ω;C([0, T ];L2)) (2.2)

X ∈ Lq(0, T ;Lα+1), P-a.s., (2.3)

where q = 4(α+1)
d(α−1)

∈
(
2 + 4

d
,∞
]
.

Moreover, for P-a.e. ω ∈ Ω, the map x → X(·, x, ω) is continuous from
L2 to C([0, T ];L2) ∩ Lq(0, T ;Lα+1), t → |X(t)|22 is a continuous martingale
with the representation

|X(t)|22 = |x|22 + 2

∫ t

0

∫
Rd

N∑
j=1

Re(µj)ej|X(s)|2dξ dβj(s), t ∈ [0, T ]. (2.4)

By Sobolev’s embedding theorem, it is easily seen that (2.3) implies also
that |X|α ∈ L1(0, T ;H−2(Rd)), as claimed in Definition 2.1.

As explicitly stated, Theorem 2.2 is a global existence and uniqueness
result for equation (1.1) in the subcritical case 1 ≤ α < 1 + 4

d
· The more

delicate critical case α = 1 + 4
d
will be briefly discussed in Section 5.
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3 Proof of Theorem 2.2

We apply in equation (1.1) the rescaling transformation

X = eWy. (3.1)

By a heuristic application of Itô’s product formula, we see that P-a.s.

dX = eWdy + eWydW + µ̃eWydt

where µ̃ = 1
2

N∑
j=1

µ2
je

2
j .

Substituting into (1.1) yields P-a.s.

i
∂y

∂t
= e−W∆(eWy)− (µ+ µ̃)iy + λ|e(α−1)W | |y|α−1y,

y(0) = x ∈ L2.
(3.2)

Equation (3.2) can be rewritten as

i
∂y

∂t
= ∆y +

( d∑
i=1

(∂iW )2 +∆W − (µ+ µ̃)i
)
y + 2∇W · ∇y

+λ|e(α−1)W | |y|α−1y, t ∈ (0, T ),

y(0) = x.

(3.3)

Definition 3.1 A solution to (3.3) is an L2-valued continuous (Ft)-adapted
process y = y(t), t ∈ [0, T ], such that |y|α ∈ L1([0, T ]; (H2(Rd))′) and it
satisfies (3.3) P-a.s. as an equation in (H2(Rd))′.

A rigorous proof of the equivalence of (2.1) and (3.3) is included in the
Appendix (see Lemma A.1).

We set

c(t, ξ) =
d∑

i=1

(∂iW )2 +∆W (t, ξ)− i(µ+ µ̃)

b(t, ξ) = 2∇W (t, ξ)

(3.4)

and rewrite (3.3) as

i
∂y

∂t
= ∆y + cy + b · ∇y + λ|e(α−1)W | |y|α−1y in (0, T )× Rd,

y(0, ξ) = x(ξ), ξ ∈ Rd,
(3.5)
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for each ω ∈ Ω. We note that, by (H1), we have P-a.s. that conditions (1.5),
(1.6) on b, c in [14] are satisfied with R replaced by [0, T ], which will be
crucially used below.

It should be said that, though (3.5) is similar to the standard nonlinear
Schrödinger equation iyt = ∆y + λ|y|α−1y, its existence theory is not re-
ducible to the latter due to the presence of lower order terms which excludes
the direct use of classical Strichartz estimates.

However, we have the following existence and uniqueness result, which
shall be proved in the next section.

Proposition 3.2 Under the assumptions of Theorem 2.2, for each x ∈ L2

and T ∈ (0,∞) there is a unique solution y to equation (3.5) which satisfies

eWy ∈ L2(Ω;C([0, T ];L2)) (3.6)

y ∈ Lq(0, T ;Lα+1), P-a.s., (3.7)

where q = 4(α+1)
d(α−1)

∈
(
2 + 4

d
,∞
]
. The mapping x → y(·, x, ω) is continuous

from L2 to C([0, T ];L2) ∩ Lq(0, T ;Lα+1), for P-a.e. ω ∈ Ω.

The solution y to (3.5) is taken in the following mild sense: for t ∈ [0, T ]

y(t) = U(t, 0)x− λi

∫ t

0

U(t, s)(|e(α−1)W (s)| |y(s)|α−1y(s))ds, (3.8)

where U = U(t, s) ∈ L(L2, L2), −∞ < s ≤ t <∞, is the evolution generated
by the random time-dependent operator

A(t)u = −i(∆u+ c(t)u+ b(t) · ∇u), ∀u ∈ H2(Rd), (3.9)

where ∆ and ∇ are taken in the sense of distributions on Rd. By stan-
dard arguments, it then follows in our case that y is also a solution to (3.5)
(equivalently, (3.3)) in the sense of Definition 3.1.

The evolution U must satisfy P-a.s. the equation

∂

∂t
U(t, s)x = A(t)U(t, s)x, ∀x ∈ H2(Rd), t ≥ s, (3.10)

∂

∂s
U(t, s)x = −U(t, s)A(s)x, ∀x ∈ H2(Rd). (3.11)

We have
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Lemma 3.3 For (P-almost) every ω ∈ Ω, the operator A(t) generates an
evolution U(t, s) = U(t, s, ω) in the space L2. Moreover, for each x ∈ L2 and
s ∈ [0, T ], the process [s, T ] ∋ t→ U(t, s)x is continuous and (Ft)t≥s-adapted,
hence progressively measurable with respect to the filtration (Ft)t≥s.

Proof. The existence of the evolution operator U generated by A(t) is a
direct consequence of the fact that, for (P-almost) every ω ∈ Ω, the Cauchy
problem

dy

dt
= A(t)y,

y(s) = x, s ≤ t <∞,
(3.12)

for each x ∈ L2(Rd) has a unique continuous solution y ∈ C([s, T ];L2(Rd))
for all T > s. Indeed, by Theorem 1.1 in Doi [9] (see, also, [8]), under our
assumptions on c and b, for each x ∈ L2 and f ∈ L1(s, T ;L2), the Cauchy
problem

i
∂u

∂t
= ∆u+ cu+ b · ∇u+ f in (s, T )× Rd,

u(s) = x,
(3.13)

has a unique solution u ∈ C([s, T ];L2), which satisfies the estimate

|u(t)|L2 ≤ C

(
|x|L2 +

∫ t

s

|f(s)|L2ds

)
, s ≤ t ≤ T. (3.14)

The solution u to (3.13) is taken here in sense of distribution on (0, T )×Rd.
More precisely, for each u ∈ L2((0, T )×Rd), Lu = −i∆u−icu−ib ·∇u−if ∈
L2(0, T ;H−2(Rd)) and so (3.13) reduces to

du

dt
(t) = Lu(t), a.e. t ∈ (s, T ), u(s) = x, (3.15)

where d
dt
is taken in sense of vectorial H−2(Rd)-valued distributions on (0, T ).

This means that u : [0, T ] → H−2(Rd) is absolutely continuous and a.e.
differentiable on (0, T ). Moreover, if x ∈ Hσ(Rd), f ∈ L1(0, T ;Hσ), σ ∈ R,
then u ∈ C([s, T ]; Hσ(Rd)). This implies the existence for (3.12) and so, of
an evolution U(t, s) ∈ L(L2, L2) defined by U(t, s)x = y(t), 0 ≤ s ≤ t ≤ T .

Moreover, since U(t, s)H2(Rd) ⊂ H2(Rd) for every t, s ∈ [0, T ], and
U(t, s)x∈C([s, T ];H2(Rd)) for x∈H2(Rd), we see by (3.15) that t→ U(t, s)x
is continuously differentiable for each x ∈ H2(Rd) and is also easily seen by
the continuity of b and c that s→ U(t, s)x is continuous.
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Since the Cauchy problem (3.12) is, by virtue of the above results, uniformly
well posed, that is, D(A(t)) ≡ H2(Rd) for all t and for each x ∈ H2(Rd),
the function (t, s) → U(t, s)x is continuous together with ∂

∂t
U(t, s)x on

{(s, t); 0 ≤ s ≤ t ≤ T}, it follows that besides (3.10) we have also (3.11)
(see, e.g., [12], Sect. 3, Chap. II).

The second part of Lemma 3.3, that is the adaptedness of the process
t→ U(t, s)x, follows immediately from the fact that, by (3.4), the processes
t → c(t) and t → b(t) are progressively measurable with respect to the
filtration (Ft)t≥0. �

By (3.10), (3.11), it follows that, in terms of U , the solution to (3.13) can
be represented in the ”mild” sense below

u(t) = U(t, s)x− i

∫ t

s

U(t, r)f(r)dr, s ≤ t ≤ T.

By Lemma 3.3, it follows that u is progressively measurable for each x ∈ L2

and any progressively measurable process f : [s, T ]× Ω → H−1(Rd).

4 Proof of Proposition 3.2

Wee need a Strichartz type estimate for the solutions to the random non-
homogeneous linear Schrödinger equation

i
∂u

∂t
= ∆u+ cu+ b · ∇u+ f on (0, T )× Rd,

u(0) = u0 on Rd,
(4.1)

where c = c(t, ξ), b = b(t, ξ) are defined by (3.4). Indeed, we have

Lemma 4.1 Assume (H1). Then, for any T > 0 and u0 ∈ L2, f ∈
Lq′2(0, T ;Lp′2), the solution

u(t) = U(t, 0)u0 − i

∫ t

0

U(t, s)f(s)ds, 0 ≤ t ≤ T, (4.2)

to equation (4.1) satisfies the estimate

∥u∥Lq1 (0,T ;Lp1 ) ≤ CT (|u0|L2 + ∥f∥
Lq′2 (0,T ;Lp′2 )

), (4.3)
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where (p1, q1) and (p2, q2) belong to the set{
(p, q) ∈ [2,∞]× [2,∞] :

2

q
=
d

2
− d

p

}
, if d ̸= 2, (4.4)

respectively,{
(p, q) ∈ [2,∞)× (2,∞] :

2

q
=
d

2
− d

p

}
, if d = 2. (4.5)

The process Ct, t ≥ 0, can be taken to be (Ft)-progressively measurable,
increasing continuous, with C0 = 0.

Here, any pair belonging to the set in (4.4), (4.5) respectively, is called a
Strichartz pair.

Lemma 4.1 follows by the results of J. Marzuola, J. Metcalfe and D. Tataru
[14] on Strichartz estimates for the linear Schrödinger operator with non-
smooth and asymptotically flat coefficients, which is the case for equation
(4.2) under assumption (H1). The proof is outlined in the Appendix.

The proof of Proposition 3.2 will be completed in several steps. First,
one proves the existence of a local solution y to (3.5) (see Lemma 4.2). As
happens in the deterministic case, the next step from a local solution to a
global one is determined by the existence of an L∞(0, T ;L2) estimate for the
local solution. To this end, one proves an L2-estimate for this solution inde-
pendent of the interval [0, τ ] of maximal existence (Lemma 4.3) and, finally,
one extends y to a global solution of (3.5) satisfying all the requirements of
Proposition 3.2.

In the following, we take q = 4(α+1)
d(α−1)

∈
(
2 + 4

d
,∞
]
.

Lemma 4.2 Under the assumptions of Proposition 3.2, for each x ∈ L2,
there exists an increasing sequence of stopping times τn and τ ∗(x), satisfying
τ ∗(x) = lim

n→∞
τn, a.s., and a solution y to (3.5) on [0, τ ∗(x)) starting from x

such that
y ∈ C([0, τn];L

2) ∩ Lq(0, τn;L
α+1), (4.6)

for each n ≥ 1. The process t→ y(t) ∈ L2 is adapted to the filtration (Ft)t≥0.

Proof. We construct the solution to (3.5) in the ”mild” sense

y(t) = U(t, 0)x− i

∫ t

0

U(t, s)(λ|e(α−1)W (s)|g(y(s)))ds, t ∈ [0, T ], (4.7)

10



where g(y) = |y|α−1y, ∀y ∈ C. This solution is then also a solution in the
sense of Definition 3.1. We set X = C([0, T ];L2)∩Lq(0, T ;Lα+1) and consider
the integral operator

F (y)(t) = U(t, 0)x− i

∫ t

0

U(t, s)(λ|e(α−1)W (s)|g(y(s)))ds, t ∈ [0, T ], (4.8)

defined on X and, for P-a.e. ω ∈ Ω, we construct a unique local solution by
Banach’s fixed point theorem applied to F . Then, we extend the solution to
a maximal interval [0, τ ∗(x)).

Step 1. By estimate (4.3), with Strichartz pairs (α+1, q), we have for y ∈ X ,

∥F (y)∥Lq(0,T ;Lα+1) ≤ CT |x|2 + CT |λ|∥ |e(α−1)W |g(y)∥
Lq′ (0,T ;L

α+1
α )

∥ |e(α−1)W |g(y)∥
Lq′ (0,T ;L

α+1
α )

≤ e(α−1)|W |∞,∞ ∥|y|α∥
Lq′ (0,T ;L

α+1
α )

≤ e(α−1)|W |∞,∞T θ∥y∥αLq(0,T ;Lα+1),

where |W |∞,∞ = ∥W∥L∞(0,T ;L∞) and θ = 1 − d(α−1)
4

> 0. We set γT =
e(α−1)|W |∞,∞ . We have, therefore,

∥F (y)∥Lq(0,T ;Lα+1) ≤ CT

[
|x|2+|λ|T θγT∥y∥αLq(0,T ;Lα+1)

]
. (4.9)

By (4.3), with the Strichartz pair (2,∞) and (α + 1, q), we also have

∥F (y)∥L∞(0,T ;L2) ≤ CT

[
|x|2 + |λ|γTT θ∥y∥αLq(0,T ;Lα+1)

]
. (4.10)

In particular, this implies that F (X ) ⊂ X .
We note that, in (4.9), (4.10), the constant CT , coming from the Strichartz

estimate (4.3), depends on ω ∈ Ω. However, as mentioned in Lemma 4.1, the
process t→ Ct is (Ft)-adapted.

Now, we fix ω ∈ Ω and consider the operator F on the set

X τ
M1

=

{
y ∈ C([0, τ ];L2) ∩ Lq(0, τ ;Lα+1); sup

0≤t≤τ
|y(t)|2+∥y∥Lq(0,τ ;Lα+1) ≤M1

}
where τ = τ(ω) ∈ (0, T ] and M1 =M1(ω) > 0 are random variables.

For y ∈ X τ
M1

, we have, by estimates (4.9), (4.10), that

∥F (y)∥L∞(0,τ ;L2) + ∥F (y)∥Lq(0,τ ;Lα+1) ≤ 2Cτ (|x|2 + |λ|γττ θ∥y∥αLq(0,τ ;Lα+1))

≤ 2Cτ (|x|2 + |λ|γττ θMα
1 ),
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where γt = exp((α − 1)∥W∥L∞(0,t;L∞)). This means that F (X τ
M1

) ⊂ X τ
M1
, if

M1 and τ are chosen in a such way that

2Cτ (|x|2 + α|λ|γττ θMα
1 ) ≤M1. (4.11)

To this end, we choose M1 = 3Cτ |x|2, and define the real-valued continuous,
(Ft)-adapted process

Z
(1)
t := 2 · 3α−1Cα

t |x|α−1
2 α|λ|γttθ, t ∈ [0, T ].

Then (4.11) is equivalent to Z
(1)
τ ≤ 1

3
· Hence, defining the (Ft)-stopping time

τ1 = inf

{
t ∈ [0, T ] : Z

(1)
t >

1

3

}
∧ T,

we have τ1 > 0 and Z
(1)
τ1 ≤ 1

3
and hence

F (X τ1
3Cτ1 |x|2

) ⊂ X τ1
3Cτ1 |x|2

.

Now, let us show that F is a contraction in C([0, τ1];L
2)∩Lq(0, τ1;L

α+1).
The argument is standard (see, e.g., [13], p. 92, and also [10]), but we
reproduce it for completeness. Arguing as in the proof of (4.9), (4.10), we
get, for y1, y2 ∈ X τ1

3Cτ1 |x|2
,

∥F (y1)− F (y2)∥Lq(0,τ1;Lα+1) + ∥F (y1)− F (y2)∥L∞(0,τ1;L2)

≤ 2Cτ1 |λ|γτ1
(∫ τ1

0

∥|y1|α−1y1 − |y2|α−1y2∥q
′

L
α+1
α
dt

) 1
q′

≤ 2Cτ1α|λ|τ θ1γτ1(∥y1∥α−1
Lq(0,τ1;Lα+1)

+∥y2∥α−1
Lq(0,τ1;Lα+1))∥y1 − y2∥Lq(0,τ1;Lα+1)

≤ 4Cτ1α|λ|γτ1τ θ1Mα−1
1 ∥y1 − y2∥Lq(0,τ1;Lα+1)

= 2Z
(1)
τ1 ∥y1 − y2∥Lq(0,τ1;Lα+1)

≤ 2

3
∥y1 − y2∥Lq(0,τ1;Lα+1),

(4.12)

by definition of τ1. We see, by (4.12), that F is a contraction on the space
C([0, τ1];L

2) ∩ Lq(0, τ1;L
α+1). Hence, by Banach’s fixed point theorem, we

know that there exists a unique solution y ∈ C(0, τ1;L
2) ∩ Lq(0, τ1;L

α+1)

12



satisfying y = F (y) on [0, τ1], which implies that y is a solution to (4.7)
on [0, τ1]. Moreover, there exists a sequence u1,m ∈ X , m ∈ N, such that
u1,m+1 = F (u1,m), m ≥ 1, u1,1 = x and lim

m→∞
u1,m|[0,τ1] = y in C([0, τ1];L

2) ∩
Lq(0, τ1;L

α+1). Define y1(t) := y(t ∧ τ1), t ∈ [0, T ]. Then

y1 = lim
m→∞

u1,m(· ∧ τ1) in C([0, T ];L2).

Since, obviously, each u1,m is (Ft)-adapted, so is y1.

Step 2. We shall use an induction argument to extend y1 to yn+1, which
is a solution to (4.7) on a larger interval [0, τn+1]. Suppose that at the n-th
step we have a continuous, (Ft)-adapted process yn(t), t ∈ [0, T ], and an
(Ft)-stopping time τn with τn ≥ τn−1, such that yn(t) = yn(t∧ τn), t ∈ [0, T ],
and it satisfies (4.7) on [0, τn].

We define the integral operator

Fn(z)(t) = U(τn+t, τn)yn(τn)−i
∫ t

0

U(τn+t, τn+s)(λ|e(α−1)W (τn+s)|g(z(s)))ds,

t ∈ [0, T − τn],

and consider Fn on the set

X σn
Mn+1

=
{
z ∈ C(0, σn;L

2) ∩ Lq(0, σn;L
α+1);

sup
0≤t≤σn

|z(t)|2+∥z∥Lq(0,σn;Lα+1)≤Mn+1

}
where σn = σn(ω) and Mn+1 =Mn+1(ω) are random variables.

By a similar calculation, we have, for every z ∈ X σn
Mn+1

,

∥Fn(z)∥L∞(0,σn;L2) + ∥Fn(z)∥Lq(0,σn;Lα+1)

≤ 2C(τn+σn)(|yn(τn)|2 + |λ|γ(τn+σn)σ
θ
n∥z∥αLq(0,σn;Lα+1)),

which implies that Fn(X σn
Mn+1

) ⊂ X σn
Mn+1

and Fn is a contraction in X σn
Mn+1

,
if we take Mn+1 = 3C(τn+σn)|yn(τn)|2 and choose σn such that

2C(τn+σn)(|yn(τn)|2 + α|λ|γ(τn+σn)σ
θ
nM

α
n+1) ≤Mn+1,

i.e.,

2 · 3α−1Cα
(τn+σn)|yn(τn)|

α−1
2 α|λ|γ(τn+σn)σ

θ
n ≤ 1

3
· (4.13)
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So, similarly as above, we define the real-valued continuous, (Ft)-adapted
process

Z
(n)
t := 2 · 3α−1Cα

(τn+t)|yn(τn)|α−1α|λ|γ(τn+t)t
θ, t ∈ [0, T − τn],

and

σn := inf

{
t ∈ [0, T − τn] : Z

(n)
t >

1

3

}
∧ (T − τn).

Then σn > 0 and Z
(n)
σn ≤ 1

3
, i.e., (4.13) holds.

Set τn+1 := τn + σn. Then τn+1 is an (Ft)-stopping time. Indeed, for
t ∈ [0, T ],

{τn + σn < t} =
∪

q1,q2∈Q+
q1+q2<t

{τn < q1, σn < q2},

where Q+ denotes the nonnegative rational numbers.
But, by induction, τn is an (Ft)-stopping time and

{τn < q1, σn < q2} =
∪

q∈Q+
q<q2

{
τn + q2 < q1 + q2, Z

(n)
q >

1

3

}
∈ F(τn+q2)∧(q1+q2) ⊂ Fq1+q2 ⊂ Ft,

since
{
Z

(n)
q > 1

3

}
∈ Fτn+q ⊂ Fτn+q2 . Since (Ft) is right-continuous, τn+1 is

thus an (Ft)-stopping time.
Analogously to the case n = 1, one now shows that, by Banach’s fixed

point theorem, there exists a unique zn+1 ∈ X σn
Mn+1

, satisfying zn+1 = Fn(zn+1).
We define

yn+1(t) =

{
yn(t), t ∈ [0, τn],

zn+1((t− τn) ∧ σn), t ∈ (τn, T ].

It follows from the definition of F in Step 1 and Fn that yn+1 = F (yn+1) on
[0, τn+1], which implies that yn+1 is a solution to (4.7) on [0, τn+1]. Moreover,
yn+1 is adapted to (Ft) (see Lemma A.2 in the Appendix).

Therefore, we can extend yn to a new (Ft)-adapted yn+1, which is a
continuous process in L2 and a solution to (4.7) on [0, τn+1].

Step 3. Starting from Step 1 and reiterating the process in Step 2, we finally
have a solution y(t) of equation (3.5) on a maximal interval [0, τ ∗(x)), where
τ ∗(x) = lim

n↑∞
τn(x) (≤ T ). This completes the proof of Lemma 4.2. �
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In order to get a global solution, i.e., τ ∗(x) ≥ T a.s. (for every fixed

T > 0), we need an estimate of E

[
sup

0≤t<τ∗(x)

|eW (t)y(t)|22

]
, which is given by

Lemma 4.3 below.

Lemma 4.3 Let y be the solution from Lemma 4.2. Then we have P-a.s.

1

2
|eW (t)y(t)|22 =

1

2
|x|22 +

N∑
j=1

∫ t

0

∫
Rd

Re(µj)ej|eW (s)y(s)|2dξ dβj(s),

0 ≤ t < τ ∗(x).

(4.14)

Moreover, we have, for T > 0,

E

[
sup

0≤t<τ∗(x)

|eW (t)y(t)|22

]
≤ C̃T <∞. (4.15)

Proof. In order to obtain (4.14), we apply Itô’s formula to |eW (t)y(t)|22, we
first note that, for t < τn, y(t) satisfies equation (3.5) in the mild sense (4.7),
thus we use the idea in the proof of Lemma A.1 to apply Itô’s formula to
|eW (t)yε(t)|22, where yε satisfies the approximation equation (7.4). After that,
by taking ε→ 0 we obtain the Itô formula of |eW (t)y(t)|22 up to each stopping
time τn, which implies the desired formula (4.15).

Now, let {fj}j≥1 be an orthonormal basis in L2, fj ∈ H2(Rd). As in the
proof of Lemma A.1, we have for each fj and t ≤ τn

⟨
fj, e

W (t)yε(t)
⟩
2

= ⟨fj, xε⟩2 +
∫ t

0

⟨
fj,−ieW (s)Jε(e

−W (s)∆(eW (s)y(s)))
⟩
2
ds

+

∫ t

0

⟨
fj,−eW (s)Jε((µ+ µ̃)y(s)) + µ̃eW (s)yε(s)

⟩
2
ds

+

∫ t

0

⟨
fj,−λieW (s)Jε(|e(α−1)W (s)| |y(s)|α−1y(s))

⟩
2
ds

+
N∑
k=1

∫ t

0

⟨
fj, µkeke

W (s)yε(s)
⟩
2
dβk(s).

15



Applying the Itô product rule, we get

|
⟨
eW (t)yε(t), fj

⟩
2
|2 = | ⟨xε, fj⟩2 |

2 + 2Re

∫ t

0

⟨
eW (s)yε(s), fj

⟩
2
d
⟨
fj, e

W (s)yε(s)
⟩

+
⟨⟨
eW (t)yε(t), fj

⟩
2
,
⟨
fj, e

W (t)yε(t)
⟩
2

⟩
= | ⟨xε, fj⟩2 |

2

+2Re

∫ t

0

⟨
eW (s)yε(s), fj

⟩
2

⟨
fj,−ieW (s)Jε(e

−W (s)∆(eW (s)y(s)))
⟩
2
ds

+2Re

∫ t

0

⟨
eW (s)yε(s), fj

⟩
2

⟨
fj,−eW (s)Jε((µ+ µ̃)yε(s)) + µ̃eW (s)yε(s)

⟩
2
ds

+2Re

∫ t

0

⟨
eW (s)yε(s), fj

⟩
2

⟨
fj,−λieW (s)Jε(|e(α−1)W (s)| |y(s)|α−1y(s))

⟩
2
ds

+2
N∑
k=1

Re

∫ t

0

⟨
eW (s)yε(s), fj

⟩
2

⟨
fj, µkeke

W (s)yε(s)
⟩
2
dβk(s)

+
N∑
k=1

∫ t

0

|
⟨
fj, µkeke

W (s)yε(s)
⟩
2
|2ds, t ∈ [0, τn].

Now, summing over j ∈ N and interchanging the infinite sum with the
integrals, we arrive at

1

2
|eW (t)yε(t)|22 =

1

2

∞∑
j=1

|
⟨
eW (t)yε(t), fj

⟩
2
|2 = 1

2
|xε|22

+Re

∫ t

0

⟨
eW (s)yε(s),−ieW (s)Jε(e

−W (s)∆(eW (s)y(s)))
⟩
2
ds

+Re

∫ t

0

⟨
eW (s)yε(s),−eW (s)Jε((µ+ µ̃)y(s)) + (µ+ µ̃)eW (s)yε(s)

⟩
2
ds

+Re

∫ t

0

⟨
eW (s)yε(s),−λieW (s)Jε(|e(α−1)W (s)| |y(s)|α−1y(s))

⟩
2
ds

+
N∑
k=1

Re

∫ t

0

⟨
eW (s)yε(s), µkeke

W (s)yε(s)
⟩
2
dβk(s), t ∈ [0, τn].
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Hence, by taking ε→ 0, we finally obtain for t ≤ τn

1

2
|eW (t)y(t)|22 =

1

2
|x|22 +

N∑
k=1

Re

∫ t

0

⟨
eW (s)y(s), µkeke

W (s)y(s)
⟩
2
dβk(s),

which implies (4.14) since τn ↑ τ ∗(x), a.s.

In order to get (4.15), taking into account that
N∑
j=1

|µj|2|ej|2L∞ < ∞, by

the Burkholder–Davis–Gundy and Young’s inequality, we have for t ∈ [0, T ]
and all n ∈ N

E

[
sup

s∈[0,t∧τn]

∣∣∣∣∣
N∑
j=1

∫ s

0

∫
Rd

Re(µj)ej|eW (r)y(r)|2dξ dβj(r)

∣∣∣∣∣
]

≤ CE

[∫ t∧τn

0

N∑
j=1

(∫
Rd

Re(µj)ej|eW (s)y(s)|2dξ
)2

ds

] 1
2

≤ CE
[∫ t∧τn

0

|eW (s)yε(s)|42ds
] 1

2

≤ CE

[
sup

s∈[0,t∧τn]
|eW (s)y(s)|2

(∫ t∧τn

0

|eW (s)y(s)|22ds
) 1

2

]

≤ C
√

E sup
s∈[0,t∧τn]

|eW (s)y(s)|22

√
E
∫ t∧τn

0

|eW (s)y(s)|22ds

≤ 1

4
E sup

s∈[0,t∧τn]
|eW (s)y(s)|22 + C

∫ t

0

E

(
sup

r∈[0,s∧τn]
|eW (r)y(r)|22

)
ds,

where C is a constant independent of n and may change from line to line.
Together with (4.14), this yields

E

[
sup

s∈[0,t∧τn]
|eW (s)y(s)|22

]
≤ 2|x|22 + 4C

∫ t

0

E

(
sup

r∈[0,s∧τn]
|eW (r)y(r)|22

)
ds,

which implies

E

[
sup

t∈[0,T∧τn]
|eW (t)y(t)|22

]
≤ C̃T ,
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where C̃T is independent of n.
Finally, taking n ↑ ∞ and applying Fatou’s lemma, we obtain (4.15), as

claimed. �

Proof of Proposition 3.2 (continued). By Lemma 4.3, we have P-a.s.

sup
0≤s<τ∗(x)

|eW (s)y(s)|22 <∞.

We set M = sup
0≤t<τ∗(x)

|y(t)|22. We have, therefore,

M = sup
0≤s<τ∗(x)

|e−W (s)eW (s) · y(s)|22

≤ e2|W |∞,∞ sup
0≤s<τ∗(x)

|eW (s)y(s)|22 <∞, P-a.s.

Let us first show that τ ∗(x) = T P-a.s. We know already that τ ∗(x) ≤ T P-a.s.
So, let ω ∈ {τ ∗(x) < T}∩{M <∞} and choose σ = σ(ω) ∈ (0, T−τ ∗(x)(ω)),
such that

2 · 3α−1Cα
(τ∗(x)+σ)M

α−1α|λ|γ(τ∗(x)+σ)σ
θ ≤ 1

6
·

More precisely, define the real-valued continuous process

Zt := 2 · 3α−1Cα
(τ∗(x)+t)M

α−1α|λ|γ(τ∗(x)+t)t
θ, t ∈ [0, T ],

and

σ := inf

{
t ∈ [0, T ] : Zt >

1

6

}
∧ (T − τ ∗(x)).

Then σ has the desired property, and Zt ≥ Z
(n)
t for each n ∈ N, since, for

every n ≥ 1, |y(τn)|2 ≤ M , C(τn+σ) ≤ C(τ∗(x)+σ) and γ(τn+σ) ≤ γ(τ∗(x)+σ). By
the definition of σn in Step 2 of Lemma 4.2, we thus have for each n ∈ N,
σn(ω) ≥ σ(ω).

Hence τn+1(ω) = τn(ω) + σn(ω) ≥ τn(ω) + σ(ω), which implies that
τn+1(ω) ≥ τ1(ω) + nσ(ω), n ≥ 1. Thus, after finitely many steps, τn(ω) will
exceed T , which contradicts the fact that τn(ω) ≤ τ ∗(x)(ω) ≤ T . Therefore,
we conclude that P(τ ∗(x) = T ) = 1.

Now, (3.6) follows from (4.15).
Now, let us prove (3.7). By Step 1, we have ∥y∥Lq(0,τ1;Lα+1) ≤ 3Cτ1 |x|2.

Moreover, if τ1 < T , we choose L = L(ω) ∈ N such that τL < T = τL+1. At
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the (n+ 1)–th step, since zn+1 ∈ X σn
Mn+1

, we get, for 1 ≤ n ≤ L,

∥y∥Lq(τn,τn+1;Lα+1) = ∥zn+1∥Lq(0,σn;Lα+1) ≤Mn+1

= 3C(τn+σn)|yn(τn)|2 ≤ 3CτL+1
∥y∥L∞(0,T ;L2) <∞.

Therefore, we obtain

∥y∥Lq(0,T ;Lα+1) ≤ 3(L+ 1)CτL+1
∥y∥L∞(0,T ;L2) <∞, P-a.s.

This completes the proof of the existence in Proposition 3.2.
As regards the uniqueness, as in (4.12) we have for two solutions y1, y2

to (3.5)

∥y1 − y2∥L∞(0,t;L2) + ∥y1 − y2∥Lq(0,t;Lα+1)

≤ 4CTα|λ|γT tθMα−1(∥y1 − y2∥L∞(0,t;L2) + ∥y1 − y2∥Lq(0,t;Lα+1)),

where M = |y1|Lq(0,T ;Lα+1) + |y2|Lq(0,T ;Lα+1) < ∞, a.s., which implies y1 = y2
on a sufficiently small interval (0, t). Then, by a standard argument, global
uniqueness follows. It remains to prove the dependence with respect to the
initial data x ∈ L2.

Suppose that xm → x in L2. For every xm (resp. x), we know that, for
P-a.e. ω ∈ Ω, there exists a unique solution ym (resp. y) to equation (3.5)
satisfying ym(0) = xm (resp. y(0) = x).

First, we use a similar argument as in the proof of (3.7) to show that

∥ym∥Lq(0,T ;Lα+1) ≤M, ∀m ∈ N,

where M = (L+ 1)3L+1

L+1∏
j=1

Cτj sup
m

|xm|2 <∞, a.s. with L as in the proof of

(3.7) above.
In fact, by Step 1, we have

∥ym∥Lq(0,τ1;Lα+1) ≤ 3Cτ1 |xm|2 ≤ 3Cτ1 sup
m

|xm|2,

while, at the (n+ 1)–th extension step, we have, for 1 ≤ n ≤ L,

∥ym∥Lq(τn,τn+1;Lα+1) ≤ 3Cτn+1|ym(τn)|2

≤ 3n+1

n+1∏
j=1

Cτj |xm|2 ≤ 3L+1

L+1∏
j=1

Cτj sup
m

|xm|2,
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hence

∥ym∥Lq(0,T ;Lα+1) ≤ (L+ 1)3L+1

L+1∏
j=1

Cτj sup
m

|xm|2,

as claimed.
Then, we have, for t, t̃ ∈ (0, T ) (cf. (4.12)),

∥ym − y∥L∞(t,t+t̃;L2) + ∥ym − y∥Lq(t,t+t̃;Lα+1)

≤ 2CT |xm − x|2 + 4CTα|λ|γT t̃θMα−1∥ym − y∥Lq(t,t+t̃;Lα+1),

where θ = 1− d(α−1)
4

> 0. If we choose t̃ such that

4CTα|λ|γT t̃θMα−1 ≤ 1

2
,

we obtain

∥ym − y∥L∞(t,t+t̃;L2) + ∥ym − y∥Lq(t,t+t̃;Lα+1) ≤ 4CT |xm − x|2.

Since t̃ = t̃(M) is independent of m and for m → ∞ xm → x in L2, we get
that

ym → y in L∞(t, t+ t̃;L2) ∩ Lq(t, t+ t̃;Lα+1).

Moreover, as t̃ = t̃(M) is also independent of t, we conclude that

ym → y in L∞(0, T ;L2) ∩ Lq(0, T ;Lα+1). (4.16)

This completes the proof. �

Proof of Theorem 2.2. As noticed earlier, the existence, uniqueness and
continuous dependence on initial data of the solution X follows directly by
Proposition 3.2. Moreover, by (4.14) we see that t→ 1

2
|X(t)|22 is a continuous

martingale and that (2.4) holds. This completes the proof. �

5 The critical case

In the critical case, equation (3.5) and, consequently, (1.1) has a local solution
only. More precisely, we have
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Proposition 5.1 Assume α = 1 + 4
d
· Then, for each x ∈ L2, there exists

a stopping time τ ∗(x) and a unique solution y to (3.5) starting from x such
that t→ y(t ∧ τ) is adapted on [0, T ] and

y ∈ C([0, τ ];L2) ∩ Lρ(0, τ ;Lρ), P-a.s., (5.1)

for any stopping time τ < τ ∗(x). Here, ρ = 2 + 4
d
·

Proof. Since the proof is essentially the same as that of Lemma 4.2, it will
here be sketched only. Consider, as above, for fixed ω ∈ Ω, the set (see, e.g.,
[13], p. 97)

Gτ
M={y∈C([0, τ ];L2)∩Lρ(0, τ ;Lρ); sup

0≤t≤τ
|y(t)−U(t, 0)x|2+∥y∥Lρ(0,τ ;Lρ)≤M},

where U is defined by Lemma 3.3. We have

sup
0≤t≤τ

|F (y)(t)− U(t, 0)x|2 ≤ sup
0≤t≤τ

∣∣∣∣∫ t

0

U(t, s)(λ|e(α−1)W (s)|g(y(s)))ds
∣∣∣∣
2

≤ Cτ |λ|∥ |e(α−1)W |g(y)∥Lρ′ (0,τ ;Lρ′ ) ≤ C̃1M
α.

Similarly,
|F (y)|Lρ(0,τ ;Lρ) ≤ |U(t, 0)x|Lρ(0,τ ;Lρ) + C̃1M

α,

where C̃1 depends on Cτ , γτ and λ. Then, arguing as in the proof of Lemma
4.2, it follows that, for τ and M suitably chosen F (Gτ

M) ⊂ Gτ
M and F is

a contraction on Gτ
M in the norm of Lρ(0, τ ;Lρ). Hence, on [0, τ ], with

τ a stopping time, there is a solution y to (3.5) on [0, τ ] and the process
t → y(t ∧ τ) is adapted. Arguing as in the proof of Lemma 4.2, one finds a
maximal interval [0, τ ∗(x)) and a solution y to (3.5) on each [0, τ ], τ < τ ∗,
P-a.s. Since, in this case, τ ∗(x) is not a function of |x|22, as happens in the
subcritical case, in general τ ∗(x) < T and so the solution y is local only. �

As regards the stochastic equation (1.1), Proposition 5.1 implies, via
transformation (3.1), the following local existence result.

Corollary 5.2 Assume α = 1 + 4
d
· Then, for each x ∈ L2, there exists

a stopping time τ ∗(x) and a unique solution X to equation (1.1) such that
t→ X(t ∧ τ) is adapted on [0, T ] and

X ∈ C([0, τ ];L2) ∩ Lρ(0, τ ;Lρ), P-a.s., (5.2)

for any stopping time τ < τ ∗(x).
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In this case, Lemma 4.3 holds too, and so X satisfies the martingale equality

1

2
|X(t)|22 =

1

2
|x|22 +

∫ t

0

Re ⟨X(s), X(s)dW (s)⟩2 , t ∈ [0, τ ∗(x)). (5.3)

6 Final remarks

1◦ Theorem 2.2 and Corollary 5.2 remain true for more general real Gaus-
sian processes W (t) in L2 with cov(W (t)) = tQ, where Q is a sym-
metric nonnegative operator with TrQ < ∞ with appropriate spatial
assumptions so that [14] applies. We omit the details.

2◦ The H1-existence theory for equation (1.1) can be treated in a similar
way and leads to results comparable with that in a deterministic case,
by using in the proof of Proposition 3.2 the Strichartz estimates (4.3)
for ∇su, s = 1. We omit the details which will be contained in a
forthcoming work. (We refer to [6] for a direct approach in this case.)

7 Appendix

Proof of Lemma 4.1. Under assumption (H1), the coefficients c, b defined
in (3.4) satisfy (1.4)-(1.6) in [14] on [0, T ]×Rd. We would like to recall here
that in [14] (e.g., (1.1)), the common notation Dt = −i∂t, Dj = −i∂xj

is
used. Then, by Theorem 1.13 in [14] and, more precisely, by estimate (1.24)
(see Remark 1.17 in [14]), we have

∥u∥Lq1 (0,T ;Lp1 ) ≤ C
(
|u0|2 + ∥f∥

Lq′2 (0,T ;Lp′2 )
+ ∥u∥L2(0,T ;L2(|ξ|≤2R))

)
, (7.1)

for R sufficiently large.
We are going to prove first that (4.3) holds for T sufficiently small. To

this end, we note that

∥u∥2L2(0,T ;L2(|ξ|≤2R)) ≤ (m(B2R))
p1−2
p1

∫ T

0

|u(t)|2Lp1dt

≤ (m(B2R))
p1−2
p1 T

q1−2
q1 ∥u∥2Lq1 (0,T ;Lp1 ),
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where m(B2R) is the volume of the ball B2R of radius 2R. For simplicity, we
assume that q1 > 2, which is, in fact, the case in the application of Lemma
4.1 to problem (3.5). Then, for

0 < T =
(
(2C)−2(m(B2R))

− p1−2
p1

) q1
q1−2

, (7.2)

we get by (7.1) that

∥u∥Lq1 (0,T ;Lp1 ) ≤ 2C
(
|u0|2 + ∥f∥

Lq′2 (0,T ;Lp′2 )

)
. (7.3)

For q1 = ∞, p1 = 2, we get in a similar way

∥u∥L∞(0,T ;L2) ≤ 2C
(
|u0|2 + ∥f∥

Lq′2 (0,T ;Lp′2 )

)
,

for 0 < T < (2C)−2. Reiterating (7.3) on the interval (T, 2T ), we get therefore

∥u∥Lq1 (T,2T ;Lp1 ) ≤ 2C
(
|u(T )|2 + ∥f∥

Lq′2 (T,2T ;Lp′2 )

)
≤ 2C

[
2C(|u0|2 + ∥f∥

Lq′2 (0,T ;Lp′2 )
) + ∥f∥

Lq′2 (T,2T ;Lp′2 )

]
≤ 2C

[
2C|u0|2 + (2C + 1)∥f∥

Lq′2 (0,2T ;Lp′2 )

]
,

≤ 4C(C + 1)
(
|u0|2 + ∥f∥

Lq′2 (0,2T ;Lp′2)

)
.

Hence
∥u∥Lq1 (0,2T ;Lp1 ) ≤ 8C(C + 1)

(
|u0|2 + ∥f∥

Lq′2 (0,2T ;Lp′2 )

)
.

Then, after a finite number of steps, we get estimate (4.3) on an arbitrary
bounded interval, as claimed.

Furthermore, for each t ∈ [0, T ], we may take

Ct = sup{∥U(t, 0)u0∥Lq1 (0,t;Lp1 ); |u0|2 ≤ 1}

+sup

{∥∥∥∥∫ t

0

U(t, s)f(s)ds

∥∥∥∥
Lq1 (0,t;Lp1 )

; ∥f∥
Lq′2 (0,t;Lp′2 )

= 1

}
.

Obviously, the function t → Ct is monotonically increasing, C0 = 0, and
it follows by (4.3) and standard arguments that it is continuous. Since by
separability the sup in the definition of Ct is a sup over countably many
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u0 ∈ L2 and f ∈ Lq′2(0, t;Lp′2) ⊂ L1(0, t;H−1) (by Sobolev embedding) and
since, as seen earlier in Lemma 3.3, t → U(t, 0)u0, t →

∫ t

0
U(t, s)f(s)ds is

adapted, we conclude that t → Ct is adapted to the filtration (Ft)t≥0. But
then, as a continuous process Ct is (Ft)-progressively measurable, thereby
completing the proof.

Lemma A.1.

(i) Let y = y(t), t ∈ [0, T ], be an L2-valued (Ft)-adapted process with
continuous sample paths satisfying (3.3), (3.6), (3.7). Then, X := eWy
is a solution to (2.1).

(ii) Suppose X = X(t), t ∈ [0, T ] is an L2-valued (Ft)-adapted process
with continuous sample paths satisfying (2.1), (2.2) and (2.3). Then,
y := e−WX satisfies (3.3) (equivalently, (3.5)).

Before going to the proof of Lemma A.1, a few remarks are in order
concerning the formal calculation given at the beginning of Section 3 to
link (2.1) and (3.2). In fact, it is purely heuristic since we applied the Itô
product to y though it is not of bounded variation in L2. Furthermore,
taking into account that the exponential is an operator of Nemitsky type in
L2 which is not differentiable, the infinite dimensional Itô formula in L2 is
not justified. Also, when we try to apply Itô’s product rule for real valued
stochastic processes after evaluating the L2-valued processes X, W , y at
ξ ∈ Rd, which by itself is delicate since L2 consists of equivalence classes of
functions, we run into problems since e.g. again X(t, ξ), y(t, ξ), t ∈ [0, T ],
might not be semi-martingales.

The proof we give below is based on the stochastic Fubini theorem and
uses the stochastic calculus for complex valued processes and their products
in C. (We refer to [11], Section 2, as background literature in regard to this.)

Proof of Lemma A.1. We only prove (i), since (ii) can be proved analo-
gously. Let φ ∈ H2(Rd). Then, for every t ∈ [0, T ], we have

⟨
φ, eW (t)y(t)

⟩
2
=

∞∑
j=1

⟨
eW (t)φ, fj

⟩
2
⟨fj, y(t)⟩2 ,

where {fj}∞j=1 is an orthonormal basis in L2; fj ∈ H2(Rd).
By Itô’s formula, we have for all ξ ∈ Rd, t ∈ [0, T ],
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eW (t,ξ) = 1 +

∫ t

0

eW (s,ξ)dW (s, ξ) + µ̃(ξ)

∫ t

0

eW (s,ξ)ds.

Fix j ∈ N. Then, we have P-a.s. for all t ∈ [0, T ],⟨
eW (t)φ, fj

⟩
2
= ⟨φ, fj⟩2

+
N∑
k=1

µk

∫
Rd

φ(ξ)ek(ξ)f̄j(ξ)dξ

∫ t

0

eW (s,ξ)dβk(s) +

∫ t

0

⟨
µ̃ eW (s)φ, fj

⟩
2
ds

= ⟨φ, fj⟩2 +
N∑
k=1

µk

∫ t

0

⟨
ek eW (s)φ, fj

⟩
2
dβk(s) +

∫ t

0

⟨
µ̃ eW (s)φ, fj

⟩
2
ds.

(Here, we have used the stochastic Fubini theorem in the second equality.)
Now, we set A0 = i∆, D(A0) = H2(Rd) and Jε = (I + εA0)

−1.
Let yε = Jε(y). Then, yε ∈ C([0, T ], H2(Rd)) and

∂yε
∂t

= −iJε(e−W∆(eWy))− Jε((µ+ µ̃)y)

−λiJε(|e(α−1)W | |y|α−1y), t ∈ (0, T ),

yε(0) = Jε(x) = xε.

(7.4)

Since fj ∈ H2(Rd), for each j, ⟨fj, yε(t)⟩2 , t ∈ [0, T ], is of bounded variation.
Hence, we can apply the Itô product rule (for scalar valued processes) to
obtain⟨

eW (t)φ, fj

⟩
2
⟨fj, yε(t)⟩2 = ⟨φ, fj⟩2 ⟨fj, xε⟩2

+i

∫ t

0

⟨
eW (s)φ, fj

⟩
2

⟨
fj, Jε(e

−W (s)∆(eW (s)y(s)))
⟩
2
ds

−
∫ t

0

⟨
eW (s)φ, fj

⟩
2
⟨fj, Jε((µ+ µ̃)y(s))⟩2 ds

+λi

∫ t

0

⟨
eW (s)φ, fj

⟩
2

⟨
fj, Jε(|e(α−1)W (s)| |y(s)|α−1y(s))

⟩
2
ds

+
N∑
k=1

µk

∫ t

0

⟨fj, yε(s)⟩2
⟨
ek eW (s)φ, fj

⟩
2
dβk(s)

+

∫ t

0

⟨fj, yε(s)⟩2
⟨
µ̃ eW (s)φ, fj

⟩
2
ds.
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(We note that, since Jε(e
−W∆(eWy)) ∈ C([0, T ];L2), the second integral in

the above equality makes sense.)
Now, summing over j ∈ N and interchanging the infinite sum with the

integrals, we obtain P-a.s., for all t ∈ [0, T ],

⟨
φ, eW (t)yε(t)

⟩
2
= ⟨φ, xε⟩2 + i

∫ t

0

⟨
φ, eW (s)Jε(e

−W (s)∆(eW (s)y(s)))
⟩
2
ds

−
∫ t

0

⟨
φ, eW (s)Jε((µ+ µ̃)y)

⟩
2
ds+ λi

∫ t

0

⟨
φ, eW (s)Jε(|e(α−1)W | |y(s)|α−1y(s))

⟩
2
ds

+
N∑
k=1

∫ t

0

⟨
φ, µkeke

W (s)yε(s)
⟩
2
dβk(s) +

∫ t

0

⟨
φ, µ̃eW (s)yε(s)

⟩
2
ds.

On the other hand, we have, for ε→ 0,

Jε(f) → f strongly in Hk.

Furthermore
∥Jε(f)∥Hk ≤ ∥f∥Hk ,

where f ∈ Hk and k = 0, 1, 2. Then, we may pass to the limit ε → 0 in the
previous equality to obtain

⟨
φ, eW (t)y(t)

⟩
2
= ⟨φ, x⟩2 + i

∫ t

0

⟨
φ,∆(eW (s)y(s))

⟩
ds−

∫ t

0

⟨
φ, µeW (s)y(s)

⟩
2
ds

+λi

∫ t

0

⟨
φ, eW (s)|e(α−1)W (s)| |y(s)|α−1y(s)

⟩
ds

+
N∑
k=1

∫ t

0

⟨
φ, µkeke

W (s)y(s)
⟩
2
dβk(s), ∀t ∈ [0, T ],

which implies the fact that X(t) = eW (t)y(t) is the solution to (2.1), as
claimed. In the above equality, ⟨·, ·⟩ is the pairing between L2, H2 and H−2

or, equivalently, ⟨
φ,∆(eWy)

⟩
=

∫
Rd

∆φeW ȳ dξ, φ ∈ H2.

This completes the proof. �
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Lemma A.2. Let τn+1 be defined as in Step 2 in the proof of Lemma 4.2.
Then yn+1 is adapted to (Ft).

Proof. We first note that, by zn+1 = Fn(zn+1) and Banach’s fixed point
theorem, there exists a sequence {vn+1,m}m≥1, adapted to (Fτn+t), satisfying
vn+1,m+1 = Fn(vn+1,m) for m ≥ 1, vn+1,1 = yn(τn) and zn+1 = lim

m→∞
vn+1,m in

C([0, t];L2) ∩ Lq(0, t;Lα+1)), t ∈ [0, σn]. Now, we define

un+1,m(t) =

{
yn(t), t ∈ [0, τn],

vn+1,m(t− τn), t ∈ (τn,∞).

Thus, yn+1 = lim
m→∞

u
τn+1

n+1,m, in C([0, T ];L2). Below, we show that un+1,m is

adapted to (Ft). In fact, let fj, j ∈ N, be an orthonormal basis of L2. We
have, for each a > 0, {| ⟨un+1,m(t), fj⟩2 | < a} = J1,a ∪ J2,a, where J1,a =
{| ⟨yn(t), fj⟩2 | < a, t ≤ τn} and J2,a = {| ⟨vn+1,m(t− τn), fj⟩2 | < a, τn < t}.
Since yn is adapted to (Ft) and τn is an (Ft) stopping time, it follows that
J1,a ∈ Ft.

By the continuity of t 7→ | ⟨vn+1,m(t− τn), fj⟩2 | we see that

J2,a =
∪
q∈Q
q<a

∪
h∈N

∩
s∈Q

Jq,h,s,

where Jq,h,s =
{
| ⟨vn+1,m(s), fj⟩2 | < q, t− τn − 1

h
< s < t− τn, τn < t

}
.

Taking into account that {| ⟨vn+1,m(s), fj⟩2 | < q} ∈ Fτn+s and τn+ s < t,
we have Jq,h,s ∈ Ft, which implies that J2,a ∈ Ft.

Collecting the above results, we obtain that, for any j ∈ N and a > 0,
{| ⟨un+1,m(t), fj⟩2 | < a} ∈ Ft. This is enough to imply that un+1,m is adapted
to (Ft). Therefore, as the limit of u

τn+1

n+1,m, yn+1 is also adapted to (Ft). This
completes the proof. �
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