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Abstract

We prove uniqueness for continuity equations in Hilbert spaces H. The
corresponding drift F is assumed to be in a first order Sobolev space with re-
spect to some Gaussian measure. As in previous work on the subject, the proof
is based on commutator estimates which are infinite dimensional analogues to
the classical ones due to DiPerna–Lions. Our general approach is, however,
quite different since, instead of considering renormalized solutions, we prove a
dense range condition implying uniqueness. In addition, compared to known
results by Ambrosio–Figalli and Fang–Luo, we use a different approximation
procedure, based on a more regularizing Ornstein–Uhlenbeck semigroup and
consider Sobolev spaces of vector fields taking values in H rather than the
Cameron–Martin space of the Gaussian measure. This leads to different con-
ditions on the derivative of F , which are incompatible with previous work on
the subject. Furthermore, we can drop the usual exponential integrability con-
ditions on the Gaussian divergence of F , thus improving known uniqueness
results in this respect.
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1 Introduction

Let H be a separable real Hilbert space with inner product 〈·, ·〉 and norm | · |. Let
F : [0,∞)×H → H be Borel measurable. In this paper we want to give a new proof
for uniqueness of solutions to the corresponding continuity equations informally given
as

d

dt
µt + div (F (t, ·)µt) = 0, µ0 = ζ, (1.1)

where ζ is a given initial datum in P(H), i.e. a probability measure on the Borel
σ-algebra B(H) of H, and the solution t 7→ µt a curve in P(H). The divergence
in (1.1) is meant in the sense of distributions, more precisely one uses the duality
between P(H) and a space of test functions on [0,∞)×H which we denote by DT

and which will be specified below. Then one can give (1.1) a rigorous meaning by a
weak formulation. More precisely, we fix an orthonormal basis {en : n ∈ N} of H,
T > 0, and set HT := [0, T ] × H. Then we define DT to be the linear space of all
functions u : HT → R such that there exists N ∈ N such that

u(t, x) = uN(t, 〈e1, x〉, . . . , 〈en, x〉), x ∈ H,

for some uN ∈ C1
b ([0, T ] × RN) such that uN(T ) = 0. Then (1.1) can be rigorously

written as∫ T

0

∫
H

KF u(s, x)µs(dx) ds = −
∫
H

u(0, x) ζ(dx), ∀ u ∈ DT , (1.2)

where for (t, x) ∈ HT , KF is a (degenerate) Kolmogorov operator defined by

KFu(t, x) =
∂

∂t
u(t, x) + 〈F (t, x), Du(t, x)〉 (1.3)

and Du(t, x) ∈ H is defined through

〈Du(t, x), y〉 = u′(t, x)(y), y ∈ H,

where u′(t, x)(·) means first Fréchet derivative of u(t, ·) with respect to x ∈ H. We
note that DT depends on the chosen orthonormal basis. But this is irrelevant because
what is important about the chosen test functions spaces in regard to uniqueness, is
that (1.2) makes sense and that it is as small as possible (to make the uniqueness result
as strong as possible). A minimal requirement is that it should separate the points of
H, which obviously holds for DT defined above by the Hahn–Banach theorem, which
in turn by a monotone class argument implies that DT is dense in every Lp(HT ,ν),
p ∈ [1,∞), for any finite (nonnegative) measure ν in HT .

2



The main aim of this paper is to find conditions on F such that (1.2) has at most
one solution for a given initial condition ζ ∈P(H).

In contrast to the Fokker–Planck equation where KF in (1.2)-(1.3) has a second
order part (in x), and uniqueness is known even for just measurable F (satisfying
some integrability assumption), provided the second order part is non degenerate
(cf. [BDR11] and the preprint [BDRS]), for the continuity equation at least weak
differentiability of F (or being of bounded variation) is required to hope to have
uniqueness of solutions, even in finite dimensions (see [DiLi89], [Am04]). However,
in order to define weak differentiability of a function one needs a reference measure,
and if H = Rn, e.g. the Lebesgue measure is a natural choice. If H is infinite
dimensional, Lebesgue measure does not exist and we have to choose a reference
measure on H. There is really no canonical choice, but a “good” choice is to take
a non degenerate centered Gaussian measure µ on H, because the concept of weak
differentiability (with respect to such a µ) has been extensively developed in the past
in the framework of the Malliavin calculus ([Ma97], [Nu95], [Bo98]). This choice of a
reference measure was proposed in [AF09] and they proved existence and uniqueness
of solutions to (1.2) under certain conditions on the weak derivative and exponential
µ-integrability conditions on its µ-divergence. (see [AF09, Theorem 3.1], see also
[FL10] for improvements of the results on the corresponding transport equation in
[AF09].)

In this paper, also taking a Gaussian measure µ as a reference measure, we prove
uniqueness for (1.2) by a completely different method. On the other hand, our as-
sumption on the weak derivative of F is different and, in fact incompatible with that
in [AF09], since we use H instead of the Cameron–Martin space as tangent space
when defining Sobolev spaces (see Remark 2.5 below). As a consequence, in contrast
to [AF09] we do not need to assume any exponential µ-integrability conditions on the
Gaussian divergence of F . The idea of proof is inspired by the uniqueness proof for
Fokker–Planck equations in Hilbert spaces from [BDR10], [BDR11]. More precisely,
we prove a suitable rank condition for the Kolmogorov operator in (1.3). But to
implement this idea we have to regularize with a much more smoothing Ornstein–
Uhlenbeck semi-group than the one in [AF09],[FL10] (see Section 2 below). Crucial
is again the commutator estimate, which as turns out, can be proved also for this
regularization (see Section 3).

Let us remark that here we use the commutator estimate to prove a range condi-
tion, opposite to the classical works where the commutator estimate is used to prove
renormalization of weak solutions. It is at this point that, in [AF09] and [FL10],
exponential integrability is necessary; for our range condition we do not need it.
Concerning the problem of proving a range condition itself, this is usually done by
means of gradient estimates on solutions, which is a difficult problem; here we have the
gradient estimate for free, see (2.7), because it holds for the Pε-regularized solution.

Choosing a reference measure as in [AF09], [FL10] we also have to restrict to a
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sub-class of solutions µt, t ∈ [0,∞), to (1.2), namely those satisfying

µt(dx)dt = ρ(t, x)µ(dx)dt, (1.4)

for some functions ρ ∈ Lp(HT , dt⊗ µ), p > 1, and prove uniqueness in this class.
It is the subject of our further study to relax this condition (1.4), e.g. by consid-

ering more general reference measures than Gaussian measures. First steps in this
direction have recently be done in [KR12], where the Gaussian measure µ is replaced
by a measure ν which is differentiable in the sense of Fomin (see [Bo98]). In par-
ticular, one can take certain Gibbs measures for ν. However, the techniques in that
paper are entirely different from our approach here.

We end this section recalling some results about the Ornstein–Uhlenbeck semi-
group Pt needed in what follows. First we choose and fix an arbitrary centered, non
degenerate, Gaussian measure µ on H. Let Q be its covariance operator. So, Q is
symmetric, nonnegative definite with kernel = {0} and Tr Q < ∞. We also use the
notation µ = NQ. Then Pt is, for ϕ ∈ Bb(H), defined as

Ptϕ(x) =

∫
H

ϕ(y)NTtx,Qt(dy), x ∈ H, (1.5)

where

Tt := e−
t
2
Q−1

, Qt = QS2
t , St := (1− T 2

t )1/2. (1.6)

NTtx,Qt denotes the Gaussian measure on H with covariance operator Qt and mean
Ttx and Bb(H) is the space of all real and bounded Borel funcions on H. We note for
further use that

T 2
ε + S2

ε = 1. (1.7)

Consequently the matrix on H ×H

R :=

(
Tε Sε
−Sε Tε

)
, (1.8)

is orthogonal, so that R is invariant for the measure µ× µ on H ×H.
Since NTtx,Qt << NQ, we can write

Ptϕ(x) =

∫
H

ϕ(y)ρ(t, x, y)µ(dy), (1.9)

where

ρ(t, x, y)

= K(t) exp{−1
2
〈Q−1

t Ttx, Ttx〉+ 〈Q−1
t Ttx, y〉 − 1

2
(〈Q−1

t Tty, Tty〉},
(1.10)
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where K(t) = [det(1− T 2
t )]−1/2.

We notice, for further use, the following identities.

Dxρ(t, x, y) = Q−1
t Tt(y − Ttx) (1.11)

Dyρ(t, x, y) = Q−1
t Tt(x− Tty) (1.12)

We finally recall the Mehler formula

Ptϕ(x) =

∫
H

ϕ(Ttx+ Sty)µ(dy). (1.13)

2 The main result and scheme of the proof

Definition 2.1. A family (µt)t∈[0,T ] is called a solution of the (heuristic) continuity
equation (1.1) if µt ∈P(H) for every t ∈ [0, T ], t 7→ µt(A) is B(H)-measurable for
all A ∈ B(H), F ∈ L1(HT , µtdt) and (1.2) holds.

As mentioned in the introduction we need a reference measure on H. So let
µ = NQ be the centred, non degenerate, Gaussian measure onH from the Introduction
with covariance operator Q. Let {ek : k ∈ N} be the eigenbasis of Q and λk ∈ (0,∞)
the corresponding eigenvalues (i.e. Qek = λkek, k ∈ N) numbered in decreasing
order. Let the test function space DT be defined as in the introduction with respect
to this orthonormal basis {ek : k ∈ N}.

Define the following subclass MF,ζ,p of solutions to (1.1) for fixed initial condition
ζ ∈ P(H) and fixed p ∈ [1,∞]. MF,ζ,p is defined to be the set of all measures
µ(dt, dx) = µt(dx)dt such that (µt)t∈[0,T ] is a solution to (1.1) in the sense of Definition
2.1 which satisfy

µt(dx)dt = ρ(t, x)µ(dx)dt, for some ρ ∈ Lp(HT , dt⊗ µ). (2.1)

Clearly, MF,ζ,p is a convex set.
The following result is inspired by [BDR10], [BDR11]

Proposition 2.2. Suppose the following rank condition holds:

KF (DT ) is dense in Lp
′
(HT , dt⊗ µ), (R)

where p ∈ [1,∞] and p′ = p
p−1

. Then MF,ζ,p contains at most one element.

Proof. Let µ
(i)
t (dx)dt = ρ(i)(t, x)µ(dx)dt, i = 1, 2 be two elements in MF,ζ,p. Then by

(1.2) ∫ T

0

∫
H

KFu(t, x)(ρ(2)(t, x)− ρ(1)(t, x))µ(dx)dt = 0, ∀ u ∈ DT .

Hence (R) implies ρ(1) = ρ(2).
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Let us briefly recall the notion of (some) Sobolev spaces of functions on H with
respect to µ.

Let FC1
b (“finitely based C1

b functions”) denote the linear space of all functions
ϕ : H → R such that for some N ∈ N

ϕ(x) = ϕN(〈e1, x〉, ...., 〈eN , x〉), x ∈ H,

for some ϕN ∈ C1
b (RN). For p ∈ [1,∞) equip FC1

b with the norm

‖ϕ‖1,p :=

(∫
H

(|Dϕ(x)|p + |ϕ(x)|p)µ(dx)

)1/p

,

where Dϕ(x) is the unique element in H such that

〈Dϕ(x), y〉H = ϕ′(x)(y) =
∂ϕ

∂y
(x), y ∈ H, (2.2)

where ∂ϕ
∂y

means partial derivative in the direction y and ϕ′ denotes the Fréchet

derivative of ϕ. Then it is well-known (see e.g. [DP11]) that ‖ϕ‖1,p is closable over
Lp(H,µ) so that

W 1,p(H,µ) = FC1
b

‖·‖1,p
(= completion of FC1

b with respect to ‖ · ‖1,p)

is a subspace of Lp(H,µ). Likewise as this Sobolev space of functions one defines
Sobolev spaces of vector fields F : H → H and even of time dependent vector fields
F : HT → H as follows: let VFC1

b,T (“finitely based C1
b vector fields”) denote the

linear space of all maps F : HT → H such that for some N ∈ N

F (t, x) =
N∑
i=1

gi(t, x)ei, (t, x) ∈ HT ,

for some gi : HT → R of type

gi(t, x) = gi,N(t, 〈e1, x〉, ...., 〈eN , x〉), x ∈ H,

with gi,N ∈ C1
b,T ([0, T ]× RN). For p ∈ [1,∞) we equip VFC1

b,T with the norm

‖F‖1,p,T :=

(∫ T

0

∫
H

(‖DF (t, x)‖pL2(H,H) + |F (t, x)|pH)µ(dx)dt

)1/p

where L2(H,H) denotes the linear space of all Hilbert–Schmidt operators on H with
corresponding norm ‖ · ‖L2(H,H) and

DF (t, x) :=
N∑
i=1

〈Dgi(t, x), ·〉ei ∈ L2(H,H).
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Again, it is well known that this norm is closable in Lp(HT ;L2(H,H), µ)). Hence we
can define the Sobolev space of time dependent vector fields by

Lp([0, T ];W 1,p(H;H,µ)) = completion of VFC1
b,T with respect to ‖ · ‖1,p,T ,

which by closability is a subspace in Lp(HT ;H,µ).

Now we can formulate our main result.

Theorem 2.3. Let p ∈ (2,∞) and suppose that, for some s > p′ = p
p−1

, we have

F ∈ Ls([0, T ];W 1,s(H;H,µ)) and that, in addition,

F (HT ) ⊂ Q1/2(H), and

∫ T

0

∫
H

|Q−1/2F (t, x)|sµ(dx)dt <∞. (2.3)

Then the rank condition (R) holds, hence by Proposition 2.2 MF,ζ,p contains at most
one element.

The rest of this section is devoted to reduce the proof of (R) and hence of The-
orem 2.3 to Proposition 2.4 below, which is a commutator estimate for a suitable
regularization through the Mehler type semigroup Pt, t ≥ 0, of integral operators on
Bb(H) defined in (1.5) (see also (1.13)) Let us define the commutator for u ∈ DT ,
F ∈ V FC1

b,T , (t, x) ∈ HT

Bε(u, F )(t, x) := 〈F (t, x), DPε(u(t, ·))(x)〉 − Pε(〈F (t, ·), Du(t, ·)〉)(x). (2.4)

Proposition 2.4. Let p ∈ (2,∞) and r ∈ [1,∞), s ∈ (1, 2] such that 1
p′

= 1
r

+ 1
s
.

Then:

(i) There exists C ∈ (0,∞) such that(∫ T

0

∫
H

|Bε(u, F )|p′dµ dt
)1/p′

≤ C‖u‖Lr(HT ,dt⊗µ)

(
‖F‖1,s,T + ‖Q−1/2F‖Ls(HT ,dt⊗µ)

)
,

for all u ∈ DT , F ∈ V FC1
b,T . In particular, Bε extends to a continuous bilinear

map (denoted by the same symbol)

Bε : Lr(HT , dt⊗ µ)× Ls([0, T ];W 1,s(H;H,µ) ∩ Ls(H;Q1/2H;µ))

→ Lp
′
(HT , dt⊗ µ).
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(ii) Bε(u, F )→ 0 in Lp
′
(HT , dt⊗ µ) as ε→ 0, for all

(u, F ) ∈ Lr(HT , dt⊗ µ)× Ls([0, T ];W 1,s(H;H,µ) ∩ Ls(H;Q1/2H,µ)).

The proof of Proposition 2.4-(i) is carried out in Section 3 below. Assertion
(ii) obviously holds for all u ∈ DT , F ∈ V FC1

b,T . But by (i), Bε, ε ∈ [0, 1], are
equicontinuous on

Lr(HT , dt⊗ µ)× Ls([0, T ];W 1,s(H;H,µ) ∩ Ls(H;Q1/2H,µ)),

which contains DT × V FC1
b,T as a dense set. Hence (ii) follows.

Let us now show that Proposition 2.4 implies Theorem 2.3.

Claim. Proposition 2.4 implies (R).

Proof. Let f ∈ DT and r, s ∈ [1,∞) be as in Proposition 2.4 such that s ∈ (p′, 2). By
definition of Ls([0, T ];W 1,s(H;H,µ)) there exists Fn ∈ VFC1

b,T , n ∈ N, converging
to to F w.r.t. ‖ · ‖1,s,T and in the sense of Lemma 4.1 of Appendix A. Since Fn is
smooth and finitely based, there exists a solution un ∈ DT of

∂un
∂t

+ 〈Fn, Dun〉 = f,

un(T, ·) = 0

(2.5)

We namely set

un(t, x) =

∫ T

t

f(s− t, ξn(s, t, x))ds

where the characteristics ξn(s, t, x) are, as well known, the solution to

∂

∂s
ξn(s, t, x) = Fn(s, ξn(s, t, x)), ξn(t, t, x) = x.

Applying Pε for ε > 0 to (2.5) we obtain

∂Pεun
∂t

+ 〈F,DPεun〉 = Pεf + 〈F − Fn, DPεun〉+Bε(Fn, un), (2.6)

note that Pεun ∈ DT .
By the maximum principle we have

‖un‖∞ ≤ ‖f‖∞, ∀ n ∈ N,

and by well known smoothing properties of Pε (see e. g. [DP04]) we know that for
some C ∈ (0,∞)

‖DPεun‖∞ ≤ Cε−1/2‖un‖∞ ≤ Cε−1/2‖f‖∞, ∀ n ∈ N. (2.7)
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Hence, passing to a subsequence if necessay, we may assume that un → u in Lr(HT , dt⊗
µ) weakly. But for every v ∈ Lp(HT , dt⊗ µ) by Proposition 2.4∣∣∣∣∫ T

0

∫
H

v(Bε(un, Fn)−Bε(u, F ))dµ dt

∣∣∣∣
=

∣∣∣∣∫ T

0

∫
H

vBε(un, Fn − F )dµ dt+

∫ T

0

∫
H

vBε(un − u, F )dµ dt

∣∣∣∣
≤ C‖v‖Lp(HT ,dt⊗µ) ‖u‖Lr(HT ,dt⊗µ)

×
[
‖Fn − F‖1,s,T + ‖Q−1/2(Fn − F )‖Ls(HT ,dt⊗µ)

]
+

∫ T

0

∫
H

Bε(·, F )∗v (un − u) dµ dt

→ 0 as n→∞,

where Bε(·, F )∗ ∈ L(Lp(HT , dt ⊗ µ), Lr
′
(HT , dt ⊗ µ)), r′ = r

r−1
, is the adjoint of the

linear bounded operator in L(Lr(HT , dt⊗ µ), Lp
′
(HT , dt⊗ µ)) given by

u 7→ Bε(u, F ).

Here we have used Lemma 4.1. Hence

Bε(un, Fn)→ Bε(u, F ) weakly in Lp
′
(HT , dt⊗ µ)

By Proposition 2.4(ii), Bε(u, F ) → 0 in Lp
′
(HT , dt ⊗ µ) as ε → 0, hence also with

respect to the weak topology on Lp
′
(HT , dt ⊗ µ). Since the latter is metrizable on

norm balls in Lp
′
(HT , dt⊗µ) and since s ≥ p′, we see that the right hand side of (2.6),

weakly converges to f in Lp
′
(HT , dt ⊗ µ) when we let first n → ∞ and then ε → 0.

But obviously the left hand side of (2.6) is in KF (DT ). Therefore, we obtain that
KF (DT ) is weakly dense in Lp

′
(HT , dt ⊗ µ), since it cointains DT as a dense subset.

Hence (R) follows, since KF (DT ) is convex (even linear).

Remark 2.5. Let us compare our main result Theorem 2.3 with the corresponding
result about uniqueness in [AF09] (i.e. the uniqueness part of [AF09, Theorem 3.1].)

We shall in fact see that they are incompatible. First of all, since we work on a
separable Hilbert space H and the authors of the above paper work on a separable
Banach space E, to compare we have to assume that E is a separable Hilbert space.
They consider also another Hilbert space which is contained in E = H and which can
easily be seen to be identical to Q1/2H =: H with norm | · |H = |Q−1/2 · |H . H is
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considered in [AF09] as a tangent space at every point in H, while in our framework
the tangent space to H is H itself.

While condition (2.3) is also assumed in [AF09], instead of our condition

F ∈ Ls([0, T ];W 1,s(H;H,µ)), (2.8)

the authors assume that

F ∈ Ls([0, T ];W 1,s(H; H , µ)), (2.9)

which in turn is defined to be the completion of V FC1
b,T with respect to the norm(∫ T

0

∫
H

(
‖DH F (t, x)‖sL2(H ,H ) + |F (t, x)|sH

)
µ(dx) dt

)1/s

,

where L2(H ,H ) is the space of Hilbert–Schmidt operators from H to H and
analogously to (2.2) for ϕ ∈ FC1

b , x ∈ H, DH ϕ(x) is the unique element in H such
that

〈DH ϕ(x), y〉H = ϕ′(x)(y) =
∂ϕ

∂y
(x), y ∈H . (2.10)

Correspondingly, for F =
∑N

i=1 gi ei ∈ V FC1
b,T , (t, x) ∈ HT

DH F (t, x) :=
N∑
i=1

〈DH gi(t, x), ·〉H ei (∈ L2(H ,H )).

Note that clearly ẽj := λ
1/2
j ej, j ∈ N, is an orthonormal basis in H , hence

‖DH F (t, x)‖2L2(H ,H ) =
∞∑
j=1

|DH F (t, x)(ẽj)|2H

=
∞∑
j=1

N∑
i=1

λj〈DH gi(t, x), ej〉2H 〈ei, ei〉H
(2.10)
=

N∑
i,j=1

λj
λi

(
∂gi
∂ej

(t, x)

)2

,

whereas similarly

‖DF (t, x)‖2L2(H,H) =
N∑

i,j=1

(
∂gi
∂ej

(t, x)

)2

.

Therefore, the spaces in conditions (2.8), (2.9) are incompatible and hence so are
(2.8)and (2.9). A further difference to [AF09] is that unlike in (the uniqueness part
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of) [AF09, Theorem 3.1] we do not have to assume any exponential µ⊗dt-integrability
of the Gaussian divergence of F , i.e. of the negative part of (−D∗H F ) where D∗ is
the adjoint of

D : W 1,2
H (H,µ) ⊂ L2(H,µ)→ L2(H; H , µ).

It is easy to construct examples where this exponential integrability does not hold for
F , while F satisfies all other assumptions in Theorm 2.3.

3 Proof of Proposition 2.4(i)

3.1 A representation formula for the commutator

We shall use the notation

divQF (t, x) := Tr [DF (t, x)]− 〈Q−1x, F (t, x)〉. (3.1)

Proposition 3.1. We have

Bε(u, F )(t, x) =

∫
H

divQF (t, Tεx+ Sεy)u(t, Tεx+ Sεy)µ(dy)

−
∫
H

[gε(t, Tεx+ Sεy,−Sεx+ Tεy)− gε(t, x, y)]u(Tεx+ Sεy)µ(dy)

=: B1
ε (u, F )(t, x) +B2

ε (u, F )(t, x),

(3.2)

where

gε(t, x, y) := 〈Q−1Tε
Sε

F (t, x), y〉. (3.3)

Proof. Concerning the second addendum of the commutator (2.4), we have by (1.9),
using a well known integration by parts formula for Gaussian measures,

(Pε(〈F (t, ·), Dxu(t, ·)〉)(x) =

∫
H

〈F (t, y), Dyu(t, y)〉 ρ(ε, x, y)µ(dy)

= −
∫
H

div F (t, y)u(t, y) ρ(ε, x, y)µ(dy)

−
∫
H

〈F (t, y), Dyρ(ε, x, y)〉u(t, y)µ(dy)

+

∫
H

〈Q−1y, F (t, y)〉u(t, y) ρ(ε, x, y)µ(dy).
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Taking into account (1.12), yields

(Pε(〈F (t, ·), Dxu(t, ·)〉)(x) = −
∫
H

divQF (t, y)u(t, y) ρ(ε, x, y)µ(dy)

−
∫
H

〈F (t, y), Q−1
ε Tε(x− Tεy)〉u(t, y) ρ(ε, x, y)µ(dy).

(3.4)

Concerning the first addendum of the commutator, we have, taking into account
(1.11),

〈F (t, x), DxPεu(t, x)〉 =

∫
H

〈F (t, x), Dxρ(ε, x, y)〉u(t, y)µ(dy)

=

∫
H

〈F (t, x), Q−1
ε Tε(y − Tεx)〉u(t, y) ρ(ε, x, y)µ(dy).

So, we obtain

Bε(u, F )(t, x) =

∫
H

divQF (t, y)u(t, y) ρ(ε, x, y)µ(dy)

+

∫
H

〈F (t, x), Q−1
ε Tε(y − Tεx)〉u(t, y) ρ(ε, x, y)µ(dy)

+

∫
H

〈F (t, y), Q−1
ε Tε(x− Tεy)〉u(t, y) ρ(ε, x, y)µ(dy).

(3.5)

Since ρ(ε, x, y)µ(dy) = NTεx,Qε(dy) we can write (3.5) as

Bε(u, F )(t, x) =

∫
H

divQF (t, Tεx+ y)u(t, Tεx+ y)NQε(dy)

+

∫
H

〈F (t, x), Q−1
ε Tεy〉u(t, Tεx+ y)NQε(dy)

+

∫
H

〈F (t, Tεx+ y), Q−1
ε Tε(x− Tε(y + Tεx))〉u(t, Tεx+ y)NQε(dy).

Since x− Tε(y + Tεx) = x− T 2
ε x− Tεy = S2

ε x− Tεy, using the Mehler formula (1.13)
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we have

Bε(u, F )(t, x) =

∫
H

divQF (t, Tεx+ Sεy)u(t, Tεx+ Sεy)NQ(dy)

+

∫
H

〈F (t, x), Q−1
ε TεSεy〉u(t, Tεx+ Sεy)NQ(dy)

+

∫
H

〈F (t, Tεx+ Sεy), Q−1
ε TεSε(Sεx− Tεy)〉u(t, Tεx+ Sεy)NQ(dy),

which coincides with (3.2).

We write now B2
ε (u, F )(t, x) in a more suitable form.

Proposition 3.2. We have

B2
ε (u, F )(t, x)

=
ε

2

∫
H

∫ 1

0

[〈Q−1Tε
Sε

DF (t, xξ)(Q
−1 Tεξ

Sεξ
yξ), yξ〉+ div G(t, xε)]u(t, x1) dξ µ(dy)

+
ε

2

∫
H

∫ 1

0

divQ G(t, xξ)u(t, x1) dξ µ(dy) := B2,1
ε (u, F )(t, x) +B2,2

ε (u, F )(t, x),

(3.6)

where

G(t, x) = Q−1 Tε
Sε

Tεξ
Sεξ
F (t, x), (3.7)

Proof. We start from the expression of B2
ε (u, F )(t, x) given by (3.2) and for any

ξ ∈ [0, 1] we set

xξ = Tεξx+ Sεξy, yξ = −Sεξx+ Tεξy, (3.8)

which implies
x = Tεξxξ − Sεξyξ, y = Sεξxξ + Tεξyξ.

Notice that

Tεξx−
T 2
εξ

Sεξ
y = −Tεξ

Sεξ
yξ, Tεξy −

T 2
εξ

Sεξ
x = −Tεξ

Sεξ
xξ.

Therefore we can write

B2
ε (u, F )(t, x) =

∫
H

[gε(x1, y1)− gε(t, x, y)]u(t, x1)µ(dy) (3.9)

13



and, taking into account that

Dξxξ = −1
2
Q−1ε(Tεξx−

T 2
εξ

Sεξ
y), Dξyξ = 1

2
Q−1ε(

T 2
εξ

Sεξ
x− Tεξy), (3.10)

we have

gε(t, x1, y1)− gε(t, x, y) =

∫ 1

0

Dξgε(t, xξ, yξ)dξ

=

∫ 1

0

[Dxgε(t, xξ, yξ)Dξxξ +Dygε(t, xξ, yξ)Dξyξ] dξ

=

∫ 1

0

Dxgε(t, xξ, yξ)
(
−1

2
Q−1ε(Tεξx−

T 2
εξ

Sεξ
y)
)
dξ

+

∫ 1

0

Dygε(t, xξ, yξ)
(

1
2
Q−1ε(

T 2
εξ

Sεξ
x− Tεξy)

)
dξ

(3.11)

Therefore

B2
ε (u, F )(t, x)

=

∫
H

∫ 1

0

Dxgε(t, xξ, yξ)
(
−1

2
Q−1ε(Tεξx−

T 2
εξ

Sεξ
y)
)
u(t, x1) dξ µ(dy)

+

∫
H

∫ 1

0

Dygε(t, xξ, yξ)
(

1
2
Q−1ε(

T 2
εξ

Sεξ
x− Tεξy)

)
dξ µ(dy)

(3.12)

But
Dxgε(t, xξ, yξ)z = 〈Q−1Tε

Sε
DF (t, xξ)z, yξ〉,

Dygε(t, xξ, yξ)z = 〈Q−1Tε
Sε

F (t, xξ), z〉.

Therefore from (3.12) we get

B2
ε (F, u)(t, x)

= ε
2

∫
H

∫ 1

0

〈
Q−1Tε
Sε

DF (t, xξ)(−Q−1(Tεξx−
T 2
εξ

Sεξ
y)), yξ

〉
u(t, x1) dξ µ(dy)

+ ε
2

∫
H

∫ 1

0

〈
Q−1Tε
Sε

F (t, xξ), Q
−1(

T 2
εξ

Sεξ
x− Tεξy)

〉
u(t, x1) dξ µ(dy).

(3.13)
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Equivalently

B2
ε (u, F )(t, x)

=
ε

2

∫
H

∫ 1

0

〈
Q−1Tε
Sε

DF (t, xξ)(Q
−1 Tεξ

Sεξ
yε), yξ

〉
u(t, x1) dξ µ(dy)

+
ε

2

∫
H

∫ 1

0

〈
Q−1Tε
Sε

F (t, xξ), Q
−1 Tεξ

Sεξ
xξ

〉
u(t, x1) dξ µ(dy),

(3.14)

Now the conclusion follows by completing the Q-divergence introducing G(t, x) de-
fined by (3.7), and writing〈

Q−1Tε
Sε

F (t, xξ), Q
−1 Tεξ

Sεξ
xξ)
〉

= divQ G(t, xε) + div G(t, xε).

3.2 Bound of the commutator

It is enough to bound B2
ε (u, F ) because the estimate of B1

ε (u, F ) is analogous to that
of B2,2

ε (u, F ). Let us first estimate ‖|B2,1
ε (u, F )‖Lp′ (HT ,dt⊗µ).

Proposition 3.3. Let p > 2, p′ = p
p−1

, s > p′, 1
p′

= 1
r

+ 1
s
. Then we have

‖B2,1
ε (u, F )‖Lp′ (HT ,dt⊗µ)

≤ C ′‖u‖Lr(HT ,dt⊗µ)

(∫ T

0

∫
H

Tr [(DF (x))s] dt µ(dx)

) 1
s

.

(3.15)

Proof. We recall that

B2,1
ε (u, F )(t, x)

=
ε

2

∫
H

∫ 1

0

[〈
Q−1Tε
Sε

DF (t, xξ)(Q
−1 Tεξ

Sεξ
yξ), yξ

〉
+ div G(t, xε)

]
u(t, x1) dξ µ(dy)

=:

∫
H

∫ 1

0

H(t, xξ, yξ)u(t, x1) dξ µ(dy).

Then ∫ T

0

∫
H

|B2,1
ε (u, F )(t, x)|p′dt µ(dx)

=

∫ T

0

∫
H

[∫
H

∫ 1

0

H(t, xξ, yξ)u(t, x1) dξ µ(dy

]p′
dt µ(dx).
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Let now v ∈ Lp(HT , dt⊗ µ). Then∣∣∣∣∫ T

0

∫
H

B2,1
ε (u, F )(t, x) v(t, x)dt µ(dx)

∣∣∣∣
≤
∫ T

0

∫ 1

0

∫
H

∫
H

|H(t, xξ, yξ)u(t, x1)v(t, x)|dξ µ(dx) dt µ(dy)

≤
∫ 1

0

dξ

(∫ T

0

∫
H

∫
H

|H(t, xξ, yξ)u(t, x1)|p
′
dt µ(dx)µ(dy)

)1/p′

‖v‖Lp(HT ,dt⊗µ).

By the arbitrariness of v it follows that

‖B2,1
ε (u, F )‖Lp′ (HT ,dt⊗µ) ≤

∫ 1

0

dξ

(∫ T

0

∫
H

∫
H

|H(t, xξ, yξ)u(x1)|p
′
dt µ(dx)µ(dy)

)1/p′

.

Making the change of variables (3.8) and recalling that it is invariant for µ × µ so
that µ(dx)µ(dy) = µ(dxξ)µ(dyξ), we get

‖B2,1
ε (u, F )‖Lp′ (HT ,dt⊗µ)

≤
∫ 1

0

dξ

(∫
H

∫
H

|H(t, x, y)|s µ(dx)µ(dy)

) 1
s

‖u‖Lr(HT ,dt⊗µ),

(3.16)

equivalently

‖B2,1
ε (u, F )‖Lp′ (HT ,dt⊗µ) ≤ ε

2
‖u‖Lr(HT ,dt⊗µ)

×
∫ 1

0

dξ

(∫ T

0

∫
H

∫
H

|〈DG(t, x)(Q−1 Tεξ
Sεξ
y),

Sεξ
Tεξ
y〉 − div G(t, x)||s dt µ(dx)µ(dy)

) 1
s

.

(3.17)

Now we can compute explicitly the integral

J1(t, x) :=

∫
H

|〈DG(t, x)(Q−1 Tεξ
Sεξ
y),

Sεξ
Tεξ
y〉 − div G(t, x)|sµ(dy), (3.18)

applying Proposition 5.3 from Appendix B. Setting

L =
Sεξ
Tεξ
DG(t, x)Q−1 Tεξ

Sεξ
, M = Q1/2LQ1/2,

we have Tr M = div G(t, x), so that

J1(t, x) =

∫
H

|〈Ly, y〉 − Tr M |sµ(dy)
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Then, taking into account (5.5), we obtain

J1(t, x) = Cs Tr [(DG(t, x))s] = CsTr [(Q−1 Tε
Sε

Tεξ
Sεξ
DF (t, x))s]. (3.19)

Now we estimate ‖Q−1 Tε
Sε

Tεξ
Sεξ
‖. Since

Q−1 Tε
Sε

Tεξ
Sεξ
ek = 2

(
√
αk

e−αkε√
1− e−2αkε

)(
√
αk

e−αkε√
1− e−2αkε

)
ek.

So

‖Q−1 Tε
Sε

Tεξ
Sεξ
‖ ≤ C

ε ξ1/2
(3.20)

and

J1(t, x) ≤ C ′s
C

ε ξ1/2
Tr [(DF (x))s]

Now by (3.17) we obtain

‖B2,1
ε (u, F )‖Lp′ (HT ,dt⊗µ)

≤ C ′ 1
2
‖u‖Lr(HT ,dt⊗µ)

∫ 1

0

ξ1/2dξ

(∫ T

0

∫
H

Tr [(DF (x))s] dt µ(dx)

) 1
s

= C ′‖u‖Lr(HT ,dt⊗µ)

(∫ T

0

∫
H

Tr [(DF (x))s] dt µ(dx)

) 1
s

.

(3.21)

Proposition 3.4. We have

‖B2,2
ε (u, F )‖Lp′ (HT ,dt⊗µ)

≤ C

(∫ T

0

∫
H

(|Q−1/2F (t, x)|s + Tr [(DF (t, x))s]) dt µ(dx)

)1/s

‖u‖Lr(HT ,dt⊗µ).

Proof. Recall that

B2,2
ε (u, F )(t, x) =

ε

2

∫
H

∫ 1

0

divQ [Q−1 Tε
Sε

Tεξ
Sεξ
F (t, xξ)]u(t, x1) dξµ(dy).
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Proceeding as in the proof of (3.17) and using again the change of variables (3.8), we
find

‖B2,2
ε (u, F )‖Lp′ (HT ,dt⊗µ) ≤ ε

2
‖u‖Lr(HT ,dt⊗µ)

×
∫ 1

0

dξ

(∫ T

0

∫
H

∫
H

|divQ [Q−1 Tε
Sε

Tεξ
Sεξ
F (t, x)]|s dt µ(dx)µ(dy)

) 1
s

.

(3.22)

By (3.20) we obtain

‖B2,2
ε (u, F )‖Lp′ (HT ,dt⊗µ)

≤ C‖u‖Lr(HT ,dt⊗µ)

(∫ T

0

∫
H

∫
H

(divQ [F (t, x)])s dt µ(dx)

) 1
s

.

(3.23)

Now the conclusion follows from Lemma 5.4 of Appendix B.

4 Appendix A

Let p > 1 be given. Denote by W 1,p
Q the space of (µ-equivalence classes of) vector

fields G : H → D
(
Q−1/2

)
, having Fréchet differential DG (x) ∈ L2 (H,H) for µ-a.e.

x ∈ H, such that

‖G‖p
W 1,p
Q

:=

∫
H

(∣∣Q−1/2G (x)
∣∣p + ‖DG (x)‖pL2(H,H)

)
µ (dx) <∞.

The space W 1,p
Q is a separable Banach space with the norm ‖G‖W 1,p

Q
. Consider the

space Lp
(
0, T ;W 1,p

Q

)
with the norm ‖F‖Lp(W 1,p

Q ) defined as

‖F‖p
Lp(W 1,p

Q )
=

∫ T

0

‖F (t, ·)‖p
W 1,p
Q

dt

=

∫ T

0

∫
H

(∣∣Q−1/2F (t, x)
∣∣p + ‖DF (t, x)‖pL2(H,H)

)
µ (dx) dt.

Lemma 4.1. Denote by Vp the family of all functions Fn ∈ Lp
(
0, T ;W 1,p

Q

)
of the

form

Fn (t, x) =
n∑
i=1

ϕni (t, 〈x, e1〉 , ..., 〈x, en〉) ei

with ϕni ∈ C1
0 ([0, T ]× Rn,R). Then Vp is dense in Lp

(
0, T ;W 1,p

Q

)
.
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Proof. We proceed by a sequence of reductions of the problem: from general elements
F of Lp

(
0, T ;W 1,p

Q

)
to piece-wise constant (in time) functions; then finitely based;

then also with values in finite dimensional spaces; and finally smooth.
Step 1. Let V 1

p be the family of all piece-wise constant functions F : [0, T ] →
W 1,p
Q , namely of the form

F (t, ·) =
k−1∑
i=1

Fi1[ti,ti+1] (t)

where 0 ≤ t1 ≤ ... ≤ tk ≤ T , and Fi ∈ W 1,p
Q . It is a known fact that V 1

p is

dense in Lp
(
0, T ;W 1,p

Q

)
. Thus, to prove the lemma, it is sufficient to prove that any

element F ∈ V 1
p can be approximated by a sequence {Fn} ⊂ Vp, in the sense of

limn→∞ ‖Fn − F‖pLp(W 1,p
Q )

= 0.

Step 2. Any G ∈ W 1,p
Q is the limit in ‖·‖W 1,p

Q
of a sequence {Gn} ⊂ W 1,p

Q having

the following property: Gn (x) = Gn (πnx) (namely they are finitely based), where
πnx =

∑n
i=1 〈x, ei〉 ei. Indeed, define

Gn (x) :=

∫
H

G (πnx+ (1− πn) y)µ (dy)

Hn (x) := Q−1/2Gn (x) =

∫
H

Q−1/2G (πnx+ (1− πn) y)µ (dy)

In [Bo98, Corollary 3.5.2] it is proved that Hn → Q−1/2G in L2 (H,µ), which is the
first part of the property ‖Gn −G‖W 1,p

Q
→ 0. The second one is proved in [Bo98,

Proposition 5.4.5].
Step 3. Any G ∈ W 1,p

Q is the limit in ‖·‖W 1,p
Q

of a sequence {Gn} ⊂ W 1,p
Q having

the following property: Gn (x) = πnGn (πnx) (namely they are finitely based and have
values in a finite dimensional space). The proof (using Step 2) is elementary.

From these facts it follows that any element F ∈ V 1
p , F (t, ·) =

∑k−1
i=1 Fi1[ti,ti+1] (t),

can be approximated in Lp
(
W 1,p
Q

)
-norm by Fn ∈ V 1

p of the form

Fn (t, ·) =
k−1∑
i=1

F n
i 1[ti,ti+1] (t)

where each F n
i has the property F n

i (x) = πnF
n
i (πnx) and F n

i converges to Fi in W 1,p
Q .

In other words, we have proved that any F ∈ V 1
p is the limit in Lp

(
W 1,p
Q

)
-norm

of a sequence Fn of the form

Fn (t, x) =
n∑
i=1

ϕni (t, 〈x, e1〉 , ..., 〈x, en〉) ei
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where ϕni are piece-wise constant in t and of class W 1,p (Rn, γn) in space, where γn
is the centered symmetric Gaussian measure on Rn (γn is equivalent to the Gaus-
sian measure on Rn corrsponding to the projection of µ by πn, and the spaces W 1,p

coincide).
Step 4. Any element ϕni of class L2 (0, T ;W 1,p (Rn, γn)) is limit, in such topology,

of C1
0 ([0, T ]× Rn,R)-functions. The proof is complete.

5 Appendix B

5.1 Computation of some integrals

Let µ = NQ and assume that the sequence (λk) of eigenvalues of Q be nondecreasing.

Lemma 5.1. Assume that L ∈ L(H) is symmetric and compact. Then there is ε0 > 0
such that∫

H

e−ε〈Lx,x〉NQ(dx) = [det(1 + 2εQ1/2LQ1/2)]−1/2, if ε < ε0. (5.1)

(ε0 is determined by the condition 1+2ε0µ > 0 where µ are eigenvalues of Q1/2LQ1/2))

Proof. Set M = Q1/2LQ1/2, M is obviously compact. Let (fk) be an orthonormal
basis of eigenvectors of M and (βk) the corresponding sequence of eigenvalues. Then
we have

〈Lx, x〉 = 〈MQ−1/2x,Q−1/2x〉 =
n∑
k=1

βk|〈Q−1/2x, fk〉|2, (5.2)

so that ∫
H

e−ε〈Lx,x〉NQ(dx) =

∫
H

e−ε
P∞
k=1 βk|〈Q−1/2x,fk〉|2NQ(dx)

Since (fk) is an orthogonal system, the sequence of real random variables x →
〈Q−1/2x, fk〉, k ∈ N (whose law is N1) are independent. Consequently∫

H

e−ε〈Lx,x〉NQ(dx) =
n∏
k=1

∫
H

e−εβk|〈Q
−1/2x,fk〉|2NQ(dx)

=
n∏
k=1

(1 + 2εβk)
−1/2 = [det(1 + 2εQ1/2LQ1/2]−1/2

,

as claimed.
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Remark 5.2. If L is compact but not symmetric we have∫
H

e−ε〈Lx,x〉NQ(dx) = [det(1 + 2εQ1/2LsQ
1/2)]−1/2, if ε < ε0,

where

Ls =
1

2
(L+ L∗)

and L∗ is the adjoint of L.

Set now

S(ε) =

∫
H

e−ε(〈Lx,x〉−Tr [Q1/2LQ1/2]NQ(dx)

= [det(1 + 2εQ1/2LQ1/2]−1/2eεTr [Q1/2LQ1/2].

(5.3)

Notice that S(0) = 1. Then for any m ∈ N we have∫
H

(〈Lx, x〉 − Tr [Q1/2LQ1/2])mNQ(dx) = (−1)mS(m)(0). (5.4)

Proposition 5.3. For any m ∈ N there is Cm > 0 such that.∫
H

(〈Lx, x〉 − Tr [Q1/2LQ1/2])mNQ(dx) = CmTr [(Q1/2LQ1/2)m]). (5.5)

Proof. Setting M = Q1/2LQ1/2 we have

S ′(ε) = Tr [M −M(1 + 2εM)−1]S(ε)

= 2εTr [M2(1 + 2εM)−1]S(ε).
(5.6)

In particular, S ′(0) = 0.
Now set

F (ε) = log S(ε).

Then
F ′(ε) = 2εTr [M2(1 + 2εM)−1]

and
F (n)(ε) = (−1)n+12n−1(n− 1)! Tr [Mn(1 + 2εM)−n], n ≥ 2.

Therefore

F ′(0) = 0, F (n)(0) = (−1)n+12n−1(n− 1)! Tr [Mn] =: kn Tr [Mn], n ≥ 2.

Now S(ε) = eF (ε) and it is easy to see by recurrence that there is Cn > 0 such that

S(n)(0) ≤ CnTr [Mn].

The conclusion follows.

21



5.2 An estimate for Gaussian divergences

In the next lemma, G is a vector field of the form

G (x) =
n∑
i=1

ϕi (〈x, e1〉 , ..., 〈x, en〉) ei

with ϕi ∈ C1
0 (Rn,R), where {ei} is a c.o.s. of H of eigenvectors of Q. For them we

may define divQG (y) = Tr (DG (y))− 〈y,Q−1G (y)〉.
Lemma 5.4. For every p > 1 there is a constant Cp > 0 such that∫

H

|divQG (y)|p µ (dy) ≤ Cp

∫
H

(
‖DG (y)‖2L2(H,H) +

∣∣Q−1/2G (y)
∣∣p)µ (dy)

for every vector field G as above.

Proof. The following result is classical in Malliavin calculus (see for instance [Bo98,
Proposition 5.8.8]): for every p > 1 there is a constant Cp > 0 such that for every
n ∈ N, if γn denotes the symmetric centered Gaussian measure in Rn, then∫

Rn
|Tr (DF (x̃))− 〈x̃, F (x̃)〉|p γn (dx̃)

≤ Cp

∫
Rn

(
‖DF (x̃)‖2L2(Rn,Rn) + |F (x̃)|pRn

)
γn (dx̃)

for all smooth compact support vector fields F : Rn → Rn.
Set Hn = πn (H), πnx =

∑n
i=1 〈x, ei〉 ei and let J : Hn → Rn be the natural

isomorphism. The operators Q, Q1/2, Q−1/2 work as operators Hn, hence they define
corresponding operators Qn, Q

1/2
n , Q

−1/2
n in Rn.

Given G as above, consider the vector field F : Rn → Rn defined as

F (x̃) := Q−1/2
n JG

(
J−1Q1/2

n x̃
)
.

With little abuse of notations, it is simply the map F (x) := Q−1/2G
(
Q1/2x

)
. We

have

DF (x̃) = J (DG)
(
J−1Q1/2

n x̃
)

Tr (DF (x̃))− 〈x̃, F (x̃)〉 = Tr
(
J (DG)

(
J−1Q1/2

n x̃
))
−
〈
x̃, Q−1/2

n JG
(
J−1Q1/2

n x̃
)〉

= divQG (y) |
y=J−1Q

1/2
n ex

hence we have∫
Rn

∣∣∣divQG (y) |
y=J−1Q

1/2
n ex
∣∣∣p γn (dx̃)

≤ Cp

∫
Rn

(∥∥J (DG)
(
J−1Q1/2

n x̃
)∥∥2

L2(Rn,Rn)
+
∣∣Q−1/2

n JG
(
J−1Q1/2

n x̃
)∣∣p

Rn

)
γn (dx̃) .
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If we denote by µn the image measure, on Hn, of γn under the transformation x̃ 7→
y = J−1Q

1/2
n x̃, we have proved∫

H

|divQG (y) ||p µn (dy) ≤ Cp

∫
H

(
‖J (DG) (y)‖2L2(Rn,Rn) +

∣∣Q−1/2
n JG (y)

∣∣p
Rn

)
µn (dy) .

It is now easy to realize that this is the claim of the lemma, taking into account the
special form of G. The proof is complete.
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[KR12] A. Kolesnikov, M. Röckner On continuity equations in infinite dimensions
with non-Gaussian reference masure, Prepint 2013.

[Ma97] P. Malliavin, Stochastic analysis, Springer-Verlag, 1997.

[Nu95] D. Nualart, The Malliavin Calculus and Related Topics, Springer-Verlag, 1995

24


