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Abstract. In this paper we develop a new technique to prove ex-
istence of solutions of Fokker-Planck equations on Hilbert spaces for
Kolmogorov operators with non trace-class second order coefficients or
equivalently with an associated stochastic partial differential equation
(SPDE) with non trace-class noise. Applications include stochastic 2D
and 3D–Navier–Stokes equations with non trace-class additive noise.

1 Introduction

Our aim is to solve the infinite dimensional Fokker-Planck Equation

L∗µ = 0, µ|t=0 = µ0 (FPE)

in a space of measure valued solutions of the form µtdt where µt are
probability measures on H. The problem has been studied intensively
in recent years (see e.g, [4], [5], [6], [8], [20] and the references therein).
Concerning existence there are two different approaches to infinite di-
mensional Fokker-Planck equations depending on whether the second
order coefficient of the corresponding Kolmogorov operator L (see be-
low) is of trace class or not. The first case is studied in detail in [8]
(including also the case of continuity equations whose second order co-
efficient is identically zero) and the approach is based on the method
of Lyapunov functions. This method, however, so far could not be im-
plemented when the second order coefficient is not of trace class. This
case has been studied in [5] and [20], using an approximation technique,
based on solving the stochastic differential equations associated to the
approximating Kolmogorov operator Ln. Then suitable accumulation
points are proved to be solutions of the limiting given Fokker-Planck
equation. The results in [5] and [20] are, however, very limited in ap-
plications, e.g. essentially only Fokker-Planck equations associated to
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stochastic reaction–diffusion and Burgers equations with non trace class
noise (including white noise) or combinations of such are covered.

In this paper we develop a new general approach for this “non-trace
class case” which applies to a much wide class of examples, including
in particular, the Fokker-Planck equation of the stochastic 2D and 3D
Navier–Stokes equations with non-trace class noise (se Section 5.2 be-
low). For the sake of simplicity we restrict ourselves to the case where
the second coefficient of L is constant. In the language of stochastic
equations we restrict ourselves to additive noise.

The Kolmogorov operator L in equation (FPE) above is defined as

(Lu) (x, t) :=
∂u

∂t
(x, t) +

∞∑
i=1

ai
(
∂2xiu

)
(x, t) +

∞∑
i=1

bi (x, t) (∂xiu) (x, t)

on all functions u : H × [0, T ] → R which are smooth and finite di-
mensional (also called cylindrical). Here H is a separable Hilbert space
(norm ‖.‖H , inner product 〈., .〉H), (en) is a c.o.s. in H, Hn is the span
of e1, ..., en, πn the corresponding finite dimensional projection, and the
attribute “finite dimensional” to u means that u (t, x) = u(πnx, t) for all
x, for some n ∈ N and un : Rn × [0, T ] → R. Here and below we shall
always identify Hn with Rn fixing (en).

The ideas of the present work are general, in particular the approach
by an auxiliary Fokker-Planck Equation on product space. We develop
them under quite general assumptions which include basic cases like
stochastic semilinear parabolic equations with linear growth (but see
also Remark 14) and, mainly, stochastic 2D and 3D Navier-Stokes equa-
tions. A direct solution of the Fokker–Planck equation corresponding
to these equations when the noise has the covariance of the class con-
sidered here (not trace class or as general as possible) is new; for other
approaches to the existence of solutions for the stochastic 2D and 3D
Navier-Stokes equations, especially in the direction of general covariance,
see for instance [13], [1], [2], [10] in 2D and [11], [16], [14], [17], [18], [15]
in 3D.

2 Assumptions and main result

The numbers ai ≥ 0 and the measurable functions bi : H × [0, T ] → R
are subject to a series of assumptions. We do not assume the finite trace
condition

∑∞
i=1 a

i <∞ as in [4], [8], but we do not allow dependence on
(x, t) (hence our applications restrict to additive noise).

Let E ⊂ H be a separable Banach space with dense continuous
injection. Denote the norm in E by ‖.‖E. We assume ei ∈ E and other
conditions below.
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We assume that bi have the structure

bi (x, t) = −α2
ixi + f i (x, t)

with real numbers α2
i > 0 and continuous functions f i : H × [0, T ]→ R.

The basic assumption on the sequences (ai), (α2
i ) is

lim
i→∞

α2
i =∞,

∞∑
i=1

ai

α2
i

<∞. (1)

Concerning the sequence of functions f i (x, t), we assume∣∣f i (x, t)∣∣ ≤ Ci (1 + ‖x‖p0H ) , f i (·, t) locally Lipschitz in x, (2)

uniformly in t ∈ [0, T ]

for some Ci > 0, p0 ≥ 1.
Denote by V the Hilbert space

V =

{
x ∈ H : ‖x‖2V :=

∞∑
i=1

α2
ix

2
i <∞

}

where xi = 〈x, ei〉H . It is compactly embedded in H, by assumption (1).
Let V ′ be the dual space of V and let us use the identification H = H ′,
so that V ⊂ H ⊂ V ′, with dense injections. We write 〈., .〉 for the dual
pairing between V ′ and V , so 〈x, y〉 = 〈x, y〉H when x ∈ H, y ∈ V . Note
that then πn has a natural extension from H to V ′. We assume also that
the Banach space E ∩ V is dense in H.

We assume that there is a Borel function f : E × [0, T ] → V ′ such
that f i (x, t) = 〈f (x, t) , ei〉 (in other words, we assume that the series
f (x, t) :=

∑∞
i=1 f

i (x, t) ei converges in V ′ for all x ∈ E and t ∈ [0, T ]),
and on f we assume for some C, k0 ∈ (0,∞) and η ∈ (0, 1)

〈f (v + z, t) , v〉 ≤ η ‖v‖2V + C ‖v‖2H
(
‖z‖2E + 1

)
+ C ‖z‖k0E + C (3)

for all z ∈ E, v ∈ E ∩ V . When f grows more than linearly, this
assumption embodies a form of cancellation.

Let (βi(t))t≥0 be a sequence of independent Wiener processes on a
probability space (Ω,F , P ) with normal filtration (Ft)t≥0. Then the se-
ries of stochastic integrals, parametrized by λ ≥ 0,

Zλ
t :=

∞∑
i=1

∫ t

0

e−(t−s)(α
2
i+λ)
√
aidβi (s) ei (4)
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defines a continuous Gaussian process in H, by assumption (1). Our last
assumption on E is that

Zλ
· is an L2∨k0 (0, T ;E) -valued Gaussian variable (5)

and for every r > 0 one has

lim
λ→∞

P

(∫ T

0

∥∥Zλ
t

∥∥2
E
dt > r2

)
= 0. (6)

Let (A,D (A)) and (Q,D (Q)) denote the self-adjoint linear operators

D (A) =

{
x ∈ H :

∞∑
i=1

(
α2
i 〈x, ei〉H

)2
<∞

}
, Ax = −

∞∑
i=1

α2
i 〈x, ei〉H ei

D (Q) =

{
x ∈ H :

∞∑
i=1

(
ai 〈x, ei〉H

)2
<∞

}
, Qx =

∞∑
i=1

ai 〈x, ei〉H ei.

Then Zλ
t , t ≥ 0, defined in (4), can be rewritten as

Zλ
t =

∫ t

0

e(t−s)(A−λ)
√
QdWs, t ≥ 0,

which is a continuous Gaussian process in H, with trace class covariance
(by assumption (1))

Qλ
t =

∫ t

0

es(A−λ)Qes(A−λ)ds, t ≥ 0.

By assumption (5), Zλ
· is an L2 (0, T ;E)-valued Gaussian variable and

solves the linear stochastic equation in H

dZλ
t = AZλ

t dt+
√
QdWt − λZtdt, Zλ

0 = 0.

Remark 1 Under a natural condition on etA, t ≥ 0, (5) with Z0
t re-

placing Zλ
t actually implies (6). Indeed, under the assumption that the

restriction of etA, t ≥ 0, is a strongly continuous semigroup on E, (6)
holds. This can be proved as follows: fix i ∈ N. Then by Itô’s product
rule

eλt
∫ t

0

eα
2
i sdβi(s) =

∫ t

0

eλseα
2
i sdβi(s) +

∫ t

0

∫ s

0

eα
2
i rdβi(r)λe

λsds.

Hence∫ t

0

e−(t−s)(α
2
i+λ)dβi(s) =

∫ t

0

e−(t−s)α
2
i dβi(s)

−
∫ t

0

∫ s

0

e−(t−r)α
2
i dβi(r)λe

−λ(t−s)ds.
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Multipying by
√
ai ei and taking summation over i ∈ N (here the con-

vergence holds in H), we obtain

Zλ
t =

∫ t

0

e(t−s)A
√
QdWt −

∫ t

0

e(t−s)A
∫ s

0

e(s−r)A
√
QdWr λe

−λ(t−s)ds

= Z0
t − (1− e−λt)

∫ t

0

e(t−s)AZ0
s ρλ(t− s)ds,

where ρλ(t − s) = 1l[0,t](s)(1 − e−λt)−1λe−λ(t−s) weakly converges to the
Dirac measure in t as λ→∞.

Hence, since Z0
t ∈ E for dt–a.e. t ∈ [0, T ], it follows that

lim
λ→∞

∫ T

0

‖Zλ
t ‖2E dt = 0 P–a.s., (7)

in particular (6) holds.
More precisely,(∫ T

0

‖Z0
t −

∫ t

0

e(t−s)AZ0
s ρλ(t− s)ds‖2E dt

)1/2

=

(∫ T

0

‖
∫ t

0

(Z0
t − e(t−s)AZ0

s )ρλ(t− s)ds‖2E dt
)1/2

≤
(∫ T

0

T

∫ t

0

∥∥Z0
t − esAZ0

t−s)
∥∥2
E
ρλ(s)ds dt

)1/2

≤ T 1/2

[∫ T

0

∫ T

0

∥∥Z0
t − Z0

t−s
∥∥2
E
dt ρλ(s)ds

]1/2

+T 1/2

[∫ T

0

∫ T−s

0

‖(1− esA)Z0
t ‖2E dt ρλ(s)ds

]1/2
.

Since for P -a.e. ω ∈ Ω the first inner integral is continuous and bounded
in s ∈ [0, T ], this implies (7).

Remark 2 The limit property in assumption (6) is needed because
of the power 2 of ‖z‖2E in the term C ‖v‖2H

(
‖z‖2E + 1

)
of assumption

(3), which is a sort of critical value case; if instead we took the term

C ‖v‖2H
(
‖z‖βE + 1

)
with β < 2 in (3), we only need Zλ

· being L2 (0, T ;E)-

valued, but this is too restrictive for applications to Navier-Stokes equa-
tions.

5



We define D(L) to be the linear space of finite dimensional regular
functions u : H × [0, T ]→ R, i.e. u(t, x) = uN(〈e1, x〉, ..., 〈eN , x〉, t) such
that uN ∈ C2,1

b (RN × [0, T ]) and u (x, T ) = 0. D(L) is then a (point and
measure) separating class.

Definition 3 A family of Borel probability measures (µt (dx))t∈[0,T ] on
H, measurable in t, is a solution of the Fokker-Planck equation (FPE)
above if ∫ T

0

∫
H

‖x‖p0H µt (dx) dt <∞,

where p0 is given in assumption (2), and∫ T

0

∫
H

(Lu) (x, t)µt (dx) dt+

∫
H

u (x, 0)µ0 (dx) = 0

for all u ∈ D (L).

The double integral in the above formulation is then well defined (see
Remark 5 below) because of (2) and the assumed moment condition. We
can now state our main theorem.

Theorem 4 Under the assumptions (1)-(6), for any Borel probability
measure µ0 on H such that∫

H

‖x‖p1H µ0 (dx) <∞

for some p1 > p0, equation (FPE) has a solution.

In Section 5 we shall give two examples: the case of measurable drift
of at most linear growth and the 2D and 3D Navier-Stokes equations.

3 Auxiliary Fokker-Planck equation on product space

On finite dimensional regular functions ũ (v, z, t), ũ : H×H×[0, T ]→ R,

more precisely for ũ ∈ D(L̃), where D(L̃) is defined analogously to D(L)
with H ×H replacing H, define the auxiliary Kolmogorov operator

(L̃ũ) (v, z, t) :=
∂ũ

∂t
(v, z, t) +

∞∑
i=1

((
ai∂2zi −

(
α2
i + λ

)
zi∂zi

)
ũ
)

(v, z, t)

+
∞∑
i=1

(
−α2

i vi + f i (v + z, t) + λzi
)

(∂viũ) (v, z, t) .
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Here λ ≥ 0 is a parameter. In the simplest cases (application to drifts
of at most linear growth, for instance) we could simply take λ = 0, but
for some applications we need suitable values of λ. The trick of this
parameter has been introduced in [9] to prove the existence of random
attractors for the Navier-Stokes equations, and here it will be used to
prove moment estimates for solutions.

Definition 5 A family of Borel probability measures (µ̃t (dv, dz))t∈[0,T ]
on H ×H, measurable in t, is a solution of the Fokker-Planck equation
on product space

L̃∗µ̃ = 0, µ̃|t=0 = µ̃0, (F̃PE)

if ∫ T

0

∫
H×H

(‖v‖p0H + ‖z‖p0H ) µ̃t (dv, dz) dt <∞,

where p0 is given in assumption (2), and∫ T

0

∫
H×H

(
L̃ũ
)

(v, z, t) µ̃t (dv, dz) dt+

∫
H×H

ũ (v, z, 0) µ̃0 (dv, dz) = 0

for all ũ ∈ D
(
L̃
)

.

Remark 6 The double integral in the above formulation is well defined.

Indeed, when ũ ∈ D
(
L̃
)

, the term
∑∞

i=1

((
ai∂2zi − (α2

i + λ) zi∂zi
)
ũ
)

(v, z, t)

reduces to a finite sum and we have the bound∣∣∣∣∣
∞∑
i=1

((
ai∂2zi −

(
α2
i + λ

)
zi∂zi

)
ũ
)

(v, z, t)

∣∣∣∣∣ ≤ C + C ‖z‖H

which is integrable with respect to µ̃t (dv, dz) dt by the integrability as-
sumption of the definition. Similarly, the term

∞∑
i=1

(
−α2

i vi + f i (v + z, t) + λzi
)

(∂viũ) (v, z, t)

reduces to a finite sum and we have the bound∣∣∣∣∣
∞∑
i=1

(
−α2

i vi + f i (v + z, t) + λzi
)

(∂viũ) (v, z, t)

∣∣∣∣∣
≤ C ‖v‖H + C

N∑
i=1

∣∣f i (v + z, t)
∣∣+ C ‖z‖H
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for some N > 0, and thus by our main assumptions this is dominated
by

C ‖v‖H + CN,p (1 + ‖v‖p0H + ‖z‖p0H ) + C ‖z‖H ,

which is again integrable with respect to µ̃t (dv, dz) dt.

Remark 7 Let πi : H ×H → H, i = 1, 2, denote the canonical projec-
tions and fix t ∈ [0, T ]. Then µ̃t ◦ π−12 = the law of Zλ

t = NQt , i.e. the
mean zero Gaussian measure on H with covariance operator Qt, where

Qt :=

∫ t

0

e−2s(A+λ)Qds.

Indeed, it is easy to check that (µ̃t ◦ π−12 )(dx)dt solves (FPE) with L
replaced by

L0u :=
∂u

∂t
+
∞∑
i=1

(ai∂2zi − (α2
i + λ)zi)∂ziu,

with domain D(L) (as above) and µ0 = δ0. But for this Fokker–Planck
equation (NQt)t∈[0,T ] is the unique solution.

Remark 8 In Definition 5 it is sufficient to assume∫ T

0

∫
H×H

(‖v + z‖p0H + ‖v‖H + ‖z‖H) µ̃t (dv, dz) dt <∞.

Lemma 9 If µ̃t (dv, dz) dt is a solution of (F̃PE) on product space and
if µ̃0 and µ0 are related by the condition∫

H×H
ϕ (v + z) µ̃0 (dv, dz) =

∫
H

ϕ (x)µ0 (dx) (8)

then µt (dx), defined for all t ∈ [0, T ] as∫
H

ϕ (x)µt (dx) :=

∫
H×H

ϕ (v + z) µ̃t (dv, dz) , ϕ ∈ Cb (H) , (9)

is a weak solution of (FPE).

Proof. Step 1. Let u ∈ D(L). Define

ũ (v, z, t) := u (v + z, t) .
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Then we have

(Lu) (v + z, t) =
∂u

∂t
(v + z, t) +

∞∑
i=1

ai
(
∂2xiu

)
(v + z, t)

+
∞∑
i=1

bi (v + z, t) (∂xiu) (v + z, t)

(L̃ũ) (v, z, t) =
∂u

∂t
(v + z, t) +

∞∑
i=1

((
ai∂2xi −

(
α2
i + λ

)
zi∂xi

)
u
)

(v + z, t)

+
∞∑
i=1

(
−α2

i vi + f i (v + z, t) + λzi
)

(∂xiu) (v + z, t)

=
∂u

∂t
(v + z, t) +

∞∑
i=1

ai
(
∂2xiu

)
(v + z, t)

+
∞∑
i=1

(
−α2

i (vi + zi) + f i (v + z, t)
)

(∂xiu) (v + z, t) .

So, we deduce

(Lu) (v + z, t) =
(
L̃ũ
)

(v, z, t) .

Step 2. The integrability condition of Definition 3 holds, since by
definition of µt (dx), we have∫ T

0

∫
H

‖x‖p0H µt (dx) dt =

∫ T

0

∫
H×H

‖v + z‖p0H µ̃t (dv, dz) dt

≤ Cp0

∫ T

0

∫
H×H

(‖v‖p0H + ‖z‖p0H ) µ̃t (dv, dz) dt <∞.

Step 3. By definition of µt (dx), we have∫ T

0

∫
H

(Lu) (x, t)µt (dx) dt =

∫ T

0

∫
H×H

(Lu) (v + z, t) µ̃t (dv, dz) dt.

Hence, by the previous step, with ũ (v, z, t) := u (v + z, t),∫ T

0

∫
H

(Lu) (x, t)µt (dx) dt =

∫ T

0

∫
H×H

(
L̃ũ
)

(v, z, t) µ̃t (dv, dz) dt.

This and (8) imply the claim of the lemma.
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Remark 10 For a given Borel probability measure µ0 on H it is easy
to find a Borel probability measure µ̃0 on H × H such that (8) holds.
Simply, define

µ̃0 (dv, dz) := ε(0,x) (dv, dz)µ0 (dx)

where ε(0,x) is the Dirac measure in (0, x) ∈ H × H. Then clearly (8)
holds. Then the second marginal of µ̃0 is just µ0. Another choice with
first marginal equal to µ0 is µ̃0 = µ0⊗δ0. Hence any convex combination
of these two satisfies (8).

Thus, to prove existence of solutions of (FPE), it is sufficient to

solve the auxiliary Fokker-Planck equation (F̃PE), with suitable initial
condition.

4 Existence theorem for the auxiliary equation ˜(FPE)

In this section we want to prove the existence of a solution to the equa-

tion (called above (F̃PE))∫ T

0

∫
H×H

(
L̃ũ
)

(v, z, t) µ̃t (dv, dz) dt+

∫
H×H

ũ (v, z, 0) µ̃0 (dv, dz) = 0

with the initial condition µ̃0 = µ0 ⊗ δ0. This initial condition satisfies
(8). One can decompose µ̃0 in other ways (see Remark 10).

Theorem 11 Let the assumptions (1)-(6) hold and let µ0 be a Borel
probability measure on H such that∫

H

‖x‖p1H µ0 (dx) <∞

for some p1 > p0. Then there exists λ0 ≥ 0 such that for every λ ≥ λ0
equation (F̃PE) has a solution.

The proof is done in the following subsections. By Lemma 9, this
proves our main Theorem 4.

4.1 A consequence of Fernique’s theorem

Proposition 12 For every K > 0 there is λ0 > 0 such that for all
λ ≥ λ0

E

[
e
∫ T
0 K‖Zλt ‖2Edt

]
≤ e

1
4 +

e2

e2 − 1
. (10)
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Proof. Since Zλ
· is a Gaussian r.v. in the Banach space L2 (0, T ;E),

Fernique’s theorem states that there exists γ0 > 0 such that

E

[
eγ

∫ T
0 ‖Zλt ‖

2

E
dt

]
<∞

for all γ ∈ (0, γ0). We need a relation between λ and γ0, so we use the
following version of Fernique’s theorem (see [12]): given an L2 (0, T ;E)-
valued Gaussian variable Z, if two real numbers γ, r > 0 satisfy

log

1− P
(
‖Z‖L2(0,T ;E) ≤ r

)
P
(
‖Z‖L2(0,T ;E) ≤ r

)
+ 32γr2 ≤ −1,

then

E
[
e
γ‖Z‖2

L2(0,T ;E)

]
≤ e16γr

2

+
e2

e2 − 1
.

Now, given K > 0, choose r = 1
8
√
K

. By assumption (6), there exists
λ0 > 0 such that

P

(∫ T

0

∥∥Zλ
t

∥∥2
E
dt ≤ r

)
≥ 1

e−3/2 + 1
, ∀ λ ≥ λ0.

Then

log

1− P
(∫ T

0

∥∥Zλ
t

∥∥2
E
dt ≤ r

)
P
(∫ T

0

∥∥Zλ
t

∥∥2
E
dt ≤ r

)
 ≤ −3

2
.

Therefore,

log

1− P
(∥∥Zλ

·
∥∥
L2(0,T ;E)

≤ r
)

P
(
‖Zλ
· ‖L2(0,T ;E) ≤ r

)
+ 32Kr2 ≤ −1.

By the previous version of Fernique’s theorem we have

E

[
e
K‖Zλ· ‖2L2(0,T ;E)

]
≤ e

1
4 +

e2

e2 − 1
.

The proof is complete.

4.2 Approximating problem, moment estimate

We use the same notations and objects of the previous subsection but
we enlarge, if necessary, the filtered probability space (Ω,F , (Ft)t≥0, P )
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in such a way that there exists an F0-measurable r.v. V (0) with law µ0.
Set

Anx = −
n∑
i=1

α2
i 〈x, ei〉H ei, fn (x, t) =

n∑
i=1

f i (x, t) ei = πnf (x, t)

(the latter equality is true only for x ∈ E). Consider the finite dimen-
sional system in πn (H) for the unknown Vn (t), driven by the known
Gaussian process Zλ

t defined in the previous section:

dVn (t)

dt
= AnVn (t) + fn

(
Vn (t) + Zλ

t , t
)

+ λπn(Zλ
t ), Vn (0) = πnV (0) .

This is a random differential equation. For each n ∈ N and λ > 0,
as a stochastic equation, it has a unique global continuous Ft-adapted
solution Vn (a strong solution, in the stochastic sense). Indeed, given any
continuous path of Zλ

· , this follows from the local Lipschitz property of
each f i, and assumption (3). (See e.g. [19, Theorem 3.1.1]). Whence a
unique global solution is established for P -a.e. ω ∈ Ω (those for which
Zλ
· (ω) is continuous) and it is an adapted process, by uniqueness.

Notice that Zλ
t ∈ E for dt-a.e. t ∈ [0, T ] and Vn (t) ∈ E ∩V (because

πn (H) ⊂ E∩V ) for every t ∈ [0, T ], with probability one. Thus we may
apply the inequalities of our assumptions with z = Zλ

t and v = Vn (t).
Using the notations of inner product and norm of H also in Hn, from

assumption (3) we have

1

2

d ‖Vn‖2H
dt

− 〈AnVn, Vn〉H ≤
∣∣〈fn (Vn + Zλ, t

)
, Vn
〉
H

∣∣+ λ
∥∥Zλ

∥∥
H
‖Vn‖H

≤ η 〈AnVn, Vn〉H + C ‖Vn‖2H
(∥∥Zλ

∥∥2
E

+ 1
)

+ C
∥∥Zλ

∥∥k0
E

+ C + λ2
∥∥Zλ

∥∥2
H

+ ‖Vn‖2H .

Just in order to unify some expressions, and without restriction, let us
assume from now on that k0 ≥ 2; otherwise it is only a matter of keeping

explicitly the term
∥∥Zλ

∥∥2
H

. With possibly changing constants C, we have

d ‖Vn‖2H
dt

−〈AnVn, Vn〉H ≤ C ‖Vn‖2H
(∥∥Zλ

∥∥2
E

+ 1
)

+
(
C + λ2

) ∥∥Zλ
∥∥k0
E

+C.

(11)
By Gronwall’s lemma we get (using also ‖Vn (0)‖2H ≤ ‖V (0)‖2H)

‖Vn (t)‖2H ≤ eI
λ(0,t) ‖V (0)‖2H +

∫ t

0

eI
λ(s,t)

((
C + λ2

) ∥∥Zλ
s

∥∥k0
E

+ C
)
ds,
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where

Iλ (s, t) = C

∫ t

s

(∥∥Zλ
r

∥∥2
E

+ 1
)
dr

and thus

‖Vn (t)‖2H ≤ eI
λ(0,T )

[
‖V (0)‖2H +

∫ T

0

((
C + λ2

) ∥∥Zλ
s

∥∥k0
E

+ C
)
ds

]
.

We have denoted the constant in I (s, t) by C to emphasize that it is not
a generic constant, but the one obtained so far in that estimate; it does
not depend on λ, neither on n and nor on ω.

Notice that this inequality gives us

‖Vn (t)‖H ≤ e
1
2
Iλ(0,T )

[
‖V (0)‖H +

(∫ T

0

((
C + λ2

) ∥∥Zλ
s

∥∥k0
E

+ C
)
ds

)1/2
]

(12)
so we are not limited to work in the sequel with powers of ‖Vn (t)‖H
greater than 2.

Let p1 > p0 be the value given in the assumptions of the theorem.

Lemma 13 For every p ∈ (p0, p1), there exists λp ≥ 0 and Cp > 0 such
that, using the process Zλp in the previous construction, we have

E

[
sup
t∈[0,T ]

‖Vn (t)‖pH

]
≤ Cp (13)

for every n ∈ N.

Proof. From inequality (12) we deduce

‖Vn (t)‖pH ≤ Cp,T e
p
2
Iλ(0,T )

[
‖V (0)‖pH +

(∫ T

0

((
C + λ2

) ∥∥Zλ
s

∥∥k0
E

+ C
)
ds

)p/2]

hence, for every q, q′ ∈ (1,∞) such that 1
q

+ 1
q′

= 1,

E

[
sup
t∈[0,T ]

‖Vn (t)‖pH

]
≤ Cp,q,TE

[
e
pq
2
Iλ(0,T )

]1/q
E
[
‖V (0)‖pq

′
]1/q′

+Cp,q,TE
[
e
pq
2
Iλ(0,T )

]1/q
E

[(∫ T

0

((
C + λ2

) ∥∥Zλ
s

∥∥k0
E

+ C
)
ds

)pq′/2]1/q′
.

Choose q′ such that pq′ = p1; this gives us E
[
‖V (0)‖pq

′

H

]
<∞. Choose

λ, depending on p, q, C, such that E
[
e
pq
2
Iλ(0,T )

]
< ∞: this is possible

13



because of Proposition 12. Finally, for those values of the parameters,
the last expected value of the last inequality is finite because Zλ

· is a
Gaussian variable in Lk0 (0, T ;E), see assumption (5). The proof is
complete.

4.3 An additional estimate

Inequality (11) also gives us

−
∫ T

0

〈AnVn, Vn〉H ds ≤ ‖Vn (0)‖2H + C

∫ T

0

‖Vn‖2H
(∥∥Zλ

∥∥2
E

+ 1
)
ds

+
(
C + λ2

) ∫ T

0

∥∥Zλ
∥∥k0
E
ds+ CT.

Recalling the definition of the Hilbert space V given in the introduction,
we have proved our additional estimate:∫ T

0

‖Vn (s)‖2V ds ≤ ‖Vn (0)‖2H + C

∫ T

0

‖Vn‖2H
(∥∥Zλ

∥∥2
E

+ 1
)
ds

+
(
C + λ2

) ∫ T

0

∥∥Zλ
∥∥k0
E
ds+ CT.

In fact, for our later purposes we may simplify it as follows:∫ T

0

‖Vn (s)‖2V ds ≤ C sup
[0,T ]

‖Vn‖4H +

(∫ T

0

∥∥Zλ
∥∥k0∨2
E

ds

)2

+ C (14)

for all n ∈ N with a new constant C, depending also on λ and T , but
independent of n and ω.

4.4 Approximating Fokker-Planck equation

Given n ∈ N define D(L̃n) to be the span of all functions ũn : Hn×H ×
[0, T ]→ R such that

ũn(v, z, t) = ũn,N(v, 〈e1, z〉, ..., 〈eN , z〉, t),

for some ũn,N ∈ C2,1
b (Hn × HN × [0, T ]) (i.e. C2 on Hn × HN and C1

on [0, T ]) and ũn(v, z, T ) = 0. Consider on Hn × H the Fokker-Planck
equation∫ T

0

∫
Hn×H

(
L̃nũn

)
(v, z, t) µ̃nt (dv, dz) dt

+

∫
Hn×H

ũn (v, z, 0) µ̃n0 (dv, dz) = 0, ∀ ũn ∈ D(L̃n),

(F̃PEn)

14



where for (v, z, t) ∈ Hn ×H × [0, T ](
L̃nũn

)
(v, z, t) :=

∂ũn
∂t

(v, z, t) +
∞∑
i=1

((
ai∂2zi −

(
α2
i + λ

)
zi∂zi

)
ũn
)

(v, z, t)

+
n∑
i=1

(
−α2

i vi + f i (v + z, t) + λzi
)

(∂viũn) (v, z, t) .

The initial measure µ̃n0 is, by definition, the projection on Hn×H of the
given initial datum µ̃0.

Let
(
Vn, Z

λ
)

be the process constructed in the previous section.

For n ∈ N, t ∈ [0, T ], define µ̃nt (dv, dz) to be the law of (Vn(t), Zλ
t ).

Then clearly µ̃nt (dv, dz)dt solves (F̃PEn) by Itô’s formula. Replacing

ũn(v, z, t) in (F̃PEn) by ϕ(t)ũn(v, z, t) for ϕ ∈ C0([0, T )) we easily see

that (F̃PEn) is equivalent to∫
Hn×H

u(v, z, t)µ̃nt (dv, dz) =

∫
Hn×H

u(v, z, 0)µ̃n0 (dv, dz)

+

∫ t

0

∫
Hn×H

L̃nu(v, z, s)µ̃ns (dv, dz)ds, ∀ t ∈ [0, T ], u ∈ D(L̃n).

(see [7, Remark 1.2] for details.) Hence an easy consideration shows
that the above equation also holds for all ϕ ∈ FC2

b , i.e. all functions
ϕ : H ×H → R of the form

ϕ(v, z) = ϕN(〈e1, v〉, ..., 〈eN , v〉, 〈e1, z〉, ..., 〈eN , z〉),

where N ∈ N, ϕN ∈ C2
b (RN ×RN). Hence it follows from Remark 6 and

Lemma 13 that for every ϕ ∈ FC2
b the R-valued maps

t→ µ̃nt (ϕ) :=

∫
Hn×H

ϕ(v, z) µ̃nt (dv, dz), n ∈ N,

are equicontinuous on [0, T ].

4.5 Passage to the limit

Step 1. Convergence of a subsequence of µ̃nt , n ∈ N, for all t ∈ [0, T ].

First we extend µ̃nt from a measure on Hn×H to a measure on H×H
as follows. Let H⊥n be the orthogonal complement of Hn in H, δ0 the
Dirac measure on H⊥n with mass at 0 ∈ H⊥n and Λ : Hn × H⊥n × H →
H ×H defined by

Λ((vn, v
⊥
n , z)) = (vn + v⊥n , z), vn ∈ Hn, v

⊥
n ∈ H⊥n , z ∈ H.

15



Then the image under Λ of the measure µ̃nt (dvn, dz) ⊗ δ0(dv⊥n ) extends
µ̃nt to H × H. Let us also denote this extension by µ̃nt . Then we have
for any integrable function g : H ×H → R∫

H×H
g(v, z)µ̃nt (dv, dz)

=

∫
Hn×H⊥n ×H

g(vn + v⊥n , z)µ̃
n
t (dvn, dz)⊗ δ0(dv⊥n )

=

∫
Hn×H

g(vn, z)µ̃
n
t (dvn, dz)⊗ δ0(dv⊥n )

=

∫
H×H

g(πn(v), z)µ̃nt (dv, dz).

(15)

Furthermore, by Remark 7 and Lemma 13 for each t ∈ [0, T ]

sup
n∈N

∫
H×H

(‖v‖pH + ‖z‖2H)µ̃nt (dv, dz) < +∞, (16)

for any p given in Lemma 13. Closed balls in H ×H are compact and
metrizable with respect to the weak topology τw. Hence by [3, Theorem
8.6.7] and a diagonal argument we can find a subsequence µ̃nkt , k ∈ N,
such that (µ̃nkt ) converges τw-weakly to a probability measure µ̃t onH×H
as k → ∞ for all t ∈ [0, T ] ∩ Q. Now let t ∈ [0, T ] \ Q. We claim
that also for such t the sequence (µ̃nkt ) converges τw-weakly to some
probability measure µ̃t on H × H. Since by (16) also (µ̃nkt ) has τw-
convergent subsequences, we only have to identify the limit points. So,
let nkl , l ∈ N, be a subsequence such that (µ̃

nkl
t ) τw-weakly converges

to some probability measure ν̃t on H × H as l → ∞. Then by the
equicontinuity proved in Section 4.4 we have for all ϕ ∈ FC2

b (which are
all weakly continuous)∫

H×H
ϕdν̃t = lim

l→∞

∫
H×H

ϕdµ̃
nkl
t

= lim
l→∞

lim
s→t, s∈Q

∫
H×H

ϕdµ̃
nkl
s = lim

s→t, s∈Q

∫
H×H

ϕdµ̃s.

Since FC2
b is a measure separating class, this proves our claim.

Step 2. Convergence of a subsequence of µ̃nt (dv, dz)dt.

Let (γi) ⊂ [1,∞) such that

γi ↑ ∞,
∞∑
i=1

γi
ai
α2
i

<∞.
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Define the operator Γ on H by
Γx :=

∞∑
i=1

γ
1/2
i 〈x, ei〉ei,

D(Γ) :=

{
x ∈ H :

∞∑
i=1

γi〈x, ei〉2 <∞

}
Then Γ has compact level sets and furthermore

E[‖Γ(Zλ
t )‖2H ] =

∞∑
i=1

γia
i

∫ t

0

e−2(t−s)(α
2
i+λ)ds

=
1

2

∞∑
i=1

γi
ai

α2
i + λ

(1− e−2t(α2
i+λ))

≤ 1

2

∞∑
i=1

γi
ai

α2
i

=: Cγ <∞.

Hence it follows from (5), (14) and Lemma 13

sup
n∈N

∫ T

0

∫
H×H

(‖v‖2V + ‖Γz‖2H) µ̃nt (dv, dz)dt <∞.

But the function (v, z)→ ‖v‖2V +‖Γv‖2H has compact level sets on H×H,
hence (selecting a subsequence if necessary) µ̃nkt (dv, dz)dt, where nk, k ∈
N, is as in Step 1, weakly converges to a finite measure µ̃(dt, dv, dz) on

[0, T ]×H×H as k →∞. But for u ∈ D(L̃) we then have by Lebesgue’s
dominated convergence theorem∫ T

0

∫
H×H

u(v, z, t)µ̃t(dv, dz)dt = lim
k→∞

∫ T

0

∫
H×H

u(v, z, t) µ̃nkt (dv, dz)dt

=

∫ T

0

∫
H×H

u(v, z, t)µ̃(dt, dv, dz).

Since D(L̃) is a measure separating class, it follows that µ̃(dt, dv, dz) =
µ̃t(dv, dz)dt. So µ̃nkt (dv, dz)dt→ µ̃t(dv, dz)dt weakly on H ×H × [0, T ]
as k →∞.

Step 3. Passage to the limit.

Just to simplify notations, assume that the whole sequence
(µ̃nt (dv, dz)dt)n∈N weakly converges to µ̃t(dv, dz)dt on [0, T ] × H × H.

17



We have to prove that µ̃t (dv, dz) dt is a solution of (F̃PE). Since we
have µ̃n0 → µ̃0 weakly on H ×H we only need to prove that

lim
n→∞

∫ T

0

∫
H×H

(L̃nũ) (v, z, t) µ̃nt (dv, dz) dt

=

∫ T

0

∫
H×H

(L̃ũ) (v, z, t) µ̃t (dv, dz) dt

for all ũ ∈ D(L̃). Below we fix such a ũ. Let m ∈ N such that

ũ(v, z, t) = ũ(πmv, πmz, t)

and let n ≥ m. By (15) the above equation follows from

lim
n→∞,n≥m

∫ T

0

∫
H×H

ψ(v, z, t)µ̃nt (dv, dz)dt

=

∫ T

0

∫
H×H

ψ(v, z, t)µ̃t(dv, dz)dt,

(17)

where

ψ(v, z, t) =−
m∑
i=1

(α2
i + λ)zi∂ziũ(πmv, πmz, t)

+
m∑
i=1

(−α2
i vi + λzi)∂viũ(πmv, πmz, t)

+
m∑
i=1

f i(v + z, t)∂viũ(v, z, t).

Note that ψ is a continuous function, but not bounded. So, we cannot
pass to the limit in (17) just by the weak convergence of µ̃nt dt to µ̃tdt on
H × H × [0, T ] proved in Step 2 above. But we can argue similarly as
in the proof of Vitali’s theorem. Let us give the details.

By assumption (2) we have

|ψ(v, z, t)| ≤ c(1 + ‖v‖p0H + ‖z‖p0H ). (18)

For R ∈ (0,∞) we define

ψR := ψ ∧R ∨ (−R),

then
ψ = ψR + (ψ − ψR),
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where
|ψ − ψR| ≤ 1l{|ψ|≥R}2|ψ|.

Hence by Step 2 it suffices to show that

lim sup
R→∞

sup
n∈N

∫ T

0

∫
H×H

1l{|ψ|≥R}|ψ| dµ̃nt dt = 0 (19)

and

lim sup
R→∞

∫ T

0

∫
H×H

1l{|ψ|≥R}|ψ| dµ̃t dt = 0. (20)

But we have by the Hölder inequality for every δ ∈ (0,∞)∫ T

0

∫
H×H

1l{|ψ|≥R}|ψ| dµ̃nt dt≤
(∫ T

0

∫
H×H

|ψ|1+δ dµ̃nt dt
) 1

1+δ

×
(

1

R

∫ T

0

∫
H×H

|ψ| dµ̃nt dt
) δ

1+δ

.

By Lemma 13 and (18) this implies (19). Note that by Step 2 and
Lemma 13 it follows by lower continuity that∫ T

0

∫
H×H

(‖v‖pH + ‖z‖pH)µ̃t(dv, dz)dt <∞,

for all p ∈ (p0, p1). Hence (20) follows similarly (even easier) as (19)
above. �

5 Examples

5.1 Measurable linear growth drift

Let f : H × [0, T ]→ H be a measurable map such that

‖f(x, t)‖H ≤ C(1 + ‖x‖H), t ∈ [0, T ], x ∈ H

for some constant C > 0. Denote by f i (t, x) its components. Assume
that (1) holds. Then, with E = H, also the other assumptions hold.
The proof of assumptions (2) and (5) is elementary. We have

〈f(v + z, t), v〉H ≤ C(1 + ‖v + z‖H) ‖v‖H ≤ C ′‖v‖2H + C ′‖z‖2H + C ′′

which implies (3). Finally,

E[‖Zλ
t ‖2H ] =

∞∑
i=1

(
1− e−2t(α2

i+λ)
) ai

2 (α2
i + λ)

≤
∞∑
i=1

ai

2 (α2
i + λ)

.
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Hence

P

(∫ T

0

∥∥Zλ
t

∥∥2
E
dt > r2

)
≤ r−2E

[∫ T

0

‖Zλ
t ‖2H dt

]
= r−2

∫ T

0

E
[
‖Zλ

t ‖2H
]
dt

=
1

2
r−2T

∞∑
i=1

ai

α2
i + λ

which implies (6). Note that (4) follows from (1). Hence Theorem 4
holds.

Remark 14 Similarly as in [20] we can also treat stochastic partial dif-
ferential equations on H = L2(0, 1) whose drift is the sum of the Dirich-
let Laplacian, a reaction–diffusion and a Burgers type part. However, in
contrast to [20] (and also [5], [7]) we need to assume that the reaction
part is of at most quadratic growth. The details are straight forward.

5.2 Navier-Stokes equations

Consider the stochastic Navier-Stokes equations

du+ (u · ∇u+∇p) dt = ν∆udt+
∞∑
i=1

√
aieidβi (s)

div u = 0

u|t=0 = u0

on the torus D = [0, 2π]d, d = 2, 3, with periodic boundary conditions.
We introduce the Hilbert space H defined as the closure in L2

(
D,Rd

)
of the set of all ϕ ∈ C∞

(
D,Rd

)
which satisfy the periodic boundary

conditions and divϕ = 0; H is a closed strict subspace of L2
(
D,Rd

)
and

we shall denote the orthogonal projection from L2
(
D,Rd

)
to H by PH .

We assume u0 ∈ H. We introduce also the Hilbert space V of all periodic
ϕ ∈ H1

(
D,Rd

)
such that divϕ = 0; and D (A) = H2

(
D,Rd

)
∩V . Then

we introduce the so called Stokes operator A : D (A) ⊂ H → H defined
as Aϕ = PH (ν∆ϕ) (in fact, in the case of periodic boundary conditions,
one can show that Aϕ = ν∆ϕ). Since A−1 is compact, there exists a
complete orthonormal system {ei} of eigenvectors of A, with eigenvalues
{−α2

i }, that we order such that 0 < α2
1 ≤ α2

2 ≤ ... One can show that,
with these new concepts and notations, the space V defined in Section
2 and the space V defined here coincide.

Let B (., .) : D (A)× V → H be defined as

B (ϕ, ψ) = −PH (ϕ · ∇ψ) . (21)
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The expression
∫
D
B (ϕ, ψ) (x) θ (x) dx, ϕ ∈ D (A), ψ ∈ V , θ ∈ H,

extends to ϕ, ψ, θ ∈ V , and several other classes of functions. For smooth
fields ϕ, ψ, θ ∈ H we have

〈B (ϕ, ψ) , θ〉 = −〈B (ϕ, θ) , ψ〉

by a simple integration by parts, and this identity extends by density to
several spaces of weaker fields.

Using the previous set-up we may formally write the stochastic Navier-
Stokes equations in abstract form (the pressure disappears since PH (∇p) =
0):

du = (Au+B (u, u)) dt+
∞∑
i=1

√
aieidβi (s) .

See [15] for a review on the 3D stochastic Navier-Stokes equations and
further details on the set-up.

To connect this equation with the abstract framework of this paper
we consider the space E = Cper

(
D;Rd

)
∩H, where Cper

(
D;Rd

)
is the

space of periodic continuous vector fields on D, introduce the functions
f i : [0, T ]×H → R defined as

f i (t, x) = −〈B (x, ei) , x〉 =

∫
D

(x (ξ) · ∇) ei (ξ) · x (ξ) dξ

and consider the sequences {α2
i } and {ai} above. As remarked above,

since
∫
D
B (ϕ, ψ) (x) θ (x) dx extends to ϕ, ψ, θ ∈ V , there exists f (t, x)

with values in V ′ such that f i (x, t) = 〈f (x, t) , ei〉; it is given by B (x, x),
when x ∈ D (A).

We assume that ai has the form

ai = α−εi

for some ε such that

ε > 0, for d = 2

ε > 1, for d = 3.

This guarantees assumption (1). Indeed, on the torus D, the family of
eigenvectors {ei}i∈N of A can be written (see [21]) in the form {eα,k}
with k ∈ Zd∗ = Zd\ {0} and α which varies in the finite set {1, ..., d− 1}
and their associated eigenvalues, indexed in the form {α2

k}k∈Zd∗ (for each

k ∈ Zd∗ the eigenvalue α2
k has multiplicity d−1), are given by α2

k = ‖k‖2.
If we use the complex valued notation, one has eα,k (ξ) = cα,ke

ik·ξ where,
for each k, the set of vectors {cα}α∈{1,...,d−1} is an orthonormal basis of

the space in Rd orthogonal to k.
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Hence we may rewrite
∑∞

i=1
ai

α2
i

as∑
k∈Zd∗

‖k‖−2−ε

and this series converge in d = 2 for every ε > 0, and in d = 3 for every
ε > 1.

We claim that under these conditions all the assumptions of the paper
are verified and thus Theorem 4 holds. Let us check the assumptions.

The eigenvectors ei and their derivatives are bounded functions and
thus assumption (2) holds with p0 = 2.

We have, for smooth fields v, z,

〈f(v + z, t), v〉 =

∫
D

((v + z) · ∇)(v + z) · v dξ =

∫
D

((v + z) · ∇)z · v dξ

= −
∫
D

((v + z) · ∇)v · z dξ ≤ η‖v‖2H1(D) + Cη‖|z| |v + z|‖2L2(D)

≤ η‖v‖2H1(D) + 2Cη‖z‖2L∞(D) ‖z‖2L2(D) + 2Cη‖z‖2L∞(D) ‖v‖2L2(D)

and the inequality extends to all z ∈ E, v ∈ E ∩V . Thus (3) holds true,
with k0 = 4.

Finally, assumptions (5)-(6) are true under the condition imposed
above on {α2

i } and {ai}. To show this, we have to use the theory of
Section 5.5.1 of [12] and the explicit form of the eigenfunctions ei of the
Stokes operator A. Since we need the bounds of this reference with a pre-
cise control of the constants, we have repeated some of the computations
in the next lemma.

Lemma 15 Assume ai = α−εi with ε as above. Then the random field

Zλ
t (ξ) =

∞∑
i=1

∫ t

0

e−(t−s)(α
2
i+λ)
√
aidβi (s) ei (ξ)

has a continuous modification in (t, ξ) and satisfies assumptions (5)-(6).

Proof. The eigenfunctions ei have the properties ei ∈ C1
(
D;Rd

)
,

|ei (ξ)| ≤ C, |∇ei (ξ)| ≤ Cαi, required in Section 5.5.1 of [12]. We have

also the other property asked in that reference, namely
∑∞

i=1
ai

(α2
i )

1−δ <∞

for some δ > 0, and precisely, for the sequel, we take δ = ε
4
, then

∞∑
i=1

ai

(α2
i )

1− ε
4

<∞.
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Indeed, the previous series is equal to
∑

k∈Zd∗
‖k‖−2−

ε
2 < ∞ with the

equivalent language of the indexes k ∈ Zd∗. Hence Theorem 5.20 of
[12] applies and gives us the existence of a continuous modification of
Zλ
t (ξ) in (t, ξ). Let us be more precise from the quantitative viewpoint.

In the sequel, we write Zλ
t (ξ) for each one of its d components, for

notational simplicity. It is sufficient to prove assumptions (5)-(6) for
each component of Zλ

t (ξ).
Lemma 5.19 of [12] gives us the estimate

E
[∣∣Zλ

t (ξ)− Zλ
t (ξ′)

∣∣2] ≤ C1 (λ) |ξ − ξ′|
ε
4 , ∀ t ∈ [0,∞),

where

C1 (λ) := C1

∞∑
i=1

aiα
ε
4
i

α2
i + λ

for some constant C1 > 0. Indeed

E
[∣∣Zλ

t (ξ)− Zλ
t (ξ′)

∣∣2]
= E

∣∣∣∣∣
∞∑
i=1

∫ t

0

e−(t−s)(α
2
i+λ)
√
aidβi (s) (ei (ξ)− ei (ξ′))

∣∣∣∣∣
2


=
∞∑
i=1

|ei (ξ)− ei (ξ′)|2
∫ t

0

e−2(t−s)(α
2
i+λ)aids

≤ C
∞∑
i=1

aiα
ε
4
i

α2
i + λ

|ξ − ξ′|
ε
4

because
|ei (ξ)− ei (ξ′)| ≤ Cα

ε
4
i |ξ − ξ′|

ε
4 .

Then

E
[∣∣Zλ

t (ξ)− Zλ
t (ξ′)

∣∣2m] ≤ Cm (λ) |ξ − ξ′|
εm
4 , ∀ t ∈ [0,∞),

where
Cm (λ) := CmC1 (λ)m .

for some constant Cm > 0. We remark also the easier estimate

E
[∣∣Zλ

t (ξ)
∣∣2m] ≤ C̃m (λ) := C̃mC̃1 (λ)m , ∀ t ∈ [0,∞),

where

C̃1 (λ) = C̃1

∞∑
i=1

ai

α2
i + λ
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for some constant C̃1 > 0.
Given α ∈ (0, 1), for the Wα,2m (D)-norm, we have the estimate

E

[∫
D

∣∣Zλ
t (ξ)

∣∣2m dξ]+ E

[∫
D

∫
D

∣∣Zλ
t (ξ)− Zλ

t (ξ′)
∣∣2m

|ξ − ξ′|d+2mα
dξdξ′

]
≤ (2π)dC̃m (λ) + Cm (λ)

∫
D

∫
D

|ξ − ξ′|
εm
4
−d−2mα

dξdξ′

=: C̃m (λ) + Cm (λ) · Cm,α,ε,d

and Cm,α,ε,d <∞ if εm
4
− d− 2mα > −d, namely α < ε

8
. Choose α = ε

10

in the sequel. We have W
ε
10
,2m (D) ⊂ C (D) for 2m ε

10
> d, namely for

m > 5d
ε

. Choose for the sequel m equal to the smallest integer such that
m > 5d

ε
, m ≥ 2 ∨ k0 with k0 = 4. Then

E
[∥∥Zλ

t

∥∥2m
L∞(D)

]
≤ C ′m

(
C̃m (λ) + Cm (λ) · Cm,α,ε,d

)
for some constant C ′m > 0. This implies assumption (5). Finally, as-

sumption (6) follows from limλ→∞C1 (λ) = 0, limλ→∞ C̃1 (λ) = 0 and
Chebyshev inequality.

Remark 16 We think that in this case (6) also follows from Remark 1.
But we could not find a suitable reference for the condition on etA, t ≥ 0,
in Remark 1. Therefore, we have given a direct proof of (6) above.
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measures on infinite-dimensional spaces (Russian) Dokl. Akad. Nauk
421 (2008), no. 4, 439–444; translation in Dokl.Math. 78 (2008), no.
1, 544–549.

24



[5] V.I. Bogachev, G. Da Prato, M. Röckner, Existence and uniqueness
of solutions for Fokker-Planck equations on Hilbert spaces, J. Evol.
Equ. 10 (2010), 487-509.

[6] V.I. Bogachev, G. Da Prato, M. Röckner, Uniqueness for solutions
of Fokker–Planck equations on infinite dimensional spaces, Com-
munications in Partial Differential Equations, 36, 925–939, 2011.

[7] V.I. Bogachev, G. Da Prato, M. Röckner, Existence results for
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