
Local existence and non-explosion of solutions
for stochastic fractional partial differential
equations driven by multiplicative noise ∗
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Abstract
In this paper we prove the local existence and uniqueness of solutions for a class of stochastic

fractional partial differential equations driven by multiplicative noise. We also establish that
for this class of equations adding linear multiplicative noise provides a regularizing effect: the
solutions will not blow up with high probability if the initial data is sufficiently small, or if the
noise coefficient is sufficiently large. As applications our main results are applied to various
types of SPDE such as stochastic reaction-diffusion equations, stochastic fractional Burgers
equation, stochastic fractional Navier-Stokes equation, stochastic quasi-geostrophic equations
and stochastic surface growth PDE.
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1 Introduction

Consider the following stochastic equation with fractional dissipation in a smooth bounded
domain O ⊂ Rd:

∂θ(t, ξ)

∂t
+ f(θ)(t, ξ) + Aαθ(t, ξ) = (G(θ)η)(t, ξ), (1.1)
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with initial condition
θ(0, ξ) = θ0(ξ), (1.2)

where θ(t, ξ) is a (possibly vector valued) function of ξ ∈ O and t ≥ 0, 0 < α ≤ 1 are real
numbers. Here A is an unbounded positive definite self-adjoint operator, f(θ) is a nonlinear
term and η(t, ξ) is a Gaussian random field, white noise in time, subject to the restrictions
imposed below.

This model includes a large number of nonlinear models in fluid dynamics such as the
fractional Burgers equation (see [KNS08]), the quasi-geostrophic equation (see [CV10], [RZZ12]
and the reference therein), the Navier-Stokes equation (see e.g.[GF95]), surface growth models
(see e.g.[BFR09]) and reaction-diffusion equations.

The main result in [LR13] establishes the local existence and uniqueness of solutions to
(1.1) driven by additive noise if the coefficients satisfy some local monotonicity and gener-
alized coercivity conditions. However, the supercritical case (i.e. α < 1

2
) of the stochastic

quasi-geostrophic equation and the stochastic fractional Burgers equation are not within the
framework in [LR13]. To the best of our knowledge there are no results in the literature that
cover these cases.

In the first part of this paper we establish local existence and uniqueness of solutions in
C([0,∞);Hs0) (for the definition of Hs0 see below) for equation (1.1) (see Theorem 3.2). Here
we emphasize that our results in particular cover the supercritical case (i.e. α < 1

2
) of the

quasi-geostrophic equation and the fractional Burgers equation. In particular, using our result
for the critical case (i.e. α = 1

2
) of the quasi-geostrophic equation driven by linear multiplicative

noise we obtain existence and uniqueness of global solutions (see Remark 5.7). The technical
key point to achieve this is to identify the appropriate coercivity condition (b.1) and the local
monotonicity condition (b.3) which are formulated to hold in two different Hilbert spaces for the
existence and uniqueness respectively. Moreover, due to the dissipation term of the equation,
by a boot-strapping argument, we can deduce the solution has enough regularity to control
the nonlinear term (see (b.2)). We also emphasize that our conditions are satisfied by all the
examples mentioned above (see Section 5).

The first difficulty arising is to prove that the solution is continuous with respect toHs0-norm
when the initial value is in Hs0 . In [GV12] the authors prove local existence and uniqueness of
solutions for the stochastic Euler equation. In that paper the result is first proved for smooth
initial values and then the authors deal with more general initial values by approximation.
However, this method cannot be applied to the fractional Burgers equation since we cannot use
the commutator estimate (Lemma 5.3) in Hs to control the nonlinear term of the fractional
Burgers equation. Instead, we use a boot-strapping argument to deduce that the solution is in
C((0, T ];Hs0) and then we prove the continuity in t = 0. The second obstacles lies in the lack of
the Yamada-Watanabe theorem for the local solution. Here we view the local solution as a global
solution for another equation (see (3.18)) and hence we can use the Yamada-Watanabe theorem
from [Ku07] for equation (3.18) to obtain the existence and uniqueness of a (probabilistically)
strong solution.

Recently, there has been a lot of work done on how results on partial differential equations
(PDE) change due to random perturbations (see [FGP10, Fl10, DFPR12, GV12] and references
therein). A very interesting case of regularization by noise is the case when the PDE is not
well posed, but the SPDE is well posed. In the deterministic case, when α < 1/2 the global
existence and uniqueness of smooth solutions for the quasi-geostrophic equation remains an
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open problem. Also the uniqueness of weak solutions for the surface growth model is still an
open problem. For the fractional Burgers equation in the supercrtical case the solution will blow
up in Hs in finite time when s > 3

2
− 2α (see [KNS08, Theorem 1.4]). In [GV12] the authors

obtain that adding linear multiplicative noise to the 3D Euler equation provides a regularizing
effect. Inspired by this we establish such kind of result for (1.1). More precisely:

In the second part of this paper we consider a special case of a linear multiplicative noise
βθdW with W a real-valued Brownian motion, β ∈ R, and prove that for any R ≥ 1: whenever
∥θ0∥Hs0 ≤ κ(R, β2),

P (θ is global ) ≥ 1−R−1/4,

and
P (∥θ(t)∥Hs0 → 0 as t → ∞) ≥ 1−R−1/8,

where κ = κ(R, β2) is some explicit functions such that

lim
β2→∞

κ(R, β2) = ∞,

for every fixed R ≥ 1 (see Theorem 4.1). This can be viewed as a kind of global existence
result in the large noise asymptotics. We transform (1.1) to a PDE with a random coefficient
producing a damping term. We can exploit this random damping as done in [GV12]. This
damping term is strong enough to force the solution to go to 0 as t → ∞.

This paper is organized as follows. In Section 2 we recall some preliminaries. In Section
3, we prove the existence and uniqueness of local solutions to (1.1). The regularization result
obtained through perturbing by noise is given in Section 4. In Section 5, we apply the results
from Sections 3 and 4 to the concrete fractional SPDE mentioned at the beginning of this
introduction.

2 Notations and Preliminaries

Let H be a separable Hilbert space and | · |, ⟨·, ·⟩ denote the norm and inner product in H
respectively. Let A : D(A) ⊂ H → H be a positive definite self-adjoint operator such that A−1

is compact on H. From this we infer the existence of a complete orthonormal basis {ek}k≥0

for H of eigenfunctions of A such that the associated sequence of eigenvalues {λk} form an
increasing unbounded sequence.

Using the basis {ek} we may also define the fractional powers of A. Given s > 0 define

Hs := D(A
s
2 ) = {f ∈ H :

∑
k

λs
k|⟨f, ek⟩|2 < ∞},

and
A

s
2f :=

∑
k

λ
s
2
k ⟨f, ek⟩ek, f ∈ D(As).

For s < 0 define Hs to be the dual of H−s. Set Λ = A1/2. For s > 0, define the associated
Hilbert norm

∥f∥2Hs := |Λsf |2 =
∑
k

λs
k|⟨f, ek⟩|2.
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Then we can easily verify that Hs1 ⊂ Hs2 is a compact embedding if s1 > s2. Let Φ(Hr;Hu)
denote all measurable mappings from Hr to Hu for r, u ∈ R and Hn = span{ej}j≤n.

First we prove the following lemma for later use.

Lemma 2.1 B ⊂ C((0, T ];Hs) is relatively compact with respect to the topology induced
by the complete metric

ρ(x, y) :=
∞∑
k=1

1

2k
( sup
t∈[ 1

k
,T ]

∥x(t)− y(t)∥Hs ∧ 1)

if the following conditions hold:
(a) For any k ∈ N there exists a constant C(k) such that

sup
x∈B

sup
t∈[ 1

k
,T ]

∥x(t)∥Hs+1 < C(k).

(b)

lim
δ→0

sup
x∈B

∞∑
k=1

1

2k
( sup
|r−t|≤δ, 1

k
≤r,t≤T

∥x(t)− x(r)∥Hs ∧ 1) = 0

Proof Consider a sequence {xn} in B. By (a), (b) and the Arzela-Ascoli theorem for any k ∈ N
we can find subsequence {xk

nj
} which is a subsequence of {xk−1

nj
} converging in C([ 1

k
, T ];Hs).

Then by a diagonal argument the result follows. �

3 Local existence and uniqueness

In this section we consider the following stochastic equation with multiplicative noise in H

dθ + (f(θ) + Aαθ)dt = G(θ)dW, (3.1)

θ(0) = θ0,

where α ∈ (0, 1] and W (t) is a cylindrical Wiener process in a separable Hilbert space K defined
on a filtered probability space (Ω,F , (Ft)t≥0, P ). Here G is a measurable mapping from H to
L2(K,H) (i.e. = all Hilbert-Schimit operator form K to H) and we assume that there exists
some s0 ≥ 1 such that f ∈ Φ(Hs0 ;H) ∩ Φ(Hs0+1+α;Hs0) and for every φ ∈

∩∞
l=1H

l, ⟨f(·), φ⟩
is continuous from Hs0 to R. Furthermore, θ0 is an Hs0-valued F0-measurable function on Ω.

Assume that f satisfies the following conditions:

(b.1) (Coercivity condition) For every s ∈ [s0, s0 + 1] there exists some locally bounded
function ρ1 on R and ε0 ∈ (0, 1) so that for every v ∈ H2s the following is satisfied:

−⟨f(v),Λ2sv⟩ ≤ ρ1(|Λs0v|)|Λs0v|2 + ε0|Λs+αv|2. (3.2)

Remark By interpolation and Young’s inequality (3.2) is equivalent to the following:

−⟨f(v),Λ2sv⟩ ≤ ρ1(|Λs0v|)|Λsv|2 + ε0|Λs+αv|2.
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(b.2) (Growth condition) For s = s0, s0 − 1 there exists some locally bounded function ρ2
on R such that for every v ∈ Hs0+1+α

|Λsf(v)| ≤ ρ2(|Λs0v|)|Λs+1+αv|. (3.3)

(b.3) (Local monotonicity condition) There exists some locally bounded function ρ3, ρ4 on
R and ε̃0 ∈ (0, 1) such that for v1, v2 ∈ Hs0

−⟨v1 − v2, f(v1)− f(v2)⟩ ≤ (ρ3(|Λs0v1|) + ρ4(|Λs0v2|))|v1 − v2|2 + ε̃0|Λα(v1 − v2)|2. (3.4)

Also assume that G satisfies the following conditions:
(G.1) For all s ∈ [s0, s0 + 1], G is an operator from Hs to L2(K,Hs) and there exists some

locally bounded function ρ5 on R such that for all v ∈ Hs

∥ΛsG(v)∥L2(K,H) ≤ ρ5(|Λs0v|)(|Λsv|+ 1).

(G.2) There exists some locally bounded function ρ6, ρ7 on R such that for v1, v2 ∈ Hs0

∥G(v1)−G(v2)∥L2(K,H) ≤ (ρ6(|Λs0v1|) + ρ7(|Λs0v2|))|v1 − v2|.

First we make precise the notions of local, maximal and global solutions of (3.1).

Definition 3.1 Fix a stochastic basis (Ω,F , P,Ft,W ).
(i) A local strong solution of (3.1) is a pair (θ, τ), where τ is an (Ft)-stopping time and

θ = (θ(t))t≥0 is a predictable Hs0-valued process such that θ(·∧τ) ∈ L2(Ω;L2
loc([0,∞);Hs0+α)),

θ(· ∧ τ) ∈ C([0,∞);Hs0) P − a.s.,

and for every t ≥ 0, φ ∈
∩∞

l=1H
l

⟨θ(t ∧ τ), φ⟩+
∫ t∧τ

0

⟨f(θ) + Aαθ, φ⟩dt = ⟨θ0, φ⟩+ ⟨
∫ t∧τ

0

G(θ)dW,φ⟩ P − a.s..

(ii) We say that local pathwise uniqueness holds if given any pair (θ1, τ 1), (θ2, τ 2) of local
strong solutions of (3.1) with the same initial condition, the following holds:

P [θ1(t) = θ2(t); ∀t ∈ [0, τ 1 ∧ τ 2]] = 1.

(iii) A maximal strong solution of (3.1) is a pair ((θR)R∈N, (τR)R∈N) such that for each R ∈ N
the pair (θR, τR) is a local strong solution, τR is increasing such that ζ := limR→∞ τR > 0 P -a.s.
and

sup
t∈[0,τR]

|Λs0θR(t)| ≥ R P − a.s. on the set [ζ < ∞].

Remark If local pathwise uniqueness holds, then on [t < ζ] we can define θ(t) := θn(t) on
[t ≤ τR]. In this case we denote the maximal solution by (θ, (τR)R∈N, ζ). We note that in this
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case ζ does not depend on the sequences (θR)R∈N, (τR)R∈N. Indeed, suppose there is another
maximal strong solution ((θ̃R)R∈N, (τ̃R)R∈N) with ζ̃ := limR→∞ τ̃R. Then up to a P -zero set

{ζ̃ > ζ} ⊂ ∪n∈N{τ̃n > ζ} ⊂ ∪n∈N ∩m∈N {τ̃n > τm, ζ < ∞}
⊂ ∪n∈N ∩m∈N { sup

t∈[0,τ̃n]
|Λs0θ(t)| ≥ m, ζ < ∞}

⊂ ∪n∈N{ sup
t∈[0,τ̃n]

|Λs0θ(t)| = ∞, ζ < ∞}.

Since θ ∈ C([0, τ̃n];H
s0), it follows that P [ζ̃ > ζ] = 0. Therefore, in this case a maximal strong

solution (θ, (τR)R∈N, ζ) is said to be global if ζ = ∞ P - almost surely.

Now we want to show the existence and uniqueness of local solutions of (3.1)

Theorem 3.2 Assume that f satisfies (b.1-b.3) and G satisfies (G.1)(G.2). Fix a stochastic
basis (Ω,F , P,Ft,W ). Assume that θ0 is an Hs0-valued, F0-measurable random variable with
E|Λs0θ0|2 < ∞. Then we have local pathwise uniqueness for (3.1) and there exists a maximal
strong solution (θ, (τR)R∈N, ζ) of (3.1).

Proof [Step 1](Existence of local martingale solutions to (3.1))
First we construct the martingale solution to the following equation:

dθ + (χR(|Λs0θ|)f(θ) + Aαθ)dt = χR(|Λs0θ|)G(θ)dW, (3.5)

θ(0) = θ0 ∈ Hs0 .

Here we fix R > 0 and χR : [0,∞) → [0, 1] is a C∞ smooth function such that

χR(x) =

{
1 for x ≤ R,
0 for x > 2R.

Consider the Galerkin approximation θn of (3.5) on Hn:

dθn + (χR(|Λs0θn|)Pnf(θn) + Aαθn)dt = χR(|Λs0θn|)PnG(θn)dW, (3.6)

θn(0) = Pnθ0.

Here Pn is the projection operator onto Hn. Then by [PR07, Theorem 3.1.1] (b.2),(b.3), (G.1),
(G.2) there exists a unique global solution θn to (3.6). By Itô’s formula we obtain that for
s ≥ s0,

d|Λsθn|2 + 2|Λs+αθn|2dt ≤− 2χR(|Λs0θn|)⟨f(θn),Λ2sθn⟩dt+ χR(|Λs0θn|)∥ΛsPnG(θn)∥2L2(K,H)dt

+ 2⟨Λsθn, χR(|Λs0θn|)ΛsG(θn)dW ⟩.

By (b.1) and (G.1) we get for s ∈ [s0, s0 + 1]

d|Λsθn|2 + 2|Λs+αθn|2dt ≤[CχR(|Λs0θn|)|Λsθn|2 + 2ε0|Λs+αθn|2 + C]dt

+ 2χR(|Λs0θn|)⟨Λsθn,Λ
sG(θn)dW ⟩.

(3.7)
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Then taking s = s0 in (3.7) and by the BDG-inequality for p = 1, we have for any T > 0

E sup
t∈[0,T ]

|Λs0θn(t)|2 + E

∫ T

0

|Λs0+αθn(t)|2dt

≤CE|Λs0θ0|2 + CT + CE(

∫ T

0

|Λs0θn|2χR(|Λs0θn|)∥Λs0G(θn)∥2L2(K,H)dt)
1/2.

.

Thus by (G.1) we get that for every T > 0

E sup
t∈[0,T ]

|Λs0θn(t)|2 + E

∫ T

0

|Λs0+αθn(t)|2dt ≤ CT , (3.8)

where CT is a constant independent of n. Moreover, by (3.7), we obtain for s ∈ [s0, s0 + 1],
0 ≤ t0 ≤ t ≤ T ,

E|Λsθn(t)|2 +
∫ t

t0

E|Λs+αθn(t)|2dt ≤ CE|Λsθn(t0)|2 + C

∫ t

t0

(E(χR(|Λs0θn(r)|)|Λsθn(r)|2) + 1)dr.

(3.9)
Now fix any T and let ε ∈ (0, T ). By (3.8) we have that∫ ε

ε/2

E|Λs0+αθn(t)|2dt ≤ CT for all n ∈ N. (3.10)

Thus we can find τε,n ∈ [ ε
2
, ε] such that

ε

2
E|Λs0+αθn(τε,n)|2 ≤ CT for all n ∈ N. (3.11)

Moreover, from (3.9) with s = s0 + α and t = ε, t0 = τε,n we find that

E|Λs0+αθn(ε)|2 ≤ CE|Λs0+αθn(τε,n)|2 + C

∫ ε

ε/2

(E|Λs0+αθn(r)|2 + 1)dr ≤ C(
2

ε
CT + CT + T ),

where in the second inequality we used (3.10) and (3.11). Then taking s = s0 + α in (3.7) by
the BDG-inequality, we have

E sup
t∈[ε,T ]

|Λs0+αθn(t)|2 + E

∫ T

ε

|Λs0+2αθn(t)|2dt

≤CE|Λs0+αθn(ε)|2 +
∫ T

ε

(CE|Λs0+αθn|2 + C)dt

+ CE(

∫ T

ε

|Λs0+αθn|2χR(|Λs0θn|)∥Λs0+αG(θn)∥2L2(K,H)dt)
1/2

≤CE|Λs0+αθn(ε)|2 +
∫ T

ε

(CE sup
t∈[ε,r]

|Λs0+αθn(t)|2 + C)dr +
1

2
E sup

t∈[ε,T ]

|Λs0+αθn(t)|2.

.

Here in the second inequality we used (G.1) and Young’s inequality. Then Gronwall’s lemma
yields that for some constant C(ε)

E sup
t∈[ε,T ]

|Λs0+αθn(t)|2 + E

∫ T

ε

|Λs0+2αθn(t)|2dt ≤ C(ε) for all n ∈ N.
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Then by a boot-strapping argument after finitely many steps we obtain that for some constant
C1(ε)

E sup
t∈[ε,T ]

|Λs0+1θn(t)|2 + E

∫ T

ε

|Λs0+1+αθn(t)|2dt ≤ C1(ε) for all n ∈ N. (3.12)

Now we prove that the family L(θn), n ∈ N, is tight on C([ 1
k
, T ];Hs0), for all k ∈ N. By (3.12)

for each t ∈ [ 1
k
, T ], the laws of θn(t), n ∈ N, are tight on Hs0 . Then by Aldous’ criterion in

[Al78] it suffices to check that for all stopping times 1
k
≤ τn ≤ T and ηn ∈ R with ηn → 0,

lim
n

E∥θn(τn + ηn)− θn(τn)∥Hs0 = 0. (3.13)

We have

θn(τn+ηn)−θn(τn) = −
∫ τn+ηn

τn

(χR(|Λs0θn|)Pnf(θn)+Aαθn)dt+

∫ τn+ηn

τn

χR(|Λs0θn|)PnG(θn)dW.

By (3.12) we have that for large n

E∥
∫ τn+ηn

τn

Aαθn(t)dt∥Hs0 ≤ Cη1/2n (E

∫ T+1

1/k

|Λs0+2αθn(t)|2dt)1/2 → 0, as ηn → 0.

And by (b.2) and (3.12) we obtain that

E∥
∫ τn+ηn

τn

(χR(|Λs0θn|)Pnf(θn)dt∥Hs0

≤CE

∫ τn+ηn

τn

|Λs0+1+αθn|dt

≤Cη1/2n (E

∫ T+1

1/k

|Λs0+1+αθn|2dt)1/2 → 0, as ηn → 0.

Also by (G.1) we have

E∥
∫ τn+ηn

τn

χR(|Λs0θn|)PnG(θn)dW∥2Hs0 ≤ CE

∫ τn+ηn

τn

χR(|Λs0θn|)∥Λs0G(θn)∥2L2(K,H)dt

≤ Cηn → 0 as ηn → 0.

Thus (3.13) follows, which implies the tightness of L(θn), n ∈ N, in C([ 1
k
, T ];Hs0). This yields

that for each η > 0

lim
δ→0

sup
n

P ( sup
|r−t|≤δ, 1

k
≤r,t≤T

∥θn(t)− θn(r)∥Hs0 > η) = 0,

which implies that for each η > 0

lim
δ→0

sup
n

P

[
∞∑
k=1

1

2k
( sup
|r−t|≤δ, 1

k
≤r,t≤T

∥θn(t)− θn(r)∥Hs0 ∧ 1) > η

]
= 0.
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Then for every ε1 > 0 there exists a sequence δj, j ∈ N, such that

sup
n

P

[
∞∑
k=1

1

2k
( sup
|r−t|≤δj ,

1
k
≤r,t≤T

∥θn(t)− θn(r)∥Hs0 ∧ 1) >
1

j

]
<

ε1
2j+1

.

Let

B =
(
∩k {x ∈ C([1/k, T ];Hs0) : sup

t∈[ 1
k
,T ]

∥x(t)∥Hs0+1 ≤ C1(
1

k
)1/2(k +N)}

)
∩
(
∩j {x ∈ C([1/k, T ];Hs0) :

∞∑
k=1

1

2k
( sup
|r−t|≤δj ,

1
k
≤s,t≤T

∥x(t)− x(r)∥Hs0 ∧ 1) ≤ 1

j
}
)
.

Here C1(
1
k
) is the constant in (3.12) with ε = 1

k
. Thus by Lemma 2.1 B is a relatively compact

set in C((0, T ];Hs0) and by (3.12) we can choose N large enough such that P (θn ∈ Bc) <
ε1 for all n ∈ N, which implies that L(θn), n ∈ N, are tight in C((0, T ];Hs0). By (3.8), a
similar calculation as in the proof of (3.13) and Aldous’ criterion in [Al78] we also obtain that
L(θn), n ∈ N, are tight in C([0, T ];Hs0−1), since θ0 ∈ L2(Ω;Hs0).

Therefore, we find a subsequence, still denoted by θn, such that L(θn) converges weakly in

C((0, T ];Hs0) ∩ C([0, T ];Hs0−1).

By Skorohod’s embedding theorem, there exist a stochastic basis (Ω1,F1, {F1
t }t≥0, P

1) and, on
this basis, C((0, T ];Hs0) ∩ C([0, T ];Hs0−1)-valued random variables θ1, θ1n, n ≥ 1, such that θ1n
has the same law as θn on C((0, T ];Hs0) ∩ C([0, T ];Hs0−1), and θ1n → θ1 in C((0, T ];Hs0) ∩
C([0, T ];Hs0−1), P 1 -a.s. For θ1n we also have (3.8), thus for θ1, (3.8) is also satisfied by Fatou’s
lemma.

For each n ≥ 1, define the Hn-valued process

M1
n(t) := θ1n(t)− Pnθ0 +

∫ t

0

(χR(|Λs0θ1n|)Pnf(θ
1
n) + Aαθ1n)dr.

In fact, M1
n is a square integrable martingale with respect to the filtration

{G1
n}t = σ{θ1n(r), r ≤ t}

with quadratic variation process

⟨M1
n⟩t =

∫ t

0

χR(|Λs0θ1n(r)|)2PnG(θ1n(r))G(θ1n(r))
∗Pndr.

For all r ≤ t ∈ [0, T ], all bounded continuous functions ϕ on C([0, r];Hs0−1), and all v ∈ ∩∞
l=1H

l,
we have

E1(⟨M1
n(t)−M1

n(r), v⟩ϕ(θ1n|[0,r])) = 0

and

E1((⟨M1
n(t), v⟩2 − ⟨M1

n(r), v⟩2 −
∫ t

r

χR(|Λs0θ1n|)2∥G(θ1n)
∗Pnv∥2Kdr)ϕ(θ1n|[0,r])) = 0.
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By the BDG-inequality we have for any p ≥ 2

sup
n

E1|⟨M1
n(t), v⟩|2p ≤ C sup

n
E1(

∫ t

0

χR(|Λs0θ1n|)2∥G(θ1n)
∗Pnv∥2Kdr)p < ∞. (3.14)

By (b.2), we have

E1

∫ t

0

|χR(|Λs0θ1n|)⟨Pnf(θ
1
n), v⟩ − χR(|Λs0θ1|)⟨f(θ1), v⟩|dr

≤E1

∫ t

ε

|χR(|Λs0θ1n|)⟨Pnf(θ
1
n), v⟩ − χR(|Λs0θ1|)⟨f(θ1), v⟩|dr

+

∫ ε

0

|χR(|Λs0θ1n|)⟨Pnf(θ
1
n), v⟩ − χR(|Λs0θ1|)⟨f(θ1), v⟩|dr

≤E1

∫ t

ε

|χR(|Λs0θ1n|)⟨f(θ1n), v⟩ − χR(|Λs0θ1|)⟨f(θ1), v⟩|dr

+ E1

∫ t

ε

|χR(|Λs0θ1n|)⟨f(θ1n), (Pn − I)v⟩|dr

+ C|v|E1

∫ ε

0

(χR(|Λs0θ1|)|Λs0−1f(θ1)|+ χR(|Λs0θ1n|)|Λs0−1f(θ1n)|)dr

≤E1|
∫ t

ε

χR(|Λs0θ1n|)⟨f(θ1n), v⟩ − χR(|Λs0θ1|)⟨f(θ1), v⟩|dr

+ CE1

∫ t

ε

|Λs0+αθ1n||(Pn − I)v|dr

+ C|v|E1

∫ ε

0

(|Λs0+αθ1|+ |Λs0+αθ1n|)dr.

Letting first n → ∞ and then ε → 0, by the continuity of ⟨f(·), v⟩ on Hs0 and (3.8) the latter
converges to zero. This and (3.8) implies that

lim
n→∞

E1|⟨M1
n(t)−M1(t), v⟩| = 0,

and hence by (3.14)
lim
n→∞

E1|⟨M1
n(t)−M1(t), v⟩|2 = 0,

where

M1(t) := θ1(t)− θ1(0) +

∫ t

0

(χR(|Λs0θ1|)f(θ1) + Aαθ1)dr.

Taking the limit we obtain that for all r ≤ t ∈ [0, T ], all bounded continuous functions ϕ on
C([0, r];Hs0−1), and v ∈ ∩∞

l=1H
l,

E1(⟨M1(t)−M1(r), v⟩ϕ(θ1|[0,r])) = 0.

and similarly by (G.1), (G.2) and (3.8) we obtain for r ≤ t ∈ [0, T ],

E1((⟨M1(t), v⟩2 − ⟨M1(r), v⟩2 −
∫ t

r

χR(|Λs0θ|)2∥G(θ)∗v∥2Kdr)ϕ(θ1|[0,r])) = 0.

10



Thus by the martingale representation theorem (cf. [DZ92, Theorem 8.2], [O05, Theorem 2])
there exists a stochastic basis (Ω̃, P̃ , F̃ , (F̃t)t≥0), a cylindrical Wiener process W̃ and an (F̃t)-
adapted process θ̃ with paths in C([0, T ];Hs0−1)∩C((0, T ];Hs0) such that θ̃ satisfies (3.5) with
W replaced by W̃ and θ̃(0) has the same distribution as θ0.

Now we want to show that θ̃(t) converges to θ̃(0) strongly in Hs0 as t → 0. Since (3.8) is
also satisfied by θ̃, we have θ̃ ∈ C([0, T ];Hs0−1)∩L∞([0, T ];Hs0) which implies that θ̃ is weakly
continuous in Hs0 . Consequently

|Λs0 θ̃(0)| ≤ lim inf
t→0

|Λs0 θ̃(t)|. (3.15)

Taking s = s0 in (3.7) and integrating from 0 to t by the BDG-inequality with p = 1 we have
that

E sup
r∈[0,t]

|Λs0θn(r)|2 ≤ E|Λs0θ0|2 + C

∫ t

0

(E(χR(|Λs0θn(r)|)|Λs0θn(r)|2) + 1)dr

+CE(

∫ t

0

χR(|Λs0θn(r)|)|Λs0θn(r)|2(|Λs0θn(r)|2 + 1)dr)1/2.

Thus, we get

Ẽ sup
r∈[0,t]

|Λs0 θ̃(r)|2 ≤ lim inf
n→∞

E sup
r∈[0,t]

|Λs0θn(r)|2 ≤ E|Λs0θ0|2 + Ct+ Ct1/2,

which implies that
Ẽ lim sup

t→0
|Λs0 θ̃(t)|2 ≤ Ẽ|Λs0 θ̃(0)|2. (3.16)

Combining (3.15) and (3.16) we have that

Ẽ|Λs0 θ̃(0)|2 ≤ Ẽ lim inf
t→0

|Λs0 θ̃(t)|2 ≤ Ẽ lim sup
t→0

|Λs0 θ̃(t)|2 ≤ Ẽ|Λs0 θ̃(0)|2,

which implies by (3.15) that
|Λs0 θ̃(0)|2 = lim

t→0
|Λs0 θ̃(t)|2.

This equality combined with the weak convergence implies that θ̃(t) converges to θ̃(0) strongly
in Hs0 as t → 0 which implies that θ̃ ∈ C([0, T ];Hs0) for every T > 0.

Define the stopping time

τR := inf{t ≥ 0 : |Λs0 θ̃(t)| ≥ R}.

Then (θ̃, τR) is a local martingale solution of (3.1) such that θ̃(· ∧ τR) ∈ C([0,∞);Hs0) P -a.s
and θ̃(· ∧ τR) ∈ L2(Ω, L2

loc([0,∞), Hs0+α)). Now define θ(t) := θ̃(t ∧ τR) . By the continuity of
θ̃ we have

τR = inf{t ≥ 0 : |Λs0θ(t)| ≥ R}. (3.17)

Thus θ satisfies the following equation for any φ ∈ ∩∞
l=1H

l

⟨θ(t), φ⟩+
∫ t∧τR

0

⟨f(θ) + Aαθ, φ⟩dt = ⟨θ(0), φ⟩+ ⟨
∫ t∧τR

0

G(θ)dW̃ , φ⟩ for all t ≥ 0, (3.18)

11



with τR given by (3.17). Here W̃ is the cylindrical Wiener process from the martingale repre-
sentation theorem.

[Step 2] (Pathwise uniqueness of (3.18)) Now we want to prove the pathwise uniqueness of so-
lutions for (3.18) in L2(Ω;L2

loc([0,∞);Hs0+α)). Assume that θ1 and θ2 are two solutions of (3.18)
in C([0, T ];Hs0) with the same initial value θ0 on the same stochastic basis (Ω,F , P,Ft,W ).
Take v = θ1 − θ2 and we have for t ∈ [0, τ 1R ∧ τ 2R]

v(t) +

∫ t

0

(f(θ1)− f(θ2) + Aαv)dt =

∫ t

0

(G(θ1)−G(θ2))dW,

where τ 1R and τ 2R are given by (3.17) with θ replaced by θ1 and θ2 respectively. By Itô’s formula,
we obtain that for t ∈ [0, τ 1R ∧ τ 2R]

d|v(t)|2 + 2|Λαv(t)|2dt ≤− 2⟨v(t), f(θ1)− f(θ2)⟩dt
+ 2⟨v(t), (G(θ1)−G(θ2))dW ⟩+ ∥G(θ1)−G(θ2)∥2L2(K,H)dt

Then by (b.3)(G.2) and Young’s inequality we deduce that for t ∈ [0, τ 1R ∧ τ 2R]

d|v(t)|2 + 2|Λαv(t)|2dt ≤(2ε̃0|Λαv(t)|2 + C|v(t)|2)dt
+ 2⟨v(t), (G(θ1)−G(θ2))dW ⟩.

Thus, we have that for t ∈ [0, τ 1R ∧ τ 2R]

E|v(t)|2 ≤ C

∫ t

0

E|v(r)|2dr.

Therefore, Gronwall’s lemma yields that for t ∈ [0, τ 1R ∧ τ 2R],

E|v(t)|2 = 0.

Hence we obtain that P -a.s θ1(t) = θ2(t) for t ∈ [0, τ 1R ∧ τ 2R]. Then from (3.17) we get that
τ 1R = τ 2R P -a.s. Moreover by (3.18) we know that θi(t) = θi(τ

i
R) for t > τ iR, i = 1, 2. Thus we

obtain pathwise uniqueness of (3.18).
[Step 3](Existence of local strong solutions) Now fix a stochastic basis (Ω,F , P,Ft,W ).

By Steps 1, 2 and the Yamada-Watanabe Theorem in [Ku07, Theorem 3.14], we obtain that
there exists a strong solution θR of (3.18) with τR = inf{t ≥ 0 : |Λs0θR(t)| ≥ R} such that
θR = θR(·∧τR) ∈ L2(Ω;L2

loc([0,∞);Hs0+α) and θR(·∧τR) ∈ C([0,∞);Hs0) P -a.s.. This implies
that (θR, τR) is a local strong solution for (3.1) in the sense of Definition 3.1 (i).

[Step 4](Local pathwise uniqueness) Assume that (θ1, τ 1) and (θ2, τ 2) are two local strong
solutions for (3.1). Then define the stopping time

τR = inf{t ≥ 0 : |Λs0θ1(t)|+ |Λs0θ2(t)| ≥ R}.

By a modification of Step 2, we obtain P [θ1(t) = θ2(t); ∀t ∈ [0, τ 1 ∧ τ 2 ∧ τR]] = 1. Thus local
pathwise uniqueness follows by taking the limit R → ∞.

[Step 5](Existence of maximal strong solutions) Now take R ∈ N and define ζ := limR→∞ τR.
Since θ0 ∈ L2(Ω;Hs0), we have ζ > 0 P -a.s.. Define θ(t) := θR(t) on [t ≤ τR]. Hence obviously,
(θ, (τR)R∈N, ζ) is a maximal strong solution of (3.1). �
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4 Non-explosion of solutions driven by multiplicative

noise

In this section we consider the stochastic equation with linear multiplicative noise

dθ + (f(θ) + Aαθ)dt = βθdW, (4.1)

θ(0) = θ0,

where in this case β ∈ R, α ∈ (0, 1] and W is a single 1D Brownian motion. It is easy to show
that G(θ)fi = δ1iβθ satisfies (G.1), (G.2). Here {fi} is an orthonormal basis on K. Thus the
result in Theorem 3.2 can be applied here. In this section we additionally assume the following
condition which is stronger than (b.1):

(b.1’) For every s ∈ [s0, s0 + 1] there exists some strictly increasing continuous function ρ1
on R satisfying limR→∞ ρ1(R) = ∞ and ε0 ∈ (0, 1) so that for every a ∈ (0,∞) and every
v ∈ H2s

−⟨a−1f(av),Λ2sv⟩ ≤ ρ1(a|Λs0v|)|Λs0v|2 + ε0|Λs+αv|2.

Now we transform (4.1) to a random PDE. Consider the stochastic process

γ(t) = e−βWt , t ≥ 0

Define v := γθ and by Itô’s formula we have

∂tv +
β2

2
v + γf(γ−1v) + Aαv = 0, (4.2)

v(0) = θ0.

Theorem 4.1 Assume that f satisfies (b.1’), (b.2), and (b.3). Then there exists a map

κ : [1,∞)× (β2
0 ,∞) → [0,∞) defined by κ(R, β2) := ρ−1

1 (β
2

4
)2 1

R
, where ρ1 is as in (b.1’) and β2

0

is such that ρ−1
1 (β2

0/4) = 0, satisfying

lim
β2→∞

κ(R, β2) = ∞,

such that whenever for β2 > β2
0

|Λs0θ0|2 ≤ κ(R, β2), P − a.s.,

then

P (ζ = ∞) ≥ 1− 1

R1/4

and

P ( lim
t→∞

|Λs0θ(t)| = 0) ≥ 1− 1

R1/8
.

In particular, for every ε > 0 and any given deterministic initial condition, the probability that
solutions corresponding to sufficiently large |β| never blow up, is greater than 1− ε.
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Proof By Theorem 3.2 we obtain a maximal strong solution (θ, (τR)R∈N, ζ) for (4.1). Define
v := γθ. In order to get a good estimate for v, we first prove that the solutions of the Galerkin
approximations converge to v. Fix ω ∈ Ω and consider the following Galerkin approximation
to the cutoff equation of (4.2):

∂tvn +
β2

2
vn + χR(|Λs0(γ−1vn)|)Pnγf(γ

−1vn) + Aαvn = 0, (4.3)

v(0) = Pnθ0,

where Pn is the projection operator from (3.6). Multiplying both sides of (4.3) by Asvn and
taking inner product in L2 we obtain that for s ∈ [s0, s0 + 1]

d|Λsvn|2

dt
+ β2|Λsvn|2 + 2|Λs+αvn|2 = −2χR(|Λs0(γ−1vn)|)⟨γf(γ−1vn),Λ

2svn⟩.

By (b.1’) we get

d|Λsvn|2

dt
+ β2|Λsvn|2 + 2|Λs+αvn|2 ≤ 2ε0|Λs+αvn|2 + 2χR(|Λs0(γ−1vn)|)ρ1(γ−1|Λs0vn|)|Λsvn|2.

(4.4)
Then taking s = s0 in (4.4) by Gronwall’s lemma we have that

sup
t∈[0,T ]

|Λs0vn(t)|2 +
∫ T

0

|Λs0+αvn|2dt ≤ C(ω),

where C(ω) is a constant depending on ω, but is independent of n. By a similar argument as
in the proof of Theorem 3.2, [Step 1] we obtain that

sup
t∈[ε,T ]

|Λs0+1vn(t)|2 +
∫ T

ε

|Λs0+1+αvn|2dt ≤ C2(ε, ω).

Here C2(ε, ω) is a constant depending on ε and ω. By a similar calculation as in the proof
of Theorem 3.2, [Step 1] and the Arzela-Ascoli theorem, {vn} is compact in C([0, T ];Hs0−1) ∩
C((0, T ];Hs0) which implies that there exists a subsequence still denoted by vn converging
to some ṽ in C([0, T ];Hs0−1) ∩ C((0, T ];Hs0). Also by (4.4) it is easy to obtain that ṽ ∈
C([0, T ];Hs0). Now define

τ̃R := inf{t ≥ 0 : |Λs0(γ−1ṽ(t))| ≥ R}.

Then ṽ satisfies the following equation for any φ ∈ ∩∞
l=1H

l

⟨ṽ(t ∧ τ̃R), φ⟩ − ⟨θ0, φ⟩+
β2

2

∫ t∧τ̃R

0

⟨ṽ, φ⟩dr +
∫ t∧τR

0

⟨γf(γ−1ṽ) + Aαṽ, φ⟩dr = 0 for all t ≥ 0.

(4.5)
The ω-wise uniqueness of (4.5) can be proved similarly to Theorem 3.2, [Step 2]. By Itô’s

formula, v(t) is a solution to (4.5) which implies that v(t) = ṽ(t), t ∈ [0, τR ∧ τ̃R], τR = τ̃R.
Taking the limit in (4.4) with s = s0 we obtain that for 0 ≤ r ≤ t ≤ τR with R large enough

|Λs0v(t)|2 + β2

∫ t

r

|Λs0v|2dt1 ≤ |Λs0v(r)|2 + 2

∫ t

r

ρ1(γ
−1|Λs0v|)|Λs0v|2dt1.
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For the case that ρ−1
1 (β

2

4
) > 0 we now define the stopping time

σ := inf{t ≥ 0 : ρ1(γ
−1|Λs0v|) > β2

4
} = inf{t ≥ 0 : |Λs0θ| > ρ−1

1 (
β2

4
)}.

For R large enough we have σ ≤ τR. Then we obtain on [0, σ],

d|Λs0v|2

dt
+

β2

2
|Λs0v|2 ≤ 0.

Thus we have on [0, σ],

|Λs0v(t)|2 ≤ |Λs0θ0|2 exp(−
β2t

2
).

Recalling that for our maximal solution (θ, (τR)R∈N, ζ) we have θ = γ−1v, we deduce that

|Λs0θ(t)|2 ≤ γ−2|Λs0θ0|2 exp(−
β2t

2
). (4.6)

Set ρ(t) := γ−2 exp(−β2t
2
) = exp(2βWt − β2t

2
). Fix any R ≥ 1 and define the stopping time

σR := inf{t ≥ 0 : ρ(t) ≥ R}.

Then for t ∈ [0, σ ∧ σR) we have

|Λs0θ(t)|2 ≤ R|Λs0θ0|2. (4.7)

Recall that κ(R, β2) := ρ−1
1 (β

2

4
)2 1

R
. So,

lim
β2→∞

κ(R, β2) = ∞,

and if the initial datum satisfies
|Λs0θ0|2 ≤ κ(R, β2),

then by (4.7) for all t ∈ [0, σ ∧ σR],

|Λs0θ(t)|2 ≤ ρ−1
1 (

β2

4
)2,

which implies

|Λs0θ(t)| ≤ ρ−1
1 (

β2

4
).

Hence due to the definition of σ, σ∧σR = σR and hence ζ ≥ τR ≥ σ ≥ σ∧σR = σR. Therefore,
the maximal strong solution (θ, (τR)R∈N, ζ) is global in time on the set {σR = ∞}. By the
martingale maximal inequality it follows ( see e.g. [GV12, Lemma 9.1]) that

P (σR = ∞) ≥ 1− 1

R1/4
.

Thus the first assertion follows. Now we prove the second result. Set ρ0(t) := γ−2 exp(−β2t
4
) =

exp(2βWt − β2t
4
). Fix any R ≥ 1 and define the stopping time

σ0
R := inf{t ≥ 0 : ρ0(t) ≥ R}.
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Then by (4.6) on [0, σ ∧ σ0
R] we have

|Λs0θ(t)|2 ≤ R|Λs0θ0|2 exp(−
β2t

4
).

Thus, if the initial datum satisfies

|Λs0θ0|2 ≤ κ(R, β2),

then for all t ∈ [0, σ ∧ σ0
R],

|Λs0θ(t)|2 ≤ ρ−1
1 (

β2

4
)2 exp(−β2t

4
). (4.7)

Hence due to the definition of σ, σ∧σ0
R = σ0

R. Hence ζ ≥ σ ≥ σ0
R. Therefore the maximal strong

solution (θ, (τR)R∈N, ζ) is global in time and |Λs0θ(t)| → 0 as t → ∞ on the set {σ0
R = ∞} .

But again by the martingale maximal inequality we have

P (σ0
R = ∞) ≥ 1− 1

R1/8
.

Thus the second assertion follows. �

5 Application to some examples

In this section we describe some examples for (3.1) satisfying conditions (b.1’),(b.2),(b.3) im-
posed above. First, we recall some useful estimates which will be used later.

Let O be a bounded open domain in Rd with smooth boundary and let C∞
c (O) denote the

set of all smooth functions from O to R with compact supports. For p > 1, let Lp(O) be the
Lp -space in which the norm is denoted by ∥ · ∥Lp . If A is −∆ on the domain O with Dirichlet
or periodic boundary condition, then we have the following estimates which will be used later.
For s ≥ 0, p ∈ [1,∞] we use Hs,p

0 (O) (or Hs,p(O)) to denote the Sobolev space os all f ∈ H
for which ∥Λsf∥Lp is finite. Let us start with the following important product estimates from
[Re95, Lemma A.4]:

Lemma 5.1 Suppose that s > 0 and p ∈ (1,∞). If f, g ∈ C∞
c (O) or C∞(Td), then

∥Λs(fg)∥Lp ≤ C(∥f∥Lp1∥Λsg∥Lp2 + ∥g∥Lp3∥Λsf∥Lp4 ),

with pi ∈ (1,∞], i = 1, ..., 4 such that

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

We shall also use the following standard Sobolev inequality (cf. [St70, Chapter V]):

Lemma 5.2 Suppose that q > 1, p ∈ [q,∞) and

1

p
+

σ

d
=

1

q
.
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Suppose that Λσf ∈ Lq, then f ∈ Lp and there is a constant C ≥ 0 such that

∥f∥Lp ≤ C∥Λσf∥Lq .

The following commutator estimates from [Ju04, Lemma 3.1] are very important for later
use.

Lemma 5.3 (Commutator Estimates) Suppose that s > 0 and p ∈ (1,∞). If f, g ∈
C∞

c (O) or C∞(Td), then

∥Λs(fg)− fΛs(g)∥Lp ≤ C(∥∇f∥Lp1∥Λs−1g∥Lp2 + ∥g∥Lp3∥Λsf∥Lp4 ),

with pi ∈ (1,∞), i = 1, ..., 4 such that

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

Remark 5.4 Now we give examples for G satisfying (G.1) and (G.2) when H = L2(O) and
A is as in Section 2. Let fn, n ∈ N, be an ONB of K. For s ∈ R+, we write s = [s] + {s} with
[s] ∈ Z, {s} ∈ (0, 1). For y ∈ K

G(θ)y =
∞∑
k=1

bkg(θ)⟨y, fk⟩K , θ ∈ Hα,

where bk ∈ C∞(Td) and g : R 7→ R is C∞ smooth. Assume s0 ≥ d
2
+ 1,

(
∑
k

|Λs0+1bk|2)1/2 ≤ M,

and that there exists m5 > 0 such that for k = 1, ..., [d
2
] + [s0] + 2,

|g(k)(ξ)| ≤ C(1 + |ξ|m),

where g(k) denotes the k-th derivative of g.
Now for s ∈ [s0, s0 + 1], we have

∥ΛsG(θ)∥L2(K,H) ≤ M |Λsg(θ)| ≤ M |Λ{s}D[s]g(θ)|.

Since
D[s]g(θ) =

∑
β1+...+βµ=[s]

Cβθ
(β1) · ... · θ(βµ)g(µ)(θ),

where θ(βi) denotes the βi-th derivative of θ, we have

∥ΛsG(θ)∥L2(K,H) ≤ M
∑

β1+...+βµ=[s]

Cβ|Λ{s}(θ(β1) · ... · θ(βµ)g(µ)(θ))|.

17



Now we estimate each term of the right hand side of the above inequality: for µ = 1 by Lemmas
5.1, 5.2 we have

|Λ{s}(θ([s])g(1)(θ))| ≤C[|Λ{s}θ([s])|∥g(1)(θ)∥L∞ + |Λ{s}θ([s])|∥Λ{s}g(1)(θ)∥Lp ]

≤C[|Λ{s}θ([s])|∥g(1)(θ)∥L∞ + |Λ{s}θ([s])|∥∇θ(|θ|m + 1)∥Lp ]

≤C[|Λs0θ|m+1 + 1]|Λsθ|.

Here 1
p
= ({s}/d) ∧ (1

2
− ε) with some ε > 0 and we used Hs0 ⊂ H1,p

0 (O) ⊂ H
{s},p
0 (O) (or

Hs0 ⊂ H1,p(O) ⊂ H{s},p(O)) and Hs0 ⊂ L∞ in the last inequality. For µ = 2, by Lemmas 5.1,
5.2 we have∑
β1+β2=[s]

|Λ{s}(θ(β1)θ(β2)g(2)(θ))| ≤C
∑

β1+β2=[s]

|Λ{s}(θ(β1)θ(β2))| · [∥g(2)(θ)∥L∞ + ∥Λ{s}g(2)(θ)∥Lp ]

≤C
∑

β1+β2=[s]

|Λ{s}+σ1θ(β1)||Λσ2θ(β2)| · [∥g(2)(θ)∥L∞ + ∥∇θ(|θ|m + 1)∥Lp ]

≤C|Λsθ||Λ
d
2 θ| · [|Λs0θ|m+1 + 1],

where 1
p
= ({s}/d)∧(1

2
−ε) with some ε > 0 and σ1, σ2 > 0, β1+σ1 ≤ [s], β2+σ2 ≤ s0, σ1+σ2 =

d
2
.

Here we used Hs0 ⊂ H1,p
0 (O) ⊂ H

{s},p
0 (O) (or Hs0 ⊂ H1,p(O) ⊂ H{s},p(O)) and Hs0 ⊂ L∞ in

the last inequality. The other terms can be estimated similarly and (G.1) follows. Furthermore,

∥G(θ1)−G(θ2)∥L2(K,H) ≤M |g(θ1)− g(θ2)|

≤M

∫ 1

0

∥g(1)(rθ1 + (1− r)θ2)∥L∞|θ1 − θ2|dr

≤C(|Λs0θ1|m + |Λs0θ2|m + 1)|θ1 − θ2|,

hence (G.2) holds.

In the following subsections we consider the same situation as described in Section 3
and 4, but give concrete examples for H,A and f respectively. We fix a stochastic basis
(Ω,F , (Ft)t≥0, P ) and a cylindrical Wiener process W on H.

5.1 Stochastic fractional Burgers equation in the supercritical case

We consider the following stochastic fractional Burgers equation in T1:

dθ + (θ∇θ + (−∆)αθ)dt = G(θ)dW. (5.1)

The stochastic Burgers equation with α = 1 has received an extensive amount of attention
(see e.g. [DDT94], [DZ96] and the references therein). In these papers, the authors obtained
existence and uniqueness of global solutions for α = 1. Recently to study the relation between
nonlinear and dissipative phenomena, many researchers studied the case when α < 1 in the
deterministic case. A. Kiselev, F. Nazarov and R. Shterenberg obtained in [KNS08] that if
α < 1

2
, the solution to (5.1) in the deterministic case may blow up in finite time. The stochastic

fractional Burgers equation driven by space-time white noise for general parameter α ∈ (3
4
, 1)
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has been studied in [BGD11], in which the authors obtain the existence and uniqueness of mild
solutions. Now we apply our Theorems 3.2 and 4.1 to (5.1).

Let

H := {f ∈ L2(T1;R) :
∫
T1

fdξ = 0}.

Av := −∆v v ∈ D(A) := H2,2(T1).

Then A is an unbounded positive definite self-adjoint operator and A−1 is compact on H. Then
Hs, s ∈ R, are the classical Sobolev spaces on T1. We set

f(v) := v∇v v ∈ H1.

We can easily find an s0 ≥ 1 such that f ∈ Φ(Hs0 ;H) ∩ Φ(Hs0+1+α;Hs0) and for every
φ ∈

∩∞
l=1H

l, ⟨f(·), φ⟩ is continuous from Hs0 to R. Moreover, by [KNS08, Lemma 2.1],
we obtain that for any positive constant a, s > 3

2
− 2α and v ∈ Hs+α ∩H2s

|⟨a∂ξ(v2),Λ2sv⟩| ≤ Ca|Λs+α−ε2v|2|Λqv| ≤ ε1|Λs+αv|2 + C2a
1/δ|Λqv|2+

1
δ ,

where s + α − ε2 > q > 3
2
− 2(α − ε2) and δ := δ(s) = ε2

s+α−q
. Here we used the interpolation

inequality and Young’s inequality in the last inequality. Thus, (b.1’) is satisfied if s0 >
3
2
− 2α

and s0 ≥ 1. By Lemmas 5.1 and 5.2 we have for s = s0, s0 − 1, v ∈ Hs0+1+α that

|Λs(v∇v)| ≤ C|Λs+1+αv||Λv|.

Then (b.2) is satisfied for s0 ≥ 1. Now we only need to prove (b.3). By a similar calculation as

in the proof of [KNS08, Theorem 2.8] we have that for θ1, θ2 ∈ Hs0 ∩H
3
2
−α,

|⟨∂ξ(θ21)− ∂ξ(θ
2
2), θ1 − θ2⟩| =|2⟨∂ξ(θ1), (θ1 − θ2)

2⟩+ 2⟨∂ξ(θ1 − θ2), θ2(θ1 − θ2)⟩|
=|2⟨∂ξ(θ1), (θ1 − θ2)

2⟩ − 2⟨∂ξ(θ1 − θ2), (θ1 − θ2)
2⟩

+ 2⟨∂ξ(θ1 − θ2), θ1(θ1 − θ2)⟩|
=|⟨∂ξ(θ1), (θ1 − θ2)

2⟩|
≤C|Λ( 3

2
−α)∨1θ1||θ1 − θ2||Λα(θ1 − θ2)|.

Thus (b.3) is satisfied if s0 ≥ (3
2
−α)∨ 1. Here in the third equality we used the integration by

parts and in the last inequality we used Lemma 5.2.
Now Theorems 3.2 and 4.1 apply to give the following results:

Theorem 5.5 Fix 0 < α < 1. Assume that G satisfies (G.1) and (G.2) with s0 ≥ (3
2
−α)∨1.

Assume that θ0 is an Hs0-valued, F0-measurable random variable with E|Λs0θ0|2 < ∞.
(i) Then local pathwise uniqueness holds and there exists a maximal strong solution (θ, (τR)R∈N, ζ)

of (5.1).
(ii) Moreover, for G(θ)fi = δ1iβθ there exists a positive deterministic funtion κ : [1,∞) ×

(0,∞) → (0,∞) defined by κ(R, β2) := ( β2

4C1
)2δ(s0) 1

R
, where C1, δ(s0) are as above, satisfying

lim
β2→∞

κ(R, β2) = ∞,
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such that whenever
|Λs0θ0|2 ≤ κ(R, β2) P − a.s.,

then

P (ζ = ∞) ≥ 1− 1

R1/4

and

P ( lim
t→∞

|Λs0θ(t)| = 0) ≥ 1− 1

R1/8
.

5.2 Stochastic quasi-geostrophic equation in the supercritical case

We consider the following stochastic quasi-geostrophic equation in T2: for 0 < α < 1

dθ + (u · ∇θ + (−∆)αθ)dt = G(θ)dW, (5.2)

where
u = (u1, u2) = (−R2θ,R1θ) = R⊥θ.

This equation is an important model in geophysical fluid dynamics. The case α = 1/2
exhibits similar features (singularities) as the 3D Navier-Stokes equations and can therefore
serve as a model case for the latter. In the deterministic case, the global existence of weak
solutions has been obtained in [Re95] and one most remarkable result in [CV06] gives the
existence of a classical solution for α = 1/2. In [KNV07] another very important result is
proved, namely that solutions for α = 1/2 with periodic C∞ data remain C∞ for all times. The
blow up or global regularity for α < 1/2 remains an open problem for the quasi-geostrophic
equation. For more details we refer to [CCCGW12] and the reference therein.

The 2D stochastic quasi-geostrophic equation on T2 for general parameter α ∈ (0, 1) has
been studied in [RZZ12], in which the authors obtain the existence of martingale solutions for
(5.2) for general parameter α ∈ (0, 1) and for both additive as well as multiplicative noise.

By the singular integral theory of Calderón and Zygmund (cf [St70, Chapter 3]), for any
p ∈ (1,∞), there is a constant C = C(p), such that

∥Rjθ∥Lp ≤ C(p)∥θ∥Lp .

Here Rj is the j-th periodic Riesz transform.
Now we apply Theorems 3.2 and 4.1 to (5.2). Let H := {f ∈ L2(T2;R),

∫
T2 fdξ = 0} and

Av := −∆v, v ∈ D(A) := H2,2(T2).

Then A is an unbounded positive definite self-adjoint operator and A−1 is compact on H. Then
Hs, s ∈ R, are the classical Sobolev spaces on T2. Set

f(v) := (−R2v,R1v) · ∇v = R⊥v · ∇v, v ∈ H1+δ0 ,

for some δ0 > 0 with Rjv being the j-th periodic Riesz transform.
We can easily find an s0 > 1 such that f ∈ Φ(Hs0 ;H) ∩ Φ(Hs0+2+α;Hs0+1) and for every

φ ∈
∩∞

l=1H
l, ⟨f(·), φ⟩ is continuous from Hs0 to R.
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Because ⟨uv ·∇Λsv,Λsv⟩ = 0 for v ∈ H2s and by Lemma 5.3 , we obtain that for any positive
constant a and s ≥ 2− α, v ∈ H2s,

|⟨auv · ∇v,Λ2sv⟩| = a|⟨Λs(uv · ∇v)− uv · ∇Λsv,Λsv⟩|
≤ Ca|Λsv|∥Λsv∥Lq∥Λv∥Lp

≤ Ca|Λsv||Λs+αv||Λ2−αv|
≤ ε|Λs+αv|2 + C1a

2/δ|Λ2−αv|2+
2
δ .

Here uv = R⊥v, 1
p
+ 1

q
= 1

2
, 1
p
= α

2
, δ := δ(s) = α

s+2α−2
and we used Hα ⊂ Lq, H1−α ⊂ Lp in the

second inequality and the interpolation inequality and Young’s inequality in the last inequality.
Thus (b.1’) is satisfied if s0 ≥ 2 − α. By Lemmas 5.1 and 5.2 we have for s = s0, s0 − 1,
v ∈ Hs0+1

|Λs(uv · ∇v)| = |Λs∇ · (uvv)| ≤ C|Λs+1+αv||Λ1−αv|.

Here uv = R⊥v. Then (b.2) is satisfied for s0 ≥ 1. Now we prove (b.3). Indeed for v1, v2 ∈ H2−α

by Lemma 5.2

|⟨v1 − v2, u1 · ∇v1 − u2 · ∇v2⟩| =|⟨v1 − v2, (u1 − u2) · ∇v1⟩|
≤C|Λ2−αv1||Λα(v1 − v2)||v1 − v2|.

Here ui = R⊥vi and we used divu2 = 0 in the first equality and Lemma 5.2 in the last inequality.
Thus (b.3) is satisfied if s0 ≥ 2− α. Now Theorems 3.2 and 4.1 imply the following results:

Theorem 5.6 Fix 0 < α < 1. Assume that G satisfies (G.1)(G.2) with s0 ≥ 2− α. Assume
that θ0 is an Hs0-valued, F0-measurable random variable with E|Λs0θ0|2 < ∞.

(i) Then local pathwise uniqueness holds and there exists a maximal strong solution (θ, (τR)R∈N, ζ)
of (5.2).

(ii) Moreover, for G(θ)fi = δ1iβθ there exists a positive deterministic funtion κ : [1,∞) ×
(0,∞) → (0,∞) defined by κ(R, β2) := ( β2

4C1
)δ(s0) 1

R
, where C1, δ(s0) are as above, satisfying

lim
β2→∞

κ(R, β2) = ∞,

such that whenever
|Λs0θ0|2 ≤ κ(R, β2) P − a.s.,

then

P (ζ = ∞) ≥ 1− 1

R1/4

and

P ( lim
t→∞

|Λs0θ(t)| = 0) ≥ 1− 1

R1/8
.

Remark 5.7 For α = 1/2, consider

dθ + [Aαθ + u · ∇θ]dt =
m∑
j=1

bjθ ◦ dwj(t), (5.3)
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for bj ∈ R, and independent 1-dimensional Brownian motions wj. Here ◦ means the S-
tratonoaich integral. Consider the process

β(t) = e−
∑m

j=1 bjwj(t).

Then, the process v(t) defined by the transformation

v(t) = β(t)θ(t),

satisfies the equation with one coefficient depending on ω ∈ Ω

dv

dt
+ Aαv + β−1uv · ∇v = 0. (5.4)

Then by the same arguments as in the proof of Theorem 3.1, we obtain a maximal strong
solution (θ, (τR)R∈N, ζ) to (5.3) starting from any point in H

3
2 and θ(· ∧ τR) ∈ C([0,∞), H

3
2 ).

Then by Itô’s formula, v is a solution to (5.4) and v(· ∧ τR) ∈ C([0,∞), H
3
2 ). On the other

hand, by the same arguments as in [CV06, Section 2], we obtain for fixed ω and any T > 0,
that there exists a constant M = M(ω, |Λθ0(ω)|) such that

∥v(t, ·)∥∞ ≤ M for t ∈ [0, T ].

Then
∥β−1uv(t, ·)∥BMO ≤ M1(ω, |Λθ0|, T ) for t ∈ [0, T ].

Hence by [KN09, Theorem 1.1], we obtain that there exists γ(ω, |Λθ0|, T ) > 0, such that

∥v(·, t)∥Cγ(T2) ≤ C(ω, |Λθ0|, T ).

Then by the same arguments as in the proof of [CV06, Theorem 10], we obtain for any 0 < β < 1

∥v(·, t)∥C1,β(T2) ≤ C1(ω, |Λθ0|, T ) for t ∈ [0, T ].

By this a-priori bound and the local existence, we obtain

ζ = ∞ P − a.s.,

which implies the existence and uniqueness of a global solution to (5.3).

5.3 Stochastic fractional Navier-Stokes equation in d-dimensions

For d ≥ 2 we consider the following d-dimensional stochastic fractional Navier-Stokes equation
in a bounded open domain O ⊂ Rd with smooth boundary:

du+ ((u · ∇u) + (−∆)αu)dt = ∇p+G(u)dW, (5.5)

divu = 0, u(0) = u0,

u(t, x) = 0, (t, x) ∈ R+ × ∂O,
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where u = (u1, ..., ud) represents the velocity field of the fluid, the pressure p is an unknown
scalar function.

When α = 1, G = 0, (5.5) reduces to the usual Navier-Stokes equation. In the deterministic
case for general α this equation has been studied by many authors (see [W05], [Z12] and the
references therein). In [W05], the author obtains global existence and uniqueness of solutions
for small initial values and for α > 1

2
. In [Z12], the author obtains the local existence and

uniqueness of solutions by using a stochastic Lagrangian particle trajectories approach for
α = 1

2
. Below we shall improve both results in an essential way as consequences of our main

Theorems 3.2 and 4.1.
Let H := {f ∈ L2(O;Rd), divf = 0, } and let P be the orthogonal projection operator from

L2(O)d onto H. Then (5.5) can be rewritten as follows:

du+ (P (u · ∇u) + (−∆)αu)dt = PG(u)dW,

divu = 0, u(0) = u0,

u(t, x) = 0, (t, x) ∈ R+ × ∂O.

Set
Av := −∆v, v ∈ D(A) := H2 := {u ∈ H2,2

0 (O)d : divu = 0}.

Then A is an unbounded positive definite self-adjoint operator and A−1 is compact on H. Then
Hs = {u ∈ Hs,2

0 (O)d : divu = 0}, s ∈ R. Set

f(v) := P (v · ∇v), v ∈ H
d
2
+δ0 ,

for some δ0 > 0. Then we can easily find an s0 ≥ d
2
+ 1 − α such that f ∈ Φ(Hs0 ;H) ∩

Φ(Hs0+1+α;Hs0) and for every φ ∈
∩∞

l=1 H
l, ⟨f(·), φ⟩ is continuous from Hs0 to R.

Then, because ⟨u · ∇Λsu,Λsu⟩ = 0 and by Lemma 5.3, we obtain that for any positive
constant a and s ≥ s0, v ∈ H2s

|⟨av · ∇v,Λ2sv⟩| = a|⟨Λs(v · ∇v)− v · ∇Λsv,Λsv⟩|
≤ Ca|Λsv|∥Λsv∥Lp2∥Λv∥Lp1

≤ Ca|Λsv||Λs+αv||Λ1+ d
2
−αv| ≤ ε|Λs+αv|2 + C1a

2/δ|Λ1+d/2−αv|2+
2
δ ,

where 1
p1

+ 1
p2

= 1
2
, δ := δ(s0) =

α
s+2α−1− d

2

and we used Hd/2−α ⊂ Lp1 , Hα ⊂ Lp2 in the second

inequality and we used the interpolation inequality and Young’s inequality in the last inequality.
Thus (b.1’) is satisfied if s0 ≥ 1 + d

2
− α. By Lemmas 5.1 and 5.2 we have for s = s0, s0 − 1,

v ∈ Hs0

|Λs(v · ∇v)| ≤ C(|Λs+1+αv||Λ
d
2
−αv|+ |Λs+1+αv||Λ( d

2
−α)∨1v|) ≤ C|Λs+1+αv||Λ( d

2
−α)∨1v|.

Then (b.2) is satisfied for s0 ≥ 1 ∨ (d
2
− α). Now we only need to prove (b.3). Indeed, for

v1, v2 ∈ H
d
2
+1−α,

|⟨v1 − v2, v1 · ∇v1 − v2 · ∇v2⟩| =|⟨v1 − v2, (v1 − v2) · ∇v1⟩|

≤C|Λ1+ d
2
−αv1||Λα(v1 − v2)||v1 − v2|,

23



where we used divv2 = 0 in the first equality and we used Lemma 5.2 in the last inequality.
Thus (b.3) is satisfied if s0 ≥ 1+ d

2
−α. Now Theorems 3.2 and 4.1 imply the following results:

Theorem 5.8 Fix 0 < α ≤ 1. Assume that G satisfies (G.1)(G.2) with s0 ≥ 1 + d
2
− α.

Assume that θ0 is an Hs0-valued, F0-measurable random variable with E|Λs0θ0|2 < ∞.
(i) Then local pathwise uniqueness holds and there exists a maximal strong solution (θ, (τR)R∈N, ζ)

of (5.5).
(ii) Moreover, for G(θ)fi = δ1iβθ there exists a positive deterministic funtion κ : [1,∞) ×

(0,∞) → (0,∞) defined by κ(R, β2) := ( β2

4C1
)δ(s0) 1

R
, where C1, δ(s0) are as above, satisfying

lim
β2→∞

κ(R, β2) = ∞,

such that whenever
|Λs0θ0|2 ≤ κ(R, β2) P − a.s.,

then

P (ζ = ∞) ≥ 1− 1

R1/4

and

P ( lim
t→∞

|Λs0θ(t)| = 0) ≥ 1− 1

R1/8
.

5.4 Fractional K-P-Z equation

Consider the following equation on the Td:

du+ (λ|∇u|2 + (−∆)αu)dt = G(u)dW, (5.6)

u(0) = u0,

where λ is a constant. Originally, this equation was proposed as a model of surface growth
in [KPZ86]. However, it was later realized that it is a universal object that describes the
fluctuations of a number of strongly interacting models of statistical mechanics. In [Ha13]
the author introduces a new concept of solution to the KPZ equation when the stochastic
perturbation is space time white noise. In this section we consider the equation driven by
multiplicative trace-class noise.

Let H := {f ∈ L2(Td),
∫
fdξ = 0} and

Av := −∆v, v ∈ D(A) := H2 = H2,2(Td).

Then A is an unbounded positive definite self-adjoint operator and A−1 is compact on H. Hence
Hs = Hs,2(Td), s ∈ R. Set

f(v) := λ|∇v|2, v ∈ H1+ d
2 .

Then we can easily find an s0 ≥ d
2
+1 such that f ∈ Φ(Hs0 ;H)∩Φ(Hs0+1+α;Hs0) and for every

φ ∈
∩∞

l=1H
l, ⟨f(·), φ⟩ is continuous from Hs0 to R. We obtain that for any positive constant

a, α > 1
2
and s ≥ s0 > 1 + d

2
, v ∈ H2s

|⟨a|∇v|2,Λ2sv⟩| ≤a|Λs−α|∇v|2||Λs+αv|
≤aC|Λs−α+1v|∥∇v∥L∞|Λs+αv|
≤C1a

2
δ |Λs0v|

2
δ
+2 + ε|Λs+αv|2,
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where δ := δ(s) = 2α−1
s+α−s0

and we used Lemma 5.1 in the second inequality and Hs0−1 ⊂ L∞, the
interpolation inequality and Young’s inequality in the last inequality. Thus (b.1’) is satisfied if
s0 > 1 + d

2
. By Lemmas 5.1 and 5.2 we have for s = s0, s0 − 1, v ∈ Hs0+1

|Λs(∇v · ∇v)| ≤ C|Λs+1v|∥∇v∥L∞ .

Then (b.2) is satisfied. Now we only need to prove (b.3). Indeed, for v1, v2 ∈ Hs0 , s0 > 1 + d
2
,

|⟨v1 − v2, |∇v1|2 − |∇v2|2⟩|
≤|⟨v1 − v2,∇(v1 − v2) · ∇v1 +∇v2 · ∇(v1 − v2)⟩|

≤C(|Λ
d
2
+1v1|+ |Λ

d
2
+1v2|+ ∥∇v1∥L∞ + ∥∇v2∥L∞)|Λ1−α(v1 − v2)||Λα(v1 − v2)|

≤C(|Λs0v1|
2

1−r + |Λs0v2|
2

1−r )|v1 − v2|2 + ε|Λα(v1 − v2)|2,

where r = 1−α
α

and we used Lemmas 5.1 and 5.2 in the second inequality and Hs0−1 ⊂ L∞ and
Young’s inequality in the last inequality. Thus (b.3) is satisfied if s0 > 1 + d

2
. Now Theorems

3.2 and 4.1 imply the following results:

Theorem 5.9 Fix α > 1
2
. Assume that G satisfies (G.1)(G.2) with s0 > 1+ d

2
. Assume that

θ0 is an Hs0-valued, F0-measurable random variable with E|Λs0θ0|2 < ∞.
(i) Then local pathwise uniqueness holds and there exists a maximal strong solution (θ, (τR)R∈N, ζ)

of (5.6).
(ii) Moreover, for G(θ)fi = δ1iβθ there exists a positive deterministic funtion κ : [1,∞) ×

(0,∞) → (0,∞) defined by κ(R, β2) := ( β2

4C1
)δ(s0) 1

R
, where C1, δ(s0) are as above, satisfying

lim
β2→∞

κ(R, β2) = ∞,

such that whenever
|Λs0θ0|2 ≤ κ(R, β2) P − a.s.,

then

P (ζ = ∞) ≥ 1− 1

R1/4

and

P ( lim
t→∞

|Λs0θ(t)| = 0) ≥ 1− 1

R1/8
.

5.5 Surface growth PDE with random noise

We consider a model which appears in the theory of growth of surfaces, which describes an
amorphous material deposited on an initially flat surface in high vacuum. The corresponding
SPDE is the following equation on the interval [0, L]:

dθ(t) = [−(∂4
ξ )

αθ(t)− ∂2
ξ θ(t) + ∂2

ξ (∂ξθ(t))
2]dt+G(θ(t))dW (t), θ(0) = θ0. (5.7)

It is known in the literature that for the case α = 1, the (1-dimension) surface growth
model has some similar features of difficulty as the 3D Navier-Stokes equation. In particular,
the uniqueness of weak solutions for this model is still an open problem in both the deterministic
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and stochastic case. We should remark that for the space time white noise case, the existence
of a weak martingale solution was obtained by Blömker, Flandoli and Romito in [BFR09] for
this model, and the existence of a Markov selection and ergodicity properties were also proved
there.

Let
H := L2([0, L]),

Av := ∂4
ξv, v ∈ D(A) := H4,2

0 ([0, L]).

Then A is an unbounded positive definite self-adjoint operator and A−1 is compact on H. Then
Hs = H2s,2

0 ([0, L]), s ∈ R. Set

f(v) := ∂2
ξv − ∂2

ξ (∂ξv)
2, v ∈ H1.

Then we can easily check that for s0 ≥ 3/2 and α > 3/4, f ∈ Φ(Hs0 ;H) ∩ Φ(Hs0+1+α;Hs0)
and for every φ ∈

∩∞
l=1H

l, ⟨f(·), φ⟩ is continuous from Hs0 ×Hs0 to R. We have the following
estimate for α > 3

4
, s ≥ s0, v ∈ H2s:

|⟨∂2
ξv − a∂2

ξ (∂ξv)
2, Asv⟩|

≤|Λs+ 1
2v|2 + Ca|Λs+1−α(∂ξv)

2||Λs+αv|
≤|Λs+ 1

2v|2 + Ca|Λs+ 3
2
−αv|∥∂ξv∥L∞|Λs+αv|

≤C|Λs+αv|2−2δ0 |Λs0v|2δ0 + Ca|Λs0v|1+δ|Λs+αv|2−δ

≤C1(a
2
δ |Λs0v|2+

2
δ + |Λs0v|2) + ε|Λs+αv|2,

where δ0 = α−1/2
s+α−s0

, δ := δ(s) =
2α− 3

2

s+α−s0
and we used Lemma 5.1 in the second inequality

and Hs0 ⊂ H1,∞
0 ([0, L]) and the interpolation inequality in the third inequality and Young’s

inequality in the last inequality. Thus (b.1’) is satisfied. For v ∈ Hs0+
3
2 we have for s = s0, s0−1

|Λsf(v)| ≤ |Λs+1v|+ |Λs+1(∂ξv)
2| ≤ |Λs+1v|+ C|Λs+1+ 1

2v|∥∂ξv∥L∞ .

Then (b.2) is satisfied for s0 ≥ 1 with m1 = 1. Now we verify (b.3): for v ∈ Hs0 , s0 ≥ 1,

|⟨f(v1)− f(v2), v1 − v2⟩|
≤|Λ

1
2 (v1 − v2)|2 + |⟨(∂ξv1)2 − (∂ξv2)

2, ∂2
ξ (v1 − v2)⟩|

≤|Λ
1
2 (v1 − v2)|2 + C(|Λv1|+ |Λv2|+ ∥∂ξv1∥L∞ + ∥∂ξv2∥L∞)|Λ1−α+ 1

2 (v1 − v2)||Λα(v1 − v2)|

≤C(|Λs0v1|
2

1−r + |Λs0v2|
2

1−r + 1)|v1 − v2|2 + ε|Λα(v1 − v2)|2,

where r =
3
2
−α

α
and we used the interpolation inequality and Young’s inequality in the last

inequality.

Now Theorems 3.2 and 4.1 imply the following results:

Theorem 5.10 Fix α > 3
4
. Assume that G satisfies (G.1)(G.2) with s0 ≥ 3/2. Assume that

θ0 is an Hs0-valued, F0-measurable random variable with E|Λs0θ0|2 < ∞.
(i) Then local pathwise uniqueness holds and there exists a maximal strong solution (θ, (τR)R∈N, ζ)

of (5.7).
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(ii) Moreover, for G(θ)fi = δ1iβθ there exists a positive deterministic funtion κ : [1,∞) ×
(0,∞) → (4C1,∞) defined by κ(R, β2) := ( β2

4C1
− 1)δ(s0) 1

R
, where C1, δ(s0) are as above, satis-

fying
lim

β2→∞
κ(R, β2) = ∞,

such that whenever for β2 > 4C1

|Λs0θ0|2 ≤ κ(R, β2) P − a.s.,

then

P (ζ = ∞) ≥ 1− 1

R1/4

and

P ( lim
t→∞

|Λs0θ(t)| = 0) ≥ 1− 1

R1/8
.

5.6 Stochastic reaction-diffusion equations

Let O be an open bounded domain in Rd with smooth boundary. Consider the following
semilinear stochastic equation

dθ + (−∆)αθ + p(θ)θ = G(θ)dW, (5.8)

where p is a polynomial of degree k.
Let

H := L2(O),

Av := −∆v, v ∈ D(A) := W 2,2
0 (O).

Then A is an unbounded positive definite self-adjoint operator and A−1 is compact on H. Hence
Hs = W s,2

0 (O), s ∈ R. Set
f(v) := p(v)v, v ∈ Hs0 ,

for s0 >
d
2
. Then we can easily check that for s0 >

d
2
, f ∈ Φ(Hs0 ;H)∩Φ(Hs0+1+α;Hs0) and for

every φ ∈
∩∞

l=1H
l, ⟨f(·), φ⟩ is continuous from Hs0 to R.

Since for any m ∈ N, v ∈ Hs0 ∩Hs, l ≤ s, by Lemma 5.1 we have

|Λl(vm)| ≤C[|Λlv|∥vm−1∥L∞ + |Λl(vm−1)|∥v∥L∞ ]

≤C[|Λlv|∥v∥m−1
L∞ + |Λl(vm−1)|∥v∥L∞ ],

(5.9)

we obtain the following estimate: for s ≥ s0, v ∈ H2s

|⟨p(av)v,Λ2sv⟩| ≤|Λs−α(p(av)v)||Λs+αv|
≤C|Λs−αv|[∥av∥kL∞ + 1]|Λs+αv|
≤C[∥av∥kL∞ + 1]|Λs0v|1−r|Λs+αv|1+r

≤C1[∥av∥
1
δ
L∞ + 1]|Λs0v|2 + ε|Λs+αv|2,
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where r = ( s−α−s0
s+α−s0

) ∨ 0, δ := δ(s) = 1−r
2k

and we used (5.9) in the second inequality and the
interpolation inequality and Young’s inequality in the last two inequalities. Thus (b.1’) is
satisfied for s0 >

d
2
. Now for s = s0, s0 − 1, v ∈ Hs0+1 we have

|Λs(p(v)v)| ≤ C|Λsv|[∥v∥kL∞ + 1].

Thus (b.2) is satisfied for s0 >
d
2
. Now we verify (b.3) for v ∈ Hs0 :

|⟨b(v1, v1)− b(v2, v2), v1 − v2⟩| =|⟨p(v1)v1 − p(v2)v2, v1 − v2⟩|
≤C(1 + ∥v1∥kL∞ + ∥v2∥kL∞)|v1 − v2|2,

where we used (5.9) in the last inequality. Now Theorems 3.2 and 4.1 imply the following
results:

Theorem 5.11 Fix 0 < α ≤ 1. Assume that G satisfies (G.1)(G.2) with s0 > d
2
. Assume

that θ0 is an Hs0-valued, F0-measurable random variable with E|Λs0θ0|2 < ∞.
(i) Then local pathwise uniqueness holds and there exists a maximal strong solution (θ, (τR)R∈N, ζ)

of (5.8).
(ii) Moreover, for G(θ)fi = δ1iβθ there exists a positive deterministic funtion κ : [1,∞) ×

(0,∞) → (0,∞) defined by κ(R, β2) := ( β2

4C1
−1)2δ(s0) 1

R
, where C1, δ(s0) are as above, satisfying

lim
β2→∞

κ(R, β2) = ∞,

such that whenever
|Λs0θ0|2 ≤ κ(R, β2) P − a.s.,

then

P (ζ = ∞) ≥ 1− 1

R1/4

and

P ( lim
t→∞

|Λs0θ(t)| = 0) ≥ 1− 1

R1/8
.
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