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Viorel BARBUa, Michael RÖCKNERb, Francesco RUSSOc

aOctav Mayer Institute of Mathematics (Romanian Academy), Blvd. Carol I no. 8, Iaşi, 700506, Romania.
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Abstract

Existence and uniqueness of solutions to the stochastic porous media equation dX−∆ψ(X)dt = XdW in R
d are studied.

Here, W is a Wiener process, ψ is a maximal monotone graph in R×R such that ψ(r) ≤ C|r|m, ∀r ∈ R. In this general

case, the dimension is restricted to d ≥ 3, the main reason being the absence of a convenient multiplier result in the

space H = {ϕ ∈ S′(Rd); |ξ|(F ϕ)(ξ) ∈ L2(Rd)}, for d ≤ 2. When ψ is Lipschitz, the well-posedness, however, holds

for all dimensions on the classical Sobolev space H−1(Rd). If ψ(r)r ≥ ρ|r|m+1 and m = d−2
d+2

, we prove the finite time

extinction with strictly positive probability.

Résumé

Nous étudions existence et unicité pour les solutions d’une équation de milieux poreux dX − ∆ψ(X)dt = XdW dans

R
d. Ici W est un processus de Wiener, ψ est un graphe maximal monotone dans R × R tel que ψ(r) ≤ C|r|m, ∀r ∈ R.

Dans ce contexte général, la dimension est restreinte à d ≥ 3, essentiellement compte tenu de l’absence d’un résultat

adéquat de multiplication dans l’espace H = {ϕ ∈ S′(Rd); |ξ|(F ϕ)(ξ) ∈ L2(Rd)}, pour d ≤ 2. Lorsque ψ est

Lipschitz, le problème est néanmoins bien posé pour toute dimension dans l’espace de Sobolev classique H−1(Rd).

Si ψ(r)r ≥ ρ|r|m+1 et m = d−2
d+2

, nous prouvons une propriété d’ extinction en temps fini avec probabilité strictement

positive.
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1. Introduction

Consider the stochastic porous media equation

dX − ∆ψ(X)dt = XdW in (0,T ) × Rd,

X(0) = x on R
d,

(1.1)

where ψ is a monotonically nondecreasing function on R (eventually multivalued) and W(t) is a Wiener process of the

form
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W(t) =

∞∑

k=1

µkekβk(t), t ≥ 0. (1.2)

Here {βk}∞k=1
are independent Brownian motions on a stochastic basis {Ω,F ,Ft,P}, µk ∈ R and {ek}∞k=1

is an orthonor-

mal basis in H−1(Rd) orH−1 (see (2.2) below) to be made precise later on.

On bounded domains O ⊂ R
d with Dirichlet homogeneous boundary conditions, equation (1.1) was studied in [3],

[4], [5], under general assumptions on ψ : R → R (namely, maximal monotone multivalued graph with polynomial

growth, or even more general growth conditions in [4]). It should be said, however, that there is a principial difference

between bounded and unbounded domains, mainly due to the multiplier problem in Sobolev spaces on R
d. If d ≥ 3

and O = R
d, existence and uniqueness of solutions to (1.1) was proved in [21] (see, also, [23]) in a general setting

which covers the case O = R
d (see Theorems 3.9, Proposition 3.1 and Example 3.4 in [21]). However, it should be

said that in [21] ψ is assumed continuous, such that rψ(r)→ ∞ as r → ∞, which we do not need in this paper.

We study the existence and uniqueness of (1.1) under two different sets of conditions requiring a different func-

tional approach. The first one, which will be presented in Section 3, assumes that ψ is monotonically nondecreasing

and Lipschitz. The state space for (1.1) is, in this case, H−1(Rd), that is, the dual of the classical Sobolev space

H1(Rd). In spite of the apparent lack of generality (ψ Lipschitz), it should be mentioned that there are physical mod-

els described by such an equation as, for instance, the two phase Stefan transition problem perturbed by a stochastic

Gaussian noise [2]; moreover, in this latter case there is no restriction on the dimension d.

The second case, which will be studied in Section 4, is that where ψ is a maximal monotone multivalued function

with at most polynomial growth. An important physical problem covered by this case is the self-organized criticality

model

dX − ∆H(X − Xc)dt = (X − Xc)dW, (1.3)

where H is the Heaviside function and Xc is the critical state (see [5], [6], [8]). More generally, this equation with

discontinuous ψ covers the stochastic nonlinear diffusion equation with singular diffusivity D(u) = ψ′(u).

It should be mentioned that, in this second case, the solution X(t) to (1.1) is defined in a certain distribution space

H−1 (see (2.2) below) on R
d and the existence is obtained for d ≥ 3 only, as in the case of continuous ψ in [21]. The

case 1 ≤ d ≤ 2 remains open due to the absence of a multiplier rule in the norm ‖ · ‖H−1 (see Lemma 4.1 below).

In Section 5, we prove the finite time extinction of the solution X to (1.1) with strictly positive probability under

the assumption that ψ(r)r ≥ ρ|r|m+1 and m = d−2
d+2
·

Finally, we would like to comment on one type of noise. Existence and uniqueness can be proved with g(t, X(t))

by replacing X(t) under (more or less the usual) abstract conditions on σ (see, e.g., [21], [23]). The main reason why

in this paper we restrict ourselves to linear multiplicative noise is that first we want to be concrete, second the latter

case is somehow generic (just think of taking the Taylor expansion of σ(t, ·) up to first order), and third for this type

of noise we prove finite time extinction in Section 5.

2. Preliminaries

To begin with, let us briefly recall a few definitions pertaining distribution spaces on R
d, whose classical Euclidean

norm will be denoted by | · |.
Denote by S′(Rd) the space of all temperate distributions on R

d (see, e.g., [18]) and byH the space

H = {ϕ ∈ S′(Rd); ξ 7→ |ξ|F (ϕ)(ξ) ∈ L2(Rd)}, (2.1)
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where F (ϕ) is the Fourier transform of ϕ. We denote by L2(Rd) the space of square integrable functions on R
d with

norm | · |2 and scalar product 〈·, ·〉2. In general | · |p will denote the norm of Lp(Rd) or Lp(Rd;Rd), 1 ≤ p ≤ ∞. The

dual spaceH−1 ofH is given by

H−1 = {η ∈ S′(Rd); ξ 7→ F (η)(ξ)|ξ|−1 ∈ L2(Rd)}. (2.2)

The duality betweenH andH−1 is denoted by 〈·, ·〉 and is given by

〈ϕ, η〉 =
∫

Rd

F (ϕ)(ξ)F (η)(ξ)dξ (2.3)

and the norm ofH denoted by ‖ · ‖1 is given by

‖ϕ‖1 =
(∫

Rd

|F (ϕ)(ξ)|2|ξ|2dξ

) 1
2

=

(∫

Rd

|∇ϕ|2dξ

) 1
2

. (2.4)

The norm ofH−1, denoted by ‖ · ‖−1 is given by

‖η‖−1 =

(∫

Rd

|ξ|−2|F (η)(ξ)|2dξ

) 1
2

=
(〈

(−∆)−1η, η
〉) 1

2
. (2.5)

(We note that the operator −∆ is an isomorphism fromH ontoH−1.) The scalar product ofH−1 is given by

〈η1, η2〉−1 =
〈
(−∆)−1η1, η2

〉
. (2.6)

As regards the relationship ofH with the space Lp(Rd) of p-summable functions on R
d, we have the following.

Lemma 2.1. Let d ≥ 3. Then we have

H ⊂ L
2d

d−2 (Rd) (2.7)

algebraically and topologically.

Indeed, by the Sobolev embedding theorem (see, e.g., [15], p. 278), we have

|ϕ| 2d
d−2
≤ C|∇ϕ|2, ∀ϕ ∈ C∞0 (Rd),

and, by density, this implies (2.7), as claimed.

It should be mentioned that (2.7) is no longer true for 1 ≤ d ≤ 2. However, by duality, we have

L
2d

d+2 (Rd) ⊂ H−1, ∀d ≥ 3. (2.8)

Denote by H1(Rd) the Sobolev space

H1(Rd) = {u ∈ L2(Rd); ∇u ∈ L2(Rd)}
= {u ∈ L2(Rd); ξ 7→ F (u)(ξ)(1 + |ξ|2)

1
2 ∈ L2(Rd)}

with norm

|u|H1(Rd) =

(∫

Rd

(u2 + |∇u|2)dξ

) 1
2

=

(∫

Rd

|F u(ξ)|2(1 + |ξ|2)dξ

) 1
2
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and by H−1(Rd) its dual, that is,

H−1(Rd) = {u ∈ S′(Rd); F (u)(ξ)(1 + |ξ|2)−
1
2 ∈ L2(Rd)}.

The norm of H−1(Rd) is denoted by | · |−1 and its scalar product by 〈·, ·〉−1. We have the continuous and dense

embeddings

H1(Rd) ⊂ H , H−1 ⊂ H−1(Rd).

It should be emphasized, however, that H is not a subspace of L2(Rd) and so L2(Rd) is not the pivot space in the

duality 〈·, ·〉 given by (2.3).

Given a Banach space Y , we denote by Lp(0,T ; Y) the space of all Y-valued p-integrable functions on (0,T ) and

by C([0,T ]; Y) the space of continuous Y-valued functions on [0,T ]. For two Hilbert spaces H1,H2 let L(H1,H2) and

L2(H1,H2) denote the set of all bounded linear and Hilbert-Schmidt operators, respectively. We refer to [17], [20] for

definitions and basic results pertaining infinite dimensional stochastic processes.

3. Equation (1.1) with the Lipschitzian ψ

Consider here equation (1.1) under the following conditions.

(i) ψ : R→ R is monotonically nondecreasing, Lipschitz such that ψ(0) = 0.

(ii) W is a Wiener process as in (1.2), where ek ∈ H1(Rd), such that

C2
∞ := 36

∞∑

k=1

µ2
k(|∇ek |2∞ + |ek |2∞ + 1) < ∞, (3.1)

and {ek} is an orthonormal basis in H−1(Rd).

We insert the factor 36 for convenience here to avoid additional large numerical constants in subsequent estimates.

Remark 3.1. By Lemma 4.1 below, |∇ek |∞ in (3.1) can be replaced by |∇ek |d, and all the results in this section remain

true.

Definition 3.2. Let x ∈ H−1(Rd). A continuous, (Ft)t≥0-adapted process X : [0,T ] → H−1(Rd) is called strong

solution to (1.1) if the following conditions hold:

X ∈ L2(Ω; C([0,T ]; H−1(Rd))) ∩ L2([0,T ] ×Ω; L2(Rd)) (3.2)∫ •

0

ψ(X(s))ds ∈ C([0,T ]; H1(Rd)), P-a.s. (3.3)

X(t) − ∆
∫ t

0

ψ(X(s))ds = x +

∫ t

0

X(s)dW(s), ∀t ∈ [0,T ], P-a.s. (3.4)

Remark 3.3. The stochastic (Itô-) integral in (3.4) is the standard one from [17] or [20]. In fact, in the terminology of

these references, W is a Q-Wiener process WQ on H−1, where Q : H−1 → H−1 is the symmetric trace class operator

defined by

Qh :=

∞∑

k=1

µ2
k 〈ek, h〉−1 ek, h ∈ H−1.
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For x ∈ H−1, define σ(x) : Q1/2H−1 → H−1 by

σ(x)(Q1/2h) =

∞∑

k=1

(µk 〈ek, h〉−1 ek · x), h ∈ H. (3.5)

By (3.1), each ek is an H−1-multiplier such that

|ek · x|−1 ≤ 2 (|ek |∞ + |∇ek |∞) |x|−1, x ∈ H−1. (3.6)

Hence, for all x ∈ H−1, h ∈ H−1,

∞∑

k=1

|µk 〈ek, h〉−1 ek x|−1 ≤

∞∑

k=1

µ2
k |ek x|2−1


1/2

|h|−1

≤ 2C∞|x|−1|h|−1

= 2C∞|x|−1|Q1/2h|Q1/2H−1 ,

and thus σ(x) is well-defined and an element in L(Q1/2H−1,H−1). Moreover, for x ∈ H−1, by (3.5), (3.6),

‖σ(x)‖2
L2(Q1/2H−1,H−1)

=

∞∑

k=1

|σ(x)(Q1/2ek)|2−1 =

∞∑

k=1

|µkek x|2−1

=

∞∑

k=1

µ2
k |ek x|2−1 ≤ C2

∞|x|2−1.

(3.7)

Since {Q1/2ek | k ∈ N} is an orthonormal basis of Q1/2H−1, it follows that σ(x) ∈ L2(Q1/2H−1,H−1) and the map

x 7→ σ(x) is linear and continuous (hence Lipschitz) from H−1 to L2(Q1/2H−1,H−1). Hence (e.g., according to [20,

Section 2.3]) ∫ t

0

X(s)dW(s) :=

∫ t

0

σ(X(s))dWQ(s), t ∈ [0,T ],

is well-defined as a continuous H−1-valued martingale and by Itô’s isometry and (3.7)

E

∣∣∣∣∣∣

∫ t

0

X(s)dW(s)

∣∣∣∣∣∣
2

−1

=

∞∑

k=1

µ2
kE

∫ t

0

|X(s)ek |2−1ds

≤ C2
∞E

∫ t

0

|X(s)|2−1ds, t ∈ [0,T ].

(3.8)

Furthermore, it follows that

∫ t

0

X(s)dW(s) =

∞∑

k=1

∫ t

0

σ(X(s))(Q1/2ek)dβk(s)

=

∞∑

k=1

∫ t

0

µkekX(s)dβk(s), t ∈ [0,T ],

(3.9)

where the series converges in L2(Ω; C([0,T ]; H−1)).

In fact,
∫ •

0
X(s)dW(s) is a continuous L2-valued martingale, because X ∈ L2([0,T ] × Ω; L2(Rd)) and, analogously

to (3.7), we get

‖σ(x)‖2
L2(Q1/2H−1,L2)

≤ C2
∞|x|22, x ∈ L2(Rd).
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In particular, by Itô’s isometry,

E

∣∣∣∣∣∣

∫ t

0

X(s)dW(s)

∣∣∣∣∣∣
2

2

≤ C2
∞E

∫ t

0

|X(s)|22ds, t ∈ [0,T ].

Furthermore, the series in (3.8) even converges in L2(Ω; C([0,T ]; L2(Rd))).

We shall use the facts presented in this remark throughout this paper without further notice.

Theorem 3.4. Let d ≥ 1 and x ∈ L2(Rd). Then, under assumptions (i), (ii), there is a unique strong solution to

equation (1.1). This solution satisfies

E

[
sup

t∈[0,T ]

|X(t)|22
]
≤ 2|x|22e3C2

∞t.

In particular, X ∈ L2(Ω; L∞([0,T ]; L2(Rd))). Assume further that

ψ(r)r ≥ αr2, ∀r ∈ R, (3.10)

where α > 0. Then, there is a unique strong solution X to (1.1) for all x ∈ H−1(Rd).

Proof of Theorem 3.4. We approximate (1.1) by

dX + (ν − ∆)ψ(X)dt = XdW(t), t ∈ (0,T ),

X(0) = x on R
d,

(3.11)

where ν ∈ (0, 1). We have the following.

Lemma 3.5. Assume that ψ is as in assumption (i). Let x ∈ L2(Rd). Then, there is a unique (Ft)t≥0-adapted solution

X = Xν to (3.11) in the following strong sense:

Xν ∈ L2(Ω,C([0,T ]; H−1(Rd))) ∩ L2([0,T ] ×Ω; L2(Rd)), (3.12)

and P-a.s.

Xν(t) = x + (∆ − ν)
∫ t

0

ψ(Xν(s))ds +

∫ t

0

Xν(s)dW(s), t ∈ [0,T ]. (3.13)

In addition, for all ν ∈ (0, 1),

E

[
sup

t∈[0,T ]

|Xν(t)|22
]
≤ 2|x|22e3C2

∞T . (3.14)

If, moreover, ψ satisfies (3.10), then for each x ∈ H−1(Rd) there is a unique solution Xν satisfying (3.12), (3.13).

Proof of Lemma 3.5. Let us start with the second part of the assertion, i.e., we assume that ψ satisfies (3.10) and

that x ∈ H−1(Rd). Then the standard theory (see, e.g., [20, Sections 4.1 and 4.2]) applies to ensure that there exists a

unique solution Xν taking value in H−1(Rd) satisfying (3.12), (3.13) above. Indeed, it is easy to check that (H1)–(H4)

from [20, Section 4.1] are satisfied with V := L2(Rd), H := H−1(Rd), Au := (∆ − ν)(ψ(u)), u ∈ V , and H−1(Rd) is

equipped with the equivalent norm

|η|−1,ν :=
〈
η, (ν − ∆)−1η

〉1/2
, η ∈ H−1(Rd),
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(in which case, we also write H−1
ν ). Here, as before, we use 〈·, ·〉 also to denote the dualization between H1(Rd) and

H−1(Rd). For details, we refer to the calculations in [20, Example 4.1.11], which because p = 2 go through when the

bounded domain Ω there is replaced by R
d. Hence [20, Theorem 4.2.4] applies to give the above solution Xν.

In the case when ψ does not satisfy (3.10), the above conditions (H1), (H2), (H4) from [20] still hold, but (H3) not

in general. Therefore, we replace ψ by ψ+λI, λ ∈ (0, 1), and thus consider Aλ(u) := (∆−ν)(ψ(u)+λu), u ∈ V := L2(Rd)

and, as above, by [20, Theorem 4.2.4], obtain a solution Xν
λ
, satisfying (3.12), (3.13), to

dXν
λ
(t) + (ν − ∆)(ψ(Xν

λ
(t)) + λXν

λ
(t))dt = Xν

λ
(t)dW(t), t ∈ [0,T ],

Xν
λ
(0) = x ∈ H−1(Rd).

(3.15)

In particular, by (3.12),

E

[
sup

t∈[0,T ]

|Xν
λ(t)|2−1

]
< ∞. (3.16)

We want to let λ→ 0 to obtain a solution to (3.11). To this end, in this case (i.e., without assuming (3.10)), we assume

from now on that x ∈ L2(Rd). The reason is that we need the following.

Claim 1. We have Xν
λ
∈ L2([0,T ] ×Ω; H1(Rd)) and

E

[
sup

t∈[0,T ]

|Xν
λ(t)|22

]
+ 4λE

∫ T

0

|∇Xν
λ(s)|22ds ≤ 2|x|22e3C2

∞T ,

for all ν, λ ∈ (0, 1).

Furthermore, Xν
λ

has continuous sample paths in L2(Rd), P-a.s.

Proof of Claim 1. We know that

Xν
λ(t) = x + (∆ − ν)

∫ t

0

(ψ(Xν
λ(s)) + λXν

λ(s))ds +

∫ t

0

Xν
λ(s)dW(s), t ∈ [0,T ]. (3.17)

Let α ∈ (ν,∞). Recalling that (α − ∆)−
1
2 : H−1(Rd) → L2(Rd) and applying this operator to the above equation, we

find

(α − ∆)−
1
2 Xν

λ
(t)

= (α − ∆)−
1
2 x +

∫ t

0

(∆ − ν)(α − ∆)−
1
2 (ψ(Xν

λ(s)) + λXν
λ(s))ds

+

∫ t

0

(α − ∆)−
1
2σ(Xν

λ(s))Q1/2dW(s), t ∈ [0,T ].

(3.18)

Applying Itô’s formula (see, e.g., [20, Theorem 4.2.5] with H = L2(Rd)) to |(α−∆)−
1
2 Xν

λ
(t)|2

2
, we obtain, for t ∈ [0,T ],
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|(α − ∆)−
1
2 Xν

λ
(t)|2

2
= |(α − ∆)−

1
2 x|2

2

+2

∫ t

0

〈
(∆ − ν)(α − ∆)−

1
2ψ(Xν

λ(s)), (α − ∆)−
1
2 Xν

λ(s)
〉

ds

−2λ

∫ t

0

(|∇((α − ∆)−
1
2 Xν

λ(s))|22 + ν|(α − ∆)−
1
2 Xν

λ(s)|22)ds

+

∫ t

0

‖(α − ∆)−
1
2σ(Xν

λ(s))Q1/2‖2
L2(H−1,L2)

ds

+2

∫ t

0

〈
(α − ∆)−

1
2 Xν

λ(s), (α − ∆)−
1
2σ(Xν

λ(s))Q1/2dW(s)
〉

2
.

(3.19)

But, for f ∈ L2(Rd), we have

(α − ∆)−
1
2 (∆ − ν)(α − ∆)−

1
2 f = (P − I) f ,

where

P := (α − ν)(α − ∆)−1.

For the Green function gα of (α − ∆), we then have, for f ∈ L2(Rd),

P f = (α − ν)
∫

Rd

f (ξ)gα(·, ξ)dξ.

Hence, by [23, Lemma 5.1], the integrand of the second term on the right-hand side of (3.19) with f := Xν
λ
(s) (∈ L2(Rd)

for ds-a.e. s ∈ [0,T ]) can be rewritten as

〈ψ( f ), (P − I) f 〉2 = −
1

2

∫

Rd

∫

Rd

[ψ( f (̃ξ))−ψ( f (ξ))][ f (̃ξ)− f (ξ)]gα(ξ, ξ̃)dξ̃ dξ

−
∫

Rd

(1 − P1(ξ)) · ψ( f (ξ)) f (ξ)dξ.

Since ψ is monotone, ψ(0) = 0 and P1 ≤ 1, we deduce that

〈ψ( f ), (P − I) f 〉 ≤ 0.

Hence, after a multiplication by α, (3.19) implies that, for all t ∈ [0,T ] (see Remark 3.3),

α|(α − ∆)−
1
2 Xν

λ
(t)|2

2
+ 2λ

∫ t

0

|∇(
√
α(α − ∆)−

1
2 Xν

λ(s))|22ds

≤ α|(α − ∆)−
1
2 x|2

2
+

∫ t

0

∞∑

k=1

µ2
k

〈
α(α − ∆)−1(ekXν

λ(s)), ekXν
λ(s)

〉
2

ds

+2

∫ t

0

〈
α(α − ∆)−1Xν

λ(s), σ(Xν
λ(s))Q1/2dW(s)

〉
2
.
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Hence, by the Burkholder–Davis–Gundy (BDG) inequality (with p = 1) and since α(α − ∆)−1 is a contraction on

L2(Rd),

E

[
sup

s∈[0,t]
|
√
α(α − ∆)−

1
2 Xν

λ(s)|22
]

+2λE

∫ t

0

|∇(
√
α(α − ∆)−

1
2 Xν

λ(s))|22ds

≤ |
√
α(α − ∆)−

1
2 x|2

2
+C2

∞E

∫ t

0

|Xν
λ(s)|22ds

+6E


∫ t

0

∞∑

k=1

µ2
k

〈
α(α − ∆)−1Xν

λ(s), ekXν
λ(s)

〉2

2
ds


1/2

.

(3.20)

The latter term can be estimated by

C∞E

 sup
s∈[0,t]

|α(α − ∆)−1Xν
λ(s)|2

(∫ t

0

|Xν
λ(s)|22ds

)1/2


≤ 1

2
E

{
sup

s∈[0,t]
|
√
α(α − ∆)−

1
2 Xν

λ(s)|22
]
+

1

2
C2
∞E

∫ t

0

|Xν
λ(s)|22ds,

(3.21)

where we used that
√
α(α−∆)−

1
2 is a contraction on L2(Rd). Note that the first summand on the right-hand side is finite

by (3.16), since the norm |
√
α(α − ∆)−

1
2 · |2 is equivalent to | · |−1. Hence, we can subtract this term after substituting

(3.21) into (3.20) to obtain

E

[
sup

s∈[0,t]
|
√
α(α − ∆)−

1
2 Xν

λ(s)|22
]

+4λE

∫ t

0

|∇(
√
α(α − ∆)−

1
2 Xν

λ(s)|22ds

≤ 2|
√
α(α − ∆)−

1
2 x|2

2
+ 3C2

∞E

∫ t

0

|Xν
λ(s)|22ds, t ∈ [0,T ].

(3.22)

Obviously, the quantity under the sup
s∈[0,t]

on the left-hand side of (3.22) is increasing in α. So, by the monotone

convergence theorem, we may let α → ∞ in (3.22) and then, except for its last part, Claim 1 immediately follows

by Gronwall’s lemma, since
√
α(α − ∆)−

1
2 is a contraction in L2(Rd) and x ∈ L2(Rd). The last part of Claim 1 then

immediately follows from [19, Theorem 2.1].

Applying Itô’s formula to |Xν
λ
(t)−Xν

λ′(t)|2−1,ν
(see [20, Theorem 4.2.5]), it follows from (3.17) that, for λ, λ′ ∈ (0, 1)

and t ∈ [0,T ],

|Xν
λ
(t) − Xν

λ′ (t)|2−1,ν

+2

∫ t

0

〈
ψ(Xν

λ) − ψ(Xν
λ′) + (λXν

λ − λ′Xν
λ′ ), X

ν
λ − Xν

λ′

〉
2

ds

=

∫ t

0

‖σ(Xν
λ(s) − Xν

λ′ (s)‖2
L2(Q1/2H−1,H−1

ν )
ds

+2

∫ t

0

〈
Xν
λ(s) − Xν

λ′ (s), σ(Xν
λ(s) − Xν

λ′(s))dWQ(s)
〉
−1,ν

.

(3.23)
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Our assumption (i) on ψ implies that

(ψ(r) − ψ(r′))(r − r′) ≥ (Lipψ + 1)−1|ψ(r) − ψ(r′)|2, for r, r′ ∈ R,

where Lipψ is the Lipschitz constant of ψ. Hence (3.23), (3.7) and the BDG inequality (for p = 1 imply that, for all

t ∈ [0,T ])

E

[
sup

s∈[0,t]
|Xν
λ(s) − Xν

λ′(s)|2−1,ν

]

+2(Lipψ + 1)−1
E

∫ t

0

|ψ(Xν
λ(s)) − ψ(Xν

λ′(s))|22ds

≤ 2(λ + λ′)E

∫ t

0

(|Xν
λ(s)|22 + |Xν

λ′ (s)|22)ds +C2
∞

∫ t

0

|Xν
λ(s) − Xν

λ′(s)|2−1,νds

+2E


∫ t

0

∞∑

k=1

µ2
k

〈
Xν
λ(s) − Xν

λ′ (s), (Xν
λ(s) − Xν

λ′(s))ek

〉2

−1,ν
ds


1/2

.

By (3.7) and Young’s inequality, the latter term is dominated by

1

2
E

[
sup

s∈[0,t]
|Xν
λ(s) − Xν

λ′ (s)|2−1,ν

]
+

1

2
C2
∞E

∫ t

0

|Xν
λ(s) − Xν

λ′ (s)|2−1,νds.

Hence, because of x ∈ L2(Rd) and Claim 1, we may now apply Gronwall’s lemma to obtain that, for some constant C

independent of λ′, λ (and ν),

E

[
sup

t∈[0,T ]

|Xν
λ(t) − Xν

λ′(t)|2−1,ν

]
+ E

∫ T

0

|ψ(Xν
λ(s)) − ψ(Xν

λ′(s))|22ds ≤ C(λ + λ′). (3.24)

Hence there exists an (Ft)-adapted continuous H−1-valued process Xν = (Xν(t))t∈[0,T ] such that Xν ∈ L2(Ω; C([0,T ]; H−1)).

Now, by Claim 1, it follows that

Xν ∈ L2([0,T ] ×Ω; L2(Rd)).

Claim 2. Xν satisfies equation (3.13) (i.e., we can pass to the limit in (3.17) as λ→ 0).

Proof of Claim 2. We already know that

Xν
λ −→ Xν and

∫ •

0

Xν
λ(s)dW(s) −→

∫ •

0

Xν(s)dW(s)

in L2(Ω; C([0,T ]; H−1)) as λ → 0 (for the second convergence see the above argument using (3.7) and the BDG

inequality). So, by (3.17) it follows that

∫ •

0

(ψ(Xν
λ(s)) + λXν

λ(s)))ds, λ > 0,

converges as λ→ 0 to an element in L2(Ω; C([0,T ]; H1). But, by (3.24) and Claim 1, it follows that

∫ •

0

(ψ(Xν
λ(s)) + λXν

λ(s))ds −→
∫ •

0

ψ(Xν(s))ds (3.25)

as λ→ 0 in L2(Ω; L2([0,T ]; L2(Rd))). Hence Claim 2 is proved.
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Now, (3.14) follows from Claim 1 by lower semicontinuity. This completes the proof of Lemma 3.5.

Proof of Theorem 3.4 (continued). We are going to use Lemma 3.5 and let ν → 0. The arguments are similar to

those in the proof of Lemma 3.5. So, we shall not repeat all the details.

Now, we rewrite (3.11) as

dXν + (I − ∆)ψ(Xν)dt = (1 − ν)ψ(Xν)dt + XνdW(t) (3.26)

and apply Itô’s formula to ϕ(x) = 1
2
|x|2−1

(see, e.g., [20, Theorem 4.2.5]). We get, for x ∈ H−1, by (3.8) and after

taking expectation,

1

2
E|Xν(t)|2−1 + E

∫ t

0

∫

Rd

ψ(Xν(s))Xν(s)dξ ds

=
1

2
|x|2−1 + (1 − ν)E

∫ t

0

〈ψ(Xν(s)), Xν(s)〉−1 ds

+
1

2
E

∫ t

0

∞∑

k=1

µ2
k |Xνek |2−1ds

≤ 1

2
|x|2−1 + E

∫ t

0

|ψ(Xν)|−1|Xν|−1ds

+
1

2
C2
∞E

∫ t

0

|Xν(s)|2−1ds, ∀t ∈ [0,T ].

Recalling that | · |−1 ≤ | · |2, we get, via Young’s and Gronwall’s inequalities, for some C ∈ (0,∞) that

E|Xν(t)|2−1 +
α

2
E

∫ T

0

|Xν(s)|22ds ≤ C|x|2−1, t ∈ [0,T ], ν ∈ (0, 1), (3.27)

because, by assumption (i), ψ(r)r ≥ α̃|ψ(r)|2, ∀r ∈ R, with α̃ := (Lipψ + 1)−1. Here we set α = 0 if (3.10) does not

hold.

Now, by a similar calculus, for Xν − Xν′ we get

|Xν(t) − Xν′ (t)|2−1
+ 2

∫ t

0

∫

Rd

(ψ(Xν) − ψ(Xν′))(Xν − Xν′ )dξ ds

≤ C

∫ t

0

〈
ψ(Xν) − ψ(Xν′), Xν − Xν′

〉
−1

ds

+C

∫ t

0

(ν|ψ(Xν)|2 + ν′|ψ(Xν′)|2)|Xν − Xν′ |−1ds

+C

∫ t

0

|Xν − Xν′ |2−1ds +

∞∑

k=1

∫ t

0

µk

〈
(Xν − Xν′), ek(Xν − Xν′)

〉
−1

dβk,

t ∈ [0,T ].

Taking into account that, by assumption (i),

(ψ(x) − ψ(y))(x − y) ≥ α̃|ψ(x) − ψ(y)|2, ∀x, y ∈ Rd,
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we get, for all ν, ν′ > 0,

|Xν(t) − Xν′ (t)|2−1 + α̃

∫ t

0

|ψ(Xν(s)) − ψ(Xν′(s))|22ds

≤ C1

∫ t

0

|Xν(s) − Xν′ (s)|2−1ds +
α̃

2

∫ t

0

|ψ(Xν(s)) − ψ(Xν′(s))|22ds

+C2(ν + ν′)

∫ t

0

(|ψ(Xν(s))|22 + |ψ(Xν′(s))|22)ds

+

∞∑

k=1

∫ t

0

µk〈(Xν(s) − Xν′ (s)), ek(Xν(s) − Xν′(s))〉−1dβk(s), t ∈ [0,T ].

So, similarly to showing (3.24) in the proof of Lemma 3.5, by (3.14), if x ∈ L2(Rd), and by (3.27), if x ∈ H−1(Rd) and

ψ satisfies (3.10), by the Burkholder-Davis-Gundy inequality, for p = 1, we get, for all ν, ν′ ∈ (0, 1),

E sup
t∈[0,T ]

|Xν(t) − Xν′(t)|2−1 + E

∫ T

0

|ψ(Xν(s)) − ψ(Xν′(s))|22ds ≤ C(ν + ν′).

The remaining part of the proof is now exactly the same as the last part of the proof of Lemma 3.5.

Remark 3.6. Theorem 3.4 is a basic tool for the probabilistic (double) representation of equation (1.1), which holds

when ψ is Lipschitz, as it is proved in [10]. If (1.1) is not perturbed by noise, and ψ is possibly discontinuous, its

probabilistic representation was performed in [14], [9], [10] with extensions and numerical simulations located in

[11], [12].

4. Equation (1.1) for maximal monotone functions ψ with polynomial growth

In this section, we assume d ≥ 3 and we shall study the existence for equation (1.1) under the following assump-

tions:

(j) ψ : R→ 2R is a maximal monotone graph such that 0 ∈ ψ(0) and

sup{|η|; η ∈ ψ(r)} ≤ C(1 + |r|m), ∀r ∈ R, (4.1)

where 1 ≤ m < ∞.

(jj) W(t) =

∞∑

k=1

µkekβk(t), t ≥ 0, where {βk}∞k=1
are independent Brownian motions on a stochastic basis {Ω,F ,Ft,P},

µk ∈ R, and ek ∈ C1(Rd) ∩H−1 are such that {ek} is an orthonormal basis inH−1 and

∞∑

k=1

µ2
k(|ek |2∞ + |∇ek |2d + 1) < ∞. (4.2)

The existence of {ek} as in (jj) is ensured by the following lemma.

Lemma 4.1. Let d ≥ 3 and let e ∈ L∞(Rd;Rd) be such that ∇e ∈ Ld(Rd;Rd). Then

‖xe‖−1 ≤ ‖x‖−1(|e|∞ +C|∇e|d), ∀x ∈ H−1, (4.3)

where C is independent of x and e.

12



Proof. We have

‖xe‖−1 = sup{〈x, eϕ〉 ; ‖ϕ‖1 ≤ 1} ≤ ‖x‖−1 sup{‖eϕ‖1; ‖ϕ‖1 ≤ 1}. (4.4)

On the other hand, by Lemma 2.1 we have, for all ϕ ∈ C∞
0

(Rd),

‖eϕ‖1 ≤ |e∇ϕ + ϕ∇e|2 ≤ |e∇ϕ|2 + |ϕ∇e|2
≤ |e|∞|∇ϕ|2 + |ϕ|p|∇e|d ≤ |e|∞‖ϕ‖1 +C‖ϕ‖1|∇e|d,

where p = 2d
d−2
· Then, by (4.4), (4.3) follows, as claimed.

Remark 4.2. (i) It should be mentioned that, for d = 2, Lemma 4.1 fails and this is the main reason our treatment

of equation (1.1) under assumptions (j), (jj) is constrained to d ≥ 3.

(ii) We note that Remark 3.3 with the rôle of H−1(Rd) replaced byH−1 remains true in all its parts under condition

(jj) above. We shall use this below without further notice.

We denote by j : R → R the potential associated with ψ, that is, a continuous convex function on R such that

∂ j = ψ, i.e.,

j(r) ≤ ζ(r − r) + j(r), ∀ζ ∈ ψ(r), r, r̄ ∈ R.

Definition 4.3. Let x ∈ H−1 and p := max(2, 2m). AnH−1-valued adapted process X = X(t) is called strong solution

to (1.1) if the following conditions hold:

X isH−1-valued continuous on [0,T ],P-a.s., (4.5)

X ∈ Lp(Ω × (0,T ) × Rd). (4.6)

There is η ∈ L
p

m (Ω × (0,T ) × Rd) such that

η ∈ ψ(X), dt ⊗ P ⊗ dξ – a.e. on (0,T ) ×Ω × Rd (4.7)

and P-a.s.

X(t) = x + ∆

∫ t

0

η(s)ds +

∞∑

k=1

µk

∫ t

0

X(s)ekdβk(s) (4.8)

inD′(Rd), t ∈ [0,T ].

HereD′(Rd) is the standard space of distributions on R
d.

Theorem 4.4 below is the main existence result for equation (1.1).

Theorem 4.4. Assume that d ≥ 3 and that

x ∈ Lp(Rd) ∩ L2(Rd) ∩H−1, p := max(2, 2m).

Then, under assumptions (j), (jj), there is a unique solution X to (1.1) such that

X ∈ L2(Ω; C([0,T ];H−1)). (4.9)

Moreover, if x ≥ 0, a.e. in R
d, then X ≥ 0, a.e. on (0,T ) × Rd ×Ω.
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Theorem 4.4 is applicable to a large class of nonlinearities ψ : R→ 2R and, in particular, to

ψ(r) = ρH(r) + αr, ∀r ∈ R, ψ(r) = ρH(r − rc)r,

where ρ > 0, α, rc ≥ 0, which models the dynamics of self-organized criticality (see [5], [6], [8]). Here H is the

Heaviside function.

As mentioned earlier, Theorem 4.4 can be compared most closely to the main existence result of [21]. But there

are, however, a few notable differences as we explain below. The function ψ arising in [21] is monotonically increa-

sing, continuous and are assumed to satisfy a growth condition of the form N(r) ≤ rψ(r) ≤ C(N(r) + 1)r, ∀r ∈ R,

where N is a smooth and ∆2-regular Young function defining the Orlicz class LN . In contrast to this, here ψ is any

maximal monotone graph (multivalued) with arbitrary polynomial growth.

Proof of Theorem 4.4. Consider the approximating equation

dXλ − ∆(ψλ(Xλ) + λXλ)dt = XλdW, t ∈ (0,T ),

Xλ(0) = x,
(4.10)

where ψλ =
1
λ

(1 − (1 + λψ)−1), λ > 0. We note that ψλ = ∂ jλ, where (see, e.g., [1])

jλ(r) = inf

{
|r − r̄|2

2λ
+ j(r̄); r̄ ∈ R

}
, ∀r ∈ R.

We have the following result.

Lemma 4.5. Let x ∈ H−1 ∩ Lp(Rd) ∩ L2(Rd), p := 2m, d ≥ 3. Then (4.10) has a unique solution

Xλ ∈ L2(Ω; C([0,T ];H−1)) ∩ L∞([0,T ]; Lp(Ω × Rd)). (4.11)

Moreover, for all λ, µ > 0, we have

E sup
0≤t≤T

‖(Xλ(t) − Xµ(t))‖2−1 ≤ C(λ + µ) (4.12)

E|Xλ(t)|pp ≤ C|x|pp, ∀t ∈ [0,T ], (4.13)

E

∫ T

0

∫

Rd

|ψλ(Xλ)|
p

m dt dξ ≤ C|x|pp, ∀λ > 0, (4.14)

E

[
sup

0≤t≤T

‖Xλ(t)‖2−1

]
≤ C‖x‖2−1, ∀λ > 0, (4.15)

where C is independent of λ, µ.

Proof. We consider for each fixed λ the equation (see (3.11))

dXν
λ
+ (ν − ∆)(ψλ(X

ν
λ
) + λXν

λ
)dt = Xν

λ
dW

Xν
λ
(0) = x,

(4.16)

where ν > 0. Let x ∈ L2(Rd) ∩ Lp(Rd) ∩ H−1. By Claim 1 in the proof of Lemma 3.5, (4.16) has a unique solution

Xν
λ
∈ L2(Ω; L∞([0,T ]; L2(Rd))) ∩ L2(Ω × [0,T ]; H1(Rd)) with continuous sample paths in L2(Rd).
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As seen in the proof of Theorem 3.4, we have, for ν→ 0,

Xν
λ
→ Xλ strongly in L2(Ω; C([0,T ]; H−1(Rd)))

weak-star in L2(Ω; L∞([0,T ]; L2(Rd))),

and, by (3.14), along a subsequence also,

where Xλ is the solution to (4.10). It remains to be shown that Xλ satisfies (4.11)–(4.15). In order to explain the ideas,

we apply first (formally) Itô’s formula to (4.16) for the function ϕ(x) = 1
p
|x|pp. We obtain

1

p
E|Xν

λ(t)|pp + E
∫ t

0

∫

Rd

(ν − ∆)(ψλ(X
ν
λ) + λXν

λ)|Xν
λ|p−2Xν

λds dξ

=
1

p
|x|pp +

p − 1

2
E

∫ t

0

∫

Rd

∞∑

k=1

µ2
k |Xν

λek |2|Xν
λ|p−2dt dξ.

(4.17)

Taking into account that Xν
λ
, ψλ(Xν

λ
) ∈ L2(0,T ; H1(Rd)), P-a.s., by Claim 1 in the proof of Lemma 3.5, we have

∫ t

0

∫

Rd

(ν − ∆)(ψλ(X
ν
λ) + λXν

λ)|Xν
λ|p−2Xν

λds dξ ≥ λ(p − 1)

∫ t

0

∫

Rd

|∇Xν
λ|2|Xν

λ|p−2dξ ds,

and by (4.2) we have

E

∫ t

0

∫

Rd

∞∑

k=1

µ2
k |Xν

λek |2|Xν
λ|p−2ds dξ ≤ C∞E

∫ t

0

∫

Rd

|Xν
λ|pdξ ds < ∞.

Then, we obtain by (4.17) via Gronwall’s lemma

E|Xν
λ(t)|pp ≤ C|x|pp, t ∈ (0,T ), (4.18)

and, by (4.1),

E

∫ t

0

∫

Rd

|ψλ(Xν
λ)|

p

m dt dξ ≤ C|x|pp, t ∈ [0,T ]. (4.19)

It should be said, however, that the above argument is formal, because the function ϕ is not of class C2 on L2(Rd)

and we do not know a priori if the integral in the left side of (4.17) makes sense, that is, whether |Xν
λ
|p−2Xν

λ
∈

L2(0,T ; L2(Ω; H1(Rd))). To make it rigorous, we approximate Xν
λ

by a sequence {Xν,ε
λ
} of solutions to the equation

dX
ν,ε
λ
+ A

ν,ε
λ

(Xν,ε
λ

)dt = X
ν,ε
λ

dW,

X
ν,ε
λ

(0) = x.
(4.20)

Here, A
ν,ε
λ
= 1

ε
(I − (I + εAν

λ
)−1), ε ∈ (0, 1), is the Yosida approximation of the operator Aν

λ
x = (ν − ∆)(ψλ(x) + λx),

∀x ∈ D(Aν
λ
) = H1(Rd). We set Jε = (I + εAν

λ
)−1 and note that Jε is Lipschitz in H = H−1(Rd) as well as in all Lq(Rd)

for 1 < q < ∞. Moreover, we have

|Jε(x)|q ≤ |x|q, ∀x ∈ Lq(Rd), (4.21)

see [3], Lemma 3.1. Since A
ν,ε
λ

is Lipschitz in H, equation (3.1) has a unique adapted solution X
ν,ε
λ
∈ L2(Ω; C([0,T ]; H)

and by Itô’s formula we have

1

2
E|Xν,ε

λ
(t)|2−1 ≤

1

2
|x|2−1 +C1

∞∑

k=1

µ2
kE

∫ t

0

|Xν,ε
λ

(s)ek |2−1ds,
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which, by virtue of (jj), yields

E|Xν,ε
λ

(t)|2−1 ≤ C2|x|2−1, ∀ε > 0, x ∈ H. (4.22)

Similarly, since A
ν,ε
λ

is Lipschitz in L2(Rd) (see Lemma 4.6 below), we have also that X
ν,ε
λ
∈ L2(Ω; C([0,T ]; L2(R2)))

and, again by Itô’s formula applied to the function |Xν,ε
λ

(t)|2
2
, we obtain

E|Xν,ε
λ

(t)|22 ≤
1

2
|x|22 +C3

∞∑

k=1

µ2
kE

∫ ∞

0

|Xν,ε
λ

(s)ek |22ds,

which yields, by virtue of (jj),

E|Xν,ε
λ

(t)|22 ≤ C4|x|22, ∀t ∈ [0,T ]. (4.23)

Claim 1. For p ∈ [2,∞) and x ∈ Lp(Rd), we have that X
ν,ε
λ
∈ L∞

W
([0,T ]; Lp(Ω; Lp(Rd)) ∩ L2(Ω; L2(Rd))), where here

and below the subscript W refers to (Ft)-adapted processes.

Proof. For R > 0, consider the set

KR = {X ∈ L∞
W

([0,T ]; Lp(Ω; Lp(Rd)) ∩ L2(Ω; L2(Rd))),

e−pαt
E|X(t)|pp ≤ Rp, e−2αt

E|X(t)|2
2
≤ R2, t ∈ [0,T ]}.

Since, by (4.20), X
ν,ε
λ

is a fixed point of the map

X
F−→ e−

t
ε X +

1

ε

∫ t

0

e−
t−s
ε Jε(X(s))ds +

∫ t

0

e−
(t−s)

ε X(s)dW(s),

obtained by iteration in CW ([0,T ]; L2(Ω; H ∩ L2(Rd))), it suffices to show that F leaves the set KR invariant for R > 0

large enough. By (4.21), we have

e−pαt
E

∣∣∣∣∣∣e
− t
ε x +

1

ε

∫ t

0

e−
t−s
ε Jε(X(s))ds

∣∣∣∣∣∣
p

p



1
p

≤ e−(
1
ε
+α)t |x|p + e−αt

∫ t

0

1

ε
e−

(t−s)

ε (E|X(s)|pp)
1
p ds

≤ e−(
1
ε
+α)t |x|p +

R

1 + αε
,

(4.24)

and, similarly, that

e−2αt
E

∣∣∣∣∣∣e
− t
ε x +

1

ε

∫ t

0

e−
(t−s)

ε Jε(X(s))ds

∣∣∣∣∣∣
2

2



1
2

≤ e−(
1
ε
+α)t |x|2 +

R

1 + αε
. (4.25)

Now, we set

Y(t) =

∫ t

0

e−
(t−s)

ε X(s)dW(s), t ≥ 0.

We have

dY +
1

ε
Y dt = X dW, t ≥ 0,

Y(0) = 0.
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Equivalently,

d(e
t
ε Y(t)) = e

t
ε X(t)dW(t), t > 0; Y(0) = 0.

By Lemma 5.1 in [19], it follows that e
t
ε Y is an Lp(Rd)-valued (Ft)-adapted continuous process on [0,∞) and

E|e t
ε Y(t)|pp =

1

2
p(p − 1)

∞∑

k=1

µ2
kE

∫ t

0

∫

Rd

|e s
ε Y(s)|p−2|e s

ε X(s)ek |2ds.

This yields via Hypothesis (jj)

E|e t
ε Y(t)|pp ≤

1

2
(p − 1)E

∫ t

0

|e s
ε Y(s)|ppds +CE

∫ t

0

|e s
ε X(s)|ppds, ∀t ∈ [0,T ],

and, therefore,

E|Y(t)|pp ≤ C1e−(α+
1
ε )pt

E

∫ t

0

|e s
ε X(s)|ppds ≤ Rpe−pαtεC1

p(1 + εα)
, ∀t ∈ [0,T ].

Similarly, we get

e−2αt
E|Y(t)|22 ≤

R2εC1

2(1 + εα)
, ∀t ∈ [0,T ].

Then, by formulae (4.24), (4.25), we infer that, for α large enough and R > 2(|x|p + |x|2), F leavesKR invariant, which

proves Claim 1.

Claim 2. We have, for all p ∈ [2,∞) and x ∈ Lp(Rd), that there exists Cp ∈ (0,∞) such that

ess sup
t∈[0,T ]

E|Xν,ε
λ

(t)|pp ≤ Cp for all ε, λ, ν ∈ (0, 1). (4.26)

Proof. Again invoking Lemma 5.1 in [19], we have by (4.20) that X
ν,ε
λ

satisfies

E|Xν,ε
λ

(t)|pp = |x|pp − p E

∫ t

0

∫

Rd

A
ν,ε
λ

(Xν,ε
λ

)Xν,ε
λ
|Xν,ε
λ
|p−2dξ ds

+p(p − 1)

∞∑

k=1

µ2
kE

∫ t

0

∫

Rd

|Xν,ε
λ
|p−2|Xν,ε

λ
ek |2dξ ds.

(4.27)

On the other hand, A
ν,ε
λ

(Xν,ε
λ

) = 1
ε

(Xν,ε
λ
− Jε(X

ν,ε
λ

)) and so we have

∫

Rd

A
ν,ε
λ

(Xν,ε
λ

)Xν,ε
λ
|Xν,ε
λ
|p−2dξ =

1

ε

∫

Rd

|Xν,ε
λ
|pdξ − 1

ε

∫

Rr

Jε(X
ν,ε
λ

)|Xν,ε
λ
|p−2X

ν,ε
λ

dξ.

Recalling (4.21), we get, via the Hölder inequality,

∫

Rd

A
ν,ε
λ

(Xν,ε
λ

)Xν,ε
λ
|Xν,ε
λ
|p−2dξ ≥ 0,

and so, by (4.27) and Hypothesis (jj), we obtain, via Gronwall’s lemma, estimate (4.26), as claimed.
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Claim 3. We have, for ε→ 0,

X
ν,ε
λ
−→ Xν

λ strongly in L∞W ([0,T ]; L2(Ω; H))

and weakly∗ in L∞([0,T ]; Lp(Ω; Lp(Rd)) ∩ L2(Ω; L2(Rd))).

Proof. For simplicity, we write Xε instead of X
ν,ε
λ

and X instead of Xν
λ
. Also, we set γ(r) ≡ ψλ(r) + λr.

Subtracting equations (4.20) and (4.16), we get via Itô’s formula and because A
ν,ε
λ

is monotone on H

1

2
E|Xε(t) − X(t)|2−1,ν + E

∫ t

0

∫

Rd

(γ(Jε(X)) − γ(X))(Xε − X)dξ ds

≤ CE

∫ t

0

|Xε(s) − X(s)|2−1,νds,

and hence, by Gronwall’s lemma, we obtain

E|Xε(t) − X(t)|2−1,ν ≤ CE

∫ T

0

∫

Rd

|γ(Jε(X)) − γ(X)||Xε − X|dξ ds. (4.28)

On the other hand, it follows by (4.21) that

∫

Ω×[0,T ]×Rd

|Jε(X)|2P(dω)dt dξ ≤
∫

Ω×[0,T ]×Rd

|X|2P(dω)dt dξ,

while, for ε→ 0,

Jε(y) −→ y in H−1, ∀y ∈ H−1,

(because A
ν,ε
λ

is maximal monotone in H−1(Rd)) and so, Jε(X(t, ω)) −→ X(t, ω) in H−1(Rd) for all (t, ω) ∈ (0,T ) × Ω.
Hence, as ε→ 0,

Jε(X) −→ X weakly in L2(Ω × [0,T ] × Rd), (4.29)

and, according to the inequality above, this implies that, for ε→ 0,

|Jε(X)|L2((0,T )×Ω×Rd) −→ |X|L2((0,T )×Ω×Rd).

Hence, Jε(X) −→ X strongly in L2(Ω×[0,T ]×Rd) as ε→ 0.Now, taking into account that γ is Lipschitz, we conclude

by (4.28), (4.29) and by estimates (4.23), (4.26) that Claim 3 is true.

Now, we can complete the proof of Lemma 4.5. Namely, letting first ε → 0 and then ν → ∞ in (4.26), we get

(4.13) and hence (4.14) as desired.

Now, let us prove (4.12) and (4.15). Arguing as in the proof of Theorem 3.4, we obtain

1

2
|Xν
λ(t)|2−1,ν +

∫ t

0

∫

Rd

(ψλ(Xν
λ) + λXν

λ)Xν
λdξ ds

=
1

2
|x|2−1,ν +

1

2

∫ t

0

∫

Rd

∞∑

k=1

µ2
k |Xν

λek |2−1,νdξ ds

+

∫ t

0

〈
Xν
λ, X

ν
λdW

〉
−1,ν

ds.

(4.30)
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Keeping in mind that, by (4.3), |Xν
λ
ek |−1,ν ≤ C|Xν

λ
|−1,ν(|ek |∞ + |∇ek |d), where C is independent of ν, we obtain by the

Burkholder-Davis-Gundy inequality for p = 1 (cf. the proof of Theorem 3.4)

E sup
t∈[0,T ]

|Xν
λ(t)|2−1,ν + λE

∫ T

0

|Xν
λ|22ds ≤ C|x|2−1,ν.

Taking into account that

lim
ν→0
|y|−1,ν = ‖y‖−1, ∀y ∈ H−1,

we obtain, as in Theorem 3.4 (see the part following (3.26)), that

E

[
sup

t∈[0,T ]

‖Xλ(t)‖2−1

]
+ λE

∫ T

0

|Xλ(t)|22dt ≤ C‖x‖2−1, ∀λ > 0, (4.31)

where C is independent of λ. In particular, (4.15) holds.

Completely similarly, one proves (4.12). Namely, we have

d(Xν
λ − Xν

µ) + (ν − ∆)(ψλ(X
ν
λ) + λXν

λ − ψµ(Xν
µ) − µXν

µ)dt = (Xν
λ − Xν

µ)dW

and again proceeding as in the proof of Theorem 3.4, we obtain as above that

1

2
|Xν
λ(t) − Xν

µ(t)|2−1,ν

+

∫ t

0

∫

Rd

(ψλ(Xν
λ) + λXν

λ − ψµ(Xν
µ) − µXν

µ)(Xν
λ − Xν

µ)dξ ds

=
1

2

∫ t

0

∫

Rd

∞∑

k=1

µ2
k |(Xν

λ − Xν
µ)ek |2−1,νds

+

∫ t

0

〈
Xν
λ − Xν

µ, (X
ν
λ − Xν

µ)dW
〉
−1,ν

, t ∈ [0,T ].

Then, applying once again the Burkholder-Davis-Gundy inequality for p = 1, and the fact that, by Hypothesis (j),

|ψλ(r)| ≤ C|r|m, ∀ ∈ R with C independent of λ, we get, proceeding as in the proof of Theorem 3.4, that

E

[
sup

t∈[0,T ]

|Xν
λ(t) − Xν

µ(t)|2−1

]
≤ C(λ + µ),

where C is independent of ν, λ, µ. (For details, we refer to the proof of (3.10), (3.14) in [5]). Letting ν → 0 as in the

previous case, we obtain (4.12), as claimed. This completes the proof of Lemma 4.5.

Above we have used the lemma below.

Lemma 4.6. A
ν,ε
λ

is Lipschitz in L2(Rd).

Proof. It suffices to check that Jε is Lipschitz in L2(Rd). We set γ(r) = ψλ(r) + λr. We have, for x, x̄ ∈ L2(Rd),

Jε(x) − Jε(x̄) − ε∆(γ(Jε(x)) − γ(Jε(x̄))) = x − x̄.

Multiplying by γ(Jε(x)) − γ(Jε(x̄)) in L2(Rd), we get

〈Jε(x) − Jε(x̄), γ(Jε(x)) − γ(Jε(x̄))〉2 ≤ |γ(Jε(x)) − γ(Jε(x̄))|2|x − x̄|2.
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Taking into account that (γ(r) − γ(r̄))(r − r̄) ≥ L|r − r̄|, ∀r, r̄ ∈ R, and that γ is Lipschitz, we get

|Jε(x) − Jε(x̄)|2 ≤ C|x − x̄|2,

as claimed.

Proof of Theorem 4.4 (continued). By (4.12)-(4.15), it follows that there is a process X ∈ L∞([0,T ]; Lp(Ω × R
d))

such that, for λ→ 0,

Xλ → X weak-star in L∞([0,T ]; Lp(Ω × Rd))

λXλ → 0 strongly in L2([0,T ]; L2(Ω × Rd))

ψλ(Xλ) → η weakly in L
p

m ([0,T ] ×Ω × Rd)

Xλ → X strongly in L2(Ω; C([0,T ];H−1)).

(4.32)

It remains to be shown that X is a solution to (1.1) in the sense of Definition 4.3.

By (4.10) and (4.32), we see that

dX − ∆ηdt = XdW, t ∈ (0,T )

X(0) = x.
(4.33)

To prove that η ∈ ψ(X), a.e. in Ω × (0,T ) × Rd, it suffices to show that, for each ϕ ∈ C∞
0

(Rd), we have

lim sup
λ→0

E

∫ T

0

∫

Rd

ϕ2ψλ(Xλ)Xλdt dξ ≤ E

∫ T

0

∫

Rd

ϕ2ηX dξ dt. (4.34)

Indeed, we have by convexity of jλ

E

∫ T

0

∫

Rd

ϕ2ψλ(Xλ)(Xλ − Z)dξ dt ≥ E

∫ T

0

∫

Rd

ϕ2( jλ(Xλ) − jλ(Z))dξ dt,

∀Z ∈ Lp((0,T ) ×Ω × Rd),

and so, by (4.32) and (4.34), we see that

E

∫ T

0

∫

Rd

ϕ2(η(X − Z))dtdξ ≥ E

∫ T

0

∫

Rd

ϕ2( j(X) − j(Z))dξ dt,

∀Z ∈ Lp((0,T ) ×Ω × Rd),

because, for λ→ 0, jλ(Z)→ j(Z), and jλ(Xλ)→ j(X), a.e. and thus, by Fatou’s lemma

lim inf
λ→0

E

∫ T

0

∫

Rd

ϕ2 jλ(Xλ)dξ dt ≥ E

∫ T

0

∫

Rd

ϕ2 j(X)dξ dt.

Now, we take ϕ ∈ C∞
0

(Rd) to be non-negative, such that ϕ = 1 on BN and ϕ = 0, outside BN+1 where for a given

N ∈ N, BN is the closed ball of Rd with radius N. We get

E

∫ T

0

∫

BN+1

ϕ2(η(X − Z))dξ dt ≥ E

∫ T

0

∫

Rd

ϕ2( j(X) − j(Z))dξ dt,

∀Z ∈ Lp((0,T ) ×Ω × Rd).

(4.35)
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This yields

E

∫ T

0

∫

BN+1

ϕ2η(X − Z)dξ dt ≥ E

∫ T

0

∫

BN+1

ϕ2ζ(X − Z)dξ dt, (4.36)

for all Z ∈ Lp((0,T ) ×Ω × BN+1) and ζ ∈ Lp′ ((0,T ) ×Ω × BN+1) such that ζ ∈ ψ(Z), a.e. in (0,T ) ×Ω × BN+1.

We denote by ψ̃ : Lp((0,T ) ×Ω × BN+1)→ Lp′ ((0,T ) ×Ω × BN+1) the realization of the mapping ψ in Lp((0,T ) ×
Ω × BN+1), that is,

ψ̃(Z) =
{
ζ ∈ Lp′ ((0,T ) ×Ω × BN+1), ζ ∈ ψ(Z), a.e.

}
.

Since m
p
≤ p′ with 1

p′ = 1 − 1
p
, by virtue of assumption (j), ψ̃ is maximal monotone in Lp((0,T ) × Ω × BN+1) ×

Lp′ ((0,T ) ×Ω × BN+1), and so, the equation

J(Z) + ψ̃(Z) ∋ J(X) + η, (4.37)

where J(Z) = |Z|p−2Z, has a unique solution (Z, η) (see, e.g., [1], p. 31).

If, in (4.36), we take Z the solution to (4.37), we obtain that

E

∫ T

0

∫

BN+1

ϕ2(J(X) − J(Z))(X − Z)dtdξ ≤ 0.

Then, choosing α = 2
p
, yields

E

∫ T

0

∫

BN+1

(
|ϕαX|p−2ϕαX − |ϕαZ|p−2ϕαZ

)
(ϕαX − ϕαZ)dtdξ ≤ 0.

Consequently, this gives

E

∫ T

0

∫

Rd

(J(ϕαX) − J(ϕαZ))(ϕαX − ϕαZ)dtdξ ≤ 0. (4.38)

On the other hand, we have

J(ϕαX) − J(ϕαZ) = (p − 1)|λϕαX + (1 − λ)ϕαZ|p−2(X − Z),

for some λ = λ(X,Z) ∈ [0, 1]. Substituting into (4.38) yields

|ϕα(X − Z)|2 = 0 a.e. in (0,T ) ×Ω × BN+1,

Hence, X = Z on (0,T ) ×Ω × BN .

Coming back to (4.37), this gives η ∈ ψ(X), dtdPdξ, a.e., because N is arbitrary.

To prove (4.34), we use the Itô formula in (4.16) to x→ 1
2
‖ϕx‖2−1

to get, as in (4.30),

1

2
E‖ϕXν

λ(t)‖2−1 + E

∫ t

0

〈
(−∆)−1(ν − ∆)(ψλ(X

ν
λ) + λXν

λ, ϕ
2Xν

λ)
〉

ds

≤ 1

2
‖ϕx‖2−1 +

1

2
E

∫ t

0

∞∑

k=1

µ2
k‖ϕXν

λek‖2−1ds.
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Then, letting ν→ 0, we obtain

1

2
E‖ϕXλ(t)‖2−1 + E

∫ t

0

〈
ψλ(Xλ) + λXλ, ϕ

2Xλ

〉
2

ds

≤ 1

2
‖ϕx‖2−1 +

1

2
E

∫ t

0

∞∑

k=1

µ2
k‖ϕXλek‖2−1ds.

(4.39)

On the other hand, by (4.33) we get similarly

1

2
E‖ϕX(t)‖2−1 + E

∫ t

0

〈
η(s), ϕ2X

〉
2

ds =
1

2
‖ϕx‖2−1 +

1

2
E

∫ 1

0

∞∑

k=1

µ2
k‖ϕXek‖2−1, t ∈ [0,T ].

Comparing with (4.39), we obtain (4.34), as claimed.

If x ≥ 0, a.e. in R
d, it follows that X ≥ 0, a.e. in in Ω × (0,T ) × R

d. To prove this, one applies Itô’s formula in

(4.16) to the function x → |x−|2
2

and get (Xν
λ
)− = 0, a.e. in Ω × (0,T ) × R

d. Then, for ν → 0, we obtain the desired

result. This completes the existence proof for x ∈ L2(Rd) ∩ Lp(Rd) ∩H−1.

Uniqueness. If X1, X2 are two solutions, we have

d(X1 − X2) − ∆(η1 − η2)dt = (X1 − X2)dW, t ∈ (0,T ),

(X1 − X2)(0) = 0,

where ηi ∈ ψ(Xi), i = 1, 2, a.e. in Ω × (0,T ) × Rd.

Applying again, as above (that is, via the approximating device) Itô’s formula inH−1 to 1
2
‖ϕ(X1 − X2)‖2−1

, where

ϕ ∈ C∞
0

(Rd), we get that

1

2
d‖ϕ(X1 − X2)‖2−1 − 〈∆(η1 − η2), ϕ(X1 − X2)〉−1

=
1

2

∞∑

k=1

µ2
k‖ϕ(X1 − X2)ek‖2−1dt + 〈(X1 − X2), ϕ(X1 − X2)dW〉−1 = 0.

Note that, since η1 − η2 ∈ L
p

m (Ω × (0,T ) × Rd), we have

−E
∫ T

0

〈∆(η1 − η2), ϕ(X1 − X2)〉−1 dt = E

∫ T

0

∫

Rd

(η1 − η2), ϕ(X1 − X2)dt dξ ≥ 0,

and, therefore,

E‖ϕ(X1(t) − X2(t))‖2−1 ≤ C

∫ t

0

E‖ϕ(X1 − X2)‖2−1ds, ∀t ∈ [0,T ],

and, since ϕ was arbitrary in C∞
0

(Rd), we get X1 ≡ X2, as claimed.

Remark 4.7. The self-organized criticality model (1.3), that is, ψ(r) ≡ H(r) = Heaviside function, which is not

covered by Theorem 4.4 for 1 ≤ d ≤ 2, can, however, be treated in the special case

W(t) =

N∑

j=1

µ jβ j(t), µ j ∈ R,
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(i.e., spatially independent noise) via the rescaling transformation X = eWY , which reduces it to the random parabolic

equation

∂

∂t
Y − e−W∆ψ(Y) +

1

2

N∑

j=1

µ2
jY = 0.

By approximating W by a smooth Wε ∈ C1([0,T ];R) and letting ε→ 0, after some calculation one concludes that the

latter equation has a unique strong solution Y . We omit the details, but refer to [7] for a related treatment.

5. The finite time extinction

Assume here that ψ satisfies condition (j) of the beginning of Section 4 and that W is of the form (jj). Moreover,

one assumes that

ψ(r)r ≥ ρ|r|m+1, ∀r ∈ R, (5.1)

where m is as in Hypothesis (j).

Theorem 5.1. Let d ≥ 3 and m = d−2
d+2

. Let x ∈ Lm+1(Rd) ∩ L2(Rd) ∩H−1 and let X = X(t); t ∈ [0,T ], be the solution

to (1.1) given by Theorem 4.4. We set

τ = inf{t ≥ 0; ‖X(t, ·)‖−1 = 0}. (5.2)

Then, for every t > 0,

X(t) = 0, ∀t ≥ τ, (5.3)

and

P[τ ≤ t] ≥ 1 − ‖x‖1−m
−1

C∗

ργm+1(1 − e−C∗(1−m)t)
. (5.4)

where γ−1 = sup{‖u‖−1|u|−1
m+1

; u ∈ Lm+1} and C∗ > 0 is independent of the initial condition x.

Proof. We follow the arguments of [6]. The basic inequality is

‖X(t)‖1−m
−1
+ ρ(1 − m)γm+1

∫ t

r

1[‖X(s)‖−1>0]ds

≤ ‖X(r)‖1−m
−1
+C∗(1 − m)

∫ t

r

‖X(s)‖1−m
−1 ds

+(1 − m)

∫ t

r

〈
‖X(s)‖(m+1)

−1
X(s), X(s)dW(s)

〉
−1
,

P-a.s., 0 < r < t < ∞,

(5.5)

where C∗ is a suitable constant. (We note that, by virtue of (2.8), γ−1 < ∞.) To get (5.5), we apply the Itô formula in

(4.10) to the semimartingale ‖Xλ(t)‖2−1
and to the function ϕε(r) = (r + ε2)

1−m
2 , r > −ε2, where Xλ is the solution to

(4.10).

We have
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dϕε(‖Xλ(t)‖2−1
)

+(1 − m)(‖Xλ(t)‖2−1
+ ε2)−

m+1
2 〈Xλ(t), ψλ(Xλ(t)) + λXλ(t)〉2 dt

=
1

2

∞∑

k=1

µ2
k


(1−m)‖Xλ(t)ek‖2−1

(‖Xλ(t)‖2−1
+ε2)

m+1
2

− (1−m2)
‖Xλ(t)ek‖2−1

‖Xλ(t)‖2−1

(‖Xλ(t)‖2−1
+ε2)

m+1
2

 dt

+2
〈
ϕ′ε(‖Xλ(t)‖2−1

)Xλ(t), Xλ(t)dW(t)
〉
.

This yields
ϕε(‖Xλ(t)‖2−1

) + ρ(1 − m)

∫ t

r

(‖Xλ(s)‖2−1 + ε
2)−

m+1
2

∫

Rd

|Xλ|m+1ds dξ

≤ ϕε(‖Xλ(r)‖2−1
) +C∗

∫ t

r

‖Xλ(s)‖2−1(‖Xλ(s)‖2−1 + ε
2)−

1+m
2 ds

+2

∫ t

r

〈
ϕ′ε(‖Xλ(s)‖2−1)Xλ(s), Xλ(s)dW(s)

〉
−1
.

Now, letting λ→ 0, we obtain that X satisfies the estimate

ϕε(‖X(t)‖2−1
) + ρ(1 − m)

∫ t

r

(
‖X(s)‖2−1 + ε

2)−
m+1

2

∫

Rd

|X(s, ξ)|m+1dξ

)
ds

≤ ϕε(‖X(t)‖2−1
) +C∗

∫ t

r

‖X(s)‖2−1(‖X(s)‖2−1 + ε
2)−

m+1
2 ds

+2

∫ t

r

〈
ϕ′ε(‖X(s)‖2−1)X(s), X(s)dW(s)

〉
−1
.

(5.6)

Here, we have used the fact that, by Lemma 4.5, for λ→ 0,

Xλ → X inH−1,

and, by (4.32) it follows, via Fatou’s lemma,

lim inf
λ→0

∫

Rd

|Xλ|m+1dξ ≥
∫

Rd

|X|m+1dξ,

and

(‖X(t)‖2−1
+ ε2)

1−m
2 + ρ(1 − m)γm+1

∫ t

r

(‖X(s)‖2−1 + ε
2)−

m+1
2 ‖X(s)‖m+1

−1 ds

≤ (‖X(r)|2−1
+ ε2)

1−m
2 +C∗

∫ t

r

‖X(s)‖2−1(‖X(s)‖2−1 + ε
2)−

m+1
2 ds

+2

∫ t

r

〈
ϕ′ε(‖X(s)‖2−1X(s)), X(s)dW(s)

〉
−1
, 0 ≤ r ≤ t < ∞,

because, by (2.7), ‖x‖−1 ≤ γ−1|x|m+1, ∀x ∈ Lm+1(Rd). Letting ε→ 0, we get (5.5), as claimed.

Now, we conclude the proof as in [6]. Namely, by (5.5), it follows that

e−C∗(1−m)t‖X(t)‖1−m
−1
+ ρ(1 − m)γm+1

∫ t

r

e−C∗(1−m)s1[‖Xs‖−1>0]ds

≤ e−C∗(1−m)r‖X(r)‖1−m
−1

+(1 − m)

∫ t

r

eC∗(1−m)s
〈
‖X(s)‖−(m+1)

−1
X(s), X(s)dW(s)

〉
−1
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and, therefore, t → e−C∗(1−m)t‖X(t)‖1−m
−1

is an {Ft} supermartingale. Hence, ‖X(t)‖−1 = 0 for t ≥ τ, because of

Proposition 3.4, Chap. 2 of [22]. Moreover, taking expectation for r = 0, we get

e−C∗(1−m)t
E‖X(t)‖1−m

−1 + ρ(1 − m)γm+1

∫ t

0

e−C∗(1−m)s
P(τ > s)ds ≤ ‖x‖1−m

−1 .

This implies that

P(τ > t)
1 − e−C∗(1−m)t

C∗(1 − m)
≤

∫ t

0

e−C∗(1−m)s
P(τ > s)ds ≤

‖x‖1−m
−1

ρ(1 − m)γm+1
,

and so (5.4) follows. This completes the proof.

Corollary 5.2. Let x ∈ H−1 ∩ Lm+1(Rd) ∩ L2(Rd) be such that ‖x‖−1 <
ργm+1

C∗ . Let τ be the stopping time defined in

(5.2). Then P(τ < ∞) > 0. In other words, there is extinction in finite time with positive probability.

Remark 5.3. In the case of bounded domain, Theorem 5.1 remains true for m ∈
[

d−2
d+2

, 1
)

(see [6]). One might suspect

that also in this case the extinction property (5.4) holds for a larger class of exponents m. However, the analysis carried

out in [24] for deterministic fast diffusion equations in R
d shows that the extinction property is dependent not only on

the exponent m, but also on the space Lp(Rd), where the solution exists (the so called extinction space).

Remark 5.4.

• The analysis in this section holds, in particular, if all the coefficients µk do vanish, i.e., in the deterministic

framework. In that case, Theorem 5.1 implies the existence of a deterministic time τ > 0 so that

t ≥ τ⇒ ‖X(t)‖−1 = 0,

and so X(t) = 0, for all t ≥ τ.

• Let us set, for instance, ψ(u) = um, d ≥ 3, m = d−2
d+2
·. Observe that (L1 ∩ L∞)(Rd) ⊂ (Lm+1 ∩ L2)(Rd) ∩ H−1.

Consider, for instance, as initial condition x ∈ (L1 ∩ L∞)(Rd).

• By the Benilan-Crandall approach, see, e.g., Theorem 1 of [13], there is a solution u : [0,T ] × Rd → R, of

dX − ∆ψ(X)dt = 0 in (0,T ) × Rd,

X(0) = x on R
d,

(5.7)

in the sense of distributions. u belongs to (L1 ∩ L∞)((0,T ) × Rd) and also the ηu = ψ(u). In this case, u fulfills

mass conservation.

• By use of Theorem 4.4, there is another solution v : [0,T ] × R
d → R

d in the sense of distributions, such that

v ∈ Lp((0,T ) → R
d), with p = max(1, 2m). Also, ηv = ψ(v) ∈ L

p

m ((0,T ) × R
d). By Theorem 5.1, if x is small

enough, there will be extinction, and so, v does not fulfill any mass conservation.

• In particular, there is no uniqueness for (5.7) in the sense of distributions. Remark that according to [16],

uniqueness is guaranteed in the class (L1 ∩ L∞)((0,T ) × Rd).
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[19] Krylov, N. V., 2010. Itô’s formula for the Lp-norm of stochastic W1
p-valued processes. Probab. Theory Related Fields 147 (3-4), 583–605.
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