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Abstract. This paper is devoted to the well-posedness of stochastic
nonlinear Schrodinger equations in the energy space H'(R?), which is
a natural continuation of our recent work [1]. We consider both focus-
ing and defocusing nonlinearities and prove global well-posedness in
H'(RY), including also the pathwise continuous dependence on initial
conditions, with exponents exactly the same as in the deterministic
case. In particular, this work improves earlier results in [4]. More-
over, the local existence, uniqueness and blowup alternative are also
established for the energy-critical case. The approach presented here
is mainly based on the rescaling approach already used in [1] to study
the L? case and also on the Strichartz estimates established in [12] for
large perturbations of the Laplacian.
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1 Introduction and main results

Let us consider the stochastic nonlinear Schrodinger equation with linear
multiplicative noise

idX (t,€) = AX(t,€)dt + A\ X (t,)|* ' X (¢, &)dt
— ()X (t,€)dt +iX (t,6)dW (t, &), t € (0,T), £ € R4, (1.1)
X(0) ==.

Here A = +1, a > 1 and W is the colored Wiener process
N
W(t,€) =D me;(€)8;(1),t > 0,€ € RY, (1.2)
j=1

with p; € C, e;(§) real-valued functions and (3;(¢) independent real Brownian
motions on a probability space (€2, F,P) with natural filtration (F;):>0, 1 <
7 < N. In this paper for simplicity we assume N < oo.

As in the physical context [2], we choose u of the form

N
w(€) = 5 Dl Ped(e), € € B,
j=1

so that | X (¢)|3 is a martingale, from which one can define the “physical prob-
ability law” (see [2]).

In the deterministic case p; =0, 1 < j < N, it is well known (see [9, 11])
that (1.1) is globally well posed in H'(R?) in the defocusing case A\ = —1
with the subcritical exponents of the nonlinearity

4
l<a<ld — 1.3
@-2. (13)

while in the focusing case A = 1 with the exponents

4
L<a<l+ (1.4)

Here 1+ ((1—#2” =1+ 7% (resp. co) with d > 3 (resp. d =1,2).



In the stochastic case, the authors in [4] (see also [3]) studied the conser-
vative case Rep; = 0,1 < j < N, ie. W is a purely imaginary noise. They
proved the local existence and uniqueness with « satisfying

1< a< oo, ifd=1or 2;
l<a<h, if d = 3;
2<oz<1—i—d27 if d=4,5;
a<1+d_1, if d > 6;

and then the global well-posedness under the further assumptions that o <
1 —|— = or A = —1. Hence, when d > 6, the global well-posedness is estab-
llshed only for the restrictive exponents o < 14 7%. We also refer to [5] for
stochastic nonlinear Schrodinger equation (however only for one-dimension
noise) with real-valued potentials in the conservative case.

The starting point of this article is our recent work [1], where we obtain
the global well-posedness of (1.1) in L? space with exponent o € (1,1 + 3),
i.e. in the same range as in the deterministic case.

The main aim of the present work is to study the global well-posedness of
(1.1) in H'(RY) with general u; € C as in the physical context [2], including
the non-conservative case. We prove the global well-posedness, including
also the pathwise continuous dependence on initial conditions, with « in the
ranges (1.3) and (1.4) in the defocusing and focusing cases respectively, i.e.
in exactly the same ranges as in the deterministic case. In particular, these
sharper results fill the gap for « in [4] mentioned above.

Moreover, the local well-posedness is also established in Section 2 for the
energy-critical case A = +1, a =1+ i with d > 3 and also for the focusing
mass-(super)critical case A = 1, 1 —|— < a <1+ ﬁ with d > 1. The
local results established in the latter Case allow to study the noise effect on
blowup phenomena, which will be contained in forthcoming work.

Before we show the main global well-posedness result, let us first present
the spatial decay assumption on {ej}j-vzl and the precise definitions of solu-
tions to (1.1).

(H1). ¢; € C°(R?) such that

lim ¢(£)|07¢;(§)] =0,

|§|—o0



where 7 is a multi-index such that |y| < 3,1 < j < N and

14 e if d # 2;
(&) = { (1+ |€12)(In(3 + €]2))2, if d = 2.

Definition 1.1 Let v € H' and let o satisfy 1 < a < oo if d = 1,2 or
l<a<l+ 5 ifd>3. Fiz 0<T < oo.

A strong solution of (1.1) is a pair (X, 1), where 7(< T) is an (F)-
stopping time, and X = (X (t))iep,r) is an H'-valued continuous (%;)-adapted
process, such that | X|*'X € LY(0,7; H'), P — a.s, and it satisfies P — a.s

X(t) =z — /O (IAX(s) + pX(5) + M|X ()]*1X (s))ds

+ /tX(s)dW(s), te o, 7], (1.5)

as an equation in H'.
We say that uniqueness holds for (1.1), if for any two strong solutions
(Xi,75), i = 1,2, it holds P-a.s. that X; = X5 on [0,71 A T2).

We refer to [13] for the general theory of infinite dimensional stochastic
equations. It is easy to check that, fOtX(s)dW(s) in Definition 1.1 is an
H'-valued continuous stochastic integral.

The main global well-posedness result in this paper is as follows.

Theorem 1.2 Assume (H1). Let « satisfy (1.3) and (1.4) in the defocusing
and focusing cases respectively. Then for each x € H' and 0 < T < oo, there
exists a unique strong solution (X,T) of (1.1) in the sense of Definition 1.1,
such that

X € L C([0, T HY)) N L (Q; ([0, T); L), (1.6)
and
X e, ;W) P—a.s., (1.7)

where (p,7) is any Strichartz pair (see Lemma 2.7 below).
Furthermore, for P — a.e w, the map x — X(-,z,w) is continuous from

H' to C([0,T); HY) N LY(0, T; W),



The key approach here (as in [1]) is based on the rescaling transformation
that reduces the stochastic equation (1.1) to a random Schrodinger equation
(see (2.5)), to which one can apply the sharp deterministic estimates, e.g. the
Strichartz estimates established in [12] for large perturbations of the Lapla-
cian.

This paper is structured as follows. In Section 2 we establish the local
existence, uniqueness and blowup alternative of solutions to equation (1.1).
Then in Section 3 we derive a priori estimates of the energy from the Hamilto-
nian, which lead to the global well-posedness in the subcritical case in Section
4. An important role in our proofs is played by It6’s formulae for the LP- and
H'- norms, which can be heuristically computed very easily. The rigorous
proofs are much harder and are contained in Section 5. Furthermore, some
technical proofs are postponed to the Appendix, i.e. Section 6, for simplicity
of exposition.

Notations. For 1 < p < co, LP = LP(RY) is the space of all p-integrable
complex valued functions with the norm | - |z». L9(0,7; LP) denotes the
measurable functions u : [0,7] — LP such that ¢ — |u(t)|z» belongs to
L9(0,T). C(]0,T); LP) similarly denotes the continuous LP-valued functions
with the sup norm in ¢.

As usual, WP = WP(R?) is the classical Sobolev space, i.e. WP = {u €
LP : Vu € [P} with the norm ||u|lw1» = |u|re + |Vu|re. Here V = (0, ..., 04)
with 0, := aixkv 1 < k < d. Moreover, the spaces L(0,T;W?) and
C([0,T]; WP) are understood similarly as above. We also use the nota-
tion 97 = 9" - - - 9)* for any multi-index v = (71, ...,74) with 7; € N. The
order of yis |y =v + -+ 74, and if |y| =0, 7 f = f.

In the special case p = 2, L? is the Hilbert space endowed with the scalar
product

() = [ u©u(eds; wve L2
R4
For simplicity, we set | - |o = | - |p2. Let H' = W'? and H~! be the dual
space of H'. Their norms are denoted by | - |gx, k = +1.
C>(R%) denotes the compactly supported smooth functions on R¢. We
use § and &' for the rapidly decreasing functions and the tempered distri-
butions respectively. Then for f € &, f means the Fourier transform, i.e.



= [f(¢ *ig'”df , and for f € &', fV denotes the inverse Fourier trans-
form of f,ie fY(£ (27r 2 [ f(n)endn.
We use C, C for various constants that may change from line to line.

2 Local results

In this section, we will establish the local existence, uniqueness and blowup
alternative for equation (1.1). The main result is given in Theorem 2.1 below.

Theorem 2.1 Assume (H1). Let o satisfy 1 < a < oo if d = 1,2, or,
1<a<1+— if d > 3. For each v € H* and 0 < T < oo, therezsa
sequence of strong solutions (X, ) of (1.1), n € N, where 7, is a sequence
of incresing stopping times, and uniqueness holds in the sense of Definition
1.1. For everyn > 1, it holds P-a.s that

Xulor) € C[0, 7] HY) N LY(0, 70 WH), (2.1)
where (p,7) is any Strichartz pair.
Moreover, defining 7*(x) = lim 7, and X = lim X1 +@)), we have

the blowup alternative, that is, for P-a.e w, if 7,(w) < 7%(z)(w), ¥n € N,
then

4
lim | X(¢)(w =00, ifl<a<l+——d>1, 2.2
lim  XOW = o0, if e (2

and

4
= — —_— >
X 2y o p2aep =00, if a=Td o, d>3. (23)

Remark 2.2 As seen below in the proof of Proposition 2.5 if the norm in
(2.2) or (2.3) is finite P-a.s., then 7*(z) =T, P-a.s.

The key tool to prove Theorem 2.1 is based on the rescaling approach as
used in [1]. Namely, we apply the rescaling transformation

X ="y (2.4)



to reduce the original stochastic equation (1.1) to the random Schrodinger
equation

WL — A0, )~ NI O (e,
y(0) = x.
Here
AD)(2.€) 1= —i(A 4+ b(£.) - T + et (t. ) (2.6
with b(£ €) = 2VW (1) (t,€) = 3 (0, W (1.6))* + AW (£,) —i(n(6) + i(6)

7=1
N
and i(§) = 3 .21“?6?(5)'
J:
Analogously to Definition 1.1, the solutions to (2.5) are defined as follows.

Definition 2.3 Let z € H', 0 < T < oo, and o € (1,00) if d = 1,2, or
o € (1,1+ 55| for d > 3. The strong solution (y,T) and uniqueness of (2.5)
are defined similarly as in Definition 1.1, just with the modifications that X
and (1.5) are replaced, respectively, by y and the equation

t
—x—i-/ Als ds—/ Nie@mDRW )|y (5) 0= 1y (5)ds. (2.7)

Remark 2.4 The equivalence between two strong solutions (X, 7) and (y, T)
of (1.1) and (2.5), respectively, can be proved similarly as in the proof of
Lemma 6.1 in [1]. We also refer to [14] for more details.

Therefore, it is equivalent to prove the local results for the random equa-
tion (2.5). We have the following

Proposition 2.5 Assume the conditions in Theorem 2.1 to hold. For each
r € H' and 0 < T < oo, there is a sequence of strong solutions (i, T,)
of (2.5), n € N, where 7, is a sequence of incresing stopping times, and
uniqueness holds in the sense of Definition 2.3. For every n > 1, it holds
P-a.s that

Ynlio.r] € C([0, 7); H') 0 L7(0, 75 W), (2.8)

where (p,7y) is any Strichartz pair.



Moreover, defining 7*(x) = lim 7, and y = lim y,1(+(z)), we have the

blowup alternative, namely, for P-a.e w if 7,(w) < 7%(z)(w), ¥n € N, then

lim  |y(t)(w)|gr =00, if l<a<1l+

71 a0 d Z 1,
t—7* (2) (W) (d—2)4

and

4
2(d+2) =00, ifa=14——, d>3.

Iy @)l 2z | T

(0,7 () (w); L

Inspired by the deterministic case, the local well-posedness of (2.5) de-
pends crucially on the dispersive properties of the linear part in (2.5). Hence,
in order to prove Proposition 2.5, let us first introduce the evolution operators
and Strichartz estimates in Sobolev spaces.

Lemma 2.6 ForP—a.e.w, the operator A(t) defined in (2.6) generates evolu-
tion operators U(t, s) = U(t, s,w) in the space H'(RY), 0 < s <t < T. More-
over, for each x € H'(RY) and s € [0,T], the process [s,T] >t — U(t, s)x is
continuous and (F;)-adapted, hence progressively measurable with respect to
the filtration (F)>s.

Proof. This lemma is based on [8] and can be proved analogously as
Lemma 3.3 in [1] (see also [14]). O

Lemma 2.7 Assume (H1). Then for any T > 0, ug € H' and f €
L%(0,T; WP2), the solution of

t
u(t) = U(t,0)uq —|—/ Ul(t,s)f(s)ds,0 <t <T, (2.9)
0
satisfies the estimates

lulloroizszony < Corlluols + 1l 0 7.1 (2.10)

and
lullas ozavirn) < Crolir + 1 psyo sty (211)

where (p1,q1) and (p2, q2) are Strichartz pairs, namely

2 d d
iy (i) € 2,00 X 2,00 I—:———,i d 2,
(pis qi) € [2,00] X [2, 0] i Ry fd#



or

d

)

(pis @;) € [2,00) X (2,00] : — = ,if d=2,
Furthermore, the process Cy, t > 0, can be taken to be (F;)-progressively
measurable, increasing and continuous.

(See the Appendix for the proof.)

Proof of Proposition 2.5. It is equivalent to solve the weak equation
(2.7) in the mild sense, namely

¢
y=U(t,0)z — )\i/ U(t, s)el @ DEWE) gy (5))ds, (2.12)
0

where g(y) = |y|*'y. The following fixed point arguments are standard in

the deterministic case (see e.g. [9] and [11]). However, we emphasize that we
have to secure the (.%#;)-adaptedness of the solutions, which allows us later
to apply It6’s formula to obtain a priori estimates (see also [1]).

Let us first consider the case d > 3. Choose the Strichartz pair (p,q) =
(T, Firtiy), set X = C(0,T); L2) N L9(0, T5 1#), ¥ = C([0,T); H')

d+a—1° (d—2)(a—1)
L0, T; WP), and consider the integral operator

Fy)(t) =U(t,0)x — \i /Ot Ult,s) (el VEWE) g(y(s)))ds, t € [0,T], (2.13)

defined for y € ).
We claim that

FQ)Ccy. (2.14)
In fact, by the Strichartz estimates in Lemma 2.7
IE@) sy < Cr [alm + 1@ W )]l grpn]| - (2:15)
To estimate the right-hand side, we have that

| e(a_l)ReWQ@) 1% (0,T;Wtr)

<Du(T) (1 o, + 10 190l v o) (2:16)



where in the last inequality we have used |Vg(y)| < a|y|* | Vy|, |V (el DEW g(y))| <

e W] [(a — 1)|VW||g(y)| + [Vg(y)|] and Dy(T) := a(|VW| e r;n00) +
2)€(a_1)|W|L°°(O,T;L°°).

With our choice of (p, q), it is easy to verify that (2%, 9= (a—l)(ﬁ, é)—i—
1

(11), 1) where 1 7 z% — 1 satisfying =] l)l =5 é. Hence, from Holder’s in-

equality and the Sobolev imbedding |y| -1 < D|y|wr» it follows that

|a—l

Iy ?JHLq’(o,T;LP’ <T6H’y‘a_lyHL% (0,T;L7)

<T9HyHLq 0,T;L(e— 1)Z)Hy||Lq(O,T;LP)
<D*" 1T9HyHLq 0,T;W1p) ”yHLq(O,T;LP)a (2-17>

with 0 = ? — % > 0, and also
H|y‘a_1|Vy|HLq'(O,T;LP) D~ 1T9”y||LL1(OTW1 p)“vyHLq(O,T;L”)' (2.18)
Thus, inserting (2.17), (2.18) into (2.16) and (2.15) yields that for y € Y
IF@)atorawisy < Cr Il + Do) Iyl Saozarn| - (219)
with Dy(T) = D{(T)D*!. Similarly,
IF@ o < Cr Il + Do) T IlSaoizain |- (220)
Hence (2.19) and (2.20) yield (2.14), as claimed.
We now start to construct the strong solutions of (2.5) by similar argu-
ments as in [1].
Step 1. Fix w € © and consider F' on the set
i =ty € C([0,m); HY) N L0, 7y; WHP);

Sup |y(t> - U<t7 0)':U|I{1 + ||y||Lq(0,T1;W1’p) S Ml}7

0<t<m

where 7 = 7y (w) € (0,7] and M; = M;(w) > 0 are random variables.
For y € YV}, by estimates (2.19) and (2.20)

1F(y) = U(-,0)2 1o 0,m;00) + |1 F @) £ao,msmrny < €1(71) + 2C5, Do) 7{ MY,

10



where €1(t) := ||U(-, 0)x||Lo(o,;wrry is (F)-adapted. By Lemma 2.7, 1(t) =
L0, () U 0)z| Laorwrry < Cplz|g < oo, and Ly (-)U(-,0)z — 0, as
t — 0T. This implies

e1(t) =0, ast— 0"

In order to obtain F (yﬁl) C Yy, we shall choose M; and 7; in such a
way that
81(7‘1) + QC’TlDQ(Tl)TIHM{X S Ml.

To this end, we define the real-valued continuous, (.%;)-adapted process
2N = 200Dy ()8 (1), ¢ e [0, T,

choose the (.%;)-stopping time
— w1
n=inf{te€[0,7],2," > - AT

and set M; = 2e1(71). Then it follows that 70 < s and F(Yfh) C Vi
Moreover, the estimates as in the proof of (2.19) show that for y1, 3, € Yy,

1F(y1) = F(y2) |z 0,m:02) + [[1F' (Y1) = F(y2) || Lao,msL7)
<20, (|2 E (g(y1) = g(y2)) | o (0.7
<CH Dy ()1 (ya|* ™ + lyal s — Yolll o (071500

<Cr Di(r) D77 (115t m oy + 102520 r ) I = Bl 230,718
<2C, Dy(1) MY 1 [lyr = | Laomy:io)

1
<y — vl oqmsre). (2.21)

which implies that F' is a contraction in C([0,7]; L*) N L9(0, 7y; LP).

Since )y} is a complete metric subspace in C([0, 71]; L?) N L0, 7y; LP),
Banach’s fixed point theorem yields a unique y € );; with y = F(y) on
[O, 7'1] .

Consequently, setting v, (t) := y(t A1), t € [0,7T], and using similar argu-
ments as in the proof of Step 1 in Lemma 4.2 in [1], we deduce that (y;,7)
is a strong solution of (2.5), such that y,(t) = yi(t A7), t € [0,7], and
Yilo,m1 € C([0,71); HY) N LI(0, 7 WP).

11



Step 2. Suppose that at the n'* step we have a strong solution (y,, 7,)
of (2.5), such that 7, > 7,1, yn(t) = yu(t A7), t € [0,T], and yn|jo,-, €
C([0, 7.]; HY) N L0, 7,,; WP).

Set

y](\j/?n-!—l :{Z € C([O, On]; Hl) N Lq(o, On; Wl’p)S
sup |Z<t> - U(t + Tn, Tn>yn(Tn)’H1 —+ ||Z||Lq(070-n;W1,p) < Mn+1},

0<t<on

and define the integral operator F,, on ) by

t
Fo(2)(8) = U + 1, ) yn(T0) — M’/ U(Tn +t, T + 5)el® VW) g (5(5))ds,
0
te0,7), z€Y.  (2.22)

On

Analogous calculations as in Step 1 show that for z € Vi |

£ (2) = U+ 7o, T)yn (o) [l Lo 0,01ty + (10 (2) | (0,050 12)
§5n+1(0n) + 207—n+0'nD2 (Tn + O-n)O-ZM7C:+17

and for 21,29 € yg;;“

1F(21) = F(22)ll o (0.0i22) + 1F(21) = F(22) | o(0,0m:7)
<2Ch, 10, Da(T + 00) MitT o |21 — 20| 90,0510 -
where e,41(t) :== |U(70 + -, T0)Yn (7o) [| La(o, ;w1 w0y 18 (F7,44)-adapted and
ent1(t) — 0, ast—0.

Similarly, we define the continuous (.%,, 1)-adapted process

ZM = 20C, 4 Do(m, + )27 1 (1), t € [0,T),

set .
o, = inf {t €0,7T—1,]: ARIS 5} AT —1,)
and choose M, 1 = 2¢,41(0,). It follows that F, (V5 . ) C Yir and F,

n+1 n+1
is a contraction in C([0,0,]; L?) N L9(0, 0,5 L?). Hence, because Vi  is

a complete metric subspace in C([0,0,]; L?) N L%(0, 0,; L), Banach’s fixed

12



point theorem implies that there is a unique 2,1 € y]‘\’an such that z,.; =
Fo(zp41) on [0, 0y,).
Then, set 7,11 = 7, + 0, and define

Ynar (1) = { Yn(t), t €0, 7.;

Zni1((t —10) Noy), t € (m,T].

It follows from the definitions of F' and F,, that y,+1 = F(Yn+1) on [0, Thi1],
implying y,41 is a solution to (2.5) on [0, 7,4+1]. Moreover, using similar ar-
guments as in the proof of Step 2 in Lemma 4.2 and of Lemma 6.2 in [1],
we deduce that 7,41 is an (%;)-stopping time and y,.; is adapted to (%)
in H'. Hence, (Yn11,Tns1) is a strong solution of (2.5), such that y,.1(¢) =
Yni1(EATuy1), t € [0,T7, 1€ C([0, Tpga]; HY)NLI(0, Tppr; WEHP).

Step 3. Starting from Step 1 and repeating the procedure in Step 2, we
finally construct a sequence of strong solutions (y,,7,), n € N, where 7,, are
increasing stopping times and 4,11 = ¥, on [0, 7,].

The integrability property y € L7(0,7,; W') for any Strichartz pair
(p,7) follows easily from Lemma 2.7 and the estimate (2.19).

To prove the uniqueness, for any two strong solutions (y;,0;), i = 1,2,
define ¢ = sup{t € [0,01 A g3] : 71 = ¥ on [0,t]}. Suppose that P(¢ <
o1 AN oy) > 0. For w € {¢ < 01 Aoy}, we have y;(w) = y2(w) on [0, ¢(w)] by
the continuity in H!, and for ¢ € [0, 01 A 09(w) — ¢(w))

[91(w) = Y2(w )HL‘I (w),s(w)+t;LP)
<20+ Da(s(w) + ) MO 71(w) — To(w) | o) sy +e:20),

where M(6) i= 7 I3 oy eorseavies + 1721550 0o semin — 0 88
t — 0. Therefore, with t small enough we deduce that y;(w) = y2(w) on
[s(w),s(w) + t], hence y1(w) = ya(w) on [0,¢(w) + ], which contradicts the
definition of <.

Now, we are left with proving the blowup alternative. Let us consider the
subcritical and critical cases respectively.

13



(i). The suberitical case 1 < o < 1+ 735, 6 > 0: Suppose that P(M* <

00; Ty, < 7(x),Vn € N) > 0, where M* := sup |y(t)|g:. Define
tel0,7*(x))

Zy = 2%(M*)* 'O Do(T + 1), t € (0,77,

and .
o ::inf{te 0,7]:Z; > ZL}AT'

For w € {M* < o0;7, < 7*(2),Yn € N}, since 7,,(w) < T, Vn € N, by the
definition of o, in Step 2, we have

op(w) = inf {t 0,7 —7(w)]: Z™(w) > %} :

Notice that, for everyn > 1, €,,41(t) < C, HM * due to the Strichartz esti-
mate (2.11). Moreover, |y(7,(w))|gr < M*, Cr, ()4t < Crye and Do(7,(w) +

t) < Dy(T +1t). It follows that Z;(w) > Zt( )( ), therefore on(w) > o(w) > 0.
Hence 7,41(w) = 7,(w) + op(w) > 7, (w) + o(w), which implies 7,11 (w) >
71(w) +no(w) for every n > 1, contradicting the fact that 7,,(w) < T'. There-
fore, we have shown the blow-up alternative in the subcritical case.

(i7). The critical case @ = 14 ;%45 with d > 3, § = 0: We will adapt

the arguments from [7] and [6]. Set ¢; = 2?:“22). Besides the Strichartz
pair (p,q) = (#‘iz%, 7 2) let us choose another Strichartz pair (pa,p2) =
(24 5,2+ 3). Then - = &= 4 .

Suppose that IP’(||y||Lq1 0 @)Ly < 003 T, < 7(x),¥n € N) > 0. For
w € {||yllzar (0, (2):0) < 005 T < 7F(x),Vn € N}, we have 0, (w) = inf{t €
0,7 — 7 (w)]; Z™ (W) > 5} and Zﬁ:)(w) (w) = 3. For convenience, we omit the
dependence on w below.

From the definition of Fj, and the construction of y, one can check that
for every n > 1 and t € [0,7*(z) — 7,)

Tn+t
Y(To + 1) = U(Ty + t, 1)y (70) — Ni / Uty +t,8)e @ DEWE) gy (s))ds.

Then by Lemma 2.7 and Héder’s inequality, for every n > 1, ¢ € [7*(x) — 7,,)

191 L2 (7 rtswrv2) <Cly(T) [ + Cr|[el®™DRWE) g (y (S>>||LP/2(Tn,Tn+t;W1’pl2)

SCY’-T|y(7_n)|I{1 _I_ CTD]-( )HyHqu TnT (m);qu)Hy||LP2(Tn,Tn+t§W1’p2)'
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Since ||y||zar (0,7%(z);L01) < 00, we have ||y rar(r,,r*(@)za) — 0 as n — oo,
Hence, choosing n large enough, such that C’TDl(T)HyH%q_ll(Tn @)Ly < 1
we have for t € [0, 7"(z) — 7), [[Yllzr2 (r, st 102y < 2C7[Y(70) |1, yielding

||y||Lp2(O,T*(a:);W11P2) < 0.
Therefore,

a—1)ReW (s)

Y[l o0+ @ywrry <Crlz|m + Crle’ GG 25 (0 7o (2125

<Crlz|g + CrDy(T )”yHqu 0,7 ( qu)||y||Lp2(0,T*(x);W1’p2) < 0.
Now, we note that for every n > 1 and t € [0, 0,,]
en1(t) = 1U (7 + -, 7)y (1) | Looeswrny < My + CrDo(T) (M),
where
M;(w) = [|y(W) || La(rm (@) r* (@) @)Wy — 0, as n — oo.

Then we choose n large enough such that

Z"(w) := 2°Cp(w) Dy(T)(w) [M(w) + Cr(w)Da(T)(w) (M) (w))* " <

=

But this implies & > 70 (w) > Z"(w) for any t € [0,0,(w)], in particular,
1> Z0(w) > 7 (")(w)( ) = 3, yielding a contradiction. Therefore, we have
proved the blowup alternative in the critical case and completed the proof of
Proposition 2.5 for the case d > 3.

For the case d = 1,2, we modify the Strichartz pair (p,q) by p = a+ 1

and ¢ = Eo‘jg Note that (i,é) = (a— 1)(%,0) + (]lj, %) and 2 < p < oc.

Holder’s inequality and Sobolev’s imbedding |y|r» < D|y|g: give

91"yl 2o oy < D Tyl t0,m,my Wl o020y, (2.23)

Wher60:1—§>0,and

|||y|a_1Vy”Lq’(O,T;LP) D 1T6Hy”L°°(OTH1 IVl Lao,riLe)- (2.24)
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Hence the estimates (2.19) and (2.20) are accordingly modified by

IE)soraviny < Cr [[el, + Do(TITNyllg=to o 9l mavin]
(2.25)

and

IF @)= < Cr [l + Da@T Ny l5=lo g 9 zooravin |
(2.26)
Similarly to (2.21), we get

1E(y1) = F(y2) | or522) + 1F (1) — F(y2)llLaorser)
<CrDy(T)T <||y1||Loo ooty T 1Y2l T > 1y = 2l oorizey.  (2:27)
Therefore, similar arguments as those after (2.19) and (2.20) yield the as-

serted results in the case d = 1,2. This completes the proof of Proposition
2.5. ([l

From the blowup alternative in Theorem 2.1 and Remark 2.2, we see that
global existence follows from an a priori estimate for the energy, which will
be derived from the Hamiltonian in the next section.

3 A priori estimate of the energy

Define the Hamiltonian H
1 2 A a+1 1

for 1 <a <1+ =
imbedding theorem

Let X, 7*(z) be as in Theorem 2.1. The evolution formula for H(X) is
given in Theorem 3.1 below.

, d > 1. Note that H is well defined by the Sobolev

16



Theorem 3.1 Let « satisfy (1.3). Set ¢; = pse;, j=1,...,N. Then P-a.s

H(X

/Re X(s)),VX(s)),ds+ = Z/ V(X (s)¢;)|2ds
: %A(a Y ;/0 / (Reg;)*| X (s)| "+ dgds
+Z/ Re (V(6,X(5)). VX (3)), 5 (s)

—)\;/O /R€¢j’X(s)|a+1d§dﬂj(5)7 0<t< T*(l’)

Remark 3.2 In the deterministic case p; =0, 1 < j < N, the Hamiltonian
is conserved, i.e. H(X(t)) = H(x). In the stochastic conservative case
i = —igg, gy € R, 1 < j < N, the above evolution formula for H(X(t))
coincides with (4.26) in [4].

Proof. This formula follows heuristically by applying Ito’s formula to
the integrands in H(X(¢)) with the variable £ fixed and then integrating
over RY. But the spaces L?, LP consist of equivalent classes of functions,
the delicate problem here is to find a suitable version such that for every &
fixed, (X (t,€))tepo,r is a continuous semimartingale, which may not exist.
Therefore, we proceed by approximation to give a rigorous proof.

We introduce the operators ©,,, m € N, used in [4] and defined for any
feShby

ons = (0D w5 = mteomy e ),

where § € C2° is real-valued, nonnegative and 6(z) = 1 for |z] < 1, 6(z) =0
for |z| > 2.

By Hausdorf-Young’s inequality, since [6Yd¢ = 1, we have for any p €
[1,00)

1Omlr—rr < C, (3.2)

17



where C' = C(p) is independent of m and
Onf — f in LP, as m — oo. (3.3)
Moreover, for any f € L we have
Onf € LT, (3:4)
Re [ i@ =0 (35

(See the Appendix for the proof.)
Consider the approximating equation

idX,, = AXpdt — ipXpdt + A0y, (9( X)) dt + i X, dW,t € (0,T),

X,.(0) = . (3.6)

where g(X,,) = |X,,|* ' X,,. Since the bound in (3.2) is independent of m,
the arguments in the proof of Proposition 2.5 show that there exist unique
strong solutions (X, ,,7,) of (3.6), n € N, where 7,, are increasing stopping
times, independent of m. Define

Xm = lim Xm,njl[o,r*(x)) (37)

with 7(z) = lim 7,. Set ¢ = 22 We have P — a.s.

oo d(a—1)

R(t) = Sup(HXmHC([O,t};Hl) + ||Xm||Lq(07t;Wl,a+l)) < oo, t< T*(ZL‘) (38)

m>1

18



Moreover, it follows from Lemma 5.1 and Lemma 5.2 in Section 5 that

H(Xon(t))

:H(x)+/OtRe<—V(uXm),V Yo dt + = Z/ IV (X (s)¢;)[5ds

‘%“a—ﬂﬁlf/@%@ﬂxawaws
—A / Re / 9(X)| VX mdeds (3.9)

+;A&W@%WN%wmwM

N t
—/\; /0 / Red;| Xm(s)|*TdedB;(s).

In order to pass to the limit in (3.9), we note that P-a.s. for t < 7%(z)
X — X, in L®(0,¢; HY) N L0, ¢; Whett) (3.10)

(see Section 5 for the proof).
Let us consider the fifth term in the right hand side of (3.9) for example.
We will show that P-a.s. for ¢t < 7*(z)

/Re/ 9(Xn)]V X ndéds — 0, as m — oo. (3.11)

Indeed, because of (3.10) it suffices to show that P-a.s.
V(O — D)g(Xm)] — 0, in LT(0,¢ L) (3.12)
for t < 7*(x). We note that by (3.2)

[V[(Om —1)g(X,n) .
<O, ~ (Va(Xe) = Vg, ot + 1O — DT
<CIVg(Xm) = V(X g ety T 11(Om = 1)Vg(X

) HLq’ (0,61

>HL<1'(0,t;LaT+1)’



where C' is independent of m. Using the arguments after (4.8) below we de-
duce that the first term tends to 0. Moreover, the second term also converges
to 0, due to (3.3) and (3.2). Therefore, we obtain (3.11), as claimed.

One easily verifies that we can also take the limit for the remaining terms
n (3.9) using (3.10). Consequently, we complete the proof. O

We next prove the a priori estimate of the energy in Theorem 3.6 below.
Before that, let us first state and prove some technical lemmas.

Lemma 3.3 Let Y > 0 be a real-valued progressively measurable process.
We have

N

¢
E(/ Y2(s)ds) < eEsupY(s)+ C. Esqu
0

s<t r<s

Proof. This lemma follows easily from the fact that fo s)%ds < supY(s fo

s<t
and Cauchy’s inequality. O
Lemma 3.4 Forl <a <1+ %, d > 1, we have
| X|3h < Cl XT3 + e[ VX3, (3.13)
where p > 2.

Proof. From the Gagliardo-Nirenberg inequality it follows that | X ]%Lll <
0\X|ﬁ|vxy where 3 = (1 —60)(a + 1) and v = O(a + 1) € (0,2) with
0 = gg =y € (0,1). Then, (3.13) follows immediately from Young’s inequal-
ity ab < C.a” + €b?, % + % =1, by choosing v = 2. O

Unlike in the conservative case, | X (t)]3 is no longer independent of ¢, but
a general martingale (see Lemma 4.3 in [1]). After applying Lemma 3.4 to
control | X (¢)[$4};, we also need Lemma 3.5 below to bound the p-power of
| X (t)]2. Its proof is postponed to the Appendix.

Lemma 3.5 Let p > 2. Then there exists C(T) < oo such that

E sup |[X(t)5<C(T) < oo

tel0,7*(x))
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With the above preliminaries, we are now ready to prove the main a priori
estimate for the solution X given by Theorem 2.1.

Theorem 3.6 Under condition (1.3) or (1.4), there exists C(T') < oo, such
that

E| sup ([VX@®]+[X@)%L)| < C(T) < . (3.14)

te[0,7* (x))

Proof. (i) First assume that A = 1. From the definition of H in (3.1)
and Theorem 3.1, it follows that P-a.s. for every n > 1 and t € [0, 7]

1
SIVX (AT

=H (@) + —— X AT)I5E
Re (~V (X (5)), VX (), + 3 3 [V(X(s),) 3| ds

N tATh
~Sla—1) > / / (Regy)?|X (s)|** deds (3.15)

n Z / X(s)), VX (s)), d3;(s)
_g /0 / Reg;| X (s)|*1dedp; (s)

1
—H(x) + a—+1|X(t AT)SEL + AT + St A7) + J3(EAT) + Ja(t A T),

where 7, is as in Theorem 2.1 and ¢; = pje;, 1 < j < N.
To estimate the second term in the right hand side of (3.15), we note
that, from (3.13) and Lemma 3.5 it follows that

B swp X S CE swp X+ e <E sup [VX(s)R

+ 1 s<trm S<tATn a+1 s<inm,

1 1
<——C. C’T—I—e 1]E sup |[VX(s)]3. (3.16)

‘I’ 1 s<tAThp
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Concerning J; (t A 7,,), we note that

L(t)<C / VX ()2 + X (s)2ds,

where C' depends on |¢;]o and |Ve;|e, 1 < j < N. Hence by Lemma 3.5

¢
E sup |Ji(s)] SCC(T)t+C’/ E sup |[VX(r)[3ds.
0

s<tATn r<SATn

Moreover, since

t
B sup [J2(s)| < (o Dluli | B sup [X()[3ihds,
0

S<tAThp r<sATpn

using the estimate (3.16) we have that

E sup |Jo(s)| <(a = 1)|u| 1 CC(T)t

s<tATp

t
—I—e(a—1)|,u|Loo/ E sup |VX(r)[3ds.

0 r<sATp
For J3, the Burkholder-Davis-Gundy inequality yields that
1

E sup |J3(s)] < CE

s<tATp

/0 " > (Re (V(6;X(5)), VX (5)),) ds]

(3.17)

(3.18)

(3.19)

tATh % tATh %
< CE (/ |X<s)|gds> +CE (/ |VX(S)|gds) |
0 0

where C' depends on |9, |V@jloo, 1 < j < N. It follows from Lemma 3.3
with Y replaced by | X (s)|3 and |V X (s)|3 respectively and Lemma 3.5 that

E sup |J5(s)] <eCC(T) + CC.C(T)t + eCE sup |VX(s)?

S<tATp S<tATh

¢
+C’C’€/ E sup |VX(r)|3ds.
0

r<sATp

22
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For the remaining term Jy, it follows similarly from the Burkholder-Davis-
Gundy inequality and Lemma 3.3 with Y replaced by | X |%I+11 that

/0 é ( / Re¢j|X<s>|““df)2ds]

1
2

E sup |J4(s)] <CE

s<tATh
tATh %
<CE ( / 1 X (s) iﬁ”ds) (3.21)
0
t
<eCE sup \X(s)\%ﬂl—l—CCe/ E sup |X(r)|3dhds.
s<tATn 0 r<sATp

Then (3.16) implies that

E sup |Ju(s)| <CC.(eC(T) + C.C(T)t) + €CE sup |[VX(s)[3

S<tATp S<tATn

¢
+eC’C’e/ E sup |VX(r)[3ds. (3.22)
0

r<sATp

Now, taking (3.16)-(3.22) into (3.15) and summing up the respective
terms, we conclude that

1
SE sup [VX(s)[; <Ci(T) +€Co(T)E sup [VX(s)]5

s<tATp s<tAThp,

t
L Cy(T) / E sup [VX(r)[2ds.
0

r<sATp

where the constants Cy,(T"), 1 < k < 3, depend on T, H(x), @, |$;]s0, |V Pjloos

1<j<N,and E sup |X(¢)|5 with p > 2. Then, choosing a sufficiently
te[0,7*(x))
small € and using Gronwall’s lemma, we obtain

E sup |[VX(t)]2 <CO(T) < co.

t€[0,7n]
Finally, taking n — oo and appylying Fatou’s lemma, we obtain

E sup |VX(1)}2<CT) < oo,
te[0,7*(x))

which implies (3.14) by (3.13) and Lemma 3.5.
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(77) In the defocusing case A = —1, the positivity of the Hamiltonian
simplifies many estimates in the previous case (i), without using Lemma 3.4
and Lemma 3.5, and the condition on « is less restrictive.

More precisely, taking (3.17), (3.18), (3.20) and (3.21) into Theorem 3.1

and summing up the respective terms, we derive that

1 1 .
—E sup |VX(s )\2+?]E sup |X(s )]Lﬂl

2 S<tATn S<tATh

<CUT) + eCa(T) E sup ([VX(s )3+ X (s)]7a5)

NTn,

t
+au() [ B swp (OO + X5
0

r<sATp

where the constants Cy(T"), 1 < k < 3, depend on T', H(z), @, |¢]oo, [V ;|0,
1<j<N,andE sup |X(t)]3

tel0,7*(z))
Therefore, similar arguments as at the end of the previous case yield
(3.14). This completes the proof of Theorem 3.6. O

4 Proof of Theorem 1.2.

By Lemma 3.5, Theorem 3.6 and the fact that ||[e™"V|| Lo o rw1.0) < 00, P-aus,
it follows that
sup  |y(t)|5: < o0, a.s. (4.1)
0<t<7*(x)
Therefore, 7%(z) = T, P-a.s, due to the blowup alternative in Proposition
2.5 (see also Remark 2.2). Modifying the definition of y by y := hm Yn, We

deduce that (y,T') is the unique strong solution of (2.5). Therefore letting
X = ey, we conclude that (X,T) is the desired unique strong solution of

(1.1).

The integrability (1.6) follows from Lemma 3.5 and Theorem 3.6, and
(1.7) follows from (2.8).

It remains to prove the continuous dependence on initial data. Again it
is equivalent to prove this for the random equation (2.5), and by Lemma 2.7
we only need to show it for the Strichartz pair (p,q) = (o + 1, dEngB)
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Suppose that z,, — x in H'. Let (y,,,T) be the unique strong solutions of
(2.5) corresponding to the initial data x,,, m > 1. Since |z, | < |z|g1+1 for
m > my with m; large enough, we modify 71 (< 7T') in the proof of Proposition
2.5 by

1
7 = inf{t € [0, 7] : 2*(|2| g + 1)* 1O Dy(t)t? > 5} AT,

such that 7 is independent for m > m;. Hence, the contraction arguments
there and the uniqueness yield that

E ‘= Ssup (||ym||L°°(0,n;H1) + HymHL‘?(O,n;lep)) < oo, P—as.

m>m1

Let us first prove the continuous dependence on initial data on the interval
[0, 71]. Analogous calculations as in (2.21) show that

Ym — Ylle©sc2) + 1Ym — YllLaosrr)

_ (4.2)
< 207|xm — x|s + 2C7 Do(T) Ry — vl 190,00

where § =1 — % > (0. Then taking ¢ small and independent of m(> m,), we
have
1ym = Yl ©s22) + [[Ym — YllLeogry — 0, as m — oo. (4.3)
In particular, it follows that
Ym — Y, in measure dt X d§, as m — 00. (4.4)
Next, to obtain that

|Ym = Yl oo 0,601 + |Ym — Yl La@swrey — O, (4.5)

we use equation (6.3) in the Appendix to derive that for m > my
t ~. ~.
V(Ym —y) =U(t,0)V(x,, — ) + / Ul(t, s){i(Dij’ + VUV D; 4+ Ve) (ym — v)
0
~ N [ (g5, (5) — gD s, (40

where g(y) = [y[*"'y.
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We note that, by Proposition 2.3(a) in [12] and (6.1) in the Appendix,
using a similar estimate as in (2.23), we obtain

13(D; VbV + Vb D; + V&) (g — iz,

0,t]

SKZTHyTn - y”f(i[o’t]

<krCr|T, — x|z + /QTCTHe(a_l)ReW(g(ym) —9(y)) ||L‘1'(0,t;LP')

<C(D)|zm — xl2 + C(T)t lym — yll ooz, (4.7)

where § =1 — % >0, X 0,4 is the local smoothing space defined in [12] and
C(T) depends on i, Cr, || W] 1o 1.1y and R.
Then, applying (6.1) to (4.6), we derive by (4.7) and a similar estimate
as in (2.23) that
HVym - Vy”LOO(O,t;LZ’) + IIV’ym - VZJHLq(o,t;LP)
<L207|Vay, — Va|y + 2C7|i(D; VY + V¥ D; 4+ Veé) (ym — OlEA
+2C7[| XV [ W (g (ym) — gD 1o (0 1o
<O(D)|wm = xlw + C(T)E lym — yllLao,7)
+CMIVym) = VW)l 1w 1.0 (4.8)

where Cr depends on kr, Cr, ||e(a*1)W||Lw(0’T;W1,oo) and R.

As regards the last term in the right hand side of (4.8), we note that
Vo(y) = Fi(y)Vy+Fa(y) VY, where Fi(y) = “3y[* " and Fy(y) = 23 |y|* >,
Then

Vg(ym) = Va(y) =F1(ym) [Vym — Vyl + [Fi(ym) — F1(y)]Vy
+ EFa(ym) [VIm — VY] + [Fa(ym) — F2(y)IVY
=L+ L+ I3+ 1. (4.9)
Since |I1| + |I3] < a|ym|* [Vym — Vy|, (2.24) yields
|1 + ]3||Lq’(07t;Lp’) < O‘Da_léa_ltenym - y”L‘l(O,t;lep)- (4.10)
Thus plugging (4.9) and (4.10) into (4.8), together with (4.2), we derive
that
19m = Ylloeo.isy + [[Ym = Yl ooy
<C(D)wm — zlm + C(T1 ym — Yl swiny
+ Oz + Lll g 0 4;107)- (4.11)
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Therefore, choosing ¢t small and independent of m(> my), we deduce that
(4.5) holds once we prove that

122 + La][ 1 (0 4,101y — 05 as m — o0. (4.12)
In order to prove (4.12), by (4.3) we have for dt-a.e. s € [0,t], as m — oo
[Fy(ym ()] 2, — [E1(0(9))], 2y
which, by (4.4), implies that for dt-a.e. s € [0, 1]
Fi(ym(s) = Fily(s)), in L7,
then
[Fy(ym(s)) — Fi(9(s))]Vy(s) — 0, in L7,

Moreover, for dt-a.e. s € [0,t],

|[F1(ym(s)) — F1(y(s)IVy(s)| Lo

oc—l—l o
<—5 =D lymll gt ey + 191ty (5) o
Oé"—l — ’

SLD R Iyl € 17(0,0),

Thus, by Lebesgue’s dominated convergence theorem, we obtain
||IQHLQ/(O,1§;LP/) — 0, as m — Q.

The proof for I, is similar. Therefore, we have proved (4.12) hence also
(4.5) for ¢t small enough and independent of m(> m;). Reiterating this
procedure in finite steps we obtain (4.5) on [0, 71].

Now, since y,,(71) — y(71) in H', similarly we can extend the above
results to [0, 73] with 7 depending on |y(7y)|g and 73 < 75 < T. Reiter-
ating this procedure, we then obtain increasing stopping times 7,, n € N,
depending on |y(7,,—1)|g1, such that (4.5) holds on every [0,7,]. Finally, as

sup |y(t)|2 < oo, P-a.s, using the proof of the blowup alternative in Propo-
te[0,7

sition 2.5, we deduce that for P-a.e. w there exists n(w) < oo such that
Tnw)(w) = T. This implies the continuous dependence on initial data on

[0, 7] and consequently completes the proof of Theorem 1.2. O

27



5 Ito-formulae for LP- and H'- norms

This section contains the Ito-formulae for | X, (¢)[54] and [VX,,(2)|3, as well
as the asymptotic formula (3.10), which are used in the proof of Theorem
3.1 in Section 3.

Let us start with [t6’s formula for |X,,(¢)|%1,. First, we note that Theo-
rem 2.1 in [10] is not applicable here, as we do not have X € L*T1(0, t; TWhetl)
and |X|*7'X € L*T(0,¢; L*™) from Theorem 2.1. However, for the non-
linearity in the approximating equation (3.6), by (3.4) and (3.5) we have
Om(9(X)) € L and Re [ig(Xm)Om(9(X,m))dE = 0, which allow to use
the technique from [10] to obtain the It6 formula.

Let us adapt the same notation from [10]. Set h® = h * . for any locally
integrable function h mollified by ., where 1), = e_dzp(f) and ¢ € C®(R?)
is a real-valued nonnegative function with unit integral. Recall that |h¢|p» <

|h|r» and if b € LP, then h® — h in LP as € — 0, p > 1, which will be used
in the later estimates.

Lemma 5.1 Let X, be as in (3.7). Setp=a+1withl <a <1+ ﬁ,
d>1. We have P-a.s.

X (O], =l —p /O Re / IV g(Xo)(5)V X (5)dEds

+ 5= 2 /O [ Reo X pacis (5.1)

N ot
+pj21/0 /Resﬁj!Xm(s)lpdgdﬁj(s), 0<t<7(x)

Here g(X.) = | Xm|P 2 X, and ¢ = pye;, 1 <j < N.

Proof. By (3.6) we have P-a.s. that
t
X (t) =a(t) + / [ZiAX(5) — 1 Xom(5) — Nigm(s)] ds
0

+ / Xo(8)8;d8,(s),  t<7(x), (5:2)
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where ¢,,,(5) = O, (9(Xn(5))), (5.2) is considered as an It6 equation in H !
and we used the summation convention over repeated indices for simplicity.

Taking convolution of both sides of (5.2) with the mollifiers 1), we have
for every ¢ € R that

t

(Xom ())°(§) = 2(¢) +/ [—1A(Xn(8))(€) = (1Xim(3))(€) = Ai(gm(s))(€)] ds

0

+ [ (X0 @), ¢ <7 (@) (5:3)

which holds on a set ¢ € .7 with P(Q) = 1.

In order to find Q € F with P(€2) = 1 such that (5.3) holds on  for all
¢ € R4, we need the continuity in £ of all terms in (5.3). Let us check this for
the stochastic integral term in (5.3). Set 0,,; = inf{s € [0, 7,] : | X;n(s)|m1 >
[} A 7,. Since the function £ — (X,,,(s)¢;)¢(§) is continuous and

t/\O'nl 2 N
(£)do; (s Z (01700 )[Wel3 1Pt < 00,
it follows that £ — fo m(8)9;)(€)dp;(s) is continuous on {t < o,,;}. But
since sup | X, (t)|gr < oo, P-a.s, for P-a.e w € Q there exists [(w) € N such

te[0,7n]

that 0,,;(w) = 7,(w) for all I > [(w). Therefore,

Ut <ol ={t <}, (5.4)

leN

implying that £ — fo (s)p;)(€)dB;(s) is continuous on {¢t < 7,} hence
on {t < 7*(z)}. One can also check the continuity in ¢ for the drift terms in
(5.3).

Therefore, we conclude that (5.3) holds on a full probability set Q € F
and  is independent of £ € RY.

Now, we set for simplicity X¢,(¢) = (Xn(t))(€) and correspondingly for
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the respective other terms. Then by [to’s formula we have P-a.s.
t t
X0 =P~ p [ Relig(T) (A (6)ds — p [ Relo(Xg) ()X, ())ds
0 0

3 [ Reia(Ra)s)aia(ds + 5 [ 1K (X001 (5) P

300 =2) [ 1K RT3 (X,00,) (5) s
[ RO Xt (D50, <@ (69

We next integrate (5.5) over R, and it is not difficult to justify the
interchange of integrals by the deterministic and stochastic Fubini theorem.
We refer to [14] for more details. Therefore, we obtain that

Xl =ttt —p [ Re [0 ()97 ()i
—p [ Re [ (990 ) deds
= Re [ 19T eI s s
2 [ 10 o) deds

90 =2) [ [ 1P R () (X () s

+p / Re / 9(X5) () (X5 () dEd B (5)
:’xelip+K1+K2+K3+K4+K5+K6. (56)

Now, we can take the limit € — 0 in (5.6). Below we only do that for K7,
K3 and K. The other terms can be treated similarly.
First, note that as e — 07

X — X, in LY0,t; WhP), (5.7)
in particularly,

Xy, — X, VX — VX, in measure dt x d§. (5.8)
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In order to take the limit for K7, it suffices to show that
IV9(X5,) = Vo(Xo)ll 1o 0,410y — O- (5.9)

To this end, direct calculations show that
\V4 ey P— 2 € |p—4 EN2vT Ve P e p—2 €

To treat the first term in the right hand side above, observe that for dt —
a.es€[0,t]ase—0

126 P (8) (X5 (5], 2y = [1X 17 (s)]
= |Xu(8)I70" = [1Xul?~*(5) (X)2(5)]

-2
Ly = IXG()[E
=k

and |VX¢,(s)|r — [VXon(s)|re, which yields by (5.8) that, as € — 0

D2 X ) (X ()X (5) — 222X (5) (X)) V(). i 17

Similar results hold also for the second term in the right hand side of (5.10).
Thus for dt — a.e s € [0,t] as € — 0

Vg(X5)(s) = Vg(Xn)(s), in L. (5.11)
Moreover,

IVg(X5)(s) = Vg(Xm) ()| L
<2(p — )| X (8) 22V X (5) | 2o € LT(0, 1), (5.12)

which implies (5.9) by Lebesgue’s dominated convergence theorem. Hence

lim K} = —p / t Re / iVg(Xm)(s)V X, (s)dEds.
0

e—0

Concerning the term K3 with ¢, in (5.6), first observe that

19(X5)(s) = 9(Xn) ()| = 0, 195 () = gm(8)]2r — 0, s €[0,1],

thus as e — 0
Re / i9(X5)(5)g5(5)d€ — Re / (%) (5) g () €.
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Moreover, by Hélder’s inequality, (3.4) and Sobolev’s imbedding theorem we
have

| Re / i9(X5)(5)95 (5)d€| <19(X5)(8)] 1o |95 (5) v
<C| X (s)| 75V

<C sup |X,n(s) ?{(11’71) < 00, (5.13)
s€0,t]

which, by Lebesgue’s dominated convergence theorem and (3.5), implies that

lim 16, = —Ap /0 Re [ 1900 (s)gn(s)decds =0

Finally, as regards the last stochastic term Kg in (5.6), we first prove that
for o, ; defined above, as € — 0

e [ " Re [t () — [ AT Cds— 0,
(5.14)

In fact, using similar arguments as above, we have for s € [0, A 0]

Re / 9(2)(8)(Xony)“()dE — Re / 9(X)(8) (X)) (8)dE — 0. (5.15)

Furthermore, as in estimate (5.13), for s € [0,¢ A 7]

| / 9(X0)(8) (X)) ()| <C sup | Xonls)[2, < C?, (5.16)

s€[0,tATy 1]

which yields (5.14) by Lebesgue’s dominated convergence theorem. Hence

Ko—p / [ Beoy X Pacas (s (5.17)

in P-measure on {t < 0,,;} as € — 0, which implies by (5.4) that (5.17) holds
on {t < 7,}. Therefore, as 7, — 7*(x) P-a.s, we conclude that (5.17) holds
P-a.s. for t < 7*(z).

Therefore, we can pass to the limit ¢ — 0 in (5.6). As Ky and K are
canceled after taking the limit, we finally obtain the desired formula (5.1) . O

Next, we prove the It6 formula for |V X,,|3.
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Lemma 5.2 Assume the conditions in Lemma 5.1 to hold. We have P-a.s.
fort < 1*(x)

VX, (1) =|Vaf2 + 2 / Re (—V(jiX)(5), VX (5)), ds
+Z/|V $)b;) \zs—QA/Re/Ngm VWV X, (s)déds

¥ 22 / Re (V (63X (5)), ¥ Xon(5)), dB,(s). (5.15)

Proof. We follow the ideas from the proof of (4.14) in [1] to derive (5.18).
Let {fx|k € N} C H? be an orthonormal basis of L? set J. = (I —eA)™!
and h, := J.(h) € H' for any h € H~'. Then we have from equation (3.6)
that P-a.s. for ¢ € (0,7*(z))

1dX e = AXpedt — i(pnX ) edt + A edt + (X 0;)edf;,

Xt (0) = 70, (5.19)

where g = [Om(9(Xm))]e and we used the summation convention.
Since O f), € H' for each fi, 1 <1 <d, k € N, it follows from (5.19) and
Fubini’s theorem that P-a.s. for ¢ € (0,7*(x))

<Xm,6(t)> alfk>2

t

= (@6, Oifiy + | (—iAXinc(5), Oufi)y d8+/0 (= (1Xm)e(s), O fi)y ds

0

" / (—Nigme(s), Dufi)y ds + / (Xon(8)67)es Dufe) 45
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Applying 1t6’s product rule and integrating by parts, we deduce that
‘ <Xm,e(t)a 8lfk>2 ’2

:‘ <al$e7fk> ‘ +2R6/0t< ( ) fk> < Z'alAXm7E<S),fk>2d8

L 9Re /O X (5): Te)s (— (1 Xom)e(5), fi), ds

+2Re [ X 60 T, (N 5) ) 0

1 2Re / OFKome (32 Fe) O Xon(8)61)er fi)y A5 ()
/l@l (8)0i)es fi)s |?ds, t<7*(z), P—a.s.

We note that AX,, . and g, are in H ! thus the above integrals make sense.
This is the reason why we have introduced the operator J..

Now summing over £ € N and interchanging infinite sum and integrals
(which can be justified easily), we obtain P-a.s. for all ¢ € (0, 7*(x))

’aleﬁ(t)’g

(e 9]

=D {Xne(t), Oufic) |*

k=1

t
:|8lx5|§+2/ Re <Z‘AXm7E(S),al2Xm7€(S)> ds
0
t
+2/ Re (=01 (uXm)e(s), 0 X m.e ds+/ |0y (X Del3ds
0
t
—2)\/ Re (i01Gm,e(5), 01X m.e(5)), ds—|—2/ Re (0/( X (8)®5)e, 01 Xm e(5)), dB;(5).
0 0

Finally, summing over [ : 1 <[ < d and using the fact that f. — f in H*
and |fe|gr < |f|gr for k = —1,0,1, we can pass to the limit ¢ — 0 in the
above equality and then obtain the evolution formula (5.18). O

We conclude this section with the proof of the asymptotic formula (3.10).

Proof of (3.10). This proof is analogous to that of continuous depen-
dence on initial data in Theorem 1.2, hence we only give a sketch of it. Set
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= 3@’:3 By the rescaling transformation X,, = e"y,,, it suffices to prove
that P-a.s.

Ym — vy, in L0, HY) N LY0, ;W) ¢ < 7%(2).
Notice that, (3.6) implies that

Ym = U(t,0)x — \i /t Ut,s)e " 0,,(g(e" @ yn(s)))ds. (5.20)

By (3.8), (2.8) and since [[W|| oo r;w1.00) < 00, we have P-a.s. for t <
()

R(t) == Sugi(HymHC([o,t};Hl) + |4 || La(o,e;wr041))

+ (lylleqogan + 1Yl Lo swrasn) < oo. (5.21)
Moreover, combining (2.12) and (5.20), we have

t
=y =i [ U9)e ™ [0 (g(e" () — (e y(s))] ds.
0
(5.22)
Now, we first claim that there exists ¢ small enough and independent of
m, such that

Hym - Z/HLOO(O,t;LZ’) + Hym - Z/HLq(o,t;LaH) — 0, as m — oo, (5-23)

in particularly,

Ym — Y N measure dt x d§.

(5.24)
Indeed, applying Strichartz estimate (2.10) to (5.22) we have
| Ym — yHLOO(O,t;LQ) + ||ym — yHLq(o,t (Lo+l)
<2Cr|le™ =iz 1Om(g(e™ ym)) = (€™ I Ly, p ot
OOl ) — e 1) ot + CON O~ Ve W)yt
<O ||ym = YllLaqo ety + C(D)[(Om — Vg™ y)ll,

voppey  (5:25)
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where we used (3.2) and estimates as in (2.23) in the last inequality. Here
0=1- % > 0, C(T) depends on Cr, ||W| gLy and R(t*) with any
fixed t* € (¢t,7*(x)). Choosing t small enough and then using (3.3), we con-
sequently obtain (5.23), as claimed.

Next, we prove that for ¢ sufficiently small and independent of m

|Ym — Yll Lo 0,601y + | Ym — Yl La(o,ezwrerry — 0, as m — oo. (5.26)

Indeed, from (6.3) in the Appendix it follows that
V(Ym —y) = /Ot Ult, s){i(DjV@ + ngDj + Vo) (Ym — v)
— XV [e™ (Om(9(e" ym)) — (e y))] }ds. (5.27)
Using estimate as in (4.7), together with (5.25), we have that
[i(D; V8 + V' D; + V) (ym = 95,

0
<O NYm = Yllzsszery + CONOn = Vgl Yl Ly potr) (5:28)

where § = 1 — % > 0, and C(T') depends on kr, Cp, ||W| remr;~) and

R(t*) < oo, P-as.
Then, similarly to (4.8), we have for m > 1

VY — Vyllzo0,602) + | VUm — VY| Lag;01)
(T )t"llym = Yllzszery + COIVa(E ym) = Vol DI Ly o ot

eIEa [ I E—— (5.29)

where C(T') is independent of ¢ and m.

Therefore, applying analogous arguments as those after (4.8) to control
the second term, and then using (3.3) to take the limit in the last term, we
deduce that (5.26) holds for ¢ small enough and independent of m. Reit-
erating this procedure with estimates as above we conclude (3.10) for any
t<71*(x). O
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6 Appendix

Proof of Lemma 2.7. Estimate (2.10) is already proved in Lemma 4.1 in
[1]. We can use the same arguments there to derive that

HUHLM(O,T;LM)QX[&H < CT(’U0|2 + HfHLqé(D,T;LPé)—i—)Z[’O’T]>’ (61)

where X o, is the local smoothing space introduced in [12] up to time 7" and
(giypi), i = 1,2, are Strichartz pairs.

Next, we prove the estimate (2.11). Since the proof relies on Theorem
1.13 and Proposition 2.3 (a) in [12], we adapt the notations there D; := —i0},
D; := —i0;, 1 < j <d, to rewrite (2.9) in the form

Do = (D;a?* Dy 4+ Db + W D; + &)u —if
~ d
with @/* = §;, o/ = —id;W, and ¢ = — Y (O;W)* + (n+ )i, 1 < 4,k < d.
j=1
Direct computations show
D\Vu =(=A+ Db/ + ¥/ D; +&)Vu
+ (D, VV + VbV D; + Vé)u — iV, (6.2)

We regard (6.3) as the equation for the unknown Vu and treat the lower
order term (D; Vb + Vi D; 4+ Vé)u as equal terms with V f. This leads to

t ~ . ~.
Vu(t) = U(t,0)Vug + / Ult,s) {i(Dij](s) + V' (s)D; + Ve(s))u(s) + Vf(s)] ds.
0
(6.3)
Hence applying (6.1) to (6.3) and then using Proposition 2.3 (a) in [12] to
control the lower order term, we derive that
IVl o, (0,75LP1)NX o 1

<Cr [|Vuoly + (DY + VU D, + Velul g, + V£ OTLPQ)}

<Cr |[Vuolz + wrlull g, , + IV /] (6.4)

L% (o,T;LP’z)]

+IV I L

<Cr \Vu0|2 + Crer(luol2 + ([ 4

L% OTLP2)) L% OTLPQ)i|

=Cr(Crkr + 1) ||ug| g + ||f||Lq/2(O7T;W1,p/2)} ;
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where we also used (2.10) to estimate ||ul| K01y in the last two inequalities.
This together with (2.10) yields the estimate (2.11).

Now, set

Cy =sup{[|U (-, 0)uo|| Lax (0651713 [wo | < 1}
+sup{] | vtssas N g oty = 1} - (65)

0
Then the asserted properties of Cy, t > 0, follow analogously as in the proof
of Lemma 4.1 in [1] (see also [14]). This completes the proof of Lemma 2.7. [J

Lot (05wl

Proof of (3.4). Hausdorf-Young’s inequality shows that

O flumes =IO s flum < 1O g 7], o

As oy e cx s, (01 € S c L™, which implies |0, f| a1 < 00, O

Proof of (3.5). For f € L N L, (3.5) follows from Fourier’s inversion
atl

formula and Fubini’s theorem. The general case f € L * follows from a
standard approximating procedure. 0

Proof of Lemma 3.5. As in the proof of Lemma 4.3 in [1], we have

N t
X5 =|z]5 + 22/ Repj < X(s), X(s)e; >2 dB;(s), t<1"(x), P—a.s.,
j=1"0
(6.6)

where 7%(z) is as in Theorem 2.1. Then, It6’s formula implies
t N
X0 =folg o+ p [ XD Retws (X(5), X(5)es), ()

50 =2) [ X S (R (X(9), X (e ds. ¢ <)
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Hence, by the Burkholder-Davis-Gundy inequality and Lemma 3.3 with
Y replaced by | X @p , we derive that for every n € N

E sup |X(s)[;

s€[0,tATR]

tATh % tATh
<lalp + VIR | [ x| 42t 2l [ X9
0 0
t
<folf + eV2RpCE_sup X+ Cov/2ulpC [ B sup [X()l2ds
0

SE[0,tATR) r€[0,5AT]

t
2= Dl [ B s |X(r)f5ds.
0

r€[0,5ATn]

Therefore, similar arguments as at the end of the proof of Theorem 3.6
yield Lemma 3.5. O
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