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Abstract

In this paper we study 3D Navier-Stokes (NS) equation driven by space-time white noise by
using regularity structure theory introduced in [Hail4| and paracontrolled distribution proposed
in [GIP13]. We obtain local existence and uniqueness of solutions to the 3D Navier-Stokes
equation driven by space-time white noise.
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1 Introduction

In this paper, we consider 3D Navier-Stokes equation driven by space-time white noise: Recall
that the Navier-Stokes equations describe the time evolution of an incompressible fluid and are
given by

ou+u-Vu=vAu—Vp+¢&

1.1
u(0) =ug, divu =0 (1.1)

where u(x,t) € R3 denotes the value of the velocity field at time ¢ and position z, p(x, t) denotes
the pressure, and {(z,t) is an external force field acting on the fluid. We will consider the case
when x € T®, the three-dimensional torus. Our mathematical model for the driving force £ is
a Gaussian field which is white in time and space.

Random Navier-Stokes equations, especially stochastic 2D Navier-Stokes equation driven by
trace-class noise, have been studied in many articles (see e.g. [FG95], [HMO06], [Del3], [RZZ14]
and the reference therein). For two dimensional case: existence and uniqueness of the strong
solutions have been obtained if the noisy forcing term is white in time and colored in space. For
three dimensional case, existence of Markov solutions for stochastic 3D Navier-Stokes equations
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driven by trace-class noise has been obtained in [FR08|, [DD03], [GRZ09]. Furthermore, the
ergodicity has been obtained for every Markov selections of the martingale solutions if driven
by non-degenerate trace-class noise (see [FRO8]).

This paper aims at giving a meaning of the equation (1.1) when £ is space-time white
noise and obtain local (in time) solution. Such a noise might not be relevant for the study of
turbulence. However, in other cases, when a flow is subjected to an external forcing with very
small time and space correlation length, a space-time white noise can be considered. The main
difficulty in this case is that £ is so singular that the non-linear term is not well-defined.

In two dimensional case, Navier-Stokes equation driven by space-time white noise has been
studied in [DD02], where a unique global solution in (probabilistically) strong sense has been
obtained by using the Gaussian invariant measure for this equation. Thanks to the incompress-
ibility condition, we can write v - Vu = %div(u ® u). The authors split the unknown into the
solution to the linear equations and of the solution to modified Navier-Stokes equations:

Oz =vAz—-Vr+¢, divz =0

1
0w =vAv — Vq — §div(v +2)® (v+z2), divv=0. (1.2)

The first part z is a Gaussian process with non-smooth paths and v is smoother and the
nonlinear terms can be defined even though z is only a distribution in this case. By a fixed point
argument they obtain existence and uniqueness of the local solutions in the two dimensional
case. Then by using Gaussian invariant measure for 2D Navier-Stokes equation driven by
space-time white noise, existence and uniqueness of the (probabilistically) strong solutions
starting from almost every initial value has been obtained. (For one-dimensional case we refer
to [DDT94)).

However, in the three dimensional case, the trick in two dimensional case breaks down here
since v and z in (1.2) are so singular that the nonlinear term cannot be well-defined. As a
result, we cannot make sense of (1.2) and obtain existence and uniqueness of the local solutions
as in the two dimensional case. If we iterate the above trick as follows: v = vy + v3 with vs, v3
are solutions to the following equations:

1
09 = vVAvy — Vo — édz’v(z ® z), divvy = 0.

Oyvz = uAvg—ng—%dz’v[(v3+vg)®(v3+02)]—%div((vg+vg)®z)—%div(z@(vg—i—m)), divvg = 0.

(1.3)
Now we can make sense of the terms without vs in the right hand side of (1.3), hope v3 become
smoother such that the nonlinear terms including v3 are well-defined and try to obtain a well-
posed equation. However, this is not the case. For the unknown wvs the nonlinear term v3 ® z is
still not well-defined. No matter how many times we modify this equation again as above, the
equation always contains the multiplication for the unknown and z, which is not well-defined.
Hence, this equation is ill-posed in the traditionally sense.

Thanks to the regularity structure theory introduced by Martin Hairer in [Hail4] and the
paracontrolled distribution proposed by Gubinelli, Imkeller and Perkowski in [GIP13] we can
solve this problem and obtain existence and uniqueness of the local solutions to the three
dimensional Navier-Stokes equations driven by space-time white noise. Recently, these two



approaches have been successful in giving a meaning to a lot of ill-posed stochastic PDEs like
the KPZ equation ([KPZ86], [BG97], [Hail3]), the dynamical ®; model ([Hail4], [CC13]) and
so on. From a philosophical perspective, the theory of regularity structures and the paracon-
trolled distribution are inspired by the theory of controlled rough paths [Lyo98, Gub04]|. The
main difference is that the regularity structure theory consider the problem locally, while the
paracontrolled distribution method is a global approach using Fourier analysis.

In the theory of regularity structures, the right objects, e.g. regularity structure that could
possibly take the place of Taylor polynomials can be constructed. The regularity can also
be endowed with a model, which is a concrete way of associating every distribution to the
abstract regularity structure. Multiplication, differentiation, the living space of the solutions,
and the convolution with singular kernel can be defined on this regularity structure and then
the equation has been lifted on the regularity structure. On this regularity structure, the
fixed point argument can be applied to obtain local existence and uniqueness of the solutions.
Furthermore, we can go back to the real world with the help of another central tool of the
theory the reconstruction operator R. If £ is a smooth process, Ru coincides with the classic
solution of the equation.

In this paper we first apply Martin Hairer’s regularity structure theory to solve three dimen-
sional Navier-Stokes equations driven by space-time white noise. First as in the two dimensional
case we write the nonlinear term u - Vu = %div(u ® u) and construct the associated regularity
structure (Theorem 2.7). As in [Hail4] we construct different admissible models to denote
different realizations of the equations corresponding to different noises. Then for any suitable
models, we obtain local existence and uniqueness of solutions by fixed point argument. Finally,
we renormalized models of approximation such that the solutions to the equations associat-
ed with these renormalized models converge to the solution of the 3D Navier-Stokes equation
driven by space-time white noise in probability, locally in time (Proposition 2.12 and Theorem
2.16).

The theory of paracontrolled distribution combines the idea of Gubinelli’s controlled rough
path [Gub04] and Bony’s paraproduct [Bon84], which is defined by the following: Let A;f be
the jth Littlewood-Paley block of a distribution f, define

T (fg) =m(0.£) =D Y AifNjg, m(f.9)= > AifAg.

§>—1i<j—1 li—j|<1

Formally fg = n-(f,9) + mo(f, 9) + 7~ (f, g). Observing that if f is regular 7-(f, g) behaves
like g and is the only term in the Bony’s paraproduct not raising the regularities, the authors
in [GIP13] consider paracontrolled ansatz of the type

u=m(u,g) + 1,

where 7 (u/, g) represents the ”bad-term” in the solution, g is some distribution we can handle
and u! is regular enough to define the multiplication required. Then to make sense of the
product of uf we only need to define gf.

In the second part of this paper we apply paracontrolled distribution method to three di-
mensional Navier-Stokes equations driven by space-time white noise. First we split the equation
into four equations and consider the approximation equations. By using paracontrolled ansatz
we obtain uniform estimates for the approximation equations and moreover we also get the



local Lipschitz continuity of solutions with respect to initial values and some extra terms inde-
pendent of the solutions. Then we do suitable renormalisation for these terms and prove their
convergence in suitable spaces. Here inspired by [Hail4] we prove Lemma 3.10 which makes the
calculations of renormalisation much easier. Moreover by taking the limit of the solutions to
the approximation equations we obtain local existence and uniqueness of solutions (Theorem
3.12). Indeed by choosing a suitable solution space we can also give a meaning of the original
equation (see Remark 3.9).

This paper is organized as follows. In Section 2, we use regularity structure theory to obtain
local existence and uniqueness of the solutions to 3D Navier-Stokes equation driven by space-
time white noise. In Section 3, we apply paracontrolled distribution method to deduce local
existence and uniqueness of the solutions.

2 NS equation by regularity structure theory

2.1 Preliminary on regularity structure theory

In this subsection we recall some preliminaries for the regularity structure theory from [Hail4].

Definition 2.1 A regularity structure T = (A, T, G) consists of the following elements:

(i) An index set A C R such that 0 € A, A is bounded from below and locally finite.

(ii) A model space T', which is a graded vector space T' = @oecaT,, with each T, a Banach
space. Furthermore, Tj is one-dimensional and has a basis vector 1. Given 7 € T we write
||| for the norm of its component in T,,.

(iii) A structure group G of (continuous) linear operators acting on 7' such that for every
I' € G, every a € A and every 7, € T, one has

7o = Ta € Tea == P Tp.

B<a

Furthermore, 'l = 1 for every I' € G.

Now we have the regularity structure T given by all polynomials in d + 1 indeterminates,
let us call them X, ..., X4, which denote the time and space directions respectively. Denote
Xk = Xko.. ~X§d with £ a multi-index. The structure group can be defined by I', X* = (X —h)*,
h € R4

Given a scaling s = (s, 61, ..., 54) of R4"1. We can associate the metric on R4 given by

d
|2 = 2'||s := ds(2,2") == Z |2 — 2|1/
i=0

For k = (Ko, ..., kq) we define |k, = 2% s:k;.
Given a smooth compactly supported test function ¢ and a space-time coordinate z =
(t, 21, ...,2q) € R we denote by @) the test function

s—1 y1—a yd—%)
TR TR v

@2(87 Y1,y yd) = A_lﬁ‘gp(



Denoting by B, the set of smooth test function ¢ : R4*! + R that are supported in the
centred ball of of radius 1 and such that their derivative of order up to 1 + |«| are uniformly

bounded by 1. We denote by &’ the space of all distributions on R?*! and denote by L(FE, F)
the set of all continuous linear maps between the topological vector spaces £ and F'

Definition 2.2  Given a regularity structure ¥, a model for T consists of maps
R 5 2 11, € L(T,S), R xR 5 (2,2) =T, €G,
satisfying the algebraic compatibility conditions
LT =1L, Tewo T = Do,
as well as the analytical bounds
(L7, oD S A7l (Ta27lls Sz = 218777

Here, the bounds are imposed uniformly over all 7 € T,,, all 8 < a € A with a <, v > 0, and
all text function ¢ € B, with r = inf A. They are imposed locally uniformly in z and 2’.

Then for every compact set & C R and any two models Z = (II,T') and Z = (I, ") we
define

11Z; Z||lon := sup[ sup A7 = TL7, @) +  sup sup ||z = 2'[|J7Toerr — Tor7l 6],
ZER o\ a,T |z—2"]|s<1 a,B,T

where the suprema run over the same sets as before, but with ||7|| = 1.

On the regularity structure one can define multiplication *, differentiation ® as in [Hail4].
Now we have the following definition for the spaces of distributions C, av < 0, which is an
extension of Holder space to include a < 0.

Definition 2.3 Let n € &’ and a < 0. We say that n € C¢ if the bound

In(e2)] S A%,

holds uniformly over all A € (0, 1], all » € B, and locally uniformly over z € R4+,

For every compact set & C R, we will denote by ||7]|a the seminorm given by

Hn”oc;% 1= sup sup sup /\_a|77<902)|'
ZER pEBL AL1

We also write || - ||, for the same expression with R = R4,

We also have Hélder spaces on the regularity structure. Consider P = {(¢t,z) : t = 0}.
Given a subset & C R we also denote by Ry the set

Ry ={(2,2) € R\ P)?: 2 # z and ||z — 2| < [tz A[f]2 AL},

where z = (t, ),z = (¢, 7).



Definition 2.4 Fix a regularity structure ¥ and a model (II,I') and 9 as above. Then for
any v > 0 and n € R, we set for z = (t,2),z = (£,Z) and every compact set R C R+,

||f<z)||l
fllympm == sup sup ———.
H an e \ I<~ |t|7l2l/\0

The space D" then consists of all functions f : R\ B — T.., such that for every compact
set R C R4! one has

1/ (2) =T f(2)]ls
A ymex := L fllymex + sup  sup T
o T o i<y [l = 2 A )T

We also set

H|f7 f‘”%n;m — Hf _ f_H’y,T];ﬁ'{ + sup sup Hf(Z) - f(z) - Fzéf('E) + Pz%f(Z)Hl <

(2,2)ERy 1<y |z — 2||3_l(]t| A |f)%

Q.

Given a regularity structure, we say that a subspace V' C T is a sector of regularity « if it
is invariant under the action of the structure group G' and it can be written as V' = @©gcaVp
with V3 C T, and V3 = {0} for 8 < a. We will use D""(V') to denote all functions in D"
taking values in V.

Theorem 2.5 (cf. [Hail4, Proposition 6.9]) Given a regularity structure and a model (IL, T").
Let f € DY"(V) for some sector V of regularity a < 0, some v > 0, and some 1 < . Then
provided that o A > —2, there exists a unique distribution Rf € C?** such that

(Rf —TLf(2))(¢2)| S\,

holds uniformly over A € (0,1] and ¢ € B, with ¢} compactly supported away from 9 and
locally uniformly over z € R4l Moreover, (II,T', f) — Rf is jointly (locally) Lipschitz
continuous with respect to the metric for (II,I") and f defined in Definitions 2.2 and 2.4.

In order to define the integration against singular kernel K, Martin Hairer in [Hail4] in-
troduced an abstract integration map Z : T — T to provide an ”abstract” representation of
IC operating at the level of the regularity structure. In the regularity structure theory Z is a
linear map from 7" to T such that ZT,, C T, 4 and ZT = 0 and for every I' € G, 7 € T one has
I'Zr —II't € T.

Furthermore, we say that K is a S-regularising kernel if one can write K = ) . K, where
each of K, : R¥! — R is smooth and compactly supported in a ball of radius 2=" around the
origin. Furthermore, we assume that for every multi-index k, one has a constant C' such that

sup |DkKn<£IZ'>’ < C2n(d+1fﬁ+\k\5)7
holds uniformly in n. Finally, we assume that [ K, (z)E(x)dz = 0 for every polynomial E of

degree at most N for some sufficiently large value of N.
Then we have the following results from [Hail4, Proposition 6.16].

Theorem 2.6 Let T = (A, T,G) be a regularity structure and (II,I') be a model for . Let
K be a p-regularising kernel for some § > 0, let Z be an abstract integration map acting on

6



some sector V' of regularity v < 0, and let II be a model realising K for Z. Let v > 0, n < 7.
Then provided that a« Anp > —2, v+ 3,7+ [ not in N, there exists a continuous linear operator
ICy DY (V) = D with ¥ = v+ f and 7 = (n A ) + f3, such that

RE,f =K *Rf,
holds for f € DY (V).
In the following we use the notations Or = (—o0, T x R? and use the shorthands ||| - |||, .7
as a short hand for ||| - |||5,,.0., and similarly for ||| - |||,,r. Moreover, we have for some 6 > 0

11K Lso .z S TPy

2.2 NS equation

In this subsection we apply the regularity structure theory to 3D Navier-Stokes equations driven
by space-time white noise. In this case the scaling s = (2,1, 1, 1), so that the scaling dimension
of space-time is 5. Since the kernel G¥,7,j = 1,2, 3, given by the heat kernel composed with
the Leray projection P has the scaling property GY(3, %) = 6°G¥(t,z) for 6 > 0, by [Hail4,
Lemma 5.5] it can be decomposed into K%+ RY 4, j = 1,2, 3, with K% is a 2-regularising kernel
and RY € C*. By [Hail4] we could choose K% is compactly supported and smooth away from
the origin and such that it annihilates all polynomials up to some degree » > 2. Moreover,
by [KT01] we could choose K% is of order —3, i.e. |DFK(z)| < C|lz|s > ¥ for every z with
|z|ls <1 and every multi-index k. We also use D;K, j = 1,2,3, to represent the derivative of
K with respect to the j-th space variable and D;K is also a 1-regularising kernel and of order
—4 and DJR S C™.

Consider the regularity structure generated by SNS equation with g = 2, —% <a< —g.
In the regularity structure we use symbol =* to replace driving noise &*. For i,1; = 1,2, 3, we
introduce the integration map Z associating with K% and the integration map Z;* for a
multiindex &, which represents integration against D* K% . We recall the following notations
from [Hail4]: defining a set F by postulating that {1,=, X;} C F and whenever 7,7 € F,
we have 77 € F and 17;]‘(7') € F; defining F*t as the set of all elements 7 € F such that
either 7 = 1 or |7|s > 0 and such that, whenever 7 can be written as 7 = 7,75 we have either
7, =1 or |ri]s > 0; H,H" denote the set of finite linear combinations of all elements in F, FT,

respectively. Here for each 7 € F a weight |7|s which is obtained by setting |1|s = 0,
77ls = |7]s + [71s,
for any two formal expressions 7 and 7 in F, and such that
Els=a, |Xils =54, |IIZ<:Z1 (T)]s = |7]s +2 — [K]s.
Define a linear projection operator P, : H — H by imposing that
Pr=1, 7€F,, P7=0 1€F\F,,
and two linear maps A : H - HQH, and AT H, - H, @ H, by
Al=1®1, AT1=1®1,



AT =Z'®1,

and recursively by

A(TT) = (AT)(A?)
ATy = (TP @ AT + Z T i (PR 7).
AT (17) = (A+7')(A+7")
(—X)'
[!

AN = (I @L)r)+ Y (L, @ )AT.
l

To apply the regularity structure theory we write the equation as follows: for i = 1,2, 3

3 3
O] =v E P Avlt + E Pt divvy =0,
ir=1 ir=1

3 (2.1)
ot =v Z Pt Apit — Z P“1 (V" + i) (v + )],  dive = 0.
i1=1 11,J=1

Then v; + v is the solution to the 3D Navier-Stokes equations driven by space-time white noise.
Now we consider the second equation in (2.1). Define for 7,5 = 1,2, 3,

mz}% - {171-1'1'1(52,1)717'3'1( ) Iul( i )Iﬂl(“h) Ui’ Uj? Uin’Iih(Eil)Uj’ Uinjl(Eﬁ)vil’jl = 1’2’3}'

Then we build subsets {P?},50 and {W, },>¢ by the following algorithm. Set W7 = P} = &
and B
W;L] — Zj 1 U U Q n— 17 )

Qem’l
P ={X*}U{Z () : 7 € Wil iy ip = 1,2, 3},
and 3
Fe=J UWi, Fi=JWiij=123.
n>014,j=1 n>0

Then Fp contains the elements required to describe both the solution and the terms in the
equation (2.1). We denote by HF,HiZ,i,j = 1,2,3, the set of finite linear combinations of
elements in Fr, ]-'}? , respectively. Now by using the theory of regularity structure (see [Hail4,
Section 8]) we can also define a structure group G of linear operators acting on H satisfying
Definition 2.1 as follows: For group-like elements g € H*, the dual of H*, I’y : H — H, Ty =
(I ® g)Ar. By [Hail4, Theorem 8.24] we construct the following regularity structure.

Theorem 2.7 Let T'=Hp with T, = ({r € Fp : |7|s =~}), A={|7|s : 7 € Fr} and G be
obtained above. Then ¥ = (A, Hp, Gr) defines a regularity structure ¥.

Proof In our case, the nonlinearity is locally subcritical. (i) (ii) in Definition 2.1 can be checked
easily. (iil) in Definition 2.1 follows from the definition of A and I',. O
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Now we come to construct suitable models associated with the regularity structure above

Given any continuous approximation & to the driving noise &, we set for z,y € R*

D) =&, MOXM(y) =y -,

and recursively define
(I 77)(y) = () (y) (I 7) (),
f(a (PLTYm). (2.2)

and
m?ﬁ%mn:/Dﬂww—zmw> c&+23

I7) are defined by
£ = - [ DI )P ()

2 (7) and extend this to all of H*

Here f{(T
(2.3)

Furthermore we impose fa(f (X;) = —ay, fg(f)(r%) = féa) (7) f2
by linearity. Then define
If) =T 0o (L), (2.4)

where I' o7 = (I ® FENAT for 7 € H.

Now by [Hail4, Proposition 8.27] we have
Proposition 2.8 (II®), I'®)) is a model for T constructed in Theorem 2.7
Definition 2.9 A model (I, T) for ¥ is admissible if it satisfies (I, X*)(y) = (y — )" as well

as (2.2), (2.3) and (2.4). We denote by Mp the set of admissible models

Set
Fo={1,2;,T"(E,,), T (2, ) TV (B),). T
:Wawevﬂw%:waWcm>
T (T (E) T (B0 T (T (E5)T"
T (T (T (B0) T (E0)) T (20)) 27

(I“”(E‘ ). LI (EL) T (20)), I (T (),
HEi) T (T (BR) T (Er)) T (E5),
HE0), T (T (T (20,) T (Z0) I (B0)) T (),

(Ej1)717j7k7 l7217227z37j17]27 k17l1712 17 27 3}

and
Fo = {T*(E8), (T2 (Z,) T (Zk, )T (Z),), 4, Ky i1, 9, 1, B = 1,2, 3.
Then Fy C Fr contains every 7 € Fr with |7|; < 0 and for every 7 € Fy, At € (Fp)

(Alg(F.)). Here (Fo) denotes the linear span of Fy and Alg(F.) denotes the set of all elements
Z;**7; for some multiindices k and I; such that |Z;"' 7;]; > 0 and

in F, of the form X* Hm’l,z'z 1
T € «F*



Then for any constants Cj; ;5 , Cr: oo O isiskiniinggys Citviakiniiniagsys b s Ko 1, i, 03, 1,
k1,11, = 1,2,3, we define a linear map M on (Fy) by
M(ZT™(Z:)T7 (25)) = T (E0) TP (Ej) = Ciyyp L
M (T (2T (2T (95,2 (1)
=L (T2 (E0) T E)) T (T(E5) T (B0)) = Chiigjiakhm 1
M(Z™ (T (27" (23,) T (E0,)) T (B ))Ijjl(E' ) (2.5)
ST (T (T (2, T (20 )T (E) T E,,) - O
M(Z™ (T (T (50, ) T (B0,)) T2 (20)) T (E5)))
:Il"1 (Iilgll (Illb (:la)zkkl (Zky ))Iim (Eig))zﬂl (‘:jl) - C;lilizkklllllgjjl 1,

1,

i1i2i3kk1ll1 571

as well as M (1) = 7 for the remaining basis vectors in Fy. We claim that for any 7 € Fy,
AMr = (M71)® 1. (2.6)

Since 7 satisfies M7 = 7 — C1 for any 7 € Fy, it is easy to check that (2.6) holds.
For 7 = T;" (I"%(Zy,)), i, 11,72, = 1,2, 3, we have

AFTI(TV(Z,,)) = T (T2 (2,,)) © 1+ 1 T (T (Z,,)),

(AMA® M)AYTI(T>(2,,)) = TP (T2 (S,) ® 1+ 1@ I (T'™(2,)),
It follows that . o L
AMTI (T2 (2,,)) = T (T2 (2,,)) @ 1.
For 7 :I;i1(71)7 where T = I“ZQ(IZZZS( )Ikkl( ))Illl(El1)7 ivilui%i&k?klvhll = 172737 we
have - - y
A—i—_'z'l“l (7—1) = Il”1 (7’1) ®1+1® Ilm (7’1).
(AMA® M)ATT (1) = 7" (n) @ 1+ 1@ 1" (),
which implies that . - -
AVT () = T () 1.
Similarly, we obtain A
AMTH ) =T () ® 1.

As a consequence of the expression, we have M belongs to the renormalisation group PR, defined
in [Hail4, Definition 8.43]. Then by [Hail4, Theorem 8.46] we can define (II™, ') and it is
an admissible model for Tp on (Fy). Furthermore, it extends uniquely to an admissible model
for all of 5.
By (2.6) we also have
My =1, Mr.

Now we come to the equation. First we define for any oy < 0 and compact set R the norm

|£’CVO M = Sup ’|€1t>sHao R
seR
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and we denote by C20 the intersections of the completions of smooth functions under | - 4,0
for all compact sets fR.

Since a < —g, Theorem 2.5 does not apply to RT=?, where R* : R x R? — R is given by
R*(t,x) =1 for t > 0 and R*(¢,2) = 0 otherwise. To define the reconstruction operator for
RTZ’ by hand, we need the following results, which has been proved by [Hail4, Proposition
9.5].

Proposition 2.10 Let £ = (£,&%,&3), with £,i = 1,2,3 being independent white noise
on R x T3, which we extend periodically to R*. Let p : R* — R be a smooth compactly
supported functlon integrating to 1, set p-(t,z) = e °p(%, £) and define & = p. x &', Then for
every 4,1, = 1,2,3, K x4 ¢ C’(]R, CoT2(R?)) almost surely. Moreover, for every compact set
R C R* and every 0 < § < —a — 2 we have

Ble = &lam S €’

5

Finally for every 0 < k < —a — 3, we have the bound

E sup [|[K™ & (t,-) = K™ % 2)(t,)|lase S €
tel0,1]

Now we reformulate the fixed point map as

]

(Y + Ry'R)RYE",

i
/I_}l_
1

.

1

(2.7)

l\.’)lr—\

3 3
Z D;K"™)5 + (D;R™),R)RY (u' x ) + vf + > Gy

i1=1

Here for ¢,41,5 = 1,2, 3, IC?;l and (D;K")5 are the continuous linear operators obtained by
Theorem 2.6 associated with the kernel Kt and D; K™ respectively,

971 o 971 Xk k ul =
R C— DM (R f)(2) = /D R™(z,2)f(2)dz,

Ikl <y

(D), 0 D (B ) = Y G [ DHDR) o2l
|k‘5<7
and 7,7 will be chosen below and we define RR*Z as the distribution 1.
For the second equaiton of (2.7), define

Vi=g3 I“l (H2) @ span{Z™(Z;,)} © T.

i1,7=1
V=VIxVxV3
We define the local map Fj : V — T by for 7 = (7,72, 7°%) with 7* € V",

Fi(7) =" %77

11



For v > 0,1 € R we define
DY V) =DV (Vi) x DV(Vy) x DV(V3).

(D%")?’ = DV DV DY

Lemma 2.11  For v > |+ 2| and —1 <7 < a 4 2, the map u +— Fj(u) is locally Lipschitz
continuous from D77(V) into DY+,

Proof This is a consequence of [Hail4, Proposition 6.12, Proposition 6.15]. O

Now for v,n as in Lemma 2.11 and Uo € C"(R?),i; = 1,2, 3, periodic, we have P""lué1 €
C"(R%),i,4, = 1,2,3, which by [Hail4, Lemma 7.5] implies that G#ul} € DV i i = 1,2,3.
By Proposition 2 10 and [Hail4, Remark 6.17] we also have for i = 1,2, 3, vi € D?". Now we
can apply fixed point argument in (D77)? to obtain existence and uniqueness of local solutions.

Proposition 2.12 Let TF be the regularity structure as above associated to NS equation
with a € (=%, -3). Let n € (=1, +2] and let Z = (I,T") € Mp be an admissible model
for Tr with the additional properties that for 7,7, = 1,2,3, £ := REZ" belongs to C® and that

K x ¢ € C(R,C"). Then there exists a maximal solution St € (D)2 for the equation (2.7).

Proof Consider the second equation in (2.7) and we have that u takes values in a sector of
regularity ¢ = a + 2 and F}, i i,5 = 1,2,3, takes value in a sector of regularity ( = 2a + 4
satisfying ¢ < ( +1. For n and v as in Lemma 211 wehaven =2nandvy>y=~v+a+2>0
and ¥ > v+ 1. By Lemma 2.11 for 7,5 = 1,2, 3, FZ is locally Lipschitz continuous from D" to
DV Then n < (GAC) +1and (FAC)+2>0 are satisfied by assumption. Denote by M (u)
the right hand side of the second equation in (2.7). By [Hail4, Theorem 7.1, Lemma 7.3] and
local Lipschitz continuity of FJZ we obtain that there exist xk > 0 such that

Z!HM}(U) M (@)|[}5 e ST ZHIF’ Fj (@)||l5.7:7

i,j=1
3
ST Z " = @[] 7
i=1

Then we obtain local existence and uniqueness of the solutions by similar arguments as in
the proof of [Hail4, Theorem 7.8]. Here we consider the solution is vector valued and the
corresponding norm is the sum of the norm for each component. To extend this local map up
to the first time where "0 [|(Ru’)(t, -)||, blows up, we write u = v; + vy + vz with vy in (2.7)
and

3
1 o
- § ((D;K™); + (D R™),R) R (v}t % v]),
]:

[\‘)s
[\D

—_

3
= Z ((D,;K™)5 4+ (D;R™) /R)RT[((vi* + i) x (v + v3))

l\D

+ (v + o) % o)) + (v % (] + )] + Z Gyl

1=1

12



In this case v§ takes values in a function-like sector with ¢ = 3a + 8 and we can use similar
arguments as in the proof of [Hail4, Proposition 7.11] to conclude results. 0]

Remark 2.13 Here the lower bound for 77 is —1, which seems to be optimal by the regularity
structure theory. The reason for this is as follows: the nonlinear term always contains v xv and
thus 77 < 2n which should be larger than —2 required by [Hail4, Theorem 7.8]. As a result,
n>—1.

Denote O := [—1,2] x R®. Given a model Z = (II,T') for T, a periodic initial condition
up € (C)3, and some cut-off value L > 0, we denote by u = S*(ug, Z) € (D?")3 and T =
TE(ug, Z) € Ry U {+o0} the (unique) modelled distribution and time such that (2.7) holds on
0, T, such that ||(Ru)(t,-)||, < L for t < T, and such that [|[(Ru)(t,-)||, > L for ¢ > T. Then
by [Hail4, Corollary 7.12] we obtain the following results.

Proposition 2.14  Let L > 0 be fixed. In the setting of Proposition 2.12, for every ¢ > 0
and C' > 0 there exists § > 0 such that setting T = 1 A T*(ug, Z) A T* (g, Z) we have

HSL(UO> Z) — SL(ﬂOa Z)H%n;T <,

for all ug, o, Z, Z such that [||Z|[|0 < C[IZ[lyo < C,lluolly < L/2, |Juolly < L/2, |luo —
toll, <6, and |||Z; Z[||5,0 < and

‘f’a;O + |£_|a;0 S C,

3

> sup ([ €n)(t, )l + (K™ *EM)(t,)]ly) < C,

iii=1 te[0,1]

as well as
|€ - gla;O S 57
3
S sup (K €0)(t, ) — (K % E)(t,-),) <6,
ii—=1 t€[0,1]

where £ = R=" and R is the reconstruction operator associated to Z.

Proposition 2.15 Given a continuous periodic vector & = (&1,£2,¢€3), denote by Z. =
(IT9), T'¢)) the associated canonical model realising T given in Proposition 2.8. Let M be the
renormalisation map defined in (2.5). Then for every L > 0 and periodic uy € C7(R3;R3),
u. = RS (ug, Z.) satisfies the following equation on [0, T (ug, Z.)] in the mild sense:

Owu. = Aue — P(ue - Vue) + P&,  divu. =0, u(0,z) = Puy.

Furthermore, u = RS (ug, M Z.) satisfies the following equation on [0, 7% (ug, M Z.)] in the
mild sense:

3
1 ;
Opue =Au. + P& — §P Z Dj(ucul),
j=1

divu. =0, u.(0,2) = Puy.

13



Proof The first result follows from the fact that & is a continuous function and a similar
argument as in the proof of [Hail4, Proposition 9.4].

Consider for i« = 1,2,3, u’ is the solution to the abstract fixed point map that can be
expanded as

S 1 < A T A .
WEYTNE) L Y TEEIPE) el Y T E)
i1=1 7,81,%2,71=1 Jy1,Jj1=1
1< 1 ’
3 2 TERENS T Y BGREREID E)TNE)
Jsi1,02=1 11,92,13,5,J1,k,k1=1

3
1
+t1 )L LMERE)LNETMERTMNE)) + pu

i17i27j7j17k’k17k2 1

Here every component of p, has homogeneity strictly greater than 3o + 8. Then for

Fi(u) == ',
we have
1 3
Fa=y Y BEEIINE)EOREINE)
11,82,J1,52,k,k1,0,11=1
1 & y 1 3 g
—5 Y LMITRE)TMEW)Y - ¢ Z TV (T (2,)T™ (En))
o 1
+¢'e! — o Z LT (E) T (Z0) T (B5) + ¢ ZIJ”
i1,12,71,k,k1=1 J1=1
1< 1 < ’
-5 2 TMEMEDSTNE) -5 Y LITE)STNE)
i1,71,k,k1=1 11,i2,71,k=1
3
1 iy
1Y T@EEE)TNE))TNE) TN E)
Zl,zQ,iS,l,ll,k,k‘l,jl 1
3
1 g
vY IE@RE) T R EL T )T E)
i1,12,k,k1,k2,l,01,51=1
1 3 3
—5 X TMTREITMENTNE) + YT E)
i1, 2.k, =1 ir=1
1 3 y 1 3 y
-5 Y WERE)PTIE) - Y TEEE)CTE)
i1,51,k,k1=1 i1,J1,J2,k=1
3
1 o _ _ I
1Y @@ E)I E)T E)TE)

i17j17j27j37l7l17k7k1:1
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j& > T (T2 (2, ™ (T2 (2) T (20)) T (Ba)

i1,j1,j27l,ll,k k1,k2=1

+ Z Izzl i1 _'Z'Jl (—'31) + pr,
11,51=1
where pp has strictly positive homogeneity. Moreover we have

3 3
Ru'=—2 D DK™ s (K2 agl K xgl) 4o+ 3 K ael,
i1i9,4,51=1 i1=1
Since AM7 = Mt ® 1, we have the identity (II2"®7)(2) = (I M7)(2). It follows that for the
reconstruction operator R associated with M Z.

3

. . . 1
M rni _ i j_ - 2
RYF;(u) =Ru'Ru 1 E Clivinjiniakhally — E : mm
i17i2’j17j27k7k1)l7ll:1 7‘17]1 1
3 3
1 o3 1 o
- Z § tirigisllikk1jj1 — Z § ii1inllikk1kajj1
11,12,13,k,k1,0,01,71=1 i1,02,k,k1,ka 101,51 =1
3 3
1 o3 1 o
- Z 2 : Ji1gejallikkyiiy Z 2 : Jirjallikkikaiiy»
i1,k,k1,00,01,02,03=1 i1,k,k1,k2,0,01,51,52=1

which combining with the fact that f(f [ D;G"(t — s,x — y)dyds = 0 implies the results. O

Theorem 2.16 Let T be the regularity structure associated to the dynamical SNS model
for 6 =2,a € (—— - ), let &, = p.*x& and let Z. be the associated canonical model and M. be
a sequence of renormahsation linear map defined in (2.5) corresponding to C1¢, C?¢ C3¢ C*e
which will be defined in the proof. Z.=M.Z.. Then, there exists a random model A indepen-
dent of the choice of mollifier p and M. € Ry such that M.Z. — Z in probability.

More precisely, for any 6 < —g — «a, any compact set R and any v < r we have

EH|MEZ€;ZA|H%9Q§5

uniformly over ¢ € (0, 1].

Proof By [Hail4, Theorem 10.7] it is sufficient to prove that for 7 € F with |7]; < 0, any
test function ¢ € B,, every © € R%, there exist random variables II,7(p) such that for x small
enough

E|(IL7)(e)]* < N2t (2.8)
and such that for some 0 < 0 < —% —a,
E|(IL,r — TTE7)(p2) > < 2 Nletr, (2.9)
For 7 = =;, 7 (=;,),1,4, = 1,2,3, it is easy to conclude (2.8), (2.9) hold in this case. For
T =1"(Z,)TV(Z},), i,i1, 7,1 = 1,2,3, we have

O (y) = / Kii(y — 2)€0 (2)d / K9 (y = )€ (2)dz = iy,



If we choose C° = (K% Ki1), where K, = p. ¥+ K we have

11jJ1
/ K“l K”l( — 22)621 (2’1) & fgl (Zg)dzleQ,
so that ﬂgf)T(y) belongs to the homogeneous chaos of order 2 with
WED (1) (ys 21, 22) = KE (y — 20) K2 (y — 2).
Then applying [Hail4, Lemma 10.14] we deduce that

[(OVEDT) (), WEDT) @) < lly — 3l

holds uniformly over ¢ € (0, 1], which implies the bound for 4ac + 10 + x < 0

| / / P @) (V2 (), V27 (5))dydg| S A0 / ly — 71l dydy

llylls <A Nlglls <A
D [l s 4 A,
llylls<2X
Hence we could choose
(W(Q)T)(ys 21,2) = K™ (y — 21) K7 (y — 2,).
In the same way, it is straightforward to obtain an analogous bound on (W®)(7), which implies

(2.8) holds in this case, so it remains to find similar bounds on (§WE2 1) = WEDT) — (WP 7),
Similarly by [Hail4, Lemma 10.17] we have for 0 < x + 6 < —2(2a + 5)

[{(GWED7)(y), GV ) @))] S lly — 9ll> 7,
holds uniformly over e € (0,1]. Then we have the bound

|//¢A (OWEDT)(y), OWEDT) () dydy| S e A2t

which implies (2.9) holds in this case.
For 7 = I (I"*(2,,) 777 (Z},)), i, 11,12, J, j1 = 1,2,3, we have the following identity

:/DjKiil(Z/ — Y1) /KiliQ(yl — 2)&2( dZ/Km 2)€E (2)dzdy,
= [ D =) [ [ K = )R (= )€ ) o € (ahdrdadn
so that ﬁgf)T(y) belongs to the homogeneous chaos of order 2 with
(WEDT)(y; 21, 20) = /DjKiil(y — ) K22 (11 — 21) K2 (1 — 22)dys.
Then by [Hail4, Lemma 10.14] we have for any § > 0
(OVEIT)(y), WIS lly = 9ll.°,
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holds uniformly over e € (0, 1], which implies the bound

)\ (s 2) A(€;2) — = < y—10 _ =||—9 —
[ [ 7)) VD)) dydg 2 Iy 9l *dudy

lylls <A lI7lls <A

5)\—5/ Hyuﬁ—édy S )\—6 5 )\f@+2(2a+5)’
llylls <22
for 0 < K+ 0 < —2(2ac+ 5). Hence we could choose
(W(Q)T)(y; 21, 22) = /Dij (y — 1) K2 (g1 — 20) K7 (y1 — 29)dys,

and deduce easily that (2.9) holds for 7 = I3 (Z%2(Z;,) 9" (Z;,)). Similarly we have the bound
for 0 <k+0+4+0<—2(20+5)

| / / B0 () (OWE2r) (), (BWE2)r) () dydg| < 0 NeH22045),

holds uniformly over e € (0, 1], which also implies that (2.10) holds for 7 = Z:"* (Z1%2(Z,;,) 777 (Z;,)).
In the following we use *—* to represent a factor K and > to represent DK, where for
simplicity we write K = K, D; K" = DK and we do not make the difference of the graphs
associated with different K%' since they have the same order. In the graphs below we also
omit the dependence on ¢ if there’s no confusion. We also use the convention that if a vertex

is drawn in grey, then the corresponding variable is integrated out.
For 7 = ;" (T" (2, )T (Ej,), iy i1, b, ki, g, i = 1,2, 3 we have

VA
e = ¥

Defining kernels Q2, P? b

POz—2) = i | QU2 — 2) = eveeiomat |

we have

WED7(2), WEDT(2)) =P2(2 — 2)8PQ2(2, 2),

where, for any function ) of two variables we have set

60)@(27 2) = Q(zv 2) - Q(zv()) - Q(07 2) + Q(an)

It follows from [Hail4, Lemma 10.14, Lemma 10.17] that for every § > 0 we have

Q2(2) = QO S Izl P2 ()] S Ml=l

As a consequence we have the desired a priori bounds for W2+ namely for every 6 > 0

(OWE27)(2), WBD7)(2)) < N1z = 2l (2 = 2 + 12l + 211 ),
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holds uniformly over € € (0, 1]. Defining as previously W®7 like WE2 7 but with each instance
of K. replaced by K. Moreover, we use ~~ to represent the kernel K — K. and we have

AU PURE AN O W T
(EWEDT)(2) = WV 03 §- W 03 §-

By a similar calculation as above we obtain the following bounds
(OVE7)(2), (WED7)(2)) Se¥ll= — 20 N1z = 217277 + 1121727 + 112077
+e¥ e = 277 (le = 2170 + Nlelle ™0+ 11Z]1:70),
which is valid uniformly over ¢ € (0,1], provided that § < 1,6 > 0. Here we used [Hail4,

Lemma 10.17]. We come to W& 7 and have

- p>?

(W(E;O)T)(Z) = \_‘: N &Z ¥]

Since K is symmetric and DK is anti-symmetric with respect to space variable, we conclude
that

which deduces the following

W) (z) = — 4 &
Then by [Hail4, Lemma 10.14, Lemma 10.17] we have for every 6 > 0

(VEI) ()] S =11,

holds uniformly over ¢ € (0,1]. Similarly bounds also hold for (§W(©97). Then we can easily
conclude that (2.8) (2.9) hold for 7 = Z;" (T¥1(Z;, )71 (2, ).

For 7 = I, (T1%(Z,,))T9(Z,,), i, 41,49, k, 7,71 = 1,2,3, we could prove similar bounds as
above since in this case we also have

—

AT
For 7 = I, (I"%2(Z;,) I (Ex, ) T91 (), ), 4, i1, 02, k, k1, j, 1 = 1,2, 3, we have the following
identities
\Y4

W) () = ¥,



where
Zee N

v e ;
Q(z—2) = e , ¥ =0
By [Hail4, Lemma 10.14, Lemma 10.17] for every § > 0 we have the bound

Q:(z = 2) S ll= = 2157,

i}

which implies that R
[(WVEIT(2), W7 (2))] S [l = 21717,

holds uniformly over ¢ € (0,1]. Defining as previously W® 7 like WE3) 7 but with each instance
of K. replaced by K. Then SWEBT can be bounded in a manner similar to before. Now for
WED T we have

WTI7)(2) = (Rae)  KE9)(2),

where L.(2) = ¥ and (R,L. = [L( — ¢ (0))dz for ¢ smooth and compactly
support. It follows from [Ha114 Lemma 10. 16] that the bounds

OV (2), WEYVT) D] < Dle = 277,

holds uniformly for ¢ € (0,1]. Similarly, this bounds also holds for (W{7)(2). Again,
(51/\/1.(8;1)7',@' = 1,2 can be bounded in a manner similar to before. Then we can easily conclude
that (2.8), (2. 9) holds for T = I, (Z1%2(Z,,) I (Ey, ) ) T (E5,).
For 7 = I, (T2 (Z,,) I (2, ))I”l(IJU?( )I”l(Ell)),i,il,z'g,k, ki, j, g1, o, L, 11 = 1,2,3,
we have the identities
vV

W) () = ¥

(VD) (), W) () = P

Then we obtain the bound for every ¢ > 0
(VD7) (), WEHT)(2))] < ll= = 2]
Similarly, we obtain
[((OWVEDT)(2), (IWEIT)(2))] S %)= — 2177,

holds uniformly for ¢ € (0, 1], provided 6 < 1.
For (W 1)(z), we have the identity

ORI
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Other terms can be obtained by changing the position for i;,k or j;,l. Since the estimates

are similar, we omit them here. We also use the notation *—&— for ||z — Z||¢1._z,<c for a
constant C'. We obtain for § > 0,

2
Eal
\YaNs
P

tSdl

INA

S Iz =217,

N

holds uniformly for ¢ € (0, 1], where we used Young’s inequality in the first inequality. Similarly,
we have

(OWFD7)(2), OWETD ) (2)) S 22 — 2[|%,
provided 6 < 1. Now for WEO 1 we have

) P P AN
WVEOI)(2) = "+ N = Rl
Hence we will choose
PN AN
Cifm]]uzkkllh = + hd

Now in this case (2.8), (2.9) follow.
For 7 = IZ“(II”Z(IWZS( )Ikkl( ))Illl( ))IJ] (‘—‘Jl) Zai17i27i3ajaj1ak7k17l7l1 - 172737
we have the following identities:

N4 N4
v v
(W(E 4)7')(2) V- 0¥ 14
5 5
(W(a 2)7_)(2,) _ Z(W(a 2)7_)(2) _ Z[(Wz(f 2)7_)(2) — (]/\71(2E 2)7—)(2)]
i=1 i=1
\A\ v
o ;} !‘ v x> IA,
W)= ¥ kO = el
N LGN
voby hov
WP = 4 M) = ke el
\/ \/
VAN "
W) = ¥ o) = e
\ \



\ \

N '\,\
WVEDT)(2) = WEP0)(2) — WSy () = ¥ oiks
Now for WEH T we have

<W(E;4)T(Z>,W(E;4)T(2>> = PO(Z — 5)5(2)623(27 2)7

£

where
Z oo @A% @ z \
Qg(z,i): e , v =0.

By [Hail4, Lemmas 10.14, 10.16 and 10.17] for every ¢ > 0 we have the bound
[(WEDT(2), WEDT(2))| S N2 = 211 2 = 21270+ =0l + 112177,
holds uniformly for € € (0, 1], and
As(g;2 As(g;2 As(E32 — As(E;2
(OV7(2) = Wiz 7(2). Wi (2) - W77 (=)
Sllz = 2l (K « Ry L« DK (2 — -) = K * Ry L.« DK(—),
K+«RiL!* DK(2 —-) — K« R|L! x DK(—))]
Sz = 2171z = 21170 + 20570 + 1217°),

~
holds uniformly for ¢ € (0,1], where L!(z) = ¥ . Similarly, this bounds also holds for
WD) (2). Again, OWED T AEP 7 i = 1,2 can be bounded in a manner similar to be-
A)(€:2)

fore. For W;""'7 we have

OVI7)(2) = (RaLd) = L2)(2),

- \4
where Ll(z) = ¥ | L2(z) = 1 . It follows from [Hail4, Lemma 10.16] that for every § > 0,
the bounds
OV (@), W)@ S Dl = 27
31 » (WVa1 ~ s

holds uniformly for e € (0, 1]. Moreover for Wég;z)T we have for every ¢ € (0,1)

0 0
e, B d
L U L
(VD7) (2), WD) (2))] = et T Y
O%.‘,, > 0 O‘wu,, e 0
—__1-4 4 B ~ 1 \ _ o o o
< T et Y A+ A

where we used Young’s inequality. Again, 5VA\/§6;2)7‘, can be bounded in a manner similar to
before. For W7 we have for § > 0

1t -
Z & H P e 2
(€52 A)(E:2 SN\ A e S S
OV T)(2), W) (2))] = ]
s ez e T 2] s,
< =t L v Yo
<z — 257,



holds uniformly for € € (0, 1], where we used Young’s inequality. For § € (0,1) we have

NG Ay(g; _ e _Yrel)
(VG (2), WP ) (z) = °

2z o2 Jme 1 — Ze e
< 0 g 1 J=Forre 0 4+ Oeen A g R ST
Zod 2 =1 Zed2 |-
< Ogemd e U R P B s el
Zo 2 |15 Zel2 |-
IR (PO ¥ S I P e s el

Izl + 112157,

holds uniformly for ¢ € (0, 1], where we used Young’s inequality in the inequalities. Similarly,

these bounds also holds for (Wéaﬂ)r)(z). Again, (5Wi(€;2)7',i = 4,5 can be bounded in a manner
similar to before.
We now turn to W07

2 2
WENT)(2) = > W07)(2) = D IOMT7)(2) — V57)(2)] = Coitiiamainin
i=1 1=1
where
(A
M) = N L0V = e e
iy \A b2 \L ‘,\
v VooV e
WP = N L0 = hie e

we choose C°° = WEY7T)(2) + OWED7)(2). By [Haild, Lemma 10.16] we have that

Ziligigk‘klllljjl
for every 6 > 0,1 = 1,2,

As(g50 —
VSO ()] S N12115°

holds uniformly for ¢ € (0,1]. Similarly as before, we obtain the bounds for 5Wi(§ 97 Then
(2.8), (2.9) follow in this case.

For 7 = T/ (T (T2 (2, T (24, ) T7%2 (23,)) TN (Z,,), iy iv,da, 1,1, I, b Ky, Gy = 1,2,3,
we have similar bounds as above with

k g\h h \A
v 14
or N LN

ii1i0kk1ll1l2771
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3 NS equation by paracontrolled distributions

3.1 Besov spaces and paraproduct

In the following we recall the definitions and some properties of Besov spaces and paraproducts.
For a general introduction to these theories we refer to [BCD11, GIP13]|. Here the notations
are differen from the previous section.

First we introduce the following notations. The space of real valued infinitely differentiable
functions of compact support is denoted by D(R?) or D. The space of Schwartz functions is
denoted by S(R?). Tts dual, the space of tempered distributions is denoted by &'(R?). If u is a
vector of n tempered distributions on RY, then we write u € S'(R%, R"). The Fourier transform
and the inverse Fourier transform are denoted by Fu and F~lu.

Let x, 8 € D be nonnegative radial functions on R?, such that

i. the support of x is contained in a ball and the support of # is contained in an annulus;

i x(2) +22,500(2772) = 1 for all z € R%.

iii. supp(x) Nsupp(A(277-)) = 0 for j > 1 and supp(6(2~"-) Nsupph(277-) = @ for |i — j| > 1.

We call such (y,#) dyadic partition of unity, and for the existence of dyadic partitions of
unity see [BCD11, Proposition 2.10]. The Littlewood-Paley blocks are now defined as

A ju=F Y (xFu) Aju=F 0277 )Fu).

For a € R, the Holder-Besov space C* is given by C* = B%, (R?, R"), where for p, ¢ € [1, o0]
we define

n

B (RORY) = {u= (!, u) € S'(RLRY) : Jullsg, = 33 (P Au|)") 7 < oo},

i=1 j>—1

with the usual interpretation as [ norm in case ¢ = co. We write || - ||, instead of || - ||5g __-

We point out that everything above and everything that follows can be applied to distribu-
tions on the torus. More precisely, let D'(T¢) be the space of distributions on T?. Therefore,
Besov spaces on the torus with general indices p, ¢ € [1, o0] are defined as

n

By (T, R") = {u € S'(T,R") : Jullsg, = > (D (2| Aju'l|pacra))) " < o0}

=1 j>—1
We will need the following Besov embedding theorem on the torus (c.f. [GIP13, Lemma 41]):

Lemma 3.1 Let 1 <p;<py<occand1l<q < ¢ <00, and let « € R. Then B (']I‘d) is

P1,q1
continuously embedded in Bg, A /P1=1/P2) ()

Now we recall the following paraproduct introduced by Bony (see [Bon81]). In general, the
product fg of two distributions f € C%, g € C? is well defined if and only if a4 3 > 0. In terms
of Littlewood-Paley blocks, the product fg can be formally decomposed as

Fo= Y AifAig=m(f.9)+m(f 9) +7(f.9)

j>—1i>—1
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with

7T<(f7g):ﬂ->(g?f): Z Z AZfAJg7 71-O(fug>: Z AZfAJg

G>—1i<j—1 li—j]<1

We also use the notation

Sif =Y Aif.
i<j—1
We will use without comment that || - ||, < || - ||g for @ < 3, that || - ||z~ < || - ||a for a > 0,

and that || - ||o S| - ||z for @ < 0. We will also use that ||Sjul|p~ < 279%||ull, for o < 0 and
u e C*

The basic result about these bilinear operations is given by the following estimates:
Lemma 3.2 (Paraproduct estimates, [Bon 81, GIP13, Lemma 2|) For any 5 € R we have

lm<(f,9)lls S Ifll=llglls  f € L®,g€CP,

and for o < 0 furthermore

Im<(f,Dllars S I fllallglls £ ec®gec”.

For av + B > 0 we have

Imo(f, 9)lars S I fllallglls £ €cCgec”.

The following basic commutator lemma is important for our use:

Lemma 3.3 (|GIP13, Lemma 5]) Assume that a € (0, 1) and 5, € R are such that a+p+vy >
0 and 8+ v < 0. Then for smooth f, g, h, the trilinear operator

C<f7gvh‘> = 7I'0('/T<(f,g),h) - fﬂo(g, h)

allows for the bound
1C 9 M llawsey S Il fllallgllsllAlly-
Thus, C can be uniquely extended to a bounded trilinear operator in £3(C* x C? x C7,C*T#17).

Now we prove the following commutator estimate.

Lemma 3.4 Let u € C® for some o < 1 and v € C? for some 3 € R. Then for every
k,l=1,2,3 we have

1P 7 (u,0) = 7 (u, P)l|ass S Ilullallv]ls,
where P is the Leray projection.

Proof By the same argument as the proof of [CC13, Lemma A.1] we have for j > 0

I (27 ) PYD), Sjmrul Aol § Y 2" FH (@277 ) PM) 11078l o [ Ag0 | .

neENd |n|=1

Here PM(2) = 6y — 28, (¢(277) PM)(D)u = F1(4(279-) P Fu), [((277-) PH)(D), S;-1u] de-

notes the commutator and ¢ € D with support in an annulus and satisfies [((277-) P¥)(D), S;_1u] Ajv
= [Pkl(D), Sj_lu]Ajv.
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Now we have
12" F (277 ) P 1
<2\ FH0") (277 ) P [+ |F (2770 P | 1
=27 | F @M () PR [r + |FH (@ ()T PH (27-)| o
L2+ |- PYIF )P ) + 11+ - P)F ()" PH(2)) | e
=277 || F7H (1 = 2) 0" () P e + IF (L = A ()0"PH (27)))]| e
K271 = D)Y@ ()PH(27)) | + (11 = A) (0 (-)"PH(27)) |1

» 1 im 1
<97 Z (23)\ ‘(Qj—)|m|+ Z (2 )\ \W

0<|m|<2d Im|<2d
—j
<2

Y

where in the last second inequality we used |D™P*(z)| < |z|~/™! for any multiindices m. Thus
we get that o A
[ 277) PH(D), Sjau]Ajulle S 277 ullalv]ls,

which implies the result by the same argument as in the proof of [CC13, Lemma A.1]. U

Now we recall the following lemma which is important for our estimate.

Lemma 3.5 ([GIP13, Lemma 47]) Let u € C* for some o € R. Then we have for every 6 > 0
1Pallass St ]ulla,

where P, is the heat semigroup.

By the same argument as Lemma 3.5 we also have the following result on T%:

Lemma 3.6 Let u € C® for some a € R. Then we have for every k,l =1,2,3
1P ulla S llullas

where P is the Leray projection.
Proof We have for j >0

12 Pl e S IFH PO 27 ulla = |1FH(P(27)0) 1027 |l

Here f’kl( ) = Op — “ l. By the same argument as in the proof of Lemma 3.4 we get that

IFH P01 S L= 2)UPH )0 S Y ()

0<|m|<2d

(Qj)\m\ S

The above calculation is satisfied on R? and T?. Moreover, on T? for 1 < p < oo

”A—lpklu”LO"(Td) = ||‘7"—_1]5kl><]:uf|Loo (Td) SIF 1Ple~Fu”LP(Td S A 1U||LP Td) S A 1U||L°° Td),
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where in the first inequality we used that supp(xp]: u) is contained in a ball and in the second
inequality we used Mihlin’s multiplier theorem. Thus the result follows. 0]

Now we consider the scaling of the spatial variable:

Lemma 3.7 ([GIP13, Lemma 44]) For all A > 0 and u € &' define the scaling transformation
Ayu(-) = u(A-). Then we have
[Axulla S (1 +A%)[Julla

for all « € R\{0} and all u € C*.

3.2 Navier-Stokes equations
Let us focus on the equation on the T?3:

3

3
Lu' =Y P — ZP“I () Dj(wr)), (3.1)

i1=1 Zl 1 Jj=1

u(0) = Pug € C7,

where & = (£, £2,£3), €' is the periodic independent space time white noise, L = 9; — A and
z € (1/2,1/2+ d9) with 0 < §y < 1/2. As we mentioned in the introduction the nonlinear term
of this equation is not well defined since the singularity of . Now we follow the idea of [GIP13]
to give the definition of the solution of the equation as limit of solutions u® to the following

equation:
3

3
LSt = Z Piilgs’il = Z Pml X;DJ us E_]
j=

i1=1 11 1
u(0) = Pug € C™%,

for a family of smooth approximations (£) of £ such that & — £ as ¢ — 0. Now we want to
prove a priori estimate for u°.

In the following to avoid notations we omit the dependence on ¢ and consider (3.1) for
smooth & and we use ¢ to replace the product of some terms and we will give the meaning later.

Consider
3

Luj =Y Prgh,

i1=1

3
7 1 u
Lus = —51221 Y E D;(u oul)) uy(0) =0,

7=1
= S P D o ) 0) =0
11=1 Jj=1

LK'=u! K'0)=0.
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Here for i = 1,2,3, u}
enough, u¢ € C([0,T];C~

111

ft 8 Pip,_ ¢sids. Then we get that for any 6 > 0 small
=3) and K* € C(]0,7;C%7%) and by Lemma 3.5

w\»—- H

sup ||K ||3 5 S sup ||U1|| 1/2—6/2
te[0,7) te[0,7)

If we assume that for i ],21,31 = 1,2,3, ui ouj € C’([O,T];C’l"m), uioul = uloul e
C([0,T);C7H29/2) uboud € C([ T} ), To.0(tl, ul) € C([0,T];C~?) and 7, (P D, K7, ul'),
Too(P DK% ul') € C([0,7];C%) and

Ce := sup Z||U1|| 1/2-5/2 T Z luf o ull|—1—s/2 + Z [uf o ull—1/2-5/2 + Z lu o ub]| s

t€[0,T]

=1 1,7=1 1,j=1 3,j=1
+ Z Imoo(ussud)l-s+ Y lmoo(PUDET a5+ Y |Imoo(P™ DK™ ul')]-s)
Z?J:1 izilzjmjl:l 7;77:17]‘7.]‘1:1
<0oQ.

(3.2)
Moreover by Lemmas 3.5 and 3.6 we get for i = 1,2,3, u, € C([0,T];C7%),u} € C([0,T); C/279)
and

sup ZH%H 6+leu3||1/z 5 (3-3)

telo,1] =3

Here the meaning of ¢, my ., will be given later.
Then u = uy + us + ug + uyg solves (3.1) if and only if uy solves

=3 Z P Dj (o w4 (uf gt Joud Huy outug (ug-ug )by (u +ufd )+ (ug it ) (b)) ).
(3.4)
u4(0) = Pug — u1(0).

By a fixed point argument it is easy to obtain local existence and uniqueness of solutions of
equation (3.1): More precisely, for each ¢ € (0,1) there exists a maximal time 7. and uy
satisfying equation (3.4) before T, such that uy € C((0,7%);CY?~%) with respect to the norm

1/ +z . .
SUPyefo7) ¢ . |4(t)||1/2—5, and satisfying

1/2— (5 +z
sup £ 2 [[ua(t)]l1/2-5 = 00
t€l0,T%)

Indeed since ¢ is smooth by (3.4) and Lemmas 3.5 and 3.6 we have the following estimate

1/2— 50+z 1/2 +50 z 1/2— 50+z

sup t Jua(@)l1j2-s0 S Ce(lluol|—z, ur, ug, ug) +T (sup ¢ [ua(®)ll1/2-50)%

t€[0,T] te[0,T)

where C.(||ug||—., w1, us, uz) is a constant depending on € and we used z < 1/2 + dy.
Now consider the paracontrolled ansatz for i = 1,2, 3,

— = Z pia Z 7T<(u3 +ull, K9) + 7r<(u3 + u4, K™M)) 4 u**

7,11 =1
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with u*¢(t) € CY/?*5 for some 0/2 < 8 < (2 +25 —1/2) A (1/2 —26) and t € (0,7%) (which can
be done for fix € > 0 since & is smooth and we have

2+50 z 1/2=6p+=

(sup s~ 2 [lua(s)ll1/2-5,)%)-
s€[0,t]

1/2+B+z

[wa@)ll1/21 S Cellluoll 25 ur; uz, us) +1

By paracontrolled ansatz and Lemma 3.2 we also have the following estimate:

3
lillo—s S ) Mgt + uitllay2—so |1 K725 + [[u®* |1 24 (3.5)

i1,5=1

Then u = uy + ug + ug + uy solves (3.1) if and only if uf solves the following equation:

3
Luft = ~3 E P D (udt o ub 4 ub (u) + ul) + ud(uld +ull) + (uft +ult) (u} + ul)

i1,J=1
— T (L(uf +uft), K7) 4+ 2w (Dy(ulf +ult), DY) + s (uf + ulf, ) + moo(ult, ul) + mo0 (s, ul)
1=1
— e (L(uh +u)), K™) + 2w (Diuh + w), DiK™) 4 s (uf + ul, uft) + mo o (uh, uyt) + mo.0(uf, utt))
=1
= qbt”
(3.6)
First we consider g o (u}, w)): by the paracontrolled ansatz we have for i,7 = 1,2, 3,
A 1 3 A . A 3 A . .
Moot uf) = = S(moo( Y PUme(uy +uf, Dy K7, uf) +moo( Y PUawc(uf +uit, Dy K") )
i1,j1=1 i1,j1=1
+ Z o(P e (Dj, (ug + uif), K7), i Z (P e (D (uff + i), K), ui))
i1,1=1 i1,j1=1

+ mo(ut, ul).

The bound for the last three terms can be easily obtained by Lemma 3.2, and we only need to
consider the first two terms: for 7,41, 7,71 = 1,2, 3, we have

To.0 (P (uft +ui1 D K7, u)
=mo( P o (udt + i, Dy K9, ul) — mo(me (ult + ult, P Dy, K7Y), )
+ To(m< (uy + uﬁf, PUD; K ) — (uft + ult)mo(P™ Dy, Kt )
+ (uf 4+ u)mo o (P Dy, K9 ).
Thus by Lemmas 3.2 and 3.3 we have for § < dy < 1/2 —36/2
700 (P e (g + i, Dy KM), )|
SIP e (ug + i, Dy K7) = we(ug + i, P Dy K7 1-gog, [[uf | -1/2-572
s+ w250 [P Dy K7 1 j2-s i || -1 /2572
+ [lug + it /250 | 700 (P Djy K7 )| -5
Slls + wi l1o-s | K s p2-s |- o—s2 + st + g 1o, 0.0 (P Dy K )| 5.
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Here in the last inequality we used Lemmas 3.4 and 3.6. We also obtain similar estimates for
3 N . ; A :
WO,O(Eil,jlzl Pulﬂ-< (uél + U’fll’ Dlell)v ui)
Hence we obtain for i, 5 = 1,2, 3,

3
70,0 (ul ul) |5 S Z g+ uitll1j2-s0 > IE lsj2=sllwd =1 /2-s/2

11=1 jlzl

3
+ > Mg+ uf e 1Moo (P Dy K7 )| -5

i1,j1=1

3
+ 3+ 12—, | o0 (P Dy K )| -
i1,j1=1

+ [Jub? l1248llutl|—1/2-5/2-

Now we consider - (L(u} + u}), K7),i,7 = 1,2,3, in (3.6): Indeed by (3.1) and (3.4) we
have for i = 1,2, 3,

L(ub +ul) =— = Z PUD;(ult o ub 4wl o ult +ult o (uh 4+ ul) +ul o (ul +ult)
zl,] 1
oy 0w+ up (uh + ug) (g +ud) + (g ) (ug + u))),
where for 7,5 = 1,2, 3,
up o (uf + uh) = me(ug + g, uh) + oo (uh, up) + s (ug + uf, u) + oo (ug, ).
Thus by Lemmas 3.6 and 3.2 we obtain for ¢ = 1,2, 3,

3
IL(uh + )l —sja—sr2 S > [t 0 wd |1 jo—sso + lludt o wdt || =5 + [0l —1j2-s2lled + 1l /2—s,

i1,j1=1

o0 (uy's uf )| =5 + [lug [ -sllugt + w2
3
-l it llsllagt N5 + lug -+ ult hjomso 57 325 Y [lull-1/2-5/2

i0=1

+ Z gt + it 12— 0.0 (P2 Dy, K7 ul) || -

Jyia=1

3
+ Y g+ w2 Moo (P2 Dy K ) | -5

Jyie=1

+ b sl -1 jo-s72,
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which by Lemma 3.2 implies that

17 < (L (g + ), K| 3572
3
SIE 325 Y st o ud | —yjomsye + llugt o ud =g + st —1jo—spollud + wdt[l1/2-s

i1,j1=1

+ w0 o (us s ud) |- + lug || -sllud” + ug' 1725,
3
s 4w lsllug + gt lls + llug + w0 1K 325 Y 1t -1/2-572

io=1

3
+ > g+ uf s w0 (P21 Dy K7 uf?) |-

i2,j2=1

3
Dl wl ya-so o0 (P2 Dy K ug?) |5 + 1B [y |1 /2-5/2]-

i2,j2=1

Now we consider 7. (Dy(ult +ul), DiK7) + 7 (ult +ul,u)) for iy,1,7 = 1,2,3 in (3.6): Indeed
by Lemma 3.2 we have
I (Du(us + i), DeK?) + s (ug + i )| -0
SUlug'llz-s + 1w ll1/2-6) (17 la/2-5 + [luill-1/2-5/2)

3
St lyos + Y Nl + w2 1 jo—so 1K 325 + 1™ 1 218) (1K 325 + Ul | =1/2-5/2),

i2,j1=1

where in the last inequality we used (3.5).
Hence by (3.6) we get that

167 )|—1-26

3 3
S K (lsa=s +1) Y (Mt o ud | —1jomsyo + llus o ud |5 + l[uit || —1ja—spallud + uf[l12-s,

Jj=1 i1,j1=1

+ Imo0(us s uf )| =5 + [l [|-s g’ + w2

3
- fugt s+ lls + llugt + | y-so | K llajoms Y il -1/e-s2

io=1

3
3l it oo 0.0 (P Dy K7 uf?) | s

i2,j2=1

3
+ > N+l layo-sollmoo (P Dy K ) | 5+ 0P [l jsllud || -1 /2-73]

i2,j2=1

3 3
+ Y Ut llyoms + D> N + w2 1 jomso K7 s72=s + 6 [1240) (1E7 [l3/2—5 + 1l <1 /2s/2)

i1,51,0=1 i2,j1=1

30



3 3 3
SA+CHA+ Y NP s + D Nl llyz—s + O lluit15)%), (3.7)

ir=1 i1=1 i1=1
where we used (3.2) (3.3) and § < §p in the last inequality.

In order to use this estimate to bound wuy, we apply the scaling argument as [GIP13].
More precisely, for A\ € (0 1) we set Ayu(t,z) = u(N\’t,\z), so that LA,\ A2ALL. Now
let up = AY2HO2N 0y, upy = N Ayug, uy = N Ayuz,u) = NAyuy, LK* = up. Note that u}
[O,T/)\Z] x T3 = R, i=1,2,34, where T3 = (R/(2rA"1Z))? is a rescaled torus, and that u;
solves the equation:

3
Luy’' = — 3 Z P’“Dj()\l/Q_‘s/Quj\’“ o (uy? +uy?) 4+ N2 o (ug ™ 4w
i1,j=1
)\1 26+2 )\zl <>u )\176”;\@'1(%?,]' + ui\,j) + )\175u;\,]( Aiq + u)\ 11)
+ A (g oy uy “)(ué’j +1uy”)),
u3(0) = XAy (ug — u1(0)).

The scaling is chosen in such a way that C2 < C,

sup [|us|—s + [|uzll1/2-s) < Ce
t€[0,T]

and [|[N*Ay(ug —u1(0))]|—2 < |luwo — u1(0)]|—, uniformly over A € (0, 1) by Lemma 3.7, where for
1,11,7,J2 = 1,2, 3, Wehaveforjl—zlorjl—]

1700 (P DKy ™) || -5 = X Ao, o (P DK || -5 S [|mo.o (P DK uf?) | -5,
holds uniformly over A € (0,1).

Moreover, we obtain
)\1/2+z—36/2 3 3

171 )\21 , )\11 )\,'
5 > PR Di(u™ oup? +up™ oup?)).

i1=1 j=1

2 .
U - )\ZHA,\Lué —

Then by the same argument as above we define u**, ¢** in the same way as u*, ¢%:

A\/2-6/2 3 3

W = =S 3 PR Dyl ™ KN (1)l KN 4

> >

i1=1 j=1

and by Lemma 3.2 we get

3
[y 1 j2-a0 S A2 7 ug™ + ud™ 1 jo-ao 1 [laj2-s + [1uP 11250,

i1,j=1

which shows that for A small enough (only depend on C)

3
2|
i=1

3
SAPTRCE LN [uP Mo, (3.8)
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Similarly, we have for A small enough (only depend on Cy)

3 3
S Il S AVERCE 4 37 [ (39)
=1

i=1
Moreover we have a similar estimate as (3.7) and obtain
[0 cmas S N0+ OO+ [0z + [ lyjosy + 3D, (3.10)

where we used 1 — z < (1 —4)/2. Then by Lemma 3.5 we get that for § + z < 1

O WA () []1 /245

t 3.11
SHPUO — (0)"7Z + t&-&-z/ (t . S)_3/4_6_ﬁ/23_(5+z)86+zH¢ﬁ’)\(5)",1,256157 ( )
0

where we used the condition on 8 to deduce 8+ 20 < 1/2 and % < § + 2. Also we have

1438

t
L) Sl Puo — w (012, + t‘”z(/ (t—s)" 2 s OGP (s) | 1-nsds)?
0

_ 1436

t
SlPuo — wi (0)]12, +t(1‘3‘”/2/ (t =) 2 7O (s) || -1-25) dls.
0
(3.12)

Here in the last inequality we used Hélder inequality. Thus by (3.8-3.12) we get that
P | e S ATH(L A G (| Pug — ua (0)||2, + A0CE + 1
t
+ / t6+z(t . 8)—3/4—6—ﬂ/28—(6+z)(86+ZH¢ﬂ,/\(8) ”71726)
0

1436

I — )7 TP (2 A ()| 1 as) dls).

Then Bihari’s inequality implies that for z < 1 — 40 there exists some Ty such that

sup 72| Z1_2s < C(To, Ce, [uol| ),
te[0,To]

where C(Tp, C¢) is a locally Lipschitz function on Ty, ||ugl|—. and Ce. Here T, can be chosen
such that the result is satisfied for all ¢ € (0,1) if Cf and [Jug||—. is uniformly bounded over
e € (0,1). Similarly as (3.11) we have

17270022182 (1) | o—s,
t
Sl Puo — ur (0)]| - + t(l/”ﬁz)/z/ (t — 5) 34704025 0F2) D02 A () || Ly _osdls (3.13)
0

SIPug — wr (0) - + 4777 sup s772(|68A(s)| -1-2s.

s€[0,t]
Thus by (3.8) (3.13) we obtain that
1/2—6p+=2
sup ¢ 2 [[ud(Olaya-s, S CE + lluoll-= + C(T, Ce, [luo|--),

te[0,To]
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which implies that 7. > Ty. Here we used z > 1/2 4 §/2. Moreover by paracontrolled ansatz
we also obtain

SN S M s + [0

11,5=1

([t

which by Lemma 3.5 implies that for A small enough (only depend on C¢) and t € [0, Tj]
luz(®)]l-2 < G + 1w -

t
—1-26+2z __ p 2
5 052 + HUOH—Z +/ (t - 5) 2 S (o+ )$6+ ||¢ﬁ’)\’|_1_25d8,
0

where we used z < 1 —49. Thus we obtain

sup [Juq(t)]|-. S CZ + uoll-= + C(To, Ce, |luo] )
te(0,To]

Similar arguments show that for every a > 0 there exists a sufficiently small A > 0 such that
the map (ug, Uy, Uy U1, Uy ©Us, Ug O U, To o (Usz, U1 ), Too(PDK, uy)) = uj is Lipschitz continuous
on the set

max{|lugl|—, Ce} < a.

Here we consider u; with respect to the norm of

sup [Juj ()] .
t€[0,T0]

Since uy = A"*A,-1u), we also obtain that u, restricted to [0, \A?T] depends in a locally Lipschitz
continuous way on the data (uo, , w1, Uy Uy, Uy © Us, Ug © Us, Moo (Us, 1), Too( PDK, uy)). Hence
we obtain for given (ug,u1,us © Uy, uy © ug, Uz © Us, Too(Us, u1), Too( PDK, uy)) there exists a
unique local solution w to (3.1) with initial condition ug, which is the limit of the solutions
u®, e > 0, to the following equation

3
LSt = Z Piilga’il _ Z Pul Z szlu ,j)) UE(O) = up,

i1:1 7,1 1

provided that for any § > 0 and i il,j Joa = 1,2,3, u‘i’ — i in C([0,T];CY2792), S’ o

u}? — uloul in C([O,T];C‘1_5/2), ui' o uy? — ul oud in O([0, T] C1292) St o uf? —

ub o uh in C([0,T];C70), mo0(uy’, ui?) — mo0(ul,uwl) in C([0,T);C°), moo(PD; K, ui’?) —
Too(P™D; K7 uf?) in C([0,T); C~%) and 7y o (P D; K= u]”?) — 70, (P"* D; K™, ujf) in C([0, T);C%).
Here u;,7 =1,2,3,4 is defined as above with £ replaced by &°. Here

uy’ o ui =uy ’u‘s’] Cy,
€,% &7 . e €,
uy O U = Uy Uy
£,1 €7 . €4 €] £,27 £,1]
Uy O uy” = uy uy? — 3 (1) — O3,

ﬂ-o’o(u?i’ u?j) = WO(U37 7“’? ) (pi ”( ) - O?ij7
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To <><PiilD'K57j ui,jz) = WO(PiileKE’jau?ﬁ)?
0 <>(PulD e 7,1 ,]2) — ﬂ_O(Piil D]'Ka’il, ui,j2)7
and Cj is defined in section 3.3, C] and ¢] are defined in Section 3.3.2 and C§ and ¢j are

defined in Section 3.3.4 and ¢§ converges to some ¢; with respect to |||l = supeo 7 t°|¢(1)]
for any p > 0 and ¢« = 1,2. Thus we obtain the following theorem:

Theorem 3.8 Let z € (1/2,1/2+6) with 0 < dp < 1/2 and assume that (£°).0 is a family of
smooth functions converging to £. Suppose that there exist vi, vy, vy, v, v, Ué“”z, v;“m such
that for any § > Oandz Vi1, 7,02 = 1,2,3, uf" — i in C([0, T] c-1/2 5/2), up* ouy? — vy in
C([0,T);C717072), ui o us 57— v in C([O T] C1202) st o ug? — vf in C’([O T];C~°),
Too(ug', us’) — v¥ in C([O,T],C %), Too(P™D; KW,ua”) — vV in C([0,T];C~°) and
Too(P™ D K= ui??) — 072 in C([0,T];C~?). Let for ¢ > 0 the function u® be the unique
maximal solution to the Cauchy problem

3
Lus' = Z Piilé-s,il _ Z Pzzl Z szlu ,j)) uz—:(o) = Puy,
11=1 21 1

such that u5 defined as above in C((0,7.);C/?~%), where uy € C%. Then there exists 7 =
7(ug, v1, U2, V3, Vg, Vs, Ug) > 0 such that

sup [|u® —u|l-, — 0.
t€[0,7]

The limit u depends only on (ug,v;),7 = 1....,6, and not on the approximating family.

Remark 3.9 Indeed we can define the solution space as the following: v — u; € D% if

1 [t 3 . .
U=y = uy + uz — 5/ P P> Djlr (¥ ul) + mo (P9, uy)]ds + OF
0 =1

such that

i ||BF — B |,
“CI)ﬁH,uLT = sup fl, + sup 5 M < 0,
telo.T] t€[0,7] 5,t€[0,T] |t — s|

and

sta || D) — PL|c—2a

@ e+ sup s A
te[0,T) / 5,t€[0,T) |t — sl

Here 1,7 € (0,1),a > 2b,0 < k < 1/2,¢ > 2d. By a similar argument as [CC13] if u —u; € D%

then the equation

1 [t 3 , . ) .
U—u; = B(uo—ul(O))——/ Pt_SPZDj(ulou{+(u—u1)<>uJ1+u1<>(u—u1)J+(u—u1)o(u—ul)st

2

can be well defined and by a fixed point argument we also obtain local existence and uniqueness
of solution. The calculation for this method is more complicated and we will not go to details
here.
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3.3 Renormalisation

In the following we use notation X to represent u; in the calculation and f(k ng ek dx

for k € Z3. To snnphfy the arguments below, we assume that f 0)=0 and restrlct ourselves to
the flow of fm x)dx = 0. Then X; = ZkEZJ\{O} Xt(k:)ek is a centered Gaussian process with
covariance functlon given by

. . eIk [t=s|
BB = a3 g PP ),

11=1

and X;(0) = 0, where e (z) = (2r) 32" 2 € T* and P (k) = 6, — |Zk|2 for k € Z3\{0}.

Let X&' = ffoo S5 PP &5ds, more precisely (k) = f(ek)é(k), where f is a s
mooth radial function with bounded support such that f(0) = 1. In this subsection we
will prove that there exist Ul,vg,vg,v4,v5,v6,v7 such that for i,z’l,j,jg = 1,2,3, ui’ — vl
in C(0.T:C237), i 0t o in C(0.T1C10), ui* 01?0 n C((0, T:C 127,
uy" ous? — vy in C’([O T);C70), moo(us’, ui?) — v7 in C([0,T];C7°), WOQ(PiileKE’j,ui’”) —
vg7? in C([0,T);C~?) and Too( P DK™ uS?) — o2 40 ([0, T];C0).

It is easy to obtain that u§ — vy in C([0,T]; C~¥/27%/2). Renormalisation of u{’ o ui”,i,j =
1,2,3 and the fact that there exists vy € C([0,7];C*7%) such that w7’ o uj’ — vy in
C([0,T];C~179) can be easily obtained by using wick product (c.f.[CC13]), where we choose

Coti = Z > f P”1 k)P (k).

i1=1 keZ?\{0}

It is easy to check that C5/ — oo as ¢ — 0. Now we introduce the following notations:
ki ., = Z?Zl k;. To obtain the results we first prove the following two lemmas for our later

.....

use. Inspired by [Hail4, Lemma 10.14] we prove the following theorem.

Lemma 3.10 Let0<I,m <d,l4+m —d > 0. Then we have

> S T
|k1‘l|k2|m ~ ’kll—i—m—d

k1,k2€Z\{0},k1+ka=Fk

Proof We have the following calculations:

1 1 1
- < S - -
Z Ky || Ko | ™ Z Ky || Ko™ Z Ky || Ko |™

k1, ko €Z9\{0}, k1 +k2=k k1 k2 €29\ {0} k1 +ho=k, k1 |< &L k1, k2 €2\ {0} k1 +ho=k, |ka|< 1AL

1
" 2 ea[Ts

k1, k2 €24\ {0} k1 +hka=k, k1 |> &L |y |> 151

Since if |ky| < [k|/2, [ka| > |k| — |ka] > |k|/2, we obtain

1 1
- S < |k’| —l— m+d‘
2 |ka [ | 2 [ [ E]™

k1,k2 €Z\{0} k1 +ho=F,|k1|< 2] k1 €ZA\{0}, k1| < 2L
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For the second term we have a similar argument and obtain the same estimate. If |ki| >
|k|/2, |ka| > |k|/2 since |ka| > |k1| — |k| by the triangle inequality, one has

1 1—-1/4 1
kol > = (|ky| — |k kl > -k
ol > (1Rl = D) + =5 1K] > 1K)
which implies that
1
< |k —l—m-i-d‘
Z . ) Ve |V ko | S k]
k1,k2€ZA\{0} k1 +ho=k,|k1|> 5L ko |> 151
Hence the result follows. U

Lemma 3.11 Forany 0 <n<1,71,75,0=1,2,3 we have
e k2P t=s) it Pil(f,) — e~ k2P =)t Pl ()| < |ky 7]t — s|~CO—D72,

AL i j
Here PY(x) = d;; — x‘gg .

Proof First we have the following bounds:

|e—‘k‘12|2(t—s)k12p(k,l2) o €_|k2|2(t_s)k2p(l€2)’ 5 |t o S‘_1/2.

Consider function F(z) = e "*(=9)2P () and it is easy to check that |DF(x)| < C, which
implies that . X
|ef|k12\2(tfs)k12p(k12) _ €f|k2\2(tfs)k2p<k2)| < |kl

Thus the result follows by the interpolation. 0

3.3.1 Renormalization for uju;

In this subsection we focus on wSu§ and prove that uS’ o uj’? — vgj in C([0,T];C~/279) for
i,7 =1,2,3. Now we have the following identity: for t € [0,7], 4,5 = 1,2,3

3 t
W =n 0 > Y S [Pk X )X (k) X ) ¢ dsP (e
0

i1,i2=1 k:EZ3\{O} kio3=k
> t o k2 2(t=5) £ (c]e,)?
D D S e
i1,i2,i3=1 ky kocz8\{0} ¥ © 2
PP (ko) P (k) PP (g,
=I +1I}.

Term in the first chaos: First we consider I? and we have

3
Y 3P e

i1=1
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where

3

- —lk2(t=s) (o
It2 :(277')_3 Z Z X“l(kl)ek / —|k12]2(t—s) ]{3126 |k2|2f(5 2) ds

1,22,i3=1 kq,ko€Z3\ {0}

piil (k12)P1213 (kig)P]“ (k‘g),

and

OO = (2m)” Z > / 2k (=) k;@?f(gk?) PP (k) P25 (ky) P7% (k) ds = 0.

i 1 3 a2
2,13=1 ko €Z3\{0}

By a straightforward calculation we obtain

BlIAI2 - PP <E| Z / Zez Ty e, @il (t — 8) (X (ky) — X (ky))ds|?]

i1,12,t3=1
Z Z / / dsds Y 0(27h)0(27K ) [a}l 74 (¢ — s)ay 5 (t — 5)|
t1,42,83=1 ¢ il it =1 k1,k]

E\(X?“(kl)—Xg’il(’f DX (k) = X7 (k)|
f 6]{,‘ 111213
<ZQ ") 2|k |2(11 5 / |t—s|"/2a (t — s)ds)?.

Here

_ _ e~ IRl (t=5) £ (e y o .
= ) = S ety S R o g s ) P ),

and we used that for n > 0 small enough

BI(X3" (k) = X7 (k) (XS (k1) = X771 (k1)
(X5 (k) = X7 (k) P2 (B (X5 (k) = X7 (k)P

(5
EEE - ey LB ey
)?

<Gy

ek

N |]€ | |k |27i|t |”7/2|t - §|77/2'

Since for n > € > 0, € small enough and |a“m3( —5)| S|t — 5|71 2ds > ks ‘k%e, it follows

that .
. n/2 11421, n/2—1—¢/2 E : n e)/2
/(; |t 5’ 1 2 5 dS S / |t S’ ds |k |3+e N

which implies that

E[A, (17 - T)P) < 200200,
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Moreover, by Lemma 3.11 we deduce that for € > 0 small enough

3
E[A(F =) XP" O]

i1=1

f(eky)? —I2*( f(eks)?
SIPNE A Z/ i

k1 41,i2,i3=1

(e—\kl2|2(t_s)ki2 Pii1 (k‘ )Pmm(k‘g)Pﬂ?’(kg) _ —|k2\ (t— S)k?piil (k,Q)pzéig (k,Q)ﬁjia(kQ))dS)Q

(eky) —[k2|*(t—s) (ek
NZ |];€€’212n qk’l Z/ A /e 2) (t—s)_(l—n)/st)Q
1 2

<t" 62q(1+2n)7

(3.14)

holds uniformly over ¢ € (0, 1), which is the desired bound for I?. -
Term in the third chaos: Now we focus on the bounds for I}. Let b!*(t —s) =

eIkl (t=s) 2 it (F,,) . We obtain the following inequalities:

BIA L
; ; flek)® [* [ 24 |ko|?)|s—5] | pi1 0 i it
52 Z Z Z@(Q—Qk) Z H?:1 |k|2 / / e~ (k1 k2| )|S_S||b;€11’2z2(t—S)bkll;z(t—§)|d8d§
11,i2=1 ill,i/2=1 k kios3=k v 0 0
+229 27k) Z Hz 1 ‘k|2 / / —[k2|?|s—5]— k1| (t—s)—|ks|*(t—5 ]b?l;z(t— )b?s’:lz(t—E)]dsdé
k ki23=k
=J' + J2.

Since |b§§1’j2 (t—3s)| < ool (1 7 it follows by Lemma 3.10 that for n > 0 small enough

tn
1 < —q
Jt NZG ]{Z Z Hz 1|k3|2|]€12|2 2n

ki23=k

<202 k)Y TNEE=T |k12l3 5

k123 k‘
F194 1427
S 2 ( )7

and

1
JESD 6(27%
t N; ( )kz_k ey [2[ o 2] s |2 [ ena | [ ega | 7
123=
t" A
< 027 1/2 1/2
N; ( )(ku;:k ]k1|2|k2|2yk3|2|k1212—2n) <k12¥:k |k1|2’k2’2|k3|2!k32|2_2”)

<t772q(1+277)7

which gives the desired estimate for I}. By a similar calculation we also obtain that for n > € > 0
small enough,

B[|A (ug  ui (t1) — ug ' u (ta) — us? ui™ (t1) + ug> ' ui™ (t2)) 7] S Clen, e2) |ty — tof 772402,
(3.15)
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where C(e1,e9) — 0 as €1,69 — 0, which by Gaussian hypercontractivity and Lemma 3.1
implies that

B[l (u " ui™ (t) — ug " ui™ (o) — ug ui™ (tn) +ug u™ (b)) s jages]
SE[I|(ug " ui™ (1) — w5 ui™ (t2) — ug ui™ (1) + ug ui™ (1)) —1/2onc) (3.16)
<C(ey, e2)P?|ty — to|P1=9/2,
Thus for every 2,5 = 1,2,3, we choose p large enough and deduce that there exists véj €
C([0,T],C~'/?79/2) such that
ust o us? — véj e C([0,T],Cc~/279/%),

To prove (3.15) we only calculate for the term as (3.14) with € and 0 < ¢; <ty < T and other
terms can be obtained similarly. It is straightforward to calculate that
3

3
E[A (I =Y Xi"Oit =I5+ ) XM

i1=1 i1=1

e, t1€ ka2 (t1~s 8]{7 _ _ A AL a L.
<E’ Z Zthl 2 kl ekl Z/ |k2|2< 2) ( |k12]2(t1 s)kzlapzzl(klz)PzQZg,(kz)Pﬂg,(kZ)

i1,i2,23=1 k1

7|k12|2(t27s) 72
(e k1

2 o . . ta o=lk2*(t2=5) £ (k)2
- ef|k2| (tlfs)kézpul (k2)P12z3 (kg)PﬂS (kg))dé’ . Z/ € 2f(5 2)
— Jo | o

faiil(k12)pi2i3<k2)pji3(k2) _ e—leIQ(tz—S)kézpiil (k2>pizi3(k2)pji3 (k’g))ds)|2

3 L o ta —|k2|2(t2—s) 2
S SR () — X5 (RO R e, / ¢ f(ck:)

0 |Ka|?

11,02,i3=1 ki

(P ﬁ“’wk 2) PP (k) PP (k) — 0= P (1) P k) P k) )

1 lhat=3) (1 — o RaP2=0)) f(cky)2
(S / P

( *VCIQ‘ (t1—s klg P“1<l€ 2) _ e*|k2| (t1—s kzzpzzl(k ))d8)2

n Z Z qk, Z t1 ‘k2| (t2—s) (5k2) ( —|k12|2(t1—s)ki2 piz‘l (k )
| 1|2 v IE 12 12
(

k1 i1,i2=1
‘k2| (t1—s kaul(k, ) . \k12| to— s)kzz Pul (k12) + 6—\k2|2(t2—s)k;2pii1 (kg))dS)Q

o gmIhel(ta=s) f(cky)2 oo s
+ Z 27 ) Z/ e G A Y

k1 i1,02=1 ’kl,z |k2|2
e P s+ B Y S (R ) — K5 )
k1 i1,02=1
t2 o—lk2*(t2—5) £ (k)2 o L
20(2_qk1)6k1 / € |k2|2f(5 2) (€—|k12\2(t2—5)k7iz2pu1(k,u) _ €—|k2\2(t2—s)k;2pzz1 (kg))d8|2
0

=Li + L7 + L} + L
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It is easy to deduce the desired estimates for L}, L?, L} as (3.14) and we only need to consider
L?: for some 0 < 3y < 1/2,17 > 0 small enough by Lemma 3.11 and interpolation we have

t1 e |k52 t1 S

2
Lt NZ |k‘1|2 qkl Z/ |]€ ‘2 |k71| /\‘tg—tl

t1 e |k2| t1—

<Z \k;1|2 0(27k)? Z/ B [Fea |70 ﬁo)|t2—t1| 2 (|k12| 2% + |ko|2750) (8 — )~ 2nds)z

<]t1 _ t2|nﬁo/22q(1+2n(1+ﬁo)),

+ R (81 — 5) 77 ds)?

(

which is the required estimate for L7.

3.3.2 Renormalisation for mo(u5™, uj”)

Now we treat wo(ung, u57°) and the estimates for mo(ug™ —u57°, u57°) can be obtained similarly,

where Luj, = —137 _ pi Z] . D;(ul ou)). We have the following identity:

mo(usi™" ui™)

3 t s

=)L DT Y ) 02 k)02 k) / dse R (t=2) / P X2 (k) X5 (ko)
keZ3\{0} |i—j|<1 k123a=k i1,i2,i3,j1=1 0 0

X0 (kg) X7 (ka) + e W26 Aokl P2 (ko) P (ag)en +20 Y . Y Y

keZ3\{0} |i—j|<1 kaz=k,k1
3

. , t , s A eIkl ( k
Z 9(2%123)9(2%1)/ dse~ k123l (ts)/ P X5 (o) X7 (Kes) A (ek)

2
i1, ig 43,71=1 0 0 2|k1|

S B ) P k=) kb P 512) P (e

i4=1
3 t s
+2 Z Z Z Z 9(2_ik123)9(2_j/€3)/ d86_|k123|2(t_5)/ X5 (k) X5 (k) -
keZ3\{0} |i—j|<1 k12=k k3 i1,i2,i3,j1=1 0 0

e |k3‘ t S f(gk:})
2|ks|?

Z DIV (Jeg) PIot (g ) e~ M2l =) Gy k33 0 k35, P72 (o) PP (keyg3) e

ig=1
3 t S
+2 3 3T Y > 02T k)R k) / dseF1l*(t=9) / : X202 (k) X (ky) -
kezZ3\{0} |i—j| <1 k1a=k k2 i1,i2,i3,j1=1 0 0

e hl*(5=0) f (efy)?
2|k ?

3
Z P35 (ky) P14 (g ) e~ F121*(5=0) g 13 121 P2 (Jop ) PO (o) e

ig=1

2 Z Z Z 0(2 " ka)0(2" ]kz)/ dse~ k2l (t=9) * [(ehk)?f(eka)?

2
li—7|<1 k1,k2 i1,i2,i3,51=1 4|k1| |k2|
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Z P1324 P]17,4 (kl)pizig, (k2>Pjoi5 (k2)€—|k12|2(s—0')—|k:1|2(5—0')—‘k‘2|2(t—o')do_zki32zk%'1 pil’iz (k,lz)pioil (kz)]
i4,i5=1

=0+ D+ + I+ I

First we consider I: by simple calculations we have

3
=207 >0 3T 3T 02 k)02 ke ekt P12 () PO (k)

[i—5|<1 k1,k2 t1,42,i3,j1=1

2 —2|ka|?t
2|k1|2|k2{((7kki|)2 “—):_(T:;P - |k12| Z P1324 P1114(k;1)]5i2i5(kﬂf)jois(kh)(%
— /t d3€*2|k2\Q(t*S)ef(\kml%rllm|2+|k2|2)s>'
0
Let
Cio 1)
feky)? f(eks)?

3
—2n) 7 Y ST ST 0@ k)0 ke )ekigag P (o) P (k)

li—j|<1 k1,k2 i1,i2,i3,j1=1

20k ||kl 2 (|1 [ + |k2|? 4 |F12]?)

1— e 2kt 3 " . .

THRE T D PP ) P () P (k) = o,
2

ia,i5=1

as € — 0. Define
€,50J0 . 5 €,10J0
P11 =1 — Cq™.

Then for any p > 0 we deduce that

|90im]0’ < Z Z /f2 2 jk2)|k132k1‘ /e(k2|2t+k1|25+|k1225)d8
|k1 |k2 |/€1\2 + k2| + [k12]?)

|i—7]<1 k1,k
Z Z ’Lk2>6(2_'7k2)|k§_32k%1’ e—|k,‘2|2t(1 . 6_(|k1|2t+‘k212|2t))
: |i— j|<1k k2 [tz |? |k1‘2 + [kal? + [k12[?) (1K1 [* + [Fr2[?)

' 1
<4—P —in < ¢{=P
- 1,R2

holds uniformly over € € (0,1). Here r,n > 0 are small enough such that 2p > r + 1. By
a similar calculation we obtain some ¢;; such that (f,; converges to some ¢; with respect
to [l = supsep,r t*lep(t)] for any p > 0. Similarly, we can also find similar Cf,, ¢5,, 12 for
us — usy and satisfy similar estimates as ¢7;. Now define C7 = Cf; + Cf,, ¢ = ¢]; + i, and

Y1 = P11+ P12 -
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Terms in the second chaos: We come to I? and have the following calculations:
E|A I

Z Z Z 23: Z 9(2_%123)9(2_jk1)9(2_ilk234)0(2_j’k4)0(2_qk)2

kEZS\{O} |Z J|<1 i —5"|<1 kog=k,k1,ka i1,12,i3,51=1 4/ i}, i}

’ ‘ / / dsdse™ 91231 (t=s)~lkasal*(t— 8)/ / doda ek 2 (t=0)=Iki|*(t=5) o= (k1] (s—0)+ k24 |*(s—7))
k

( Ik Zlo—al—ks sl | o —lhal*lF—ol—ksl*ls=al) ks a1 P (o) PO (g ) kS KDL, P (g ) PP (Kiggy)|
< > > > 02 ko) 7 E)0(2  kasa) (27 Ka)O(27 k)

keZ3\{0} [i—j|<1,|¢'—j'|<1 kaz=k,k1,ka
tn
| oo 2| |2 For [ 4= o [ 4

. -/ t/r]
9—(1—n—e)i 9—(1-n—e)i (2~ 92—~ < m924(n +25)

kEZS\{O} qsi qsi’ k25:]€

4
Hil

where 7, e > 0 are small enough, we used Lemma 3.10 in the last inequality and ¢ < ¢ follows
from |k| < [kios| + |k1] $ 2" and ¢ <’ is similar.
Now we deal with [} = I3 — I3 + I} — 520 _ uSC5™ (t) with

i1=1

=(2r) 7 Z Z Z Z 9(2—%123)9(2—%3)/0 L X2 (k) XS5 (ko) : e F2lP=0)y iy

kezZ3\{0} |i—j|<1 k12=k k3 i1,i2,i3,j1=1

o t ) 6—|k3\ (t—s f(€k3)2 .. a L A
R D DL N )
0 3

T4

and

) t —2|k3|
C“l =( % Z ZZQ —%3 ]k3)/ ds 2f(5k3)
0 ||

li—j|<1 k3 j1=1
> PR (g) PR (kg )k P (s)

=0.

Let 0,7;11237,63 (t—s) = 2?1—1 o~ Ihizaf2(t=s) e (|tk ;;f(sks | kb, P71 (k193)]. Then we have for e > 0
small enough,

B|A (1} = I}
Z Z Z 9(2_qk)29(2_%123)9(2_jk53)0(2_i,k124)9(2_j/k;4)

]CEZ?’\{O} li—7]1<1,]i" —5'|<1 k12=k,k3,k4

/ds/ ds/ dg/ 45 (e Tk Ps=0) _ ol (t=0)) (~lhia(=0) _ o~lhiaf(t=0)y | 12

|]€1 |/{32|2 Z k123 ks Ck124 k4 (t 5)
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/ ds/ ds/ da/ doe~FzlP(t=o)=lki2P(t=a) |, 12

|k1| |k2|2 Z k123 kB ck124 k4(t - 5))

Z Z Z 0(279k)%0(2 " k123)0(2 7 k3)0(2" k124)0(27 k)

keZ3\{0} |i—j|<L,|i' =5'|<1 k12=k;k3,k4

t t 3
= 1 1/4 ~\1/4 j 3! _
s [ s = 0 =9 Y = =)
j17j1:1

Z Z Z 0(277%)20(2 k103)0(2 7 k3)0 (27" K10a) (27 Ky
keZ3\{0} |i—j|<1,]¢' —5'| <1 k12=k k3, k4
t2€

K| |y |2 Ko |? s || Ka | (|Fr23|* + |Ks|? )3/4_6(|/f124|2+|k‘4| )3/

2¢ (i+14")(1/2—3¢)
S22 3 S ) e

q<z q<l k kia=k

1

2e0—2¢(1/2—3¢) 4 2¢ 2q(3e)
o 2.2 00 |/<?12||7<?1|2|’€2|2 S
k  kia=k

Moreover, by Lemma 3.11 we obtain for n > ¢ > 0 small enough

|A ]’3 Zua’ll 0521 )| ]

11=1
—[ks3|?(t— f(€k3)2

S 0(2 7 k3)

gkgmuzll [ |k2| |k12|2 |HZ|<1% ’ / |Fes|?

(6(27 k123)€7‘k123‘2(t78)/€{1 Pioil (k123) — (9( Z]{; ) *|k2\2(tfs)kj1pioil (k’ ))dS)Q

1 —|k3)2(t—s)
S 27k)? 0(277ks) | ———(t — 5)"17M/2(s)?
NZ Z |k1|2|k2|2|k12|2_2’7 ZZ 3 /0 E (t—s) s)
k  kia=k =0 ks

<yn—€9a(2n)

Now we consider I} = I} — I} + I} — I} with
3 . |
SCOREED DD DD SIS SRR AUCEIA P ST TN RS
kEZ3\{0} |i—j|<1 k1a=k,k2 i1,i2,i3,j1=1 0

o s —lk2?(s=0) (k)2
Zk{lPZO“(k‘l)ekda/ do_e—|k12\2(5—a)€ |k |éf(€ 2)
0 2

3
S P2 (kip) Y PR (k) P (ky),

i4=1
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and
3 : .
IR DD YD SIS DR CR AT/CRIA (P GRS (R
kE€Z3\{0} |i—3j|<1 k1a=k k2 11,i2,i3,j1=1 0

L s , k22 (5=0) f(cer)2
Zk{lplozl(/ﬁ)ekdd/ do_e—|k2| (s_g)6 |k |2f(€ 2)
0 2

3
ki P12 (y) >~ P (k) PPV (kp) = 0,

14=1

Let diyy iy (s—0) = Zi is=1€ lhraf?(s—o) e 2 (lsk Tg)f (cka)” |k P12 ()|, Since by Holder’s inequal-
ity we obtain

B X () X7 (k) = = X5 (k) X790 (k) ) X2 ()X (k) - — - X (B) X7 (K) )

1 — e lkaPls—ol 1 _ o~Iki[2ls—o]

1/2 1/2
§(5k1:k’15k4:k§1 +(5k1:kg‘5k4:k’1)( |k1‘2’/€4’2 / ‘klly2|kz/1|2 /
a7 R4 | -
(6161 k'6k4 K + 61@1 =k} 6k4 )’]{71’“{3/ Hk4||/€ | ’S - 0-’7]/2|5 - 0-‘77/27
4

it follows that 7, e > 0 small enough

ElA(L=INPS ) > ST 027202 kA2 k)02 k)02 ko)

k€Z3\{0} ‘7, j|<1 ‘i’ i ‘<1 k1a=k,k3,k2

k s) —k 3) 2
/ds/dS/d"/ dae e

0-‘77/ ‘3 0—|77/ dku ko (3 - U>dk13 ks (S U)

> 3 ST 02202 kB2 ka)B(2 ka)B(2 k)

keZ3\{0} |i—7|<1,i" —j’|<1 k1a=k k3 ko

/ ds/ ds/ da/ do ekl (t=s) g=lka*(t=5 |k1]|k4||k = n|k B

|S - 0‘77/2‘3 - U|n/2dk12 kz(s )dk34 k3(3 U)

< S S )0 k)BT RO RO k)

keZ3\{0} li—7]<1,]i —j/|<1 k1a=k
tE tG
(|k1|4—2n—2e|k |2 + ‘k'1|3_77_€|]{74|3_77_5)

<t€Z Z 6(27k) ZQ l|/<: |3-20—2¢ |, |2

k  kia=k q<z
. 1
€ —q —je
S SpSLRlt) pre S
k kia=k qsi
<t€2q(26+27]) ,

where in the last inequality we used Lemma 3.10.
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Moreover, it follows by Lemma 3.11 that for 7, e > 0 small enough

E[|A (I} - < ) > > 027027 k)02 T ka)0(2 k)0 (27 ka)

keZ3\{0} li—7|<1,|i" =5 |<1 kia=k k3 k2

t t s _—|ko|?(s—0o
/ / |k‘1|2+2’7@—\k1Iz(t—s+t—§+|8—§|) L / et )(s — 0)_(1—77)/2
0 Jo k1 2[kal? o [Rol?

5 o~ lksl?(5-2)
/ W(E - 5’)_(1_n)/2d8d§d0d5
0 3

' Z Z Z 0(27Uk)*0(2 k1) 0(2 7 ka)0(2™ ka)0(277 k)

keZ3\{0} |i—j|<1,|i! —5'|<1 k1a=k k3, k2

L 142 2|k |2 (t—s)—2|ka|2 (t—35) 1 > g lhalfle—o) (1-m)/2
k My |ea1FImi=s) =27t =5 / s—og) "
[ e PR S, TR )

§ o—lks[*(5-2)
/ ——(5—5) """ 24sdsdoda
0

||
1
<¢¢ —q —i
T
k k:14 k q<z
€ —q je
S Sp STRIT) SrS U
k  kis=k qa<j
<t62q(2e+277) ,

where in the last inequality we used Lemma 3.10.
Terms in the fouth chaos: Now for I} we have the following calculations:

E(ALP1S Y > D 02702 kros)0(2 k) 0(2 ko) 0(27 k)

k€Z3\{O} li—j|<1,]i' —5'|<1 k1234=k

t t s s
se 2(t— -5 1 - 2(s—0+5—G —
/“/dwmm“mg//ﬂmmwmmmfhms“)““W%MZ

* Z Z Z 0(27k) 2‘9 lk123)9(27jk4)9(27ilk234)6(27j,k1)

kezZ3\{0} |i—j|<1,|i'—j'|<1 k1234=k

ds/ dseflklzsl (t—s) *|k234| (t—3 / /
/ ’kl |k72 ’ki’) |k?4|2

_lkml (s=a)—lhaal*(5- d0d0|k‘12/€24k123k234|

- Z Z Z 0(279k)%0(2 " k123)0(2 7 ka)0(2" 123)0(27 k)

keZ3\{0} |i—j|<1,]i —5'|<1 k1234=k

dS/ dge—F123* (t=5) o —[k12s|*(t—5 / /
/ | [ [? Vf3| |Fea|?

e~ [k12]?(s—0)—[k13]*( d0d0|k12k13||k123|

+ Z Z Z 279)20(2  k123)0(2 7 ka)0(27" K104)0(277 K3)

kEeZ3\{0} |i—7|<1,]i' —5'|<1 k1234=k
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K ¢ s s
5 1
dS/ dge_(|k123|2+k3|2)(t—5)e—(k1242+|k42)(t—s)/ /
/“ 0 o Jo [k|2)ka|?|ks|2]ky)?

—|k12|2(8—0+§—5)dad5]/€12\2 | k123K 124]

+ > > 3 0(27k)0(2 ko) 0(2 k)02 Kiga)8(27 k)

kez3\{0} |i—j|<1,|i'—j'|<1 k1234=k

dS/ dse (Ik123]*+lk2|?) (t—s) *(\k134\2+|k4 (t—5 / /
/ ’kl |/€2 |]€3 |/{Z4|2

~(lerafHka )=o) (ks +ke (- U)d0d0|k312k34||k134k123|
_E§+EE+E§+E3+EE.
For €, > 0 small enough by Lemma 3.10 we have

0(279k)%0(2  k193)0(2 77 kg )0(27 k123)0(277 kg )17
El
t Z Z Z K1 2| Koo |2 [ k3|2 ka2 [Fr2] 2] K1z 22

kez3\{0} |i—j|<1,|i' —j'|<1 k1234=k

, , , y 4
> ) > 02RO k)02 k)02 hazs) (27 ’“)\k 2| kygs| 42—
4 123

keZ3\{0} |i—j|<1,]¢' —5'|<1 k1234=k

> S g weron,

keZ3\{0} q<i

and

0(279k)%0(2  k193)0(2 7 kg )0(27 kig34)0(277 ey )17
E2
t Z Z Z k12| Ko |2 ks 2| Ka | ?[Fr2| | Foa| | R 123 =7 Kosa 7

keZ3\{0} |i—j|<1,|i' —j'|<1 k123a=k

Z Z g(g—qk)%nz—q(?—?n)
verm (o) bt Bl K2 2 s |2 [ K| oga [ Rors = oasa |7
< Z ( Z Q(Q—qk)2tn2—q(2—2n) ] )1/2
KeZAV(0} hispach |fer|" | Ko | | Keg [ Kea |47 K22y 23] >~

( Z (27 9k)2n2-a(2=2n) 12
| |1”L’7|752|2|k53|2|k4|1+”|/<724|2|’f2:’>4|2_2’7

k1234=
Z 9~ (=2 __ < 94(2n)yn
keZ3\{O} |k |~

By a similar argument we can also obtain the same bounds for E?, E} and E?, which implies
that
E[|A L) S 209,
By a similar calculation as above we also get that
3

N BlA (o0 (w5, 5 90) (1) — o0 (w5, 1590 (t2) — mo.0 (w5, w2 ) (1)
i0,Jj0=1
70,0 (UG, U5 () 2]

SCler,e9)lts — t2|n2q(e+2n)’
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where C(e1,e9) — 0 as €1,69 — 0, which by Gaussian hypercontractivity, Lemma 3.1 and
similar arguments as (3.16) implies that there exists vi”° € C([0,T],C~°), i, jo = 1,2,3, such
that .

Too(ug™, u”®) — v € C([0,T],C7°).

3.3.3 Renormalization for (P2 D;, K= uj’") and (P2 D, K&, u7)
In this subsection we consider 7mo(P%%D;, K= u57") and mo( P12 D;, K% u5”") and have the
following identity:

(Pm‘zD, KEdo ue’jl)

= > ) D 027 k)0(2 k) / ~U=ka Py pdo s X80 (1) X7 (Ky) + dsey P2 (ky)

KEZA{0} li—j|<1 kra=k

t
. 2 k:
9 Zk: 2 ik —2(t—s) k1] k,]o f(5 1 d pmz PJOJ2 P]lJZ Lk
+ E g 1) 1)/0 e 1 TRE E (k).

li—j|<1 k1 Jo=1

It is easy to get that the second term in the right hand side of the above equality equals zero.
It is straightforward to calculate for ¢ > 0 small enough:

E|A (P2 Dy K*72, 5’j1)|2

< > S 002 k)02 k)02 k)02 )02 k)

" KEEINO) imgl< 17 —7<1 Kb

/ / t St— S ‘k1|2‘k1‘26_|k1| ‘S—§|d8ds
|1 [*[ o |2

2(t—s) \k1|2—2 |k2\2 kK dsd
// '1“2'|k||k|2“>
<t€ Zk - -
ZZ Z 1)|k1|4—25|k2|2

q<i kio=k

1
R D IPILL

qS<i ki12=k
§t€22q€7

where in the last inequality we used Lemma 3.10. By a similar calculation we also get that for
e,n > 0 small enough
E[| Ay (moo (P Djy K72, us™) (1) = mo.0 (P2 Dy K592, i) (£)
= Moo (P2 Dy K=9 i) (t1) + mo,0 (P2 Dy K592, ug?) (1)) ]
SC(er,e2) |ty — to|727H20),
where C(e1,e2) — 0 as e1,62 — 0, which by Gaussian hypercontractivity, Lemma 3.1 and
similar argument as (3.16) implies that there exists vf " € C([0,T],C~°) for iy, s, jo, j1 =

1,2, 3 such that
00 (P12 D K92 gy — v 207 € C([0,T],C7°).
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By a similar argument we also obtain that there exists v2!*/** € C/([0,T],C~°) for 4y, iz, jo, j1 =
1,2, 3 such that

Moo (P2 D5, K2 ug?t) — v € O([0,T],C7°).

3.3.4 Renormalisation for u5" us5’

In this subsection we deal with uy*uy” and prove that uy" ou? — uouj in C([0,T];C~?%). We
have the following identities:

g €,
Ug Uy

3 t ot
=m0 Y Y /0 /0 g2 Plt=s)—lhaalP(t=5) . =i () X2 (ky) XS0 (kg ) X292 (Ky) + dsdsey,

11,12,51,J2=1 k1234=Fk

piil (/{?12)7,]{311'22?‘”'1 (1{334)7,]{?%1

’ bt 2|1 [2]s—3]
o feki)“e . L )
+4 Z Z /0 /0 e—\k12\2(t—8)—|k4—k1\2(t—s)f( 1) : X?ZQ(I{PQ)Xg’]Q(hl) - dsdse,

e L 2|k |2
11,82,J1,J2=1 kas=k,k1

3
P (ko )kiy PP (kg — k) (k92— B§2) ) P () P73 ()
ja=1
3 t gt 2 2 — (k112 +|k2|?)|s—5
P k)f(5k2>e(|1\+lz\)\ | o Ny
2 iz e—st-5) £ (ER dsds P (ko) P77 (k
+ | Z“;/o /0 e NTAEEE sas (F12) (F12)
11,22,]1,J2= 1,R2
3
12 J2 Hi1j3 Dj1j3 i2j4 Dj2j4 7l 2 3
ki (—akfy) Y PV (k) P19 (ky) P (k) P20t (ky)) 1= I} + IF + 1.
J3,ja=1

By a easy computation we obtain that

3 3
=m0 Y fek) f(ek) P (ki) P (ki) ki3S > P (ka) P78 (hy ) P2 (ky)
i17i27j1 7j2:1 k17k2 j37j4:1

_ —2‘k212|2t t
1 1-¢ _ / =21z (=)=l +lka 12} )
0

P
) PP + TP & TewaP)  2lhenal?

Let

3 3
C37 =@2m) 7YY ek f (ke P (ko) P (Kio)ki (= ki) D P (ki) PR (ky)
11,42,1,J2=1 k1,k2 J3:Ja=1

A~ . . A . . 1 1
Pi2ia( ) pi2ia(] ’
(k2) ( 2)2|k1]2\k2|2(’k1’2 + |k2)? + |k12]?) |K12]?

Define
€3j __ 13 €,1]
w7 =1 — 02 .
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Then for p > 0 we have
1 672‘k12|2t

el < k1ol?
5] NkleQ’ 12 |k1|2|k2|2(|k1|2+|k2|2+|k12|2)( 2|k12|?
1

<tr Str.
,;,@ k1|2 | Ko |?1o|2+20

t
n / ¢=2hiz (=) =k Pk Pt hral)s g
0

Terms in the second chaos: Now we come to I?: For € > 0 small enough we have the
following inequalities

t optopto gt
E|Aq]'52’252 Z 0(2_qk)2/0/0/0/0@_|k122(t_3)—|k4—k‘1Q(t—§)—|k23|2(t—a)—|k4—k3|2(t_5)

k  koa=k,k1,k3

e lk1?[s=5]—[k2|?|s—o|—|ka|*|5—5|—|ks|?|o—3|

[For 2[R |2 K| |

dsds|kiz (ks — ki)kas(ks — k)|

OBy W
e Y bl Lt T R U e LY LT Y P R Y

<t€Z Z 0(27%)? Z 1 Z 1
N o ekl A (R — B[R P Rz| 4 [ks — KallKs [ | Kas|
0(2-k)? 1 1
<t° 1/2 1/2
2 P T T e A
24— 1 1
; 1/2 1 1/2

O oy T 2RO B o

. 0(279k)? m90e
”St Z Z |k2|3—5|k4|3—5 5 2% ’

k  kos=k

where in the last two inequalities we used Lemma 3.10.
Terms in the fourth chaos:
Now we consider I!. For € > 0 small enough we have the following calculations:

E|A L

—(|k1[>+lk2|?)|s—0|— (ks |* +|ka|*)|5—5|

t t t t
i =€
S 9(2qk>2(/ / / / €*|k12|2(t*8+t*0)*|k34|2(tfertfo)
Z Z o Jo Jo Jo ’k1’2|k2|2]/€3|2|k4|2

k  ki23a=k

t t t t
_ _ 1
dsdsdoda|kyokssl + / / / / otz (=)=l (1) fhaa  (t=5)—lhna P (=2)
o Jo Jo Jo K1 |2 || k3|2 | Koo |?

dsdsdoda|kygksskiskas|)

1
<t€ 0(2-9k)?
S D N T B e

k  kizza=k

1
_I_
|k‘1|2|’€2\2|k3!2\’@1\2|k12|176/2|/f34|1*€/2|k‘14!1*6/2\k23!1*€/2)
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6’(2*‘116)2 0(2*(1/6)2
<€ 22qe+ 1/2 1/2
S ( Z |k1|2|l€2|2|k‘3|2|l€4|2|/€12|2_5|k34|2_6) (]ﬁ;k|k‘1|2|k2|2|k3|2|k4|2|k14|2_6|/{723|2_6) )

k123a=k
<15622qe7
where we used Lemma 3.10 in the last inequality. By a similar calculation we also get that for
e, > 0 small enough

EA(u 5”<>u§1’j(151) —ugl’ oual’J(tg) —u”’ <>u5”(t1) +u52’ <>u5“)(t2))|2]

SCleq,e9)|ty — to 727 (ct2m),

where C(e1,e9) — 0 as e1,69 — 0, which by Gaussian hypercontractivity, Lemma 3.1 and
similar argument as (3.16) implies that there exists vy’ € C([0,7],C~°),i,5 = 1,2,3 and some
o such that
ouy’! = v e C([0,T],C7°),

and 5 converges to some py with respect to ||| = sup;epo 11| (t)] for any p > 0.

Combining all the convergence results we obtained above and Theorem 3.8 we obtain local
existence and uniqueness of the solution to 3D Navier-Stokes equation driven by space-time
white noise.

Theorem 3.11 Let z € (1/2,1/2 4 §y) with 0 < 09 < 1/2 and ug € C~*. Then there exists
a unique local solution to

3 3 3

Lu' = Z Pig — % Z P“l(z Dj(u"u))  u(0) = u,

i1=1 i1=1 j=1

in the following sense: For £&* = )", f (ek)E(K)ey, with f a smooth radial function with compact
support satisfying f(0) = 1 and for £ > 0 consider the maximal unique solution u® of the
following equation such that u§ € C'((0,7°¢);C"/?~%)

3

3
Lut =) " P — Z P Dj(uu w®(0) = Pug.
7j=1

i1=1 ’51 1
Then there exists a strictly positive, o(ug, ) measurable random time 7 such that
E(sup [ju” —uf-2)" =0,
te[0,7]
for all p > 1.
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