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Abstract
In this paper we study 3D Navier-Stokes (NS) equation driven by space-time white noise by

using regularity structure theory introduced in [Hai14] and paracontrolled distribution proposed
in [GIP13]. We obtain local existence and uniqueness of solutions to the 3D Navier-Stokes
equation driven by space-time white noise.
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1 Introduction

In this paper, we consider 3D Navier-Stokes equation driven by space-time white noise: Recall
that the Navier-Stokes equations describe the time evolution of an incompressible fluid and are
given by

∂tu+ u · ∇u =ν∆u−∇p+ ξ

u(0) =u0, divu = 0
(1.1)

where u(x, t) ∈ R3 denotes the value of the velocity field at time t and position x, p(x, t) denotes
the pressure, and ξ(x, t) is an external force field acting on the fluid. We will consider the case
when x ∈ T3, the three-dimensional torus. Our mathematical model for the driving force ξ is
a Gaussian field which is white in time and space.

Random Navier-Stokes equations, especially stochastic 2D Navier-Stokes equation driven by
trace-class noise, have been studied in many articles (see e.g. [FG95], [HM06], [De13], [RZZ14]
and the reference therein). For two dimensional case: existence and uniqueness of the strong
solutions have been obtained if the noisy forcing term is white in time and colored in space. For
three dimensional case, existence of Markov solutions for stochastic 3D Navier-Stokes equations
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driven by trace-class noise has been obtained in [FR08], [DD03], [GRZ09]. Furthermore, the
ergodicity has been obtained for every Markov selections of the martingale solutions if driven
by non-degenerate trace-class noise (see [FR08]).

This paper aims at giving a meaning of the equation (1.1) when ξ is space-time white
noise and obtain local (in time) solution. Such a noise might not be relevant for the study of
turbulence. However, in other cases, when a flow is subjected to an external forcing with very
small time and space correlation length, a space-time white noise can be considered. The main
difficulty in this case is that ξ is so singular that the non-linear term is not well-defined.

In two dimensional case, Navier-Stokes equation driven by space-time white noise has been
studied in [DD02], where a unique global solution in (probabilistically) strong sense has been
obtained by using the Gaussian invariant measure for this equation. Thanks to the incompress-
ibility condition, we can write u · ∇u = 1

2
div(u ⊗ u). The authors split the unknown into the

solution to the linear equations and of the solution to modified Navier-Stokes equations:

∂tz = ν∆z −∇π + ξ, divz = 0;

∂tv = ν∆v −∇q − 1

2
div(v + z)⊗ (v + z), divv = 0. (1.2)

The first part z is a Gaussian process with non-smooth paths and v is smoother and the
nonlinear terms can be defined even though z is only a distribution in this case. By a fixed point
argument they obtain existence and uniqueness of the local solutions in the two dimensional
case. Then by using Gaussian invariant measure for 2D Navier-Stokes equation driven by
space-time white noise, existence and uniqueness of the (probabilistically) strong solutions
starting from almost every initial value has been obtained. (For one-dimensional case we refer
to [DDT94]).

However, in the three dimensional case, the trick in two dimensional case breaks down here
since v and z in (1.2) are so singular that the nonlinear term cannot be well-defined. As a
result, we cannot make sense of (1.2) and obtain existence and uniqueness of the local solutions
as in the two dimensional case. If we iterate the above trick as follows: v = v2 + v3 with v2, v3
are solutions to the following equations:

∂tv2 = ν∆v2 −∇q2 −
1

2
div(z ⊗ z), divv2 = 0.

∂tv3 = ν∆v3−∇q3−
1

2
div[(v3+v2)⊗(v3+v2)]−

1

2
div((v3+v2)⊗z)−

1

2
div(z⊗(v3+v2)), divv3 = 0.

(1.3)
Now we can make sense of the terms without v3 in the right hand side of (1.3), hope v3 become
smoother such that the nonlinear terms including v3 are well-defined and try to obtain a well-
posed equation. However, this is not the case. For the unknown v3 the nonlinear term v3⊗ z is
still not well-defined. No matter how many times we modify this equation again as above, the
equation always contains the multiplication for the unknown and z, which is not well-defined.
Hence, this equation is ill-posed in the traditionally sense.

Thanks to the regularity structure theory introduced by Martin Hairer in [Hai14] and the
paracontrolled distribution proposed by Gubinelli, Imkeller and Perkowski in [GIP13] we can
solve this problem and obtain existence and uniqueness of the local solutions to the three
dimensional Navier-Stokes equations driven by space-time white noise. Recently, these two
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approaches have been successful in giving a meaning to a lot of ill-posed stochastic PDEs like
the KPZ equation ([KPZ86], [BG97], [Hai13]), the dynamical Φ4

3 model ([Hai14], [CC13]) and
so on. From a philosophical perspective, the theory of regularity structures and the paracon-
trolled distribution are inspired by the theory of controlled rough paths [Lyo98, Gub04]. The
main difference is that the regularity structure theory consider the problem locally, while the
paracontrolled distribution method is a global approach using Fourier analysis.

In the theory of regularity structures, the right objects, e.g. regularity structure that could
possibly take the place of Taylor polynomials can be constructed. The regularity can also
be endowed with a model, which is a concrete way of associating every distribution to the
abstract regularity structure. Multiplication, differentiation, the living space of the solutions,
and the convolution with singular kernel can be defined on this regularity structure and then
the equation has been lifted on the regularity structure. On this regularity structure, the
fixed point argument can be applied to obtain local existence and uniqueness of the solutions.
Furthermore, we can go back to the real world with the help of another central tool of the
theory the reconstruction operator R. If ξ is a smooth process, Ru coincides with the classic
solution of the equation.

In this paper we first apply Martin Hairer’s regularity structure theory to solve three dimen-
sional Navier-Stokes equations driven by space-time white noise. First as in the two dimensional
case we write the nonlinear term u · ∇u = 1

2
div(u⊗ u) and construct the associated regularity

structure (Theorem 2.7). As in [Hai14] we construct different admissible models to denote
different realizations of the equations corresponding to different noises. Then for any suitable
models, we obtain local existence and uniqueness of solutions by fixed point argument. Finally,
we renormalized models of approximation such that the solutions to the equations associat-
ed with these renormalized models converge to the solution of the 3D Navier-Stokes equation
driven by space-time white noise in probability, locally in time (Proposition 2.12 and Theorem
2.16).

The theory of paracontrolled distribution combines the idea of Gubinelli’s controlled rough
path [Gub04] and Bony’s paraproduct [Bon84], which is defined by the following: Let ∆jf be
the jth Littlewood-Paley block of a distribution f , define

π<(f, g) = π>(g, f) =
∑
j≥−1

∑
i<j−1

∆if∆jg, π0(f, g) =
∑

|i−j|≤1

∆if∆jg.

Formally fg = π<(f, g) + π0(f, g) + π>(f, g). Observing that if f is regular π<(f, g) behaves
like g and is the only term in the Bony’s paraproduct not raising the regularities, the authors
in [GIP13] consider paracontrolled ansatz of the type

u = π<(u
′, g) + u♯,

where π<(u
′, g) represents the ”bad-term” in the solution, g is some distribution we can handle

and u♯ is regular enough to define the multiplication required. Then to make sense of the
product of uf we only need to define gf .

In the second part of this paper we apply paracontrolled distribution method to three di-
mensional Navier-Stokes equations driven by space-time white noise. First we split the equation
into four equations and consider the approximation equations. By using paracontrolled ansatz
we obtain uniform estimates for the approximation equations and moreover we also get the
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local Lipschitz continuity of solutions with respect to initial values and some extra terms inde-
pendent of the solutions. Then we do suitable renormalisation for these terms and prove their
convergence in suitable spaces. Here inspired by [Hai14] we prove Lemma 3.10 which makes the
calculations of renormalisation much easier. Moreover by taking the limit of the solutions to
the approximation equations we obtain local existence and uniqueness of solutions (Theorem
3.12). Indeed by choosing a suitable solution space we can also give a meaning of the original
equation (see Remark 3.9).

This paper is organized as follows. In Section 2, we use regularity structure theory to obtain
local existence and uniqueness of the solutions to 3D Navier-Stokes equation driven by space-
time white noise. In Section 3, we apply paracontrolled distribution method to deduce local
existence and uniqueness of the solutions.

2 NS equation by regularity structure theory

2.1 Preliminary on regularity structure theory

In this subsection we recall some preliminaries for the regularity structure theory from [Hai14].

Definition 2.1 A regularity structure T = (A, T,G) consists of the following elements:
(i) An index set A ⊂ R such that 0 ∈ A, A is bounded from below and locally finite.
(ii) A model space T , which is a graded vector space T = ⊕α∈ATα, with each Tα a Banach

space. Furthermore, T0 is one-dimensional and has a basis vector 1. Given τ ∈ T we write
∥τ∥α for the norm of its component in Tα.

(iii) A structure group G of (continuous) linear operators acting on T such that for every
Γ ∈ G, every α ∈ A and every τα ∈ Tα one has

Γτα − τα ∈ T<α :=
⊕
β<α

Tβ.

Furthermore, Γ1 = 1 for every Γ ∈ G.

Now we have the regularity structure T̄ given by all polynomials in d + 1 indeterminates,
let us call them X0, ..., Xd, which denote the time and space directions respectively. Denote
Xk = Xk0

0 ···Xkd
d with k a multi-index. The structure group can be defined by ΓhX

k = (X−h)k,
h ∈ Rd+1.

Given a scaling s = (s0, s1, ..., sd) of Rd+1. We can associate the metric on Rd+1 given by

∥z − z′∥s := ds(z, z
′) :=

d∑
i=0

|zi − z′i|1/si .

For k = (k0, ..., kd) we define |k|s =
∑d

i=0 siki.
Given a smooth compactly supported test function φ and a space-time coordinate z =

(t, x1, ..., xd) ∈ Rd+1, we denote by φλ
z the test function

φλ
z (s, y1, ..., yd) = λ−|s|φ(

s− t

λs0
,
y1 − x1
λs1

, ...,
yd − xd
λsd

).
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Denoting by Bα the set of smooth test function φ : Rd+1 7→ R that are supported in the
centred ball of of radius 1 and such that their derivative of order up to 1 + |α| are uniformly
bounded by 1. We denote by S ′ the space of all distributions on Rd+1 and denote by L(E,F )
the set of all continuous linear maps between the topological vector spaces E and F .

Definition 2.2 Given a regularity structure T, a model for T consists of maps

Rd+1 ∋ z 7→ Πz ∈ L(T,S ′), Rd+1 × Rd+1 ∋ (z, z′) 7→ Γzz′ ∈ G,

satisfying the algebraic compatibility conditions

ΠzΓzz′ = Πz′ , Γzz′ ◦ Γz′z′′ = Γzz′′ ,

as well as the analytical bounds

|⟨Πzτ, φ
λ
z ⟩| . λα∥τ∥, ∥Γzz′τ∥β . ∥z − z′∥α−β

s ∥τ∥.

Here, the bounds are imposed uniformly over all τ ∈ Tα, all β < α ∈ A with α < γ, γ > 0, and
all text function φ ∈ Br with r = inf A. They are imposed locally uniformly in z and z′.

Then for every compact set R ⊂ Rd+1 and any two models Z = (Π,Γ) and Z̄ = (Π̄, Γ̄) we
define

|||Z; Z̄|||γ;R := sup
z∈R

[ sup
φ,λ,α,τ

λ−α|⟨Πzτ − Π̄zτ, φ
λ
z ⟩|+ sup

∥z−z′∥s≤1

sup
α,β,τ

∥z − z′∥β−α
s ∥Γzz′τ − Γ̄zz′τ∥β],

where the suprema run over the same sets as before, but with ∥τ∥ = 1.
On the regularity structure one can define multiplication ⋆, differentiation D as in [Hai14].

Now we have the following definition for the spaces of distributions Cα
s , α < 0, which is an

extension of Hölder space to include α < 0.

Definition 2.3 Let η ∈ S ′ and α < 0. We say that η ∈ Cα
s if the bound

|η(φλ
z )| . λα,

holds uniformly over all λ ∈ (0, 1], all φ ∈ Bα and locally uniformly over z ∈ Rd+1.

For every compact set R ⊂ Rd+1, we will denote by ∥η∥α;R the seminorm given by

∥η∥α;R := sup
z∈R

sup
φ∈Bα

sup
λ≤1

λ−α|η(φλ
z )|.

We also write ∥ · ∥α for the same expression with R = Rd+1.

We also have Hölder spaces on the regularity structure. Consider P = {(t, x) : t = 0}.
Given a subset R ⊂ Rd+1 we also denote by RP the set

RP = {(z, z̄) ∈ (R \P)2 : z ̸= z̄ and ∥z − z̄∥s ≤ |t|
1
2 ∧ |t̄|

1
2 ∧ 1},

where z = (t, x), z̄ = (t̄, x̄).
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Definition 2.4 Fix a regularity structure T and a model (Π,Γ) and P as above. Then for
any γ > 0 and η ∈ R, we set for z = (t, x), z̄ = (t̄, x̄) and every compact set R ⊂ Rd+1,

∥f∥γ,η;R := sup
z∈R\P

sup
l<γ

∥f(z)∥l
|t| η−l

2
∧0
.

The space Dγ,η then consists of all functions f : Rd+1 \P → T<γ such that for every compact
set R ⊂ Rd+1 one has

|||f |||γ,η;R := ∥f∥γ,η;R + sup
(z,z̄)∈RP

sup
l<γ

∥f(z)− Γzz̄f(z̄)∥l
∥z − z̄∥γ−l

s (|t| ∧ |t̄|) η−γ
2

<∞.

We also set

|||f ; f̄ |||γ,η;R := ∥f − f̄∥γ,η;R + sup
(z,z̄)∈RP

sup
l<γ

∥f(z)− f̄(z̄)− Γzz̄f(z̄) + Γ̄zz̄f̄(z̄)∥l
∥z − z̄∥γ−l

s (|t| ∧ |t̄) η−γ
2

<∞.

Given a regularity structure, we say that a subspace V ⊂ T is a sector of regularity α if it
is invariant under the action of the structure group G and it can be written as V = ⊕β∈AVβ
with Vβ ⊂ Tβ, and Vβ = {0} for β < α. We will use Dγ,η(V ) to denote all functions in Dγ,η

taking values in V .

Theorem 2.5 (cf. [Hai14, Proposition 6.9]) Given a regularity structure and a model (Π,Γ).
Let f ∈ Dγ,η(V ) for some sector V of regularity α ≤ 0, some γ > 0, and some η ≤ γ. Then
provided that α ∧ η > −2, there exists a unique distribution Rf ∈ Cη∧α

s such that

|(Rf − Πzf(z))(φ
λ
z )| . λγ,

holds uniformly over λ ∈ (0, 1] and φ ∈ Br with φλ
z compactly supported away from P and

locally uniformly over z ∈ Rd+1. Moreover, (Π,Γ, f) → Rf is jointly (locally) Lipschitz
continuous with respect to the metric for (Π,Γ) and f defined in Definitions 2.2 and 2.4.

In order to define the integration against singular kernel K, Martin Hairer in [Hai14] in-
troduced an abstract integration map I : T → T to provide an ”abstract” representation of
K operating at the level of the regularity structure. In the regularity structure theory I is a
linear map from T to T such that ITα ⊂ Tα+β and IT̄ = 0 and for every Γ ∈ G, τ ∈ T one has
ΓIτ − IΓτ ∈ T̄ .

Furthermore, we say that K is a β-regularising kernel if one can write K =
∑

n≥0Kn where

each of Kn : Rd+1 → R is smooth and compactly supported in a ball of radius 2−n around the
origin. Furthermore, we assume that for every multi-index k, one has a constant C such that

sup
x

|DkKn(x)| ≤ C2n(d+1−β+|k|s),

holds uniformly in n. Finally, we assume that
∫
Kn(x)E(x)dx = 0 for every polynomial E of

degree at most N for some sufficiently large value of N .
Then we have the following results from [Hai14, Proposition 6.16].

Theorem 2.6 Let T = (A, T,G) be a regularity structure and (Π,Γ) be a model for T. Let
K be a β-regularising kernel for some β > 0, let I be an abstract integration map acting on
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some sector V of regularity α ≤ 0, and let Π be a model realising K for I. Let γ > 0, η ≤ γ.
Then provided that α∧ η > −2, γ+β, η+β not in N, there exists a continuous linear operator
Kγ : Dγ,η(V ) → Dγ̄,η̄ with γ̄ = γ + β and η̄ = (η ∧ α) + β, such that

RKγf = K ∗ Rf,

holds for f ∈ Dγ,η(V ).

In the following we use the notations OT = (−∞, T ]×Rd and use the shorthands ||| · |||γ,η;T
as a short hand for ||| · |||γ,η;OT

, and similarly for ||| · |||γ,η;T . Moreover, we have for some θ > 0

|||Kγ1t>0f |||γ̄,η̄;T . T θ|||f |||γ,η;T .

2.2 NS equation

In this subsection we apply the regularity structure theory to 3D Navier-Stokes equations driven
by space-time white noise. In this case the scaling s = (2, 1, 1, 1), so that the scaling dimension
of space-time is 5. Since the kernel Gij, i, j = 1, 2, 3, given by the heat kernel composed with
the Leray projection P has the scaling property Gij( t

δ2
, x
δ
) = δ3Gij(t, x) for δ > 0, by [Hai14,

Lemma 5.5] it can be decomposed into Kij+Rij, i, j = 1, 2, 3, with Kij is a 2-regularising kernel
and Rij ∈ C∞. By [Hai14] we could choose Kij is compactly supported and smooth away from
the origin and such that it annihilates all polynomials up to some degree r > 2. Moreover,
by [KT01] we could choose Kij is of order −3, i.e. |DkK(z)| ≤ C∥z∥−3−|k|s

s for every z with
∥z∥s ≤ 1 and every multi-index k. We also use DjK, j = 1, 2, 3, to represent the derivative of
K with respect to the j-th space variable and DjK is also a 1-regularising kernel and of order
−4 and DjR ∈ C∞.

Consider the regularity structure generated by SNS equation with β = 2,−13
5
< α < −5

2
.

In the regularity structure we use symbol Ξi to replace driving noise ξi. For i, i1 = 1, 2, 3, we
introduce the integration map I ii1 associating with Kii1 and the integration map I ii1

k for a
multiindex k, which represents integration against DkKii1 . We recall the following notations
from [Hai14]: defining a set F by postulating that {1,Ξi, Xj} ⊂ F and whenever τ, τ̄ ∈ F ,
we have τ τ̄ ∈ F and I ij

k (τ) ∈ F ; defining F+ as the set of all elements τ ∈ F such that
either τ = 1 or |τ |s > 0 and such that, whenever τ can be written as τ = τ1τ2 we have either
τi = 1 or |τi|s > 0; H,H+ denote the set of finite linear combinations of all elements in F ,F+,
respectively. Here for each τ ∈ F a weight |τ |s which is obtained by setting |1|s = 0,

|τ τ̄ |s = |τ |s + |τ̄ |s,

for any two formal expressions τ and τ̄ in F , and such that

|Ξi|s = α, |Xi|s = si, |I ii1
k (τ)|s = |τ |s + 2− |k|s.

Define a linear projection operator P+ : H → H+ by imposing that

P+τ = τ, τ ∈ F+, P+τ = 0, τ ∈ F \ F+,

and two linear maps ∆ : H → H⊗H+ and ∆+ : H+ → H+ ⊗H+ by

∆1 = 1⊗ 1, ∆+1 = 1⊗ 1,
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∆Xi = Xi ⊗ 1+ 1⊗Xi, ∆+Xi = Xi ⊗ 1+ 1⊗Xi,

∆Ξi = Ξi ⊗ 1,

and recursively by
∆(τ τ̄) = (∆τ)(∆τ̄)

∆(I ij
k τ) = (I ij

k ⊗ I)∆τ +
∑
l,m

X l

l!
⊗ Xm

m!
(P+I ij

k+l+mτ),

∆+(τ τ̄) = (∆+τ)(∆+τ̄)

∆+(I ij
k τ) = (I ⊗ I ij

k τ) +
∑
l

(P+I ij
k+l ⊗

(−X)l

l!
)∆τ.

To apply the regularity structure theory we write the equation as follows: for i = 1, 2, 3

∂tv
i
1 =ν

3∑
i1=1

P ii1∆vi11 +
3∑

i1=1

P ii1ξi1 , divv1 = 0,

∂tv
i =ν

3∑
i1=1

P ii1∆vi1 −
3∑

i1,j=1

P ii1
1

2
Dj[(v

i1 + vi11 )(v
j + vj1)], divv = 0.

(2.1)

Then v1+v is the solution to the 3D Navier-Stokes equations driven by space-time white noise.
Now we consider the second equation in (2.1). Define for i, j = 1, 2, 3,

Mij
F = {1, I ii1(Ξi1), Ijj1(Ξj1), I ii1(Ξi1)Ijj1(Ξj1), Ui, Uj, UiUj, I ii1(Ξi1)Uj, UiIjj1(Ξj1), i1, j1 = 1, 2, 3}.

Then we build subsets {P i
n}n≥0 and {Wn}n≥0 by the following algorithm. Set W ij

0 = P i
0 = ∅

and
W ij

n = W ij
n−1 ∪

∪
Q∈Mij

F

Q(P i
n−1,P

j
n−1),

P i
n = {Xk} ∪ {I ii1

i2
(τ) : τ ∈ W i1i2

n−1, i1, i2 = 1, 2, 3},

and

FF :=
∪
n≥0

3∪
i,j=1

W ij
n , F ij

F :=
∪
n≥0

W ij
n , i, j = 1, 2, 3.

Then FF contains the elements required to describe both the solution and the terms in the
equation (2.1). We denote by HF ,Hij

F , i, j = 1, 2, 3, the set of finite linear combinations of
elements in FF , F ij

F , respectively. Now by using the theory of regularity structure (see [Hai14,
Section 8]) we can also define a structure group GF of linear operators acting on HF satisfying
Definition 2.1 as follows: For group-like elements g ∈ H∗

+, the dual of H+, Γg : H → H,Γgτ =
(I ⊗ g)∆τ . By [Hai14, Theorem 8.24] we construct the following regularity structure.

Theorem 2.7 Let T = HF with Tγ = ⟨{τ ∈ FF : |τ |s = γ}⟩, A = {|τ |s : τ ∈ FF} and GF be
obtained above. Then TF = (A,HF , GF ) defines a regularity structure T.

Proof In our case, the nonlinearity is locally subcritical. (i) (ii) in Definition 2.1 can be checked
easily. (iii) in Definition 2.1 follows from the definition of ∆ and Γg. �
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Now we come to construct suitable models associated with the regularity structure above.
Given any continuous approximation ξε to the driving noise ξ, we set for x, y ∈ R4

(Π(ε)
x Ξi)(y) = ξiε(y), (Π(ε)

x Xk)(y) = (y − x)k,

and recursively define
(Π(ε)

x τ τ̄)(y) = (Π(ε)
x τ)(y)(Π(ε)

x τ̄)(y),

and

(Π(ε)
x I ij

k τ)(y) =

∫
Dk

1K
ij(y − z)(Π(ε)

x τ)(z)dz +
∑
l

(y − x)l

l!
f (ε)
x (P+I ij

k+lτ). (2.2)

Here f
(ε)
x (I ij

l τ) are defined by

f (ε)
x (I ij

l τ) = −
∫
Dl

1K
ij(x, z)(Π(ε)

x τ)(z)dz. (2.3)

Furthermore we impose f
(ε)
x (Xi) = −xi, f (ε)

x (τ τ̄) = f
(ε)
x (τ)f

(ε)
x (τ̄) and extend this to all of H+

by linearity. Then define
Γ(ε)
xy = Γ

f
(ε)
x

◦ (Γ
f
(ε)
y
)−1, (2.4)

where Γ
f
(ε)
x
τ := (I ⊗ f

(ε)
x )∆τ for τ ∈ H.

Now by [Hai14, Proposition 8.27] we have

Proposition 2.8 (Π(ε),Γ(ε)) is a model for TF constructed in Theorem 2.7.

Definition 2.9 A model (Π,Γ) for T is admissible if it satisfies (ΠxX
k)(y) = (y−x)k as well

as (2.2), (2.3) and (2.4). We denote by MF the set of admissible models.

Set

F0 ={1,Ξi, I ii1(Ξi1), I ii1(Ξi1)Ijj1(Ξj1), I ii1
j (I i1i2(Ξi2)), I ii1

j (I i1i2(Ξi2)Ijj1(Ξj1)), I ii1
j (Ijj1(Ξj1)),

I ii1
k (I i1i2(Ξi2))Ijj1(Ξj1), I ii1

k (Ikk1(Ξk1))Ijj1(Ξj1), I ii1
k (I i1i2(Ξi2)Ikk1(Ξk1))Ijj1(Ξj1),

I ii1
k (I i1i2(Ξi2)Ikk1(Ξk1))I

jj1
l (Ij1j2(Ξj2)I ll1(Ξl1)), I ii1

l (I i1i2
k (I i2i3(Ξi3)Ikk1(Ξk1))I ll1(Ξl1))Ijj1(Ξj1),

I ii1
l (I ll1

k (I l1l2(Ξl2)Ikk1(Ξk1))I i1i2(Ξi2))Ijj1(Ξj1), i, j, k, l, i1, i2, i3, j1, j2, k1, l1, l2 = 1, 2, 3}

and
F∗ = {I ik(Ξk), I ii1

k (I i1i2(Ξi2)Ikk1(Ξk1))Ijj1(Ξj1), i, k, i1, i2, j1, k1 = 1, 2, 3}.

Then F0 ⊂ FF contains every τ ∈ FF with |τ |s ≤ 0 and for every τ ∈ F0, ∆τ ∈ ⟨F0⟩ ⊗
⟨Alg(F∗)⟩. Here ⟨F0⟩ denotes the linear span of F0 and Alg(F∗) denotes the set of all elements
in F+ of the form Xk

∏
i,i1,i2

I i1i2
li

τi for some multiindices k and li such that |I ii1
li
τi|s > 0 and

τi ∈ F∗.

9



Then for any constants C1
ii1jj1

, C2
ii1i2jj1j2kk1ll1

, C3
ii1i2i3kk1ll1jj1

, C4
ii1i2kk1ll1l2jj1

, i, j, k, l, i1, i2, i3, j1,
k1, l1, l2 = 1, 2, 3, we define a linear map M on ⟨F0⟩ by

M(I ii1(Ξi1)Ijj1(Ξj1)) = I ii1(Ξi1)Ijj1(Ξj1)− C1
ii1jj1

1,

M(I ii1
k (I i1i2(Ξi2)Ikk1(Ξk1))I

jj1
l (Ij1j2(Ξj2)I ll1(Ξl1)))

=I ii1
k (I i1i2(Ξi2)Ikk1(Ξk1))I

jj1
l (Ij1j2(Ξj2)I ll1(Ξl1))− C2

ii1i2jj1j2kk1ll1
1,

M(I ii1
l (I i1i2

k (I i2i3(Ξi3)Ikk1(Ξk1))I ll1(Ξl1))Ijj1(Ξj1))

=I ii1
l (I i1i2

k (I i2i3(Ξi3)Ikk1(Ξk1))I ll1(Ξl1))Ijj1(Ξj1)− C3
ii1i2i3kk1ll1jj1

1,

M(I ii1
l (I ll1

k (I l1l2(Ξl2)Ikk1(Ξk1))I i1i2(Ξi2))Ijj1(Ξj1))

=I ii1
l (I ll1

k (I l1l2(Ξl2)Ikk1(Ξk1))I i1i2(Ξi2))Ijj1(Ξj1)− C4
ii1i2kk1ll1l2jj1

1,

(2.5)

as well as M(τ) = τ for the remaining basis vectors in F0. We claim that for any τ ∈ F0,

∆Mτ = (Mτ)⊗ 1. (2.6)

Since τ satisfies Mτ = τ − C1 for any τ ∈ F0, it is easy to check that (2.6) holds.
For τ = I ii1

j (I i1i2(Ξi2)), i, i1, i2, j = 1, 2, 3, we have

∆+I ii1
j (I i1i2(Ξi2)) = I ii1

j (I i1i2(Ξi2))⊗ 1+ 1⊗ I ii1
j (I i1i2(Ξi2)).

(AM̂A⊗ M̂)∆+I ii1
j (I i1i2(Ξi2)) = I ii1

j (I i1i2(Ξi2))⊗ 1+ 1⊗ I ii1
j (I i1i2(Ξi2)),

It follows that
∆̂MI ii1

j (I i1i2(Ξi2)) = I ii1
j (I i1i2(Ξi2))⊗ 1.

For τ = I ii1
l (τ1), where τ1 = I i1i2

k (I i2i3(Ξi3)Ikk1(Ξk1))I ll1(Ξl1), i, i1, i2, i3, k, k1, l, l1 = 1, 2, 3, we
have

∆+I ii1
l (τ1) = I ii1

l (τ1)⊗ 1+ 1⊗ I ii1
l (τ1).

(AM̂A⊗ M̂)∆+I ii1
l (τ1) = I ii1

l (τ1)⊗ 1+ 1⊗ I ii1
l (τ1),

which implies that
∆̂MI ii1

l (τ1) = I ii1
l (τ1)⊗ 1.

Similarly, we obtain
∆̂MI il

i1
(τ1) = I il

i1
(τ1)⊗ 1.

As a consequence of the expression, we haveM belongs to the renormalisation group R0 defined
in [Hai14, Definition 8.43]. Then by [Hai14, Theorem 8.46] we can define (ΠM ,ΓM) and it is
an admissible model for TF on ⟨F0⟩. Furthermore, it extends uniquely to an admissible model
for all of TF .

By (2.6) we also have
ΠM

x τ = ΠxMτ.

Now we come to the equation. First we define for any α0 < 0 and compact set R the norm

|ξ|α0;R = sup
s∈R

∥ξ1t≥s∥α0;R,

10



and we denote by C̄α0
s the intersections of the completions of smooth functions under | · |α0;R

for all compact sets R.
Since α < −5

2
, Theorem 2.5 does not apply to R+Ξi, where R+ : R × Rd → R is given by

R+(t, x) = 1 for t > 0 and R+(t, x) = 0 otherwise. To define the reconstruction operator for
R+Ξi by hand, we need the following results, which has been proved by [Hai14, Proposition
9.5].

Proposition 2.10 Let ξ = (ξ1, ξ2, ξ3), with ξi, i = 1, 2, 3 being independent white noise
on R × T3, which we extend periodically to R4. Let ρ : R4 → R be a smooth compactly
supported function integrating to 1, set ρε(t, x) = ε−5ρ( t

ε2
, x
ε
) and define ξiε = ρε ∗ ξi. Then for

every i, i1 = 1, 2, 3, Kii1 ∗ ξi1 ∈ C(R, Cα+2(R3)) almost surely. Moreover, for every compact set
R ⊂ R4 and every 0 < θ < −α− 5

2
we have

E|ξi − ξiε|α;R . εθ.

Finally for every 0 < κ < −α− 5
2
, we have the bound

E sup
t∈[0,1]

∥Kii1 ∗ ξi1(t, ·)−Kii1 ∗ ξi1ε )(t, ·)∥α+2 . εκ.

Now we reformulate the fixed point map as

vi1 =
3∑

i1=1

(Kii1
γ̄ +Rii1

γ R)R+Ξi1 ,

ui =− 1

2

3∑
i1,j=1

((DjKii1)γ̄ + (DjR
ii1)γR)R+(ui1 ⋆ uj) + vi1 +

3∑
i1=1

Gii1ui10 .

(2.7)

Here for i, i1, j = 1, 2, 3, Kii1
γ̄ and (DjKii1)γ̄ are the continuous linear operators obtained by

Theorem 2.6 associated with the kernel Kii1 and DjK
ii1 respectively,

Rii1
γ : Cα

s → Dγ,η, (Rii1
γ f)(z) =

∑
|k|s<γ

Xk

k!

∫
Dk

1R
ii1(z, z̄)f(z̄)dz̄,

(DjR
ii1)γ : Cα

s → Dγ,η, (Rii1
γ f)(z) =

∑
|k|s<γ

Xk

k!

∫
Dk

1(DjR
ii1)(z, z̄)f(z̄)dz̄,

and γ, γ̄ will be chosen below and we define RR+Ξ as the distribution ξ1t≥0.
For the second equaiton of (2.7), define

V i := ⊕3
i1,j=1I

ii1
j (Hi1j

F )⊕ span{I ii1(Ξi1)} ⊕ T̄ .

V = V 1 × V 2 × V 3.

We define the local map F i
j : V → T by for τ = (τ 1, τ 2, τ 3) with τ i ∈ V i,

F i
j (τ) :=τ

i ⋆ τ j.

11



For γ > 0, η ∈ R we define

Dγ,η(V ) := Dγ,η(V1)×Dγ,η(V2)×Dγ,η(V3).

(Dγ,η)3 := Dγ,η ×Dγ,η ×Dγ,η.

Lemma 2.11 For γ > |α + 2| and −1 < η ≤ α + 2, the map u 7→ F i
j (u) is locally Lipschitz

continuous from Dγ,η(V ) into Dγ+α+2,2η.

Proof This is a consequence of [Hai14, Proposition 6.12, Proposition 6.15]. �
Now for γ, η as in Lemma 2.11 and ui10 ∈ Cη(R3), i1 = 1, 2, 3, periodic, we have P ii1ui10 ∈

Cη(R3), i, i1 = 1, 2, 3, which by [Hai14, Lemma 7.5] implies that Gii1ui10 ∈ Dγ,η, i, i1 = 1, 2, 3.
By Proposition 2.10 and [Hai14, Remark 6.17] we also have for i = 1, 2, 3, vi1 ∈ Dγ,η. Now we
can apply fixed point argument in (Dγ,η)3 to obtain existence and uniqueness of local solutions.

Proposition 2.12 Let TF be the regularity structure as above associated to NS equation
with α ∈ (−13

5
,−5

2
). Let η ∈ (−1, α + 2] and let Z = (Π,Γ) ∈ MF be an admissible model

for TF with the additional properties that for i, i1 = 1, 2, 3, ξi := RΞi belongs to C̄α
s and that

Kii1 ∗ ξi1 ∈ C(R, Cη). Then there exists a maximal solution SL ∈ (Dγ,η)3 for the equation (2.7).

Proof Consider the second equation in (2.7) and we have that u takes values in a sector of
regularity ζ = α + 2 and F i

j , i, j = 1, 2, 3, takes value in a sector of regularity ζ̄ = 2α + 4
satisfying ζ < ζ̄ +1. For η and γ as in Lemma 2.11 we have η̄ = 2η and γ > γ̄ = γ +α+2 > 0
and γ̄ > γ +1. By Lemma 2.11 for i, j = 1, 2, 3, F i

j is locally Lipschitz continuous from Dγ,η to
Dγ̄,η̄. Then η < (η̄ ∧ ζ̄) + 1 and (η̄ ∧ ζ̄) + 2 > 0 are satisfied by assumption. Denote by M i

F (u)
the right hand side of the second equation in (2.7). By [Hai14, Theorem 7.1, Lemma 7.3] and
local Lipschitz continuity of F i

j we obtain that there exist κ > 0 such that

3∑
i=1

|||M i
F (u)−M i

F (ū)|||γ,η;T .T κ

3∑
i,j=1

|||F i
j (u)− F i

j (ū)|||γ̄,η̄;T

.T κ

3∑
i=1

|||ui − ūi|||γ,η;T .

Then we obtain local existence and uniqueness of the solutions by similar arguments as in
the proof of [Hai14, Theorem 7.8]. Here we consider the solution is vector valued and the
corresponding norm is the sum of the norm for each component. To extend this local map up
to the first time where

∑3
i=1 ∥(Rui)(t, ·)∥η blows up, we write u = v1 + v2 + v3 with v1 in (2.7)

and

vi2 =− 1

2

3∑
i1,j=1

((DjKii1)γ̄ + (DjR
ii1)γR)R+(vi11 ⋆ vj1),

vi3 =− 1

2

3∑
i1=1

((DjKii1)γ̄ + (DjR
ii1)γR)R+[((vi13 + vi12 ) ⋆ (v

j
3 + vj2))

+ ((vi13 + vi12 ) ⋆ v
j
1) + (vi11 ⋆ (vj3 + vj2))] +

3∑
i1=1

Gii1ui10 ,
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In this case vi3 takes values in a function-like sector with ζ = 3α + 8 and we can use similar
arguments as in the proof of [Hai14, Proposition 7.11] to conclude results. �

Remark 2.13 Here the lower bound for η is −1, which seems to be optimal by the regularity
structure theory. The reason for this is as follows: the nonlinear term always contains v ⋆ v and
thus η̄ ≤ 2η which should be larger than −2 required by [Hai14, Theorem 7.8]. As a result,
η > −1.

Denote O := [−1, 2] × R3. Given a model Z = (Π,Γ) for TF , a periodic initial condition
u0 ∈ (Cη

s̄ )
3, and some cut-off value L > 0, we denote by u = SL(u0, Z) ∈ (Dγ,η)3 and T =

TL(u0, Z) ∈ R+ ∪ {+∞} the (unique) modelled distribution and time such that (2.7) holds on
[0, T ], such that ∥(Ru)(t, ·)∥η < L for t < T , and such that ∥(Ru)(t, ·)∥η ≥ L for t ≥ T . Then
by [Hai14, Corollary 7.12] we obtain the following results.

Proposition 2.14 Let L > 0 be fixed. In the setting of Proposition 2.12, for every ε > 0
and C > 0 there exists δ > 0 such that setting T = 1 ∧ TL(u0, Z) ∧ TL(ū0, Z̄) we have

∥SL(u0, Z)− SL(ū0, Z̄)∥γ,η;T ≤ ε,

for all u0, ū0, Z, Z̄ such that |||Z|||γ;O ≤ C, |||Z̄|||γ;O ≤ C, ∥u0∥η ≤ L/2, ∥ū0∥η ≤ L/2, ∥u0 −
ū0∥η ≤ δ, and |||Z; Z̄|||γ;O ≤ δ and

|ξ|α;O + |ξ̄|α;O ≤ C,

3∑
i,i1=1

sup
t∈[0,1]

(∥(Kii1 ∗ ξi1)(t, ·)∥η + ∥(Kii1 ∗ ξ̄i1)(t, ·)∥η) ≤ C,

as well as
|ξ − ξ̄|α;O ≤ δ,

3∑
i,i1=1

sup
t∈[0,1]

(∥(Kii1 ∗ ξi1)(t, ·)− (Kii1 ∗ ξ̄i1)(t, ·)∥η) ≤ δ,

where ξ̄i = R̄Ξi and R̄ is the reconstruction operator associated to Z̄.

Proposition 2.15 Given a continuous periodic vector ξε = (ξ1ε , ξ
2
ε , ξ

3
ε ), denote by Zε =

(Π(ε),Γ(ε)) the associated canonical model realising TF given in Proposition 2.8. Let M be the
renormalisation map defined in (2.5). Then for every L > 0 and periodic u0 ∈ Cη(R3;R3),
uε = RSL(u0, Zε) satisfies the following equation on [0, TL(u0, Zε)] in the mild sense:

∂tuε = ∆uε − P (uε · ∇uε) + Pξε, divuε = 0, uε(0, x) = Pu0.

Furthermore, uMε = RSL(u0,MZε) satisfies the following equation on [0, TL(u0,MZε)] in the
mild sense:

∂tuε =∆uε + Pξε −
1

2
P

3∑
j=1

Dj(uεu
j
ε),

divuε = 0, uε(0, x) = Pu0.
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Proof The first result follows from the fact that ξε is a continuous function and a similar
argument as in the proof of [Hai14, Proposition 9.4].

Consider for i = 1, 2, 3, ui is the solution to the abstract fixed point map that can be
expanded as

ui =
3∑

i1=1

I ii1(Ξi1)−
1

2

3∑
j,i1,i2,j1=1

I ii1
j (I i1i2(Ξi2)Ijj1(Ξj1)) + φi1− 1

2

3∑
j,i1,j1=1

I ii1
j (Ijj1(Ξj1))φ

i1

− 1

2

3∑
j,i1,i2=1

I ii1
j (I i1i2(Ξi2))φ

j +
1

4

3∑
i1,i2,i3,j,j1,k,k1=1

I ii1
k (I i1i2

j (I i2i3(Ξi3)Ijj1(Ξj1))Ikk1(Ξk1))

+
1

4

3∑
i1,i2,j,j1,k,k1,k2=1

I ii1
k (I i1i2(Ξi2)Ikk1

j (Ik1k2(Ξk2)Ijj1(Ξj1))) + ρu.

Here every component of ρu has homogeneity strictly greater than 3α + 8. Then for

F i
j (u) := uiuj,

we have

F i
j (u) =

1

4

3∑
i1,i2,j1,j2,k,k1,l,l1=1

I ii1
k (I i1i2(Ξi2)Ikk1(Ξk1))I

jj1
l (Ij1j2(Ξj2)I ll1(Ξl1))

− 1

2

3∑
i1,i2,k,k1=1

I ii1
k (I i1i2(Ξi2)Ikk1(Ξk1))φ

j − 1

2
φi

3∑
j1,j2,k,k1=1

Ijj1
k (Ij1j2(Ξj2)Ikk1(Ξk1))

+ φiφj − 1

2

3∑
i1,i2,j1,k,k1=1

I ii1
k (I i1i2(Ξi2)Ikk1(Ξk1))Ijj1(Ξj1) + φi

3∑
j1=1

Ijj1(Ξj1)

− 1

2

3∑
i1,j1,k,k1=1

I ii1
k (Ikk1(Ξk1))φ

i1Ijj1(Ξj1)−
1

2

3∑
i1,i2,j1,k=1

I ii1
k (I i1i2(Ξi2))φ

kIjj1(Ξj1)

+
1

4

3∑
i1,i2,i3,l,l1,k,k1,j1=1

I ii1
k (I i1i2

l (I i2i3(Ξi3)I ll1(Ξl1))Ikk1(Ξk1))Ijj1(Ξj1)

+
1

4

3∑
i1,i2,k,k1,k2,l,l1,j1=1

I ii1
k (I i1i2(Ξi2)Ikk1

l (Ik1k2(Ξk2)I ll1(Ξl1)))Ijj1(Ξj1)

− 1

2

3∑
i1,j1,j2,k,k1=1

Ijj1
k (Ij1j2(Ξj2)Ikk1(Ξk1))I ii1(Ξi1) +

3∑
i1=1

φjI ii1(Ξi1)

− 1

2

3∑
i1,j1,k,k1=1

Ijj1
k (Ikk1(Ξk1))φ

j1I ii1(Ξi1)−
1

2

3∑
i1,j1,j2,k=1

Ijj1
k (Ij1j2(Ξj2))φ

kI ii1(Ξi1)

+
1

4

3∑
i1,j1,j2,j3,l,l1,k,k1=1

Ijj1
k (Ij1j2

l (Ij2j3(Ξj3)I ll1(Ξl1))Ikk1(Ξk1))I ii1(Ξi1)
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+
1

4

3∑
i1,j1,j2,l,l1,k,k1,k2=1

Ijj1
k (Ij1j2(Ξj2)Ikk1

l (Ik1k2(Ξk2)I ll1(Ξl1)))I ii1(Ξi1)

+
3∑

i1,j1=1

I ii1(Ξi1)Ijj1(Ξj1) + ρF ,

where ρF has strictly positive homogeneity. Moreover we have

Rui = −1

2

3∑
i1,i2,j,j1=1

DjK
ii1 ∗ (Ki1i2 ∗ ξi2ε ·Kjj1 ∗ ξj1ε ) + φi +

3∑
i1=1

Kii1 ∗ ξi1ε .

Since ∆Mτ =Mτ ⊗ 1, we have the identity (Π
M,(ε)
z τ)(z) = (Π

(ε)
z Mτ)(z). It follows that for the

reconstruction operator RM associated with MZε

RMF i
j (u) =RuiRuj − 1

4

3∑
i1,i2,j1,j2,k,k1,l,l1=1

C2
ii1i2jj1j2kk1ll1

−
3∑

i1,j1=1

C1
ii1jj1

− 1

4

3∑
i1,i2,i3,k,k1,l,l1,j1=1

C3
ii1i2i3ll1kk1jj1

− 1

4

3∑
i1,i2,k,k1,k2,l,l1,j1=1

C4
ii1i2ll1kk1k2jj1

− 1

4

3∑
i1,k,k1,l,l1,j1,j2,j3=1

C3
jj1j2j3ll1kk1ii1

− 1

4

3∑
i1,k,k1,k2,l,l1,j1,j2=1

C4
jj1j2ll1kk1k2ii1

,

which combining with the fact that
∫ t

0

∫
DjG

ii1(t− s, x− y)dyds = 0 implies the results. �

Theorem 2.16 Let TF be the regularity structure associated to the dynamical SNS model
for β = 2, α ∈ (−13

5
,−5

2
), let ξε = ρε ∗ξ and let Zε be the associated canonical model andMε be

a sequence of renormalisation linear map defined in (2.5) corresponding to C1,ε, C2,ε, C3,ε, C4,ε,
which will be defined in the proof. Ẑε =MεZε. Then, there exists a random model Ẑ indepen-
dent of the choice of mollifier ρ and Mε ∈ R0 such that MεZε → Ẑ in probability.

More precisely, for any θ < −5
2
− α, any compact set R and any γ < r we have

E|||MεZε; Ẑ|||γ;R . εθ,

uniformly over ε ∈ (0, 1].

Proof By [Hai14, Theorem 10.7] it is sufficient to prove that for τ ∈ F with |τ |s < 0, any
test function φ ∈ Br, every x ∈ R4, there exist random variables Π̂xτ(φ) such that for κ small
enough

E|(Π̂xτ)(φ
λ
x)|2 . λ2|τ |s+κ, (2.8)

and such that for some 0 < θ < −5
2
− α,

E|(Π̂xτ − Π̂(ε)
x τ)(φλ

x)|2 . ε2θλ2|τ |s+κ. (2.9)

For τ = Ξi, I ii1(Ξi1), i, i1 = 1, 2, 3, it is easy to conclude (2.8), (2.9) hold in this case. For
τ = I ii1(Ξi1)Ijj1(Ξj1), i, i1, j, j1 = 1, 2, 3, we have

Π̂(ε)
x τ(y) =

∫
Kii1(y − z)ξi1ε (z)dz

∫
Kjj1(y − z)ξj1ε (z)dz − C1,ε

ii1jj1
.

15



If we choose C1,ε
ii1jj1

:= ⟨Kii1
ε , Kjj1

ε ⟩, where Kε = ρε ∗K we have

Π̂(ε)
x τ(y) =

∫
Kii1(y − z1)K

jj1(y − z2)ξ
i1
ε (z1) ⋄ ξj1ε (z2)dz1dz2,

so that Π̂
(ε)
x τ(y) belongs to the homogeneous chaos of order 2 with

(Ŵ(ε;2)(τ)(y; z1, z2) = Kii1
ε (y − z1)K

jj1
ε (y − z2).

Then applying [Hai14, Lemma 10.14] we deduce that

|⟨(Ŵ(ε;2)τ)(y), (Ŵ(ε;2)τ)(ȳ)⟩| . ∥y − ȳ∥−2
s ,

holds uniformly over ε ∈ (0, 1], which implies the bound for 4α + 10 + κ < 0

|
∫ ∫

ψλ(y)ψλ(ȳ)⟨(Ŵ(ε;2)τ)(y), (Ŵ(ε;2)τ)(ȳ)⟩dydȳ| . λ−10

∫
∥y∥s≤λ,∥ȳ∥s≤λ

∥y − ȳ∥−2
s dydȳ

.λ−5

∫
∥y∥s≤2λ

∥y∥−2
s dy . λ−2 . λκ+2(2α+4).

Hence we could choose

(Ŵ(2)τ)(y; z1, z2) = Kii1(y − z1)K
jj1(y − z2).

In the same way, it is straightforward to obtain an analogous bound on (Ŵ(2))(τ), which implies
(2.8) holds in this case, so it remains to find similar bounds on (δŴ (ε;2)τ) = (Ŵ(ε;2)τ)−(Ŵ(2)τ).
Similarly by [Hai14, Lemma 10.17] we have for 0 < κ+ θ < −2(2α + 5)

|⟨(δŴ(ε;2)τ)(y), (δŴ(ε;2)τ)(ȳ)⟩| . εθ∥y − ȳ∥−2−θ
s ,

holds uniformly over ε ∈ (0, 1]. Then we have the bound

|
∫ ∫

ψλ(y)ψλ(ȳ)⟨(δŴ(ε;2)τ)(y), (δŴ(ε;2)τ)(ȳ)⟩dydȳ| . εθλκ+2(2α+4),

which implies (2.9) holds in this case.
For τ = I ii1

j (I i1i2(Ξi2)Ijj1(Ξj1)), i, i1, i2, j, j1 = 1, 2, 3, we have the following identity

Π̂(ε)
x τ(y) =

∫
DjK

ii1(y − y1)

∫
Ki1i2(y1 − z)ξi2ε (z)dz

∫
Kjj1(y1 − z)ξj1ε (z)dzdy1

=

∫
DjK

ii1(y − y1)

∫ ∫
Ki1i2(y1 − z1)K

jj1(y1 − z2)ξ
i2
ε (z1) ⋄ ξj1ε (z2)dz1dz2dy1,

so that Π̂
(ε)
x τ(y) belongs to the homogeneous chaos of order 2 with

(Ŵ(ε;2)τ)(y; z1, z2) =

∫
DjK

ii1(y − y1)K
i1i2
ε (y1 − z1)K

jj1
ε (y1 − z2)dy1.

Then by [Hai14, Lemma 10.14] we have for any δ > 0

|⟨(Ŵ(ε;2)τ)(y), (Ŵ (ε;2)τ)(ȳ)⟩| . ∥y − ȳ∥−δ
s ,
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holds uniformly over ε ∈ (0, 1], which implies the bound

|
∫ ∫

ψλ(y)ψλ(ȳ)⟨(Ŵ(ε;2)τ)(y), (Ŵ(ε;2)τ)(ȳ)⟩dydȳ| . λ−10

∫
∥y∥s≤λ,∥ȳ∥s≤λ

∥y − ȳ∥−δ
s dydȳ

.λ−5

∫
∥y∥s≤2λ

∥y∥−δ
s dy . λ−δ . λκ+2(2α+5),

for 0 < κ+ δ < −2(2α + 5). Hence we could choose

(Ŵ(2)τ)(y; z1, z2) =

∫
DjK

ii1(y − y1)K
i1i2(y1 − z1)K

jj1(y1 − z2)dy1,

and deduce easily that (2.9) holds for τ = I ii1
j (I i1i2(Ξi2)Ijj1(Ξj1)). Similarly we have the bound

for 0 < κ+ δ + θ < −2(2α + 5)

|
∫ ∫

ψλ(y)ψλ(ȳ)⟨(δŴ(ε;2)τ)(y), (δŴ(ε;2)τ)(ȳ)⟩dydȳ| . εθλκ+2(2α+5),

holds uniformly over ε ∈ (0, 1], which also implies that (2.10) holds for τ = I ii1
j (I i1i2(Ξi2)Ijj1(Ξj1)).

In the following we use to represent a factor K and to represent DK, where for
simplicity we write Kii1 = K,DjK

ii1 = DK and we do not make the difference of the graphs
associated with different Kii1 since they have the same order. In the graphs below we also
omit the dependence on ε if there’s no confusion. We also use the convention that if a vertex
is drawn in grey, then the corresponding variable is integrated out.

For τ = I ii1
k (Ikk1(Ξk1))Ijj1(Ξj1), i, i1, k, k1, j, j1 = 1, 2, 3 we have

(W(ε;2)τ)(z) = z

−

z 0 .

Defining kernels Q0
ε, P

0
ε by

P 0
ε (z − z̄) = z z̄

εε

, Q0
ε(z − z̄) = z z̄

ε ε

,

we have
⟨W(ε;2)τ(z),W(ε;2)τ(z̄)⟩ =P 0

ε (z − z̄)δ(2)Q0
ε(z, z̄),

where, for any function Q of two variables we have set

δ(2)Q(z, z̄) = Q(z, z̄)−Q(z, 0)−Q(0, z̄) +Q(0, 0).

It follows from [Hai14, Lemma 10.14, Lemma 10.17] that for every δ > 0 we have

|Q0
ε(z)−Q0

ε(0)| . ∥z∥1−δ
s , |P 0

ε (z)| . ∥z∥−1
s .

As a consequence we have the desired a priori bounds for W (ε;2)τ , namely for every δ > 0

⟨(Ŵ(ε;2)τ)(z), (Ŵ(ε;2)τ)(z̄)⟩ . ∥z − z̄∥−1
s (∥z − z̄∥1−δ

s + ∥z∥1−δ
s + ∥z̄∥1−δ

s ),
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holds uniformly over ε ∈ (0, 1]. Defining as previously Ŵ (2)τ like Ŵ(ε;2)τ but with each instance
of Kε replaced by K. Moreover, we use to represent the kernel K −Kε and we have

(δW(ε;2)τ)(z) = z

−

0 z

( ) + (
−

)

z 0 z .

By a similar calculation as above we obtain the following bounds

⟨(δŴ(ε;2)τ)(z), (δŴ(ε;2)τ)(z̄)⟩ .ε2θ∥z − z̄∥−1
s (∥z − z̄∥1−2θ−δ

s + ∥z∥1−2θ−δ
s + ∥z̄∥1−2θ−δ

s )

+ ε2θ∥z − z̄∥−1−2θ
s (∥z − z̄∥1−δ

s + ∥z∥1−δ
s + ∥z̄∥1−δ

s ),

which is valid uniformly over ε ∈ (0, 1], provided that θ < 1, δ > 0. Here we used [Hai14,
Lemma 10.17]. We come to Ŵ(ε;0)τ and have

(Ŵ (ε;0)τ)(z) =
−

z 0

ε

ε

ε

ε

.

Since K is symmetric and DK is anti-symmetric with respect to space variable, we conclude
that

= 0,

which deduces the following

(Ŵ(ε;0)τ)(z) = − z 0
ε

ε

.

Then by [Hai14, Lemma 10.14, Lemma 10.17] we have for every δ > 0

|(Ŵ (ε;0)τ)(z)| . ∥z∥−δ
s ,

holds uniformly over ε ∈ (0, 1]. Similarly bounds also hold for (δŴ(ε;0)τ). Then we can easily
conclude that (2.8) (2.9) hold for τ = I ii1

k (Ikk1(Ξk1))Ijj1(Ξj1).
For τ = I ii1

k (I i1i2(Ξi2))Ijj1(Ξj1), i, i1, i2, k, j, j1 = 1, 2, 3, we could prove similar bounds as
above since in this case we also have

= 0.

For τ = I ii1
k (I i1i2(Ξi2)Ikk1(Ξk1))Ijj1(Ξj1), i, i1, i2, k, k1, j, j1 = 1, 2, 3, we have the following

identities

(Ŵ(ε;3)τ)(z) = z ,

(Ŵ(ε;1)
1 τ)(z) = z

−

z

i1

k

i1

k

,

(Ŵ(ε;1)
2 τ)(z) = z

−

z

k

i1

k

i1

,

⟨Ŵ(ε;3)τ(z), Ŵ(ε;3)τ(z̄)⟩ =P 0
ε (z − z̄)Qε(z − z̄),
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where

Qε(z − z̄) =
z z̄

, = 0.

By [Hai14, Lemma 10.14, Lemma 10.17] for every δ > 0 we have the bound

|Qε(z − z̄)| . ∥z − z̄∥−δ
s ,

which implies that
|⟨Ŵ(ε;3)τ(z), Ŵ(ε;3)τ(z̄)⟩| . ∥z − z̄∥−1−δ

s ,

holds uniformly over ε ∈ (0, 1]. Defining as previously Ŵ (3)τ like Ŵ(ε;3)τ but with each instance
of Kε replaced by K. Then δŴ(ε;3)τ can be bounded in a manner similar to before. Now for
Ŵ(ε;1)τ , we have

(Ŵ (ε;1)
1 τ)(z) = ((R1Lε) ∗Kkk1

ε )(z),

where Lε(z) = and (R1Lε)(ψ) =
∫
Lε(x)(ψ(x) − ψ(0))dx for ψ smooth and compactly

support. It follows from [Hai14, Lemma 10.16] that, the bounds

|⟨(Ŵ(ε;1)
1 τ)(z), (Ŵ(ε;1)

1 τ)(z̄)⟩| . ∥z − z̄∥−1
s ,

holds uniformly for ε ∈ (0, 1]. Similarly, this bounds also holds for (Ŵ(ε;1)
2 τ)(z). Again,

δŴ(ε;1)
i τ, i = 1, 2 can be bounded in a manner similar to before. Then we can easily conclude

that (2.8), (2.9) holds for τ = I ii1
k (I i1i2(Ξi2)Ikk1(Ξk1))Ijj1(Ξj1).

For τ = I ii1
k (I i1i2(Ξi2)Ikk1(Ξk1))I

jj1
l (Ij1j2(Ξj2)I ll1(Ξl1)), i, i1, i2, k, k1, j, j1, j2, l, l1 = 1, 2, 3,

we have the identities

(Ŵ (ε;4)τ)(z) = z ,

⟨(Ŵ(ε;4)τ)(z), (Ŵ(ε;4)τ)(z̄)⟩ =

z z̄

.

Then we obtain the bound for every δ > 0

|⟨(Ŵ (ε;4)τ)(z), (Ŵ(ε;4)τ)(z̄)⟩| . ∥z − z̄∥−δ
s .

Similarly, we obtain

|⟨(δŴ(ε;4)τ)(z), (δŴ(ε;4)τ)(z̄)⟩| . ε2θ∥z − z̄∥−2θ
s ,

holds uniformly for ε ∈ (0, 1], provided θ < 1.
For (Ŵ(ε;2)τ)(z), we have the identity

(Ŵ(ε;2)
1 τ)(z) = z

l
j1ki1

.
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Other terms can be obtained by changing the position for i1, k or j1, l. Since the estimates

are similar, we omit them here. We also use the notation α for ∥z − z̄∥αs 1∥z−z̄∥s≤C for a
constant C. We obtain for δ > 0,

⟨(Ŵ(ε;2)
1 τ)(z), (Ŵ(ε;2)

1 τ)(z̄)⟩ =
z z̄

.
z z̄

−2

−1 −1

. ∥z − z̄∥−δ
s ,

holds uniformly for ε ∈ (0, 1], where we used Young’s inequality in the first inequality. Similarly,
we have

⟨(δŴ(ε;2)
1 τ)(z), (δŴ(ε;2)

1 τ)(z̄)⟩ . ε2θ∥z − z̄∥−2θ
s ,

provided θ < 1. Now for Ŵ(ε;0)τ we have

(Ŵ(ε;0)τ)(z) =

i1 l
k j1

+

i1 j1
k l

− C2,ε
ii1i2jj1j2kk1ll1

.

Hence we will choose

C2,ε
ii1i2jj1j2kk1ll1

=

i1 l
k j1

+

i1 j1
k l

.

Now in this case (2.8), (2.9) follow.
For τ = I ii1

l (I i1i2
k (I i2i3(Ξi3)Ikk1(Ξk1))I ll1(Ξl1))Ijj1(Ξj1), i, i1, i2, i3, j, j1, k, k1, l, l1 = 1, 2, 3,

we have the following identities:

(Ŵ (ε;4)τ)(z) = z z

−

0 .

(Ŵ(ε;2)τ)(z) =
5∑

i=1

(Ŵ(ε;2)
i τ)(z) =

5∑
i=1

[(Ŵ(ε;2)
i1 τ)(z)− (Ŵ(ε;2)

i2 τ)(z)].

(Ŵ (ε;2)
11 τ)(z) = z

−

z

i2

k

k

i2

, (Ŵ(ε;2)
12 τ)(z) = 0

−

0

i2

k

k

i2

z z ,

(Ŵ (ε;2)
21 τ)(z) = z

−

z

k

i2

i2

k

, (Ŵ(ε;2)
22 τ)(z) = 0

−

0

k

i2

i2

k

z z ,

(Ŵ(ε;2)
31 τ)(z) = z

−

z , (Ŵ(ε;2)
32 τ)(z) = 0 z ,

(Ŵ (ε;2)
4 τ)(z) = (Ŵ(ε;2)

41 τ)(z)− (Ŵ(ε;2)
42 τ)(z) = z z

−

0

i2

k

i2

k

,
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(Ŵ(ε;2)
5 τ)(z) = (Ŵ(ε;2)

51 τ)(z)− (Ŵ (ε;2)
52 τ)(z) = z z

−

0

k

i2

k

i2

.

Now for Ŵ(ε;4)τ we have

⟨Ŵ(ε;4)τ(z), Ŵ(ε;4)τ(z̄)⟩ = P 0
ε (z − z̄)δ(2)Q2

ε(z, z̄),

where

Q2
ε(z, z̄) =

z z̄

, = 0.

By [Hai14, Lemmas 10.14, 10.16 and 10.17] for every δ > 0 we have the bound

|⟨Ŵ (ε;4)τ(z), Ŵ(ε;4)τ(z̄)⟩| . ∥z − z̄∥−1
s (∥z − z̄∥1−δ

s + ∥z∥1−δ
s + ∥z̄∥1−δ

s ),

holds uniformly for ε ∈ (0, 1], and

|⟨Ŵ(ε;2)
11 τ(z)− Ŵ(ε;2)

12 τ(z), Ŵ(ε;2)
11 τ(z̄)− Ŵ(ε;2)

12 τ(z)⟩|
.∥z − z̄∥−1

s |⟨K ∗ R1L
1
ε ∗DK(z − ·)−K ∗ R1L

1
ε ∗DK(−·),

K ∗ R1L
1
ε ∗DK(z̄ − ·)−K ∗ R1L

1
ε ∗DK(−·)⟩|

.∥z − z̄∥−1
s (∥z − z̄∥1−δ

s + ∥z∥1−δ
s + ∥z̄∥1−δ

s ),

holds uniformly for ε ∈ (0, 1], where L1
ε(z) = . Similarly, this bounds also holds for

(Ŵ(ε;2)
2 τ)(z). Again, δŴ(ε;4)τ , δŴ(ε;2)

i τ, i = 1, 2 can be bounded in a manner similar to be-

fore. For Ŵ(ε;2)
3 τ we have

(Ŵ(ε;2)
31 τ)(z) = ((R1L

1
ε) ∗ L2

ε)(z),

where L1
ε(z) = , L2

ε(z) =
z . It follows from [Hai14, Lemma 10.16] that for every δ > 0,

the bounds
|⟨(Ŵ (ε;2)

31 τ)(z), (Ŵ(ε;2)
31 τ)(z̄)⟩| . ∥z − z̄∥−δ

s ,

holds uniformly for ε ∈ (0, 1]. Moreover for Ŵ (ε;2)
32 τ we have for every δ ∈ (0, 1)

|⟨(Ŵ(ε;2)
32 τ)(z), (Ŵ (ε;2)

32 τ)(z̄)⟩| = z z̄

0 0

−δ

.
0

−1− δ

z̄

0

+ z z̄

0 0

−1− δ . ∥z∥−δ
s ∥z̄∥−δ

s + ∥z̄∥−δ
s ,

where we used Young’s inequality. Again, δŴ(ε;2)
3 τ, can be bounded in a manner similar to

before. For Ŵ(ε;2)
41 τ we have for δ > 0

|⟨(Ŵ(ε;2)
41 τ)(z), (Ŵ(ε;2)

41 τ)(z̄)⟩| =
z

−1

−1

z̄

.
z

−2

z̄

+
z

−2

z̄

.∥z − z̄∥−δ
s ,
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holds uniformly for ε ∈ (0, 1], where we used Young’s inequality. For δ ∈ (0, 1) we have

|⟨(Ŵ(ε;2)
42 τ)(z), (Ŵ(ε;2)

42 τ)(z̄)⟩| =
z

−1

−1

z̄

0 0

.
z

−1

−10 0

−2

+

z̄
−1

−10 0

−2

.
z

−1− δ

0 0

−2

+

z

−1− δ0 0

−2

+

z̄
−1− δ

0 0

−2

+

z̄

−1− δ0 0

−2

.∥z∥−δ
s + ∥z̄∥−δ

s ,

holds uniformly for ε ∈ (0, 1], where we used Young’s inequality in the inequalities. Similarly,

these bounds also holds for (Ŵ(ε;2)
5 τ)(z). Again, δŴ(ε;2)

i τ, i = 4, 5 can be bounded in a manner
similar to before.

We now turn to Ŵ(ε;0)τ :

(Ŵ (ε;0)τ)(z) =
2∑

i=1

(Ŵ(ε;0)
i τ)(z) =

2∑
i=1

[(Ŵ(ε;2)
i1 τ)(z)− (Ŵ (ε;2)

i2 τ)(z)]− C3,ε
ii1i2i3kk1ll1jj1

,

where

(Ŵ(ε;0)
11 τ)(z) =

k

i2

, (Ŵ(ε;0)
12 τ)(z) = z

−

0

i2

k

k

i2

0 z ,

(Ŵ(ε;0)
21 τ)(z) =

i2

k

, (Ŵ(ε;0)
22 τ)(z) = z

−

0

k

i2

i2

k

0 z ,

we choose C3,ε
ii1i2i3kk1ll1jj1

= (Ŵ (ε;0)
11 τ)(z) + (Ŵ(ε;0)

21 τ)(z). By [Hai14, Lemma 10.16] we have that
for every δ > 0, i = 1, 2,

|(Ŵ(ε;0)
i2 τ)(z)| . ∥z∥−δ

s

holds uniformly for ε ∈ (0, 1]. Similarly as before, we obtain the bounds for δŴ(ε;0)
i2 τ . Then

(2.8), (2.9) follow in this case.
For τ = I ii1

l (I ll1
k (I l1l2(Ξl2)Ikk1(Ξk1))I i1i2(Ξi2))Ijj1(Ξj1), i, i1, i2, l, l1, l2, k, k1, j, j1 = 1, 2, 3,

we have similar bounds as above with

C4
ii1i2kk1ll1l2jj1

=

k

l1

+

l1

k

.

�
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3 NS equation by paracontrolled distributions

3.1 Besov spaces and paraproduct

In the following we recall the definitions and some properties of Besov spaces and paraproducts.
For a general introduction to these theories we refer to [BCD11, GIP13]. Here the notations
are differen from the previous section.

First we introduce the following notations. The space of real valued infinitely differentiable
functions of compact support is denoted by D(Rd) or D. The space of Schwartz functions is
denoted by S(Rd). Its dual, the space of tempered distributions is denoted by S ′(Rd). If u is a
vector of n tempered distributions on Rd, then we write u ∈ S ′(Rd,Rn). The Fourier transform
and the inverse Fourier transform are denoted by Fu and F−1u.

Let χ, θ ∈ D be nonnegative radial functions on Rd, such that
i. the support of χ is contained in a ball and the support of θ is contained in an annulus;
ii. χ(z) +

∑
j≥0 θ(2

−jz) = 1 for all z ∈ Rd.

iii. supp(χ)∩ supp(θ(2−j·)) = ∅ for j ≥ 1 and supp(θ(2−i·)∩ suppθ(2−j·) = ∅ for |i− j| > 1.
We call such (χ, θ) dyadic partition of unity, and for the existence of dyadic partitions of

unity see [BCD11, Proposition 2.10]. The Littlewood-Paley blocks are now defined as

∆−1u = F−1(χFu) ∆ju = F−1(θ(2−j·)Fu).

For α ∈ R, the Hölder-Besov space Cα is given by Cα = Bα
∞,∞(Rd,Rn), where for p, q ∈ [1,∞]

we define

Bα
p,q(Rd,Rn) = {u = (u1, ..., un) ∈ S ′(Rd,Rn) : ∥u∥Bα

p,q
=

n∑
i=1

(
∑
j≥−1

(2jα∥∆ju
i∥Lp)q)1/q <∞},

with the usual interpretation as l∞ norm in case q = ∞. We write ∥ · ∥α instead of ∥ · ∥Bα
∞,∞ .

We point out that everything above and everything that follows can be applied to distribu-
tions on the torus. More precisely, let D′(Td) be the space of distributions on Td. Therefore,
Besov spaces on the torus with general indices p, q ∈ [1,∞] are defined as

Bα
p,q(Td,Rn) = {u ∈ S ′(Td,Rn) : ∥u∥Bα

p,q
=

n∑
i=1

(
∑
j≥−1

(2jα∥∆ju
i∥Lp(Td))

q)1/q <∞}.

We will need the following Besov embedding theorem on the torus (c.f. [GIP13, Lemma 41]):

Lemma 3.1 Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞, and let α ∈ R. Then Bα
p1,q1

(Td) is

continuously embedded in B
α−d(1/p1−1/p2)
p2,q2 (Td).

Now we recall the following paraproduct introduced by Bony (see [Bon81]). In general, the
product fg of two distributions f ∈ Cα, g ∈ Cβ is well defined if and only if α+β > 0. In terms
of Littlewood-Paley blocks, the product fg can be formally decomposed as

fg =
∑
j≥−1

∑
i≥−1

∆if∆jg = π<(f, g) + π0(f, g) + π>(f, g),
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with
π<(f, g) = π>(g, f) =

∑
j≥−1

∑
i<j−1

∆if∆jg, π0(f, g) =
∑

|i−j|≤1

∆if∆jg.

We also use the notation
Sjf =

∑
i≤j−1

∆if.

We will use without comment that ∥ · ∥α ≤ ∥ · ∥β for α ≤ β, that ∥ · ∥L∞ . ∥ · ∥α for α > 0,
and that ∥ · ∥α . ∥ · ∥L∞ for α ≤ 0. We will also use that ∥Sju∥L∞ . 2−jα∥u∥α for α < 0 and
u ∈ Cα.

The basic result about these bilinear operations is given by the following estimates:

Lemma 3.2 (Paraproduct estimates, [Bon 81, GIP13, Lemma 2]) For any β ∈ R we have

∥π<(f, g)∥β . ∥f∥L∞∥g∥β f ∈ L∞, g ∈ Cβ,

and for α < 0 furthermore

∥π<(f, g)∥α+β . ∥f∥α∥g∥β f ∈ Cα, g ∈ Cβ.

For α + β > 0 we have

∥π0(f, g)∥α+β . ∥f∥α∥g∥β f ∈ Cα, g ∈ Cβ.

The following basic commutator lemma is important for our use:

Lemma 3.3 ([GIP13, Lemma 5]) Assume that α ∈ (0, 1) and β, γ ∈ R are such that α+β+γ >
0 and β + γ < 0. Then for smooth f, g, h, the trilinear operator

C(f, g, h) = π0(π<(f, g), h)− fπ0(g, h)

allows for the bound
∥C(f, g, h)∥α+β+γ . ∥f∥α∥g∥β∥h∥γ.

Thus, C can be uniquely extended to a bounded trilinear operator in L3(Cα×Cβ ×Cγ, Cα+β+γ).

Now we prove the following commutator estimate.

Lemma 3.4 Let u ∈ Cα for some α < 1 and v ∈ Cβ for some β ∈ R. Then for every
k, l = 1, 2, 3 we have

∥P klπ<(u, v)− π<(u, P
klv)∥α+β . ∥u∥α∥v∥β,

where P is the Leray projection.

Proof By the same argument as the proof of [CC13, Lemma A.1] we have for j ≥ 0

∥[(ψ(2−j·)P̂ kl)(D), Sj−1u]∆jv∥L∞ .
∑

η∈Nd,|η|=1

∥xηF−1(ψ(2−j·)P̂ kl)∥L1∥∂ηSj−1u∥L∞∥∆jv∥L∞ .

Here P̂ kl(x) = δkl− xkxl

|x|2 , (ψ(2
−j·)P̂ kl)(D)u = F−1(ψ(2−j·)P̂ klFu), [(ψ(2−j·)P̂ kl)(D), Sj−1u] de-

notes the commutator and ψ ∈ D with support in an annulus and satisfies [(ψ(2−j·)P̂ kl)(D), Sj−1u]∆jv

= [P̂ kl(D), Sj−1u]∆jv.

24



Now we have

∥xηF−1(ψ(2−j·)P̂ kl)∥L1

≤2−j∥F−1(∂ηψ)(2−j·)P̂ kl)∥L1 + ∥F−1(ψ(2−j·)∂ηP̂ kl)∥L1

=2−j∥F−1(∂ηψ(·)P̂ kl(2j·))∥L1 + ∥F−1(ψ(·)∂ηP̂ kl(2j·))∥L1

.2−j∥(1 + | · |2)dF−1(∂ηψ(·)P̂ kl(2j·))∥L∞ + ∥(1 + | · |2)dF−1(ψ(·)∂ηP̂ kl(2j·))∥L∞

=2−j∥F−1((1−∆)d(∂ηψ(·)P̂ kl(2j·)))∥L∞ + ∥F−1((1−∆)d(ψ(·)∂ηP̂ kl(2j·)))∥L∞

.2−j∥(1−∆)d(∂ηψ(·)P̂ kl(2j·))∥L1 + ∥(1−∆)d(ψ(·)∂ηP̂ kl(2j·))∥L1

.2−j
∑

0≤|m|≤2d

(2j)|m| 1

(2j)|m| +
∑

|m|≤2d

(2j)|m| 1

(2j)|m|+1

.2−j,

where in the last second inequality we used |DmP̂ kl(x)| . |x|−|m| for any multiindices m. Thus
we get that

∥[ψ(2−j·)P̂ kl(D), Sj−1u]∆jv∥L∞ . 2−j(α+β)∥u∥α∥v∥β,

which implies the result by the same argument as in the proof of [CC13, Lemma A.1]. �
Now we recall the following lemma which is important for our estimate.

Lemma 3.5 ([GIP13, Lemma 47]) Let u ∈ Cα for some α ∈ R. Then we have for every δ ≥ 0

∥Ptu∥α+δ . t−δ/2∥u∥α,

where Pt is the heat semigroup.

By the same argument as Lemma 3.5 we also have the following result on Td:

Lemma 3.6 Let u ∈ Cα for some α ∈ R. Then we have for every k, l = 1, 2, 3

∥P klu∥α . ∥u∥α,

where P is the Leray projection.

Proof We have for j ≥ 0

∥∆jP
klu∥L∞ . ∥F−1(P̂ kl(·)θ(2−j·))∥L12−jα∥u∥α = ∥F−1(P̂ kl(2j·)θ)∥L12−jα∥u∥α.

Here P̂ kl(x) = δkl − xkxl

|x|2 . By the same argument as in the proof of Lemma 3.4 we get that

∥F−1(P̂ kl(2j·)θ)∥L1 . ∥(1−∆)d(P̂ kl(2j·)θ)∥L1 .
∑

0≤|m|≤2d

(2j)|m| 1

(2j)|m| . C.

The above calculation is satisfied on Rd and Td. Moreover, on Td for 1 < p <∞

∥∆−1P
klu∥L∞(Td) = ∥F−1P̂ klχFu∥L∞(Td) . ∥F−1P̂ klχFu∥Lp(Td) . ∥∆−1u∥Lp(Td) . ∥∆−1u∥L∞(Td),
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where in the first inequality we used that supp(χP̂Fu) is contained in a ball and in the second
inequality we used Mihlin’s multiplier theorem. Thus the result follows. �

Now we consider the scaling of the spatial variable:

Lemma 3.7 ([GIP13, Lemma 44]) For all λ > 0 and u ∈ S ′ define the scaling transformation
Λλu(·) = u(λ·). Then we have

∥Λλu∥α . (1 + λα)∥u∥α
for all α ∈ R\{0} and all u ∈ Cα.

3.2 Navier-Stokes equations

Let us focus on the equation on the T3:

Lui =
3∑

i1=1

P ii1ξi1 − 1

2

3∑
i1=1

P ii1(
3∑

j=1

Dj(uu
j)), (3.1)

u(0) = Pu0 ∈ C−z,

where ξ = (ξ1, ξ2, ξ3), ξi is the periodic independent space time white noise, L = ∂t − ∆ and
z ∈ (1/2, 1/2+ δ0) with 0 < δ0 < 1/2. As we mentioned in the introduction the nonlinear term
of this equation is not well defined since the singularity of ξ. Now we follow the idea of [GIP13]
to give the definition of the solution of the equation as limit of solutions uε to the following
equation:

Luε,i =
3∑

i1=1

P ii1ξε,i1 − 1

2

3∑
i1=1

P ii1(
3∑

j=1

Dj(u
εuε,j)),

u(0) = Pu0 ∈ C−z,

for a family of smooth approximations (ξε) of ξ such that ξε → ξ as ε → 0. Now we want to
prove a priori estimate for uε.

In the following to avoid notations we omit the dependence on ε and consider (3.1) for
smooth ξ and we use ⋄ to replace the product of some terms and we will give the meaning later.
Consider

Lui1 =
3∑

i1=1

P ii1ξi1 ,

Lui2 = −1

2

3∑
i1=1

P ii1(
3∑

j=1

Dj(u
i1
1 ⋄ uj1)) u2(0) = 0,

Lui3 = −1

2

3∑
i1=1

P ii1(
3∑

j=1

Dj(u
i1
1 ⋄ uj2 + ui12 ⋄ uj1)) u3(0) = 0,

LKi = ui1 Ki(0) = 0.
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Here for i = 1, 2, 3, ui1 =
∫ t

−∞
∑3

i1=1 P
ii1Pt−sξ

ε,i1ds. Then we get that for any δ > 0 small

enough, ui1 ∈ C([0, T ]; C− 1
2
− δ

2 ) and Ki ∈ C([0, T ]; C 3
2
−δ) and by Lemma 3.5

sup
t∈[0,T ]

∥Ki∥ 3
2
−δ . sup

t∈[0,T ]

∥ui1∥−1/2−δ/2

If we assume that for i, j, i1, j1 = 1, 2, 3, ui1 ⋄ uj1 ∈ C([0, T ]; C−1−δ/2), ui1 ⋄ uj2 = uj2 ⋄ ui1 ∈
C([0, T ]; C−1/2−δ/2), ui2⋄u

j
2 ∈ C([0, T ]; C−δ), π0,⋄(u

i
3, u

j
1) ∈ C([0, T ]; C−δ) and π0,⋄(P

ii1DjK
j, uj11 ),

π0,⋄(P
ii1DjK

i1 , uj11 ) ∈ C([0, T ]; C−δ) and

Cξ := sup
t∈[0,T ]

(
3∑

i=1

∥ui1∥−1/2−δ/2 +
3∑

i,j=1

∥ui1 ⋄ u
j
1∥−1−δ/2 +

3∑
i,j=1

∥ui1 ⋄ u
j
2∥−1/2−δ/2 +

3∑
i,j=1

∥ui2 ⋄ u
j
2∥−δ

+
3∑

i,j=1

∥π0,⋄(ui3, u
j
1)∥−δ +

3∑
i,i1,j,j1=1

∥π0,⋄(P ii1DjK
j, uj11 )∥−δ +

3∑
i,i1,j,j1=1

∥π0,⋄(P ii1DjK
i1 , uj11 )∥−δ)

<∞.
(3.2)

Moreover by Lemmas 3.5 and 3.6 we get for i = 1, 2, 3, ui2 ∈ C([0, T ]; C−δ), ui3 ∈ C([0, T ]; C1/2−δ)
and

sup
t∈[0,T ]

(
3∑

i=1

∥ui2∥−δ +
3∑

i=1

∥ui3∥1/2−δ) . Cξ. (3.3)

Here the meaning of ⋄, π0,⋄ will be given later.
Then u = u1 + u2 + u3 + u4 solves (3.1) if and only if u4 solves

Lui4 = −1

2

3∑
i1,j=1

P ii1Dj(u
i1
1 ⋄(u

j
3+u

j
4)+(ui13 +u

i1
4 )⋄u

j
1+u

i1
2 ⋄u

j
2+u

i1
2 (u

j
3+u

j
4)+u

j
2(u

i1
3 +u

i1
4 )+(ui13 +u

i1
4 )(u

j
3+u

j
4)).

(3.4)
u4(0) = Pu0 − u1(0).

By a fixed point argument it is easy to obtain local existence and uniqueness of solutions of
equation (3.1): More precisely, for each ε ∈ (0, 1) there exists a maximal time Tε and u4
satisfying equation (3.4) before Tε such that u4 ∈ C((0, Tε); C1/2−δ0) with respect to the norm

supt∈[0,T ] t
1/2−δ0+z

2 ∥u4(t)∥1/2−δ0 and satisfying

sup
t∈[0,Tε)

t
1/2−δ0+z

2 ∥u4(t)∥1/2−δ0 = ∞.

Indeed since ξ is smooth by (3.4) and Lemmas 3.5 and 3.6 we have the following estimate

sup
t∈[0,T ]

t
1/2−δ0+z

2 ∥u4(t)∥1/2−δ0 . Cε(∥u0∥−z, u1, u2, u3) + T
1/2+δ0−z

2 ( sup
t∈[0,T ]

t
1/2−δ0+z

2 ∥u4(t)∥1/2−δ0)
2,

where Cε(∥u0∥−z, u1, u2, u3) is a constant depending on ε and we used z < 1/2 + δ0.
Now consider the paracontrolled ansatz for i = 1, 2, 3,

ui4 = −1

2

3∑
i1=1

P ii1(
3∑

j=1

Dj[π<(u
i1
3 + ui14 , K

j) + π<(u
j
3 + uj4, K

i1)]) + u♯,i
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with u♯,i(t) ∈ C1/2+β for some δ/2 < β < (z + 2δ − 1/2)∧ (1/2− 2δ) and t ∈ (0, Tε) (which can
be done for fix ε > 0 since ξε is smooth and we have

t
1/2+β+z

2 ∥u4(t)∥1/2+β . Cε(∥u0∥−z, u1, u2, u3) + t
1/2+δ0−z

2 ( sup
s∈[0,t]

s
1/2−δ0+z

2 ∥u4(s)∥1/2−δ0)
2).

By paracontrolled ansatz and Lemma 3.2 we also have the following estimate:

∥ui4∥1/2−δ .
3∑

i1,j=1

∥ui13 + ui14 ∥1/2−δ0∥Kj∥3/2−δ + ∥u♯,i∥1/2+β. (3.5)

Then u = u1 + u2 + u3 + u4 solves (3.1) if and only if u♯ solves the following equation:

Lu♯,i = −1

2

3∑
i1,j=1

P ii1Dj(u
i1
2 ⋄ uj2 + ui12 (u

j
3 + uj4) + uj2(u

i1
3 + ui14 ) + (ui13 + ui14 )(u

j
3 + uj4)

− π<(L(u
i1
3 + ui14 ), K

j) + 2
3∑

l=1

π<(Dl(u
i1
3 + ui14 ), DlK

j) + π>(u
i1
3 + ui14 , u

j
1) + π0,⋄(u

i1
3 , u

j
1) + π0,⋄(u

i1
4 , u

j
1)

− π<(L(u
j
3 + uj4), K

i1) + 2
3∑

l=1

π<(Dl(u
j
3 + uj4), DlK

i1) + π>(u
j
3 + uj4, u

i1
1 ) + π0,⋄(u

j
3, u

i1
1 ) + π0,⋄(u

j
4, u

i1
1 ))

:= ϕ♯,i.
(3.6)

First we consider π0,⋄(u
i
4, u

j
1): by the paracontrolled ansatz we have for i, j = 1, 2, 3,

π0,⋄(u
i
4, u

j
1) =− 1

2
(π0,⋄(

3∑
i1,j1=1

P ii1π<(u
i1
3 + ui14 , Dj1K

j1), uj1) + π0,⋄(
3∑

i1,j1=1

P ii1π<(u
j1
3 + uj14 , Dj1K

i1), uj1)

+
3∑

i1,j1=1

π0(P
ii1π<(Dj1(u

i1
3 + ui14 ), K

j1), uj1)) +
3∑

i1,j1=1

π0(P
ii1π<(Dj1(u

j1
3 + uj14 ), K

i1), uj1))

+ π0(u
♯,i, uj1).

The bound for the last three terms can be easily obtained by Lemma 3.2, and we only need to
consider the first two terms: for i, i1, j, j1 = 1, 2, 3, we have

π0,⋄(P
ii1π<(u

i1
3 + ui14 , Dj1K

j1), uj1)

=π0(P
ii1π<(u

i1
3 + ui14 , Dj1K

j1), uj1)− π0(π<(u
i1
3 + ui14 , P

ii1Dj1K
j1), uj1)

+ π0(π<(u
i1
3 + ui14 , P

ii1Dj1K
j1), uj1)− (ui13 + ui14 )π0(P

ii1Dj1K
j1 , uj1)

+ (ui13 + ui14 )π0,⋄(P
ii1Dj1K

j1 , uj1).

Thus by Lemmas 3.2 and 3.3 we have for δ ≤ δ0 < 1/2− 3δ/2

∥π0,⋄(P ii1π<(u
i1
3 + ui14 , Dj1K

j1), uj1)∥−δ

.∥P ii1π<(u
i1
3 + ui14 , Dj1K

j1)− π<(u
i1
3 + ui14 , P

ii1Dj1K
j1)∥1−δ−δ0∥u

j
1∥−1/2−δ/2

+ ∥ui13 + ui14 ∥1/2−δ0∥P ii1Dj1K
j1∥1/2−δ∥uj1∥−1/2−δ/2

+ ∥ui13 + ui14 ∥1/2−δ0∥π0,⋄(P ii1Dj1K
j1 , uj1)∥−δ

.∥ui13 + ui14 ∥1/2−δ0∥Kj1∥3/2−δ∥uj1∥−1/2−δ/2 + ∥ui13 + ui14 ∥1/2−δ0∥π0,⋄(P ii1Dj1K
j1 , uj1)∥−δ.
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Here in the last inequality we used Lemmas 3.4 and 3.6. We also obtain similar estimates for
π0,⋄(

∑3
i1,j1=1 P

ii1π<(u
j1
3 + uj14 , Dj1K

i1), uj1).
Hence we obtain for i, j = 1, 2, 3,

∥π0,⋄(ui4, u
j
1)∥−δ .

3∑
i1=1

∥ui13 + ui14 ∥1/2−δ0

3∑
j1=1

∥Kj1∥3/2−δ∥uj1∥−1/2−δ/2

+
3∑

i1,j1=1

∥ui13 + ui14 ∥1/2−δ0∥π0,⋄(P ii1Dj1K
j1 , uj1)∥−δ

+
3∑

i1,j1=1

∥uj13 + uj14 ∥1/2−δ0∥π0,⋄(P ii1Dj1K
i1 , uj1)∥−δ

+ ∥u♯,i∥1/2+β∥uj1∥−1/2−δ/2.

Now we consider π<(L(u
i
3 + ui4), K

j), i, j = 1, 2, 3, in (3.6): Indeed by (3.1) and (3.4) we
have for i = 1, 2, 3,

L(ui3 + ui4) =− 1

2

3∑
i1,j=1

P ii1Dj(u
i1
1 ⋄ uj2 + uj1 ⋄ ui12 + ui11 ⋄ (uj3 + uj4) + uj1 ⋄ (ui13 + ui14 )

+ ui12 ⋄ uj2 + ui12 (u
j
3 + uj4) + uj2(u

i1
3 + ui14 ) + (ui13 + ui14 )(u

j
3 + uj4)),

where for i, j = 1, 2, 3,

ui1 ⋄ (u
j
3 + uj4) = π<(u

j
3 + uj4, u

i
1) + π0,⋄(u

j
3, u

i
1) + π>(u

j
3 + uj4, u

i
1) + π0,⋄(u

j
4, u

i
1).

Thus by Lemmas 3.6 and 3.2 we obtain for i = 1, 2, 3,

∥L(ui3 + ui4)∥−3/2−δ/2 .
3∑

i1,j1=1

[∥ui11 ⋄ uj12 ∥−1/2−δ/2 + ∥ui12 ⋄ uj12 ∥−δ + ∥ui11 ∥−1/2−δ/2∥uj13 + uj14 ∥1/2−δ0

+ ∥π0,⋄(ui13 , u
j1
1 )∥−δ + ∥ui12 ∥−δ∥uj13 + uj14 ∥1/2−δ0

+ ∥ui13 + ui14 ∥δ∥u
j1
3 + uj14 ∥δ + ∥ui13 + ui14 ∥1/2−δ0∥Kj1∥3/2−δ

3∑
i2=1

∥ui21 ∥−1/2−δ/2

+
3∑

j,i2=1

∥ui13 + ui14 ∥1/2−δ0∥π0,⋄(P i2i1Dj1K
j1 , uj1)∥−δ

+
3∑

j,i2=1

∥uj13 + uj14 ∥1/2−δ0∥π0,⋄(P i2i1Dj1K
i1 , uj1)∥−δ

+ ∥u♯,i1∥1/2+β∥uj11 ∥−1/2−δ/2],
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which by Lemma 3.2 implies that

∥π<(L(ui3 + ui4), K
j)∥−3δ/2

.∥Kj∥3/2−δ

3∑
i1,j1=1

[∥ui11 ⋄ uj12 ∥−1/2−δ/2 + ∥ui12 ⋄ uj12 ∥−δ + ∥ui11 ∥−1/2−δ/2∥uj13 + uj14 ∥1/2−δ0

+ ∥π0,⋄(ui13 , u
j1
1 )∥−δ + ∥ui12 ∥−δ∥uj13 + uj14 ∥1/2−δ0

+ ∥ui13 + ui14 ∥δ∥u
j1
3 + uj14 ∥δ + ∥ui13 + ui14 ∥1/2−δ0∥Kj1∥3/2−δ

3∑
i2=1

∥ui21 ∥−1/2−δ/2

+
3∑

i2,j2=1

∥ui13 + ui14 ∥1/2−δ0∥π0,⋄(P i2i1Dj1K
j1 , uj21 )∥−δ

+
3∑

i2,j2=1

∥uj13 + uj14 ∥1/2−δ0∥π0,⋄(P i2i1Dj1K
i1 , uj21 )∥−δ + ∥u♯,i1∥1/2+β∥uj11 ∥−1/2−δ/2].

Now we consider π<(Dl(u
i1
3 + ui14 ), DlK

j) + π>(u
i1
3 + ui14 , u

j
1) for i1, l, j = 1, 2, 3 in (3.6): Indeed

by Lemma 3.2 we have

∥π<(Dl(u
i1
3 + ui14 ), DlK

j) + π>(u
i1
3 + ui14 , u

j
1)∥−2δ

.(∥ui13 ∥1/2−δ + ∥ui14 ∥1/2−δ)(∥Kj∥3/2−δ + ∥uj1∥−1/2−δ/2)

.(∥ui13 ∥1/2−δ +
3∑

i2,j1=1

∥ui23 + ui24 ∥1/2−δ0∥Kj1∥3/2−δ + ∥u♯,i1∥1/2+β)(∥Kj∥3/2−δ + ∥uj1∥−1/2−δ/2),

where in the last inequality we used (3.5).
Hence by (3.6) we get that

∥ϕ♯,i∥−1−2δ

.
3∑

j=1

(∥Kj∥3/2−δ + 1)
3∑

i1,j1=1

[∥ui11 ⋄ uj12 ∥−1/2−δ/2 + ∥ui12 ⋄ uj12 ∥−δ + ∥ui11 ∥−1/2−δ/2∥uj13 + uj14 ∥1/2−δ0

+ ∥π0,⋄(ui13 , u
j1
1 )∥−δ + ∥ui12 ∥−δ∥uj13 + uj14 ∥1/2−δ0

+ ∥ui13 + ui14 ∥δ∥u
j1
3 + uj14 ∥δ + ∥ui13 + ui14 ∥1/2−δ0∥Kj1∥3/2−δ

3∑
i2=1

∥ui21 ∥−1/2−δ/2

+
3∑

i2,j2=1

∥ui13 + ui14 ∥1/2−δ0∥π0,⋄(P i2i1Dj1K
j1 , uj21 )∥−δ

+
3∑

i2,j2=1

∥uj13 + uj14 ∥1/2−δ0∥π0,⋄(P i2i1Dj1K
i1 , uj21 )∥−δ + ∥u♯,i1∥1/2+β∥uj11 ∥−1/2−δ/2]

+
3∑

i1,j1,l=1

(∥ui13 ∥1/2−δ +
3∑

i2,j1=1

∥ui23 + ui24 ∥1/2−δ0∥Kj1∥3/2−δ + ∥u♯,i1∥1/2+β)(∥Kj∥3/2−δ + ∥uj1∥−1/2−δ/2)
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.(1 + C3
ξ )(1 +

3∑
i1=1

∥u♯,i1∥1/2+β +
3∑

i1=1

∥ui14 ∥1/2−δ0 + (
3∑

i1=1

∥ui14 ∥δ)2), (3.7)

where we used (3.2) (3.3) and δ ≤ δ0 in the last inequality.
In order to use this estimate to bound u4, we apply the scaling argument as [GIP13].

More precisely, for λ ∈ (0, 1) we set Λλu(t, x) = u(λ2t, λx), so that LΛλ = λ2ΛλL. Now
let uλ1 = λ1/2+δ/2Λλu1, u

λ
2 = λδΛλu2, u

λ
3 = λzΛλu3, u

λ
4 = λzΛλu4, LK

λ = uλ1 . Note that uλi :
[0, T/λ2] × T3

λ → R, i = 1, 2, 3, 4, where T3
λ = (R/(2πλ−1Z))3 is a rescaled torus, and that uλ4

solves the equation:

Luλ,i4 =− 1

2

3∑
i1,j=1

P ii1Dj(λ
1/2−δ/2uλ,i11 ⋄ (uλ,j3 + uλ,j4 ) + λ1/2−δ/2uλ,j1 ⋄ (uλ,i13 + uλ,i14 )

+ λ1−2δ+zuλ,i12 ⋄ uλ,j2 + λ1−δuλ,i12 (uλ,j3 + uλ,j4 ) + λ1−δuλ,j2 (uλ,i13 + uλ,i14 )

+ λ1−z(uλ,i13 + uλ,i14 )(uλ,j3 + uλ,j4 )),

uλ4(0) = λzΛλ(u0 − u1(0)).

The scaling is chosen in such a way that Cλ
ξ . Cξ,

sup
t∈[0,T ]

∥uλ2∥−δ + ∥uλ3∥1/2−δ) . Cξ

and ∥λzΛλ(u0 − u1(0))∥−z . ∥u0 − u1(0)∥−z uniformly over λ ∈ (0, 1) by Lemma 3.7, where for
i, i1, j, j2 = 1, 2, 3, we have for j1 = i1 or j1 = j

∥π0,⋄(P ii1DjK
λ,j1 , uλ,j21 )∥−δ = ∥λδΛλπ0,⋄(P

ii1DjK
j1 , uj21 )∥−δ . ∥π0,⋄(P ii1DjK

j1 , uj21 )∥−δ,

holds uniformly over λ ∈ (0, 1).
Moreover, we obtain

Luλ,i3 = λz+2ΛλLu
i
3 = −λ

1/2+z−3δ/2

2

3∑
i1=1

P ii1(
3∑

j=1

Dj(u
λ,i1
1 ⋄ uλ,j2 + uλ,i12 ⋄ uλ,j1 )).

Then by the same argument as above we define u♯,λ, ϕ♯,λ in the same way as u♯, ϕ♯:

uλ,i4 = −λ
1/2−δ/2

2

3∑
i1=1

P ii1(
3∑

j=1

Dj[π<(u
λ,i1
3 + uλ,i14 , Kλ,j) + π<(u

λ,j
3 + uλ,j4 , Kλ,i1)]) + u♯,λ,i

and by Lemma 3.2 we get

∥uλ,i4 ∥1/2−δ0 . λ1/2−δ/2

3∑
i1,j=1

∥uλ,i13 + uλ,i14 ∥1/2−δ0∥Kλ,j∥3/2−δ + ∥u♯,λ,i∥1/2−δ0 ,

which shows that for λ small enough (only depend on Cξ)

3∑
i=1

∥uλ,i4 ∥1/2−δ0 . λ1/2−δ/2C2
ξ +

3∑
i=1

∥u♯,λ,i∥1/2−δ0 . (3.8)
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Similarly, we have for λ small enough (only depend on Cξ)

3∑
i=1

∥uλ,i4 ∥δ . λ1/2−δ/2C2
ξ +

3∑
i=1

∥u♯,λ,i∥δ. (3.9)

Moreover we have a similar estimate as (3.7) and obtain

∥ϕ♯,λ∥−1−2δ . λ1−z(1 + C3
ξ )(1 + ∥u♯,λ∥1/2+β + ∥uλ4∥1/2−δ0 + ∥uλ4∥2δ), (3.10)

where we used 1− z ≤ (1− δ)/2. Then by Lemma 3.5 we get that for δ + z < 1

tδ+z∥u♯,λ(t)∥1/2+β

.∥Pu0 − u1(0)∥−z + tδ+z

∫ t

0

(t− s)−3/4−δ−β/2s−(δ+z)sδ+z∥ϕ♯,λ(s)∥−1−2δds,
(3.11)

where we used the condition on β to deduce β + 2δ < 1/2 and 1/2+β+z
2

≤ δ + z. Also we have

tδ+z∥u♯,λ(t)∥2δ .∥Pu0 − u1(0)∥2−z + tδ+z(

∫ t

0

(t− s)−
1+3δ

2 s−(δ+z)sδ+z∥ϕ♯,λ(s)∥−1−2δds)
2

.∥Pu0 − u1(0)∥2−z + t(1−3δ)/2

∫ t

0

(t− s)−
1+3δ

2 s−(δ+z)(sδ+z∥ϕ♯,λ(s)∥−1−2δ)
2ds.

(3.12)
Here in the last inequality we used Hölder inequality. Thus by (3.8-3.12) we get that

tδ+z∥ϕ♯,λ∥−1−2δ . λ1−z(1 + C3
ξ )(∥Pu0 − u1(0)∥2−z + λ1−δC4

ξ + 1

+

∫ t

0

tδ+z(t− s)−3/4−δ−β/2s−(δ+z)(sδ+z∥ϕ♯,λ(s)∥−1−2δ)

+ t(1−3δ)/2(t− s)−
1+3δ

2 s−(δ+z)(sδ+z∥ϕ♯,λ(s)∥−1−2δ)
2ds).

Then Bihari’s inequality implies that for z < 1− 4δ there exists some T0 such that

sup
t∈[0,T0]

tδ+z∥ϕ♯,λ∥−1−2δ . C(T0, Cξ, ∥u0∥−z),

where C(T0, Cξ) is a locally Lipschitz function on T0, ∥u0∥−z and Cξ. Here T0 can be chosen
such that the result is satisfied for all ε ∈ (0, 1) if Cε

ξ and ∥u0∥−z is uniformly bounded over
ε ∈ (0, 1). Similarly as (3.11) we have

t(1/2−δ0+z)/2∥u♯,λ(t)∥1/2−δ0

.∥Pu0 − u1(0)∥−z + t(1/2−δ0+z)/2

∫ t

0

(t− s)−3/4−δ+δ0/2s−(δ+z)sδ+z∥ϕ♯,λ(s)∥−1−2δds

.∥Pu0 − u1(0)∥−z + t(1−4δ−z)/2 sup
s∈[0,t]

sδ+z∥ϕ♯,λ(s)∥−1−2δ.

(3.13)

Thus by (3.8) (3.13) we obtain that

sup
t∈[0,T0]

t
1/2−δ0+z

2 ∥uλ4(t)∥1/2−δ0 . C2
ξ + ∥u0∥−z + C(T0, Cξ, ∥u0∥−z),
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which implies that Tε ≥ T0. Here we used z ≥ 1/2 + δ/2. Moreover by paracontrolled ansatz
we also obtain

∥uλ,i4 ∥−z . λ1/2−δ/2

3∑
i1,j=1

∥uλ,i13 + uλ,i14 ∥−z∥Kλ,j∥3/2−δ + ∥u♯,λ,i∥−z,

which by Lemma 3.5 implies that for λ small enough (only depend on Cξ) and t ∈ [0, T0]

∥uλ4(t)∥−z . C2
ξ + ∥u♯∥−z

. C2
ξ + ∥u0∥−z +

∫ t

0

(t− s)
−1−2δ+z

2 s−(δ+z)sδ+z∥ϕ♯,λ∥−1−2δds,

where we used z < 1− 4δ. Thus we obtain

sup
t∈[0,T0]

∥uλ4(t)∥−z . C2
ξ + ∥u0∥−z + C(T0, Cξ, ∥u0∥−z).

Similar arguments show that for every a > 0 there exists a sufficiently small λ > 0 such that
the map (u0, u1, u1 ⋄u1, u1 ⋄u2, u2 ⋄u2, π0,⋄(u3, u1), π0,⋄(PDK, u1)) 7→ uλ4 is Lipschitz continuous
on the set

max{∥u0∥−z, Cξ} ≤ a.

Here we consider uλ4 with respect to the norm of

sup
t∈[0,T0]

∥uλ4(t)∥−z.

Since u4 = λ−zΛλ−1uλ4 , we also obtain that u4 restricted to [0, λ2T ] depends in a locally Lipschitz
continuous way on the data (u0, , u1, u1 ⋄ u1, u1 ⋄ u2, u2 ⋄ u2, π0,⋄(u3, u1), π0,⋄(PDK, u1)). Hence
we obtain for given (u0, u1, u1 ⋄ u1, u1 ⋄ u2, u2 ⋄ u2, π0,⋄(u3, u1), π0,⋄(PDK, u1)) there exists a
unique local solution u to (3.1) with initial condition u0, which is the limit of the solutions
uε, ε > 0, to the following equation

Luε,i =
3∑

i1=1

P ii1ξε,i1 − 1

2

3∑
i1=1

P ii1(
3∑

j=1

Dj(u
ε,i1uε,j)) uε(0) = u0,

provided that for any δ > 0 and i, i1, j, j2 = 1, 2, 3, uε,i1 → ui1 in C([0, T ]; C−1/2−δ/2), uε,i1 ⋄
uε,j1 → ui1 ⋄ u

j
1 in C([0, T ]; C−1−δ/2), uε,i1 ⋄ uε,j2 → ui1 ⋄ u

j
2 in C([0, T ]; C−1/2−δ/2), uε,i2 ⋄ uε,j2 →

ui2 ⋄ u
j
2 in C([0, T ]; C−δ), π0,⋄(u

ε,i
3 , u

ε,j
1 ) → π0,⋄(u

i
3, u

j
1) in C([0, T ]; C−δ), π0,⋄(P

ii1DjK
ε,j, uε,j21 ) →

π0,⋄(P
ii1DjK

j, uj21 ) in C([0, T ]; C−δ) and π0,⋄(P
ii1DjK

ε,i1 , uε,j21 ) → π0,⋄(P
ii1DjK

i1 , uj21 ) in C([0, T ]; C−δ).
Here uεi , i = 1, 2, 3, 4 is defined as above with ξ replaced by ξε. Here

uε,i1 ⋄ uε,j1 := uε,i1 u
ε,j
1 − Cε,ij

0 ,

uε,i1 ⋄ uε,j2 := uε,i1 u
ε,j
2 ,

uε,i2 ⋄ uε,j2 := uε,i2 u
ε,j
2 − φε,ij

2 (t)− Cε,ij
2 ,

π0,⋄(u
ε,i
3 , u

ε,j
1 ) := π0(u

ε,i
3 , u

ε,j
1 )− φε,ij

1 (t)− Cε,ij
1 ,
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π0,⋄(P
ii1DjK

ε,j, uε,j21 ) := π0(P
ii1DjK

ε,j, uε,j21 ),

π0,⋄(P
ii1DjK

ε,i1 , uε,j21 ) := π0(P
ii1DjK

ε,i1 , uε,j21 ),

and Cε
0 is defined in section 3.3, Cε

1 and φε
1 are defined in Section 3.3.2 and Cε

2 and φε
2 are

defined in Section 3.3.4 and φε
i converges to some φi with respect to ∥φ∥ = supt∈[0,T ] t

ρ|φ(t)|
for any ρ > 0 and i = 1, 2. Thus we obtain the following theorem:

Theorem 3.8 Let z ∈ (1/2, 1/2+δ0) with 0 < δ0 < 1/2 and assume that (ξε)ε>0 is a family of
smooth functions converging to ξ. Suppose that there exist vi1, v

ij
2 , v

ij
3 , v

ij
4 , v

ij
5 , v

ii1jj2
6 , vii1jj27 such

that for any δ > 0 and i, i1, j, j2 = 1, 2, 3, uε,i1 → vi1 in C([0, T ]; C−1/2−δ/2), uε,i1 ⋄ uε,j1 → vij2 in
C([0, T ]; C−1−δ/2), uε,i1 ⋄ uε,j2 → vij3 in C([0, T ]; C−1/2−δ/2), uε,i2 ⋄ uε,j2 → vij4 in C([0, T ]; C−δ),
π0,⋄(u

ε,i
3 , u

ε,j
1 ) → vij5 in C([0, T ]; C−δ), π0,⋄(P

ii1DjK
ε,j, uε,j21 ) → vii1jj26 in C([0, T ]; C−δ) and

π0,⋄(P
ii1DjK

ε,i1 , uε,j21 ) → vii1jj27 in C([0, T ]; C−δ). Let for ε > 0 the function uε be the unique
maximal solution to the Cauchy problem

Luε,i =
3∑

i1=1

P ii1ξε,i1 − 1

2

3∑
i1=1

P ii1(
3∑

j=1

Dj(u
ε,i1uε,j)) uε(0) = Pu0,

such that uε4 defined as above in C((0, Tε); C1/2−δ0), where u0 ∈ C−z. Then there exists τ =
τ(u0, v1, v2, v3, v4, v5, v6) > 0 such that

sup
t∈[0,τ ]

∥uε − u∥−z → 0.

The limit u depends only on (u0, vi), i = 1...., 6, and not on the approximating family.

Remark 3.9 Indeed we can define the solution space as the following: u− u1 ∈ DL
X if

u− u1 = u2 + u3 −
1

2

∫ t

0

Pt−sP
3∑

j=1

Dj[π<(Φ
′, uj1) + π<(Φ

′j, u1)]ds+ Φ♯

such that

∥Φ♯∥⋆,1,L,T := sup
t∈[0,T ]

t
1−η+z

2 ∥Φ♯
t∥1−η + sup

t∈[0,T ]

t
γ+z
2 ∥Φ♯

t∥γ + sup
s,t∈[0,T ]

s
z+a
2
∥Φ♯

t − Φ♯
s∥a−2b

|t− s|b
<∞,

and

∥Φ′∥⋆,2,L,T := sup
t∈[0,T ]

t
2γ+z

2 ∥Φ′
t∥1/2−κ + sup

s,t∈[0,T ]

s
z+a
2
∥Φ′

t − Φ′
s∥c−2d

|t− s|d
<∞.

Here η, γ ∈ (0, 1), a ≥ 2b, 0 < κ < 1/2, c ≥ 2d. By a similar argument as [CC13] if u− u1 ∈ DL
X

then the equation

u−u1 = Pt(u0−u1(0))−
1

2

∫ t

0

Pt−sP
3∑

j=1

Dj(u1⋄uj1+(u−u1)⋄uj1+u1⋄(u−u1)j+(u−u1)⋄(u−u1)jds

can be well defined and by a fixed point argument we also obtain local existence and uniqueness
of solution. The calculation for this method is more complicated and we will not go to details
here.
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3.3 Renormalisation

In the following we use notationX to represent u1 in the calculation and f̂(k) = (2π)−
3
2

∫
T3 f(x)e

ıx·kdx

for k ∈ Z3. To simplify the arguments below, we assume that ξ̂(0) = 0 and restrict ourselves to
the flow of

∫
T3 u(x)dx = 0. Then Xt =

∑
k∈Z3\{0} X̂t(k)ek is a centered Gaussian process with

covariance function given by

E[X̂ i
t(k)X̂

j
s (k

′)] = δk+k′=0

3∑
i1=1

e−|k|2|t−s|

2|k|2
P̂ ii1(k)P̂ ji1(k),

and X̂t(0) = 0, where ek(x) = (2π)−3/2eıx·k, x ∈ T3 and P̂ ii1(k) = δii1 −
kiki1
|k|2 for k ∈ Z3\{0}.

Let Xε,i
t =

∫ t

−∞
∑3

i1=1 P
ii1Pt−sξ

ε,i1ds, more precisely ξ̂ε(k) = f(εk)ξ̂(k), where f is a s-
mooth radial function with bounded support such that f(0) = 1. In this subsection we
will prove that there exist v1, v2, v3, v4, v5, v6, v7 such that for i, i1, j, j2 = 1, 2, 3, uε,i1 → vi1
in C([0, T ]; C−1/2−δ/2), uε,i1 ⋄ uε,j1 → vij2 in C([0, T ]; C−1−δ), uε,i1 ⋄ uε,j2 → vij3 in C([0, T ]; C−1/2−δ),
uε,i2 ⋄ uε,j2 → vij4 in C([0, T ]; C−δ), π0,⋄(u

ε,i
3 , u

ε,j
1 ) → vij5 in C([0, T ]; C−δ), π0,⋄(P

ii1DjK
ε,j, uε,j21 ) →

vii1jj26 in C([0, T ]; C−δ) and π0,⋄(P
ii1DjK

ε,i1 , uε,j21 ) → vii1jj27 in C([0, T ]; C−δ).

It is easy to obtain that uε1 → v1 in C([0, T ]; C−1/2−δ/2). Renormalisation of uε,i1 ⋄ uε,j1 , i, j =
1, 2, 3 and the fact that there exists v2 ∈ C([0, T ]; C−1−δ) such that uε,i1 ⋄ uε,j1 → vij2 in
C([0, T ]; C−1−δ) can be easily obtained by using wick product (c.f.[CC13]), where we choose

Cε,i,j
0 =

3∑
i1=1

∑
k∈Z3\{0}

f(εk)2

2|k|2
P̂ ii1(k)P̂ ji1(k).

It is easy to check that Cε,i,j
0 → ∞ as ε → 0. Now we introduce the following notations:

k1,...,n =
∑n

i=1 ki. To obtain the results we first prove the following two lemmas for our later
use. Inspired by [Hai14, Lemma 10.14] we prove the following theorem.

Lemma 3.10 Let 0 < l,m < d, l +m− d > 0. Then we have∑
k1,k2∈Zd\{0},k1+k2=k

1

|k1|l|k2|m
. 1

|k|l+m−d
.

Proof We have the following calculations:∑
k1,k2∈Zd\{0},k1+k2=k

1

|k1|l|k2|m
.

∑
k1,k2∈Zd\{0},k1+k2=k,|k1|≤ |k|

2

1

|k1|l|k2|m
+

∑
k1,k2∈Zd\{0},k1+k2=k,|k2|≤ |k|

2

1

|k1|l|k2|m

+
∑

k1,k2∈Zd\{0},k1+k2=k,|k1|> |k|
2
,|k2|> |k|

2

1

|k1|l|k2|m
.

Since if |k1| ≤ |k|/2, |k2| ≥ |k| − |k1| ≥ |k|/2, we obtain∑
k1,k2∈Zd\{0},k1+k2=k,|k1|≤ |k|

2

1

|k1|l|k2|m
.

∑
k1∈Zd\{0},|k1|≤ |k|

2

1

|k1|l|k|m
. |k|−l−m+d.
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For the second term we have a similar argument and obtain the same estimate. If |k1| >
|k|/2, |k2| > |k|/2 since |k2| ≥ |k1| − |k| by the triangle inequality, one has

|k2| ≥
1

4
(|k1| − |k|) + 1− 1/4

2
|k| ≥ 1

4
|k|,

which implies that ∑
k1,k2∈Zd\{0},k1+k2=k,|k1|> |k|

2
,|k2|> |k|

2

1

|k1|l|k2|m
. |k|−l−m+d.

Hence the result follows. �

Lemma 3.11 For any 0 < η < 1, i, j, l = 1, 2, 3 we have

|e−|k12|2(t−s)ki12P̂
jl(k12)− e−|k2|2(t−s)ki2P̂

jl(k2)| . |k1|η|t− s|−(1−η)/2.

Here P̂ ij(x) = δij − xi⊗xj

|x|2 .

Proof First we have the following bounds:

|e−|k12|2(t−s)k12P̂ (k12)− e−|k2|2(t−s)k2P̂ (k2)| . |t− s|−1/2.

Consider function F (x) = e−|x|2(t−s)xP̂ (x) and it is easy to check that |DF (x)| ≤ C, which
implies that

|e−|k12|2(t−s)k12P̂ (k12)− e−|k2|2(t−s)k2P̂ (k2)| . |k1|.

Thus the result follows by the interpolation. �

3.3.1 Renormalization for uε1u
ε
2

In this subsection we focus on uε1u
ε
2 and prove that uε,i1 ⋄ uε,j2 → vij3 in C([0, T ]; C−1/2−δ) for

i, j = 1, 2, 3. Now we have the following identity: for t ∈ [0, T ], i, j = 1, 2, 3

uε,j1 uε,i2 (t) =(2π)−3

3∑
i1,i2=1

∑
k∈Z3\{0}

∑
k123=k

∫ t

0

e−|k12|2(t−s)ıki212 : X̂
ε,i1
s (k1)X̂

ε,i2
s (k2)X̂

ε,j
t (k3) : dsP̂

ii1(k12)ek

+ 2(2π)−3

3∑
i1,i2,i3=1

∑
k1,k2∈Z3\{0}

∫ t

0

e−|k12|2(t−s)ıki212X̂
ε,i1
s (k1)

e−|k2|2(t−s)f(εk2)
2

2|k2|2
ds

P̂ ii1(k12)P̂
i2i3(k2)P̂

ji3(k2)ek1
=I1t + I2t .

Term in the first chaos: First we consider I2t and we have

I2t = I2t − Ĩ2t + Ĩ2t −
3∑

i1=1

Xε,i1
t Cε,i1

t ,
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where

Ĩ2t =(2π)−3

3∑
i1,i2,i3=1

∑
k1,k2∈Z3\{0}

X̂ε,i1
t (k1)ek1

∫ t

0

e−|k12|2(t−s)ıki212
e−|k2|2(t−s)f(εk2)

2

|k2|2
ds

P̂ ii1(k12)P̂
i2i3(k2)P̂

ji3(k2),

and

Cε,i1
t = (2π)−3

3∑
i2,i3=1

∑
k2∈Z3\{0}

∫ t

0

e−2|k2|2(t−s)ıki22
f(εk2)

2

|k2|2
P̂ ii1(k2)P̂

i2i3(k2)P̂
ji3(k2)ds = 0.

By a straightforward calculation we obtain

E[|∆q(I
2
t − Ĩ2t )|2] .E[|

3∑
i1,i2,i3=1

∫ t

0

∑
k1

θ(2−qk1)ek1a
i1i2i3
k1

(t− s)(X̂ε,i1
s (k1)− X̂ε,i1

t (k1))ds|2]

.
3∑

i1,i2,i3=1

3∑
i′1,i

′
2,i

′
3=1

∫ t

0

∫ t

0

dsds̄
∑
k1,k′1

θ(2−qk1)θ(2
−qk′1)|a

i1i2i3
k1

(t− s)a
i′1i

′
2i

′
3

k′1
(t− s̄)|

E|(X̂ε,i1
s (k1)− X̂ε,i1

t (k1))(X̂
ε,i′1
s̄ (k′1)− X̂

ε,i′1
t (k′1))|

.
∑
k1

θ(2−qk1)
2 f(εk1)

2

|k1|2(1−η)
(

∫ t

0

|t− s|η/2ai1i2i3k1
(t− s)ds)2.

Here

ai1i2i3k1
(t− s) =

∑
k2

e−|k12|2(t−s)ki212
e−|k2|2(t−s)f(εk2)

2

|k2|2
P̂ ii1(k12)P̂

i2i3(k12)P̂
ji3(k12),

and we used that for η > 0 small enough

E|(X̂ε,i1
s (k1)− X̂ε,i1

t (k1))(X̂
ε,i′1
s̄ (k′1)− X̂

ε,i′1
t (k′1))|

≤δk1=k′1
(E|(X̂ε,i1

s (k1)− X̂ε,i1
t (k1))|2)1/2(E|(X̂

ε,i′1
s̄ (k′1)− X̂

ε,i′1
t (k′1))|2)1/2

.δk1=k′1
(
f(εk1)

2

|k1|2
(1− e−|k1|2(t−s)))1/2(

f(εk′1)
2

|k′1|2
(1− e−|k′1|2(t−s̄)))1/2

.f(εk1)
2

|k1|2
|k1|2η|t− s|η/2|t− s̄|η/2.

Since for η > ϵ > 0, ϵ small enough and |ai1i2i3k1
(t − s)| . |t − s|−1−ϵ/2ds

∑
k2

1
|k2|3+ϵ , it follows

that ∫ t

0

|t− s|η/2ai1i2i3k1
(t− s)ds .

∫ t

0

|t− s|η/2−1−ϵ/2ds
∑
k2

1

|k2|3+ϵ
. t(η−ϵ)/2,

which implies that
E[|∆q(I

2
t − Ĩ2t )|2] . 2q(1+2η)tη−ϵ.
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Moreover, by Lemma 3.11 we deduce that for ϵ > 0 small enough

E[|∆q(Ĩ
2
t −

3∑
i1=1

Xε,i1
t Cε,i1

t )|2]

.
∑
k1

3∑
i1,i2,i3=1

f(εk1)
2

2|k1|2
θ(2−qk1)

2(
∑
k2

∫ t

0

e−|k2|2(t−s)f(εk2)
2

|k2|2

(e−|k12|2(t−s)ki212P̂
ii1(k12)P̂

i2i3(k2)P̂
ji3(k2)− e−|k2|2(t−s)ki22 P̂

ii1(k2)P̂
i2i3(k2)P̂

ji3(k2))ds)
2

.
∑
k1

f(εk1)
2

|k1|2−2η
θ(2−qk1)

2(
∑
k2

∫ t

0

e−|k2|2(t−s)f(εk2)
2

|k2|2
(t− s)−(1−η)/2ds)2

.tη−ϵ2q(1+2η),
(3.14)

holds uniformly over ε ∈ (0, 1), which is the desired bound for I2t .
Term in the third chaos: Now we focus on the bounds for I1t . Let bi1,i2k12

(t − s) =

e−|k12|2(t−s)ki212P̂
ii1(k12). We obtain the following inequalities:

E|∆qI
1
t |2

.2
3∑

i1,i2=1

3∑
i′1,i

′
2=1

∑
k

θ(2−qk)
∑

k123=k

Π3
i=1

f(εki)
2

|ki|2

∫ t

0

∫ t

0

e−(|k1|2+|k2|2)|s−s̄||bi1,i2k12
(t− s)b

i′1,i
′
2

k12
(t− s̄)|dsds̄

+ 2
∑
k

θ(2−qk)
∑

k123=k

Π3
i=1

f(εki)
2

|ki|2

∫ t

0

∫ t

0

e−|k2|2|s−s̄|−|k1|2(t−s)−|k3|2(t−s̄)|bi1,i2k12
(t− s)b

i′1,i
′
2

k32
(t− s̄)|dsds̄

=J1
t + J2

t .

Since |bi1,i2k12
(t− s)| . 1

|k12|1−η(t−s)1−η/2 it follows by Lemma 3.10 that for η > 0 small enough

J1
t .

∑
k

θ(2−qk)
∑

k123=k

Π3
i=1

1

|ki|2
tη

|k12|2−2η

.
∑
k

θ(2−qk)
∑

k123=k

tη

|k3|2|k12|3−2η

.tη2q(1+2η),

and

J2
t .

∑
k

θ(2−qk)
∑

k123=k

tη

|k1|2|k2|2|k3|2|k12|1−η|k32|1−η

.
∑
k

θ(2−qk)(
∑

k123=k

tη

|k1|2|k2|2|k3|2|k12|2−2η
)1/2(

∑
k123=k

tη

|k1|2|k2|2|k3|2|k32|2−2η
)1/2

.tη2q(1+2η),

which gives the desired estimate for I1t . By a similar calculation we also obtain that for η > ϵ > 0
small enough,

E[|∆q(u
ε1,i
2 uε1,j1 (t1)−uε1,i2 uε1,j1 (t2)−uε2,i2 uε1,j1 (t1)+u

ε2,i
2 uε1,j1 (t2))|2] . C(ε1, ε2)|t1− t2|η−ϵ2q(1+2η),

(3.15)
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where C(ε1, ε2) → 0 as ε1, ε2 → 0, which by Gaussian hypercontractivity and Lemma 3.1
implies that

E[∥(uε1,i2 uε1,j1 (t1)− uε1,i2 uε1,j1 (t2)− uε2,i2 uε1,j1 (t1) + uε2,i2 uε1,j1 (t2))∥pC−1/2−η−ϵ−3/p ]

.E[∥(uε1,i2 uε1,j1 (t1)− uε1,i2 uε1,j1 (t2)− uε2,i2 uε1,j1 (t1) + uε2,i2 uε1,j1 (t2))∥p
B

−1/2−η−ϵ
p,p

]

.C(ε1, ε2)p/2|t1 − t2|p(η−ϵ)/2.

(3.16)

Thus for every i, j = 1, 2, 3, we choose p large enough and deduce that there exists vij3 ∈
C([0, T ], C−1/2−δ/2) such that

uε,i2 ⋄ uε,j1 → vij3 ∈ C([0, T ], C−1/2−δ/2).

To prove (3.15) we only calculate for the term as (3.14) with ε and 0 ≤ t1 < t2 ≤ T and other
terms can be obtained similarly. It is straightforward to calculate that

E[|∆q(Ĩ
2
t1
−

3∑
i1=1

Xε,i1
t1 Cε,i1

t1 − Ĩ2t2 +
3∑

i1=1

Xε,i1
t2 Cε,i1

t2 )|2]

.E|
3∑

i1,i2,i3=1

∑
k1

X̂ε,i1
t1 (k1)θ(2

−qk1)ek1(
∑
k2

∫ t1

0

e−|k2|2(t1−s)f(εk2)
2

|k2|2
(e−|k12|2(t1−s)ki212P̂

ii1(k12)P̂
i2i3(k2)P̂

ji3(k2)

− e−|k2|2(t1−s)ki22 P̂
ii1(k2)P̂

i2i3(k2)P̂
ji3(k2))ds−

∑
k2

∫ t2

0

e−|k2|2(t2−s)f(εk2)
2

|k2|2
(e−|k12|2(t2−s)ki212

P̂ ii1(k12)P̂
i2i3(k2)P̂

ji3(k2)− e−|k2|2(t2−s)ki22 P̂
ii1(k2)P̂

i2i3(k2)P̂
ji3(k2))ds)|2

+ E|
3∑

i1,i2,i3=1

∑
k1

(X̂ε,i1
t1 (k1)− X̂ε,i1

t2 (k1))θ(2
−qk1)ek1

∫ t2

0

e−|k2|2(t2−s)f(εk2)
2

|k2|2

(e−|k12|2(t2−s)ki212P̂
ii1(k12)P̂

i2i3(k2)P̂
ji3(k2)− e−|k2|2(t2−s)ki22 P̂

ii1(k2)P̂
i2i3(k2)P̂

ji3(k2))ds)|2

.
∑
k1

3∑
i1,i2=1

1

|k1|2
θ(2−qk1)

2(
∑
k2

∫ t1

0

e−|k2|2(t1−s)(1− e−|k2|2(t2−t1))f(εk2)
2

|k2|2

(e−|k12|2(t1−s)ki212P̂
ii1(k12)− e−|k2|2(t1−s)ki22 P̂

ii1(k2))ds)
2

+
∑
k1

3∑
i1,i2=1

1

|k1|2
θ(2−qk1)

2(
∑
k2

∫ t1

0

e−|k2|2(t2−s)f(εk2)
2

|k2|2
(e−|k12|2(t1−s)ki212P̂

ii1(k12)

− e−|k2|2(t1−s)ki22 P̂
ii1(k2)− e−|k12|2(t2−s)ki212P̂

ii1(k12) + e−|k2|2(t2−s)ki22 P̂
ii1(k2))ds)

2

+
∑
k1

3∑
i1,i2=1

1

|k1|2
θ(2−qk1)

2(
∑
k2

∫ t2

t1

e−|k2|2(t2−s)f(εk2)
2

|k2|2
(e−|k12|2(t2−s)ki212P̂

ii1(k12)

− e−|k2|2(t2−s)ki22 P̂
ii1(k2))ds)

2 + E|
∑
k1

3∑
i1,i2=1

(X̂ε,i1
t1 (k1)− X̂ε,i1

t2 (k1))

∑
k2

θ(2−qk1)ek1

∫ t2

0

e−|k2|2(t2−s)f(εk2)
2

|k2|2
(e−|k12|2(t2−s)ki212P̂

ii1(k12)− e−|k2|2(t2−s)ki22 P̂
ii1(k2))ds|2

:=L1
t + L2

t + L3
t + L4

t
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It is easy to deduce the desired estimates for L1
t , L

3
t , L

4
t as (3.14) and we only need to consider

L2
t : for some 0 < β0 < 1/2, η > 0 small enough by Lemma 3.11 and interpolation we have

L2
t .

∑
k1

1

|k1|2
θ(2−qk1)

2(
∑
k2

∫ t1

0

e−|k2|2(t1−s)

|k2|2
[|k1|η ∧ |t2 − t1|

η
2 (|k12|2η + |k2|2η)](t1 − s)−

1−η
2 ds)2

.
∑
k1

1

|k1|2
θ(2−qk1)

2(
∑
k2

∫ t1

0

e−|k2|2(t1−s)

|k2|2
|k1|η(1−β0)|t2 − t1|

ηβ0
2 (|k12|2ηβ0 + |k2|2ηβ0)(t1 − s)−

1−η
2 ds)2

.|t1 − t2|ηβ0/22q(1+2η(1+β0)),

which is the required estimate for L2
t .

3.3.2 Renormalisation for π0(u
ε,i0
3 , uε,j01 )

Now we treat π0(u
ε,i0
31 , u

ε,j0
1 ) and the estimates for π0(u

ε,i0
3 −uε,i031 , u

ε,j0
1 ) can be obtained similarly,

where Lui31 = −1
2

∑3
i1=1 P

ii1
∑3

j=1Dj(u
i1
2 ⋄ uj1). We have the following identity:

π0(u
ε,i0i1
31 , uε,j01 )

=(2π)−9/2[
∑

k∈Z3\{0}

∑
|i−j|≤1

∑
k1234=k

3∑
i1,i2,i3,j1=1

θ(2−ik123)θ(2
−jk4)

∫ t

0

dse−|k123|2(t−s)

∫ s

0

: X̂ε,i2
σ (k1)X̂

ε,i3
σ (k2)

X̂ε,j1
s (k3)X̂

ε,j0
t (k4) : e

−|k12|2(s−σ)dσıki312ık
j1
123P̂

i1i2(k12)P̂
i0i1(k123)ek + 2

∑
k∈Z3\{0}

∑
|i−j|≤1

∑
k23=k,k1

3∑
i1,i2,i3,j1=1

θ(2−ik123)θ(2
−jk1)

∫ t

0

dse−|k123|2(t−s)

∫ s

0

: X̂ε,i3
σ (k2)X̂

ε,j1
s (k3) :

e−|k1|2(t−σ)f(εk1)
2

2|k1|2

3∑
i4=1

P̂ i2i4(k1)P̂
j0i4(k1)e

−|k12|2(s−σ)dσıki312ık
j1
123P̂

i1i2(k12)P̂
i0i1(k123)ek

+ 2
∑

k∈Z3\{0}

∑
|i−j|≤1

∑
k12=k,k3

3∑
i1,i2,i3,j1=1

θ(2−ik123)θ(2
−jk3)

∫ t

0

dse−|k123|2(t−s)

∫ s

0

: X̂ε,i2
σ (k1)X̂

ε,i3
σ (k2) :

e−|k3|2(t−s)f(εk3)
2

2|k3|2
3∑

i4=1

P̂ j1i4(k3)P̂
j0i4(k3)e

−|k12|2(s−σ)dσıki312ık
j1
123P̂

i1i2(k12)P̂
i0i1(k123)ek

+ 2
∑

k∈Z3\{0}

∑
|i−j|≤1

∑
k14=k,k2

3∑
i1,i2,i3,j1=1

θ(2−ik1)θ(2
−jk4)

∫ t

0

dse−|k1|2(t−s)

∫ s

0

: X̂ε,i2
σ (k1)X̂

ε,j0
t (k4) :

e−|k2|2(s−σ)f(εk2)
2

2|k2|2
3∑

i4=1

P̂ i3i4(k2)P̂
j1i4(k2)e

−|k12|2(s−σ)dσıki312ık
j1
1 P̂

i1i2(k12)P̂
i0i1(k1)ek

+ 2
∑

|i−j|≤1

∑
k1,k2

3∑
i1,i2,i3,j1=1

θ(2−ik2)θ(2
−jk2)

∫ t

0

dse−|k2|2(t−s)

∫ s

0

f(εk1)
2f(εk2)

2

4|k1|2|k2|2
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3∑
i4,i5=1

P̂ i3i4(k1)P̂
j1i4(k1)P̂

i2i5(k2)P̂
j0i5(k2)e

−|k12|2(s−σ)−|k1|2(s−σ)−|k2|2(t−σ)dσıki312ık
j1
2 P̂

i1i2(k12)P̂
i0i1(k2)]

:=I1t + I2t + I3t + I4t + I5t

First we consider I5t : by simple calculations we have

I5t =(2π)−
9
2

∑
|i−j|≤1

∑
k1,k2

3∑
i1,i2,i3,j1=1

θ(2−ik2)θ(2
−jk2)ık

i3
12ık

j1
2 P̂

i1i2(k12)P̂
i0i1(k2)

f(εk1)
2f(εk2)

2

2|k1|2|k2|2(|k1|2 + |k2|2 + |k12|2)

3∑
i4,i5=1

P̂ i3i4(k1)P̂
j1i4(k1)P̂

i2i5(k2)P̂
j0i5(k2)(

1− e−2|k2|2t

2|k2|2

−
∫ t

0

dse−2|k2|2(t−s)e−(|k12|2+|k1|2+|k2|2)s).

Let

Cε,i0,j0
11 (t)

=(2π)−
9
2

∑
|i−j|≤1

∑
k1,k2

3∑
i1,i2,i3,j1=1

θ(2−ik2)θ(2
−jk2)ık

i3
12ık

j1
2 P̂

i1i2(k12)P̂
i0i1(k2)

f(εk1)
2f(εk2)

2

2|k1|2|k2|2(|k1|2 + |k2|2 + |k12|2)

1− e−2|k2|2t

2|k2|2
3∑

i4,i5=1

P̂ i3i4(k1)P̂
j1i4(k1)P̂

i2i5(k2)P̂
j0i5(k2) → ∞,

as ε→ 0. Define
φε,i0j0
11 := I5t − Cε,i0j0

11 .

Then for any ρ > 0 we deduce that

|φε,i0,j0
1 | .

∑
|i−j|≤1

∑
k1,k2

θ(2−ik2)θ(2
−jk2)|ki312k

j1
2 |

|k1|2|k2|2(|k1|2 + |k2|2 + |k12|2)

∫ t

0

e−(|k2|2t+|k1|2s+|k12|2s)ds

.
∑

|i−j|≤1

∑
k1,k2

θ(2−ik2)θ(2
−jk2)|ki312k

j1
2 |

|k1|2|k2|2(|k1|2 + |k2|2 + |k12|2)(|k1|2 + |k12|2)
e−|k2|2t(1− e−(|k1|2t+|k12|2t))

.t−ρ

∞∑
i=1

2−iη
∑
k1,k2

1

|k1|3+r|k2|3+2ρ−r−η
. t−ρ,

holds uniformly over ε ∈ (0, 1). Here r, η > 0 are small enough such that 2ρ > r + η. By
a similar calculation we obtain some φ11 such that φε

11 converges to some φ11 with respect
to ∥φ∥ = supt∈[0,T ] t

ρ|φ(t)| for any ρ > 0. Similarly, we can also find similar Cε
12, φ

ε
12, φ12 for

u3 − u31 and satisfy similar estimates as φε
11. Now define Cε

1 = Cε
11 + Cε

12, φ
ε
1 = φε

11 + φε
12 and

φ1 = φ11 + φ12 .
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Terms in the second chaos: We come to I2t and have the following calculations:

E|∆qI
2
t |2

.
∑

k∈Z3\{0}

∑
|i−j|≤1,|i′−j′|≤1

∑
k23=k,k1,k4

3∑
i1,i2,i3,j1=1

3∑
i′1,i

′
2,i

′
3,j

′
1=1

θ(2−ik123)θ(2
−jk1)θ(2

−i′k234)θ(2
−j′k4)θ(2

−qk)2

Π4
i=1

f(εki)
2

|ki|2

∫ t

0

∫ t

0

dsds̄e−|k123|2(t−s)−|k234|2(t−s̄)

∫ s

0

∫ s̄

0

dσdσ̄e−|k1|2(t−σ)−|k4|2(t−σ̄)e−(|k12|2(s−σ)+|k24|2(s−σ̄))

(e−|k2|2|σ−σ̄|−|k3|2|s−s̄| + e−|k2|2|s̄−σ|−|k3|2|s−σ̄|)|ki312k
j1
123P̂

i1i2(k12)P̂
i0i1(k123)k

i′3
24k

j′1
234P̂

i′1i
′
2(k24)P̂

i0i′1(k234)|

.
∑

k∈Z3\{0}

∑
|i−j|≤1,|i′−j′|≤1

∑
k23=k,k1,k4

θ(2−ik123)θ(2
−jk1)θ(2

−i′k234)θ(2
−j′k4)θ(2

−qk)2

tη

|k2|2|k3|2|k1|4−η|k4|4−η

.
∑

k∈Z3\{0}

∑
q.i

2−(1−η−ϵ)i
∑
q.i′

2−(1−η−ϵ)i′
∑
k23=k

θ(2−qk)2
tη

|k2|2|k3|2
. tη22q(η+2ϵ),

where η, ϵ > 0 are small enough, we used Lemma 3.10 in the last inequality and q . i follows
from |k| ≤ |k123|+ |k1| . 2i and q . i′ is similar.

Now we deal with I3t = I3t − Ĩ3t + Ĩ3t −
∑3

i1=1 u
i1
2 C

ε,i1
3 (t) with

Ĩ3t =(2π)−
9
2

∑
k∈Z3\{0}

∑
|i−j|≤1

∑
k12=k,k3

3∑
i1,i2,i3,j1=1

θ(2−ik123)θ(2
−jk3)

∫ t

0

: X̂ε,i2
σ (k1)X̂

ε,i3
σ (k2) : e

−|k12|2(t−σ)ıki312

P̂ i1i2(k12)ekdσ

∫ t

0

dse−|k123|2(t−s) e
−|k3|2(t−s)f(εk3)

2

|k3|2
∑
i4

P̂ j1i4(k3)P̂
j0i4(k3)ık

j1
123P̂

i0i1(k123),

and

Cε,i1
3 (t) =(2π)−

9
2

∑
|i−j|≤1

∑
k3

3∑
j1=1

θ(2−ik3)θ(2
−jk3)

∫ t

0

ds
e−2|k3|2(t−s)f(εk3)

2

|k3|2∑
i4

P̂ j1i4(k3)P̂
j0i4(k3)ık

j1
3 P̂

i0i1(k3)

=0.

Let cj1k123,k3(t − s) =
∑3

i1=1 e
−|k123|2(t−s) e

−|k3|
2(t−s)f(εk3)2

|k3|2 |kj1123P̂ i0i1(k123)|. Then we have for ϵ > 0
small enough,

E|∆q(I
3
t − Ĩ3t )|2

.
∑

k∈Z3\{0}

∑
|i−j|≤1,|i′−j′|≤1

∑
k12=k,k3,k4

θ(2−qk)2θ(2−ik123)θ(2
−jk3)θ(2

−i′k124)θ(2
−j′k4)

(

∫ t

0

ds

∫ t

0

ds̄

∫ s

0

dσ

∫ s̄

0

dσ̄(e−|k12|2(s−σ) − e−|k12|2(t−σ))(e−|k12|2(s̄−σ̄) − e−|k12|2(t−σ̄))|k12|2

1

|k1|2|k2|2
3∑

j1,j′1=1

cj1k123,k3(t− s)c
j′1
k124,k4

(t− s̄)
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+

∫ t

0

ds

∫ t

0

ds̄

∫ t

s

dσ

∫ t

s̄

dσ̄e−|k12|2(t−σ)−|k12|2(t−σ̄)|k12|2

1

|k1|2|k2|2
3∑

j1,j′1=1

cj1k123,k3(t− s)c
j′1
k124,k4

(t− s̄))

.
∑

k∈Z3\{0}

∑
|i−j|≤1,|i′−j′|≤1

∑
k12=k,k3,k4

θ(2−qk)2θ(2−ik123)θ(2
−jk3)θ(2

−i′k124)θ(2
−j′k4)

∫ t

0

ds

∫ t

0

ds̄
1

|k12||k1|2|k2|2
(t− s)1/4(t− s̄)1/4

3∑
j1,j′1=1

cj1k123,k3(t− s)c
j′1
k124,k4

(t− s̄)

.
∑

k∈Z3\{0}

∑
|i−j|≤1,|i′−j′|≤1

∑
k12=k,k3,k4

θ(2−qk)2θ(2−ik123)θ(2
−jk3)θ(2

−i′k124)θ(2
−j′k4)

t2ϵ

|k12||k1|2|k2|2|k3|2|k4|2(|k123|2 + |k3|2)3/4−ϵ(|k124|2 + |k4|2)3/4−ϵ

.t2ϵ
∑
q.i

∑
q.i′

2−(i+i′)(1/2−3ϵ)
∑
k

∑
k12=k

θ(2−qk)
1

|k12||k1|2|k2|2

.t2ϵ2−2q(1/2−3ϵ)
∑
k

∑
k12=k

θ(2−qk)
1

|k12||k1|2|k2|2
. t2ϵ22q(3ϵ).

Moreover, by Lemma 3.11 we obtain for η > ϵ > 0 small enough

E[|∆q(Ĩ
3
t −

3∑
i1=1

uε,i12 (t)Cε,i1
3 (t))|2]

.
∑
k

∑
k12=k

3∑
i1,j1=1

1

|k1|2|k2|2|k12|2
θ(2−qk)2(

∑
|i−j|≤1

∑
k3

θ(2−jk3)

∫ t

0

e−|k3|2(t−s)f(εk3)
2

|k3|2

(θ(2−ik123)e
−|k123|2(t−s)kj1123P̂

i0i1(k123)− θ(2−ik3)e
−|k2|2(t−s)kj13 P̂

i0i1(k3))ds)
2

.
∑
k

∑
k12=k

1

|k1|2|k2|2|k12|2−2η
θ(2−qk)2(

∞∑
j=0

∑
k3

θ(2−jk3)

∫ t

0

e−|k3|2(t−s)

|k3|2
(t− s)−(1−η)/2ds)2

.tη−ϵ2q(2η).

Now we consider I4t = I4t − Ĩ4t + Ĩ4t − Ī4t with

Ĩ4t =(2π)−9/2
∑

k∈Z3\{0}

∑
|i−j|≤1

∑
k14=k,k2

3∑
i1,i2,i3,j1=1

θ(2−ik1)θ(2
−jk4)

∫ t

0

: X̂ε,i2
s (k1)X̂

ε,j0
t (k4) : e

−|k1|2(t−s)

ıkj11 P̂
i0i1(k1)ekdσ

∫ s

0

dσe−|k12|2(s−σ) e
−|k2|2(s−σ)f(εk2)

2

|k2|2
ıki312P̂

i1i2(k12)
3∑

i4=1

P̂ i3i4(k2)P̂
j1i4(k2),
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and

Ī4t =(2π)−9/2
∑

k∈Z3\{0}

∑
|i−j|≤1

∑
k14=k,k2

3∑
i1,i2,i3,j1=1

θ(2−ik1)θ(2
−jk4)

∫ t

0

: X̂ε,i2
s (k1)X̂

ε,j0
t (k4) : e

−|k1|2(t−s)

ıkj11 P̂
i0i1(k1)ekdσ

∫ s

0

dσe−|k2|2(s−σ) e
−|k2|2(s−σ)f(εk2)

2

|k2|2
ıki32 P̂

i1i2(k2)
3∑

i4=1

P̂ i3i4(k2)P̂
j1i4(k2) = 0.

Let dk12,k2(s−σ) =
∑3

i2,i3=1 e
−|k12|2(s−σ) e

−|k2|
2(s−σ)f(εk2)2

|k2|2 |ki312P̂ i1i2(k12)|. Since by Hölder’s inequal-
ity we obtain

E(: X̂ε,i2
s (k1)X̂

ε,j0
t (k4) : − : X̂ε,i2

σ (k1)X̂
ε,j0
t (k4) :)(: X̂

ε,i2
s̄ (k′1)X̂

ε,j0
t (k′4) : − : X̂ε,i2

σ̄ (k′1)X̂
ε,j0
t (k′4) :)

.(δk1=k′1
δk4=k′4

+ δk1=k′4
δk4=k′1

)(
1− e−|k1|2|s−σ|

|k1|2|k4|2
)1/2(

1− e−|k′1|2|s̄−σ̄|

|k′1|2|k′4|2
)1/2

.(δk1=k′1
δk4=k′4

+ δk1=k′4
δk4=k′1

)
|k1|η|k′1|η

|k1||k′1||k4||k′4|
|s− σ|η/2|s̄− σ̄|η/2,

it follows that η, ϵ > 0 small enough

E|∆q(I
4
t − Ĩ4t )|2 .

∑
k∈Z3\{0}

∑
|i−j|≤1,|i′−j′|≤1

∑
k14=k,k3,k2

θ(2−qk)2θ(2−ik1)θ(2
−jk4)θ(2

−i′k1)θ(2
−j′k4)∫ t

0

ds

∫ t

0

ds̄

∫ s

0

dσ

∫ s̄

0

dσ̄e−|k1|2(t−s)e−|k1|2(t−s̄)|k1|2
1

|k1|2−2η|k4|2

|s− σ|η/2|s̄− σ̄|η/2dk12,k2(s− σ)dk13,k3(s̄− σ̄)

+
∑

k∈Z3\{0}

∑
|i−j|≤1,|i′−j′|≤1

∑
k14=k,k3,k2

θ(2−qk)2θ(2−ik1)θ(2
−jk4)θ(2

−i′k4)θ(2
−j′k1)∫ t

0

ds

∫ t

0

ds̄

∫ s

0

dσ

∫ s̄

0

dσ̄e−|k1|2(t−s)e−|k4|2(t−s̄)|k1||k4|
1

|k1|2−η|k4|2−η

|s− σ|η/2|s̄− σ̄|η/2dk12,k2(s− σ)dk34,k3(s̄− σ̄)

.
∑

k∈Z3\{0}

∑
|i−j|≤1,|i′−j′|≤1

∑
k14=k

θ(2−qk)2θ(2−ik1)θ(2
−jk4)θ(2

−i′k1)θ(2
−j′k4)

(
tϵ

|k1|4−2η−2ϵ|k4|2
+

tϵ

|k1|3−η−ϵ|k4|3−η−ϵ
)

.tϵ
∑
k

∑
k14=k

θ(2−qk)
∑
q.i

2−i 1

|k1|3−2η−2ϵ|k4|2

+ tϵ
∑
k

∑
k14=k

θ(2−qk)
∑
q.j

2−jϵ 1

|k1|3−η−2ϵ|k4|3−η−ϵ

.tϵ2q(2ϵ+2η),

where in the last inequality we used Lemma 3.10.
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Moreover, it follows by Lemma 3.11 that for η, ϵ > 0 small enough

E[|∆q(Ĩ
4
t − Ī4t )|2] .

∑
k∈Z3\{0}

∑
|i−j|≤1,|i′−j′|≤1

∑
k14=k,k3,k2

θ(2−qk)2θ(2−ik1)θ(2
−jk4)θ(2

−i′k1)θ(2
−j′k4)

∫ t

0

∫ t

0

|k1|2+2ηe−|k1|2(t−s+t−s̄+|s−s̄|) 1

|k1|2|k4|2

∫ s

0

e−|k2|2(s−σ)

|k2|2
(s− σ)−(1−η)/2

∫ s̄

0

e−|k3|2(s̄−σ̄)

|k3|2
(s̄− σ̄)−(1−η)/2dsds̄dσdσ̄

+
∑

k∈Z3\{0}

∑
|i−j|≤1,|i′−j′|≤1

∑
k14=k,k3,k2

θ(2−qk)2θ(2−ik1)θ(2
−jk4)θ(2

−i′k4)θ(2
−j′k1)

∫ t

0

∫ t

0

|k1|1+2η|k4|e−2|k1|2(t−s)−2|k4|2(t−s̄) 1

|k1|2|k4|2

∫ s

0

e−|k2|2(s−σ)

|k2|2
(s− σ)−(1−η)/2

∫ s̄

0

e−|k3|2(s̄−σ̄)

|k3|2
(s̄− σ̄)−(1−η)/2dsds̄dσdσ̄

.tϵ
∑
k

∑
k14=k

θ(2−qk)
∑
q.i

2−i 1

|k1|3−2η−2ϵ|k4|2

+ tϵ
∑
k

∑
k14=k

θ(2−qk)
∑
q.j

2−jϵ 1

|k1|3−2η−2ϵ|k4|3−ϵ

.tϵ2q(2ϵ+2η),

where in the last inequality we used Lemma 3.10.
Terms in the fouth chaos: Now for I1t we have the following calculations:

E[|∆qI
1
t |2] .

∑
k∈Z3\{0}

∑
|i−j|≤1,|i′−j′|≤1

∑
k1234=k

θ(2−qk)2θ(2−ik123)θ(2
−jk4)θ(2

−i′k123)θ(2
−j′k4)∫ t

0

ds

∫ t

0

ds̄e−|k123|2(t−s+t−s̄)

∫ s

0

∫ s̄

0

1

|k1|2|k2|2|k3|2|k4|2
e−|k12|2(s−σ+s̄−σ̄)dσdσ̄|k12k123|2

+
∑

k∈Z3\{0}

∑
|i−j|≤1,|i′−j′|≤1

∑
k1234=k

θ(2−qk)2θ(2−ik123)θ(2
−jk4)θ(2

−i′k234)θ(2
−j′k1)∫ t

0

ds

∫ t

0

ds̄e−|k123|2(t−s)e−|k234|2(t−s̄)

∫ s

0

∫ s̄

0

1

|k1|2|k2|2|k3|2|k4|2

e−|k12|2(s−σ)−|k24|2(s̄−σ̄)dσdσ̄|k12k24k123k234|

+
∑

k∈Z3\{0}

∑
|i−j|≤1,|i′−j′|≤1

∑
k1234=k

θ(2−qk)2θ(2−ik123)θ(2
−jk4)θ(2

−i′k123)θ(2
−j′k4)∫ t

0

ds

∫ t

0

ds̄e−|k123|2(t−s)e−|k123|2(t−s̄)

∫ s

0

∫ s̄

0

1

|k1|2|k2|2|k3|2|k4|2

e−|k12|2(s−σ)−|k13|2(s̄−σ̄)dσdσ̄|k12k13||k123|2

+
∑

k∈Z3\{0}

∑
|i−j|≤1,|i′−j′|≤1

∑
k1234=k

θ(2−qk)2θ(2−ik123)θ(2
−jk4)θ(2

−i′k124)θ(2
−j′k3)
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∫ t

0

ds

∫ t

0

ds̄e−(|k123|2+|k3|2)(t−s)e−(|k124|2+|k4|2)(t−s̄)

∫ s

0

∫ s̄

0

1

|k1|2|k2|2|k3|2|k4|2

e−|k12|2(s−σ+s̄−σ̄)dσdσ̄|k12|2|k123k124|

+
∑

k∈Z3\{0}

∑
|i−j|≤1,|i′−j′|≤1

∑
k1234=k

θ(2−qk)2θ(2−ik123)θ(2
−jk4)θ(2

−i′k134)θ(2
−j′k2)∫ t

0

ds

∫ t

0

ds̄e−(|k123|2+|k2|2)(t−s)e−(|k134|2+|k4|2)(t−s̄)

∫ s

0

∫ s̄

0

1

|k1|2|k2|2|k3|2|k4|2

e−(|k12|2+|k2|2)(s−σ)−(|k34|2+|k4|2)(s̄−σ̄)dσdσ̄|k12k34||k134k123|
=E1

t + E2
t + E3

t + E4
t + E5

t .

For ϵ, η > 0 small enough by Lemma 3.10 we have

E1
t .

∑
k∈Z3\{0}

∑
|i−j|≤1,|i′−j′|≤1

∑
k1234=k

θ(2−qk)2θ(2−ik123)θ(2
−jk4)θ(2

−i′k123)θ(2
−j′k4)t

η

|k1|2|k2|2|k3|2|k4|2|k12|2|k123|2−2η

.
∑

k∈Z3\{0}

∑
|i−j|≤1,|i′−j′|≤1

∑
k1234=k

θ(2−qk)2θ(2−ik123)θ(2
−jk4)θ(2

−i′k123)θ(2
−j′k4)

tη

|k4|2|k123|4−2η−ϵ

.
∑

k∈Z3\{0}

∑
q.i

2−(2−2η−ϵ)iθ(2−qk)2
tη

|k|
. 2q(2η+ϵ)tη,

and

E2
t .

∑
k∈Z3\{0}

∑
|i−j|≤1,|i′−j′|≤1

∑
k1234=k

θ(2−qk)2θ(2−ik123)θ(2
−jk4)θ(2

−i′k234)θ(2
−j′k1)t

η

|k1|2|k2|2|k3|2|k4|2|k12||k24||k123|1−η|k234|1−η

.
∑

k∈Z3\{0}

∑
k1234=k

θ(2−qk)2tη2−q(2−2η)

|k1|1+η|k2|2|k3|2|k4|1+η|k12||k24||k123|1−η|k234|1−η

.
∑

k∈Z3\{0}

(
∑

k1234=k

θ(2−qk)2tη2−q(2−2η)

|k1|1+η|k2|2|k3|2|k4|1+η|k12|2|k123|2−2η
)1/2

(
∑

k1234=k

θ(2−qk)2tη2−q(2−2η)

|k1|1+η|k2|2|k3|2|k4|1+η|k24|2|k234|2−2η
)1/2

.
∑

k∈Z3\{0}

2−(2−2η)q t
η

|k|
. 2q(2η)tη.

By a similar argument we can also obtain the same bounds for E3
t , E

4
t and E5

t , which implies
that

E[|∆qI
1
t |2] . 2q(2η+ϵ)tη.

By a similar calculation as above we also get that

3∑
i0,j0=1

E[|∆q(π0,⋄(u
ε1,i0
3 , uε1,j01 )(t1)− π0,⋄(u

ε1,i0
3 , uε1,j01 )(t2)− π0,⋄(u

ε2,i0
3 , uε2,j01 )(t1)

+ π0,⋄(u
ε2,i0
3 , uε2,j01 )(t2))|2]

.C(ε1, ε2)|t1 − t2|η2q(ϵ+2η),
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where C(ε1, ε2) → 0 as ε1, ε2 → 0, which by Gaussian hypercontractivity, Lemma 3.1 and
similar arguments as (3.16) implies that there exists vi0j05 ∈ C([0, T ], C−δ), i0, j0 = 1, 2, 3, such
that

π0,⋄(u
ε,i0
3 , uε,j01 ) → vi0j05 ∈ C([0, T ], C−δ).

3.3.3 Renormalization for π0(P
i1i2Dj0K

ε,j0 , uε,j11 ) and π0(P
i1i2Dj0K

ε,i2 , uε,j11 )

In this subsection we consider π0(P
i1i2Dj0K

ε,j0 , uε,j11 ) and π0(P
i1i2Dj0K

ε,i2 , uε,j11 ) and have the
following identity:

π0(P
i1i2Dj0K

ε,j0 , uε,j11 )

=
∑

k∈Z3\{0}

∑
|i−j|≤1

∑
k12=k

θ(2−ik1)θ(2
−jk2)

∫ t

0

e−(t−s)|k1|2ıkj01 : X̂ε,j0
s (k1)X̂

ε,j1
t (k2) : dsekP̂

i1i2(k1)

+
∑

|i−j|≤1

∑
k1

θ(2−ik1)θ(2
−jk1)

∫ t

0

e−2(t−s)|k1|2ıkj01
f(εk1)

2

|k1|2
dsP̂ i1i2(k1)

3∑
j2=1

P̂ j0j2(k1)P̂
j1j2(k1).

It is easy to get that the second term in the right hand side of the above equality equals zero.
It is straightforward to calculate for ϵ > 0 small enough:

E|∆qπ0(P
i1i2Dj0K

ε,j2 , uε,j11 )|2

.
∑

k∈Z3\{0}

∑
|i−j|≤1,|i′−j′|≤1

∑
k12=k

θ(2−qk)2θ(2−ik1)θ(2
−jk2)θ(2

−i′k1)θ(2
−j′k2)

(

∫ t

0

∫ t

0

e−(t−s+t−s̄)|k1|2|k1|2
e−|k1|2|s−s̄|

|k1|2|k2|2
dsds̄

+

∫ t

0

∫ t

0

e−2(t−s)|k1|2−2(t−s̄)|k2|2 |k1||k2|
1

|k1|2|k2|2
dsds̄)

.tϵ
∑
k

∑
q.i

∑
k12=k

θ(2−qk)θ(2−ik1)
1

|k1|4−2ϵ|k2|2

+ tϵ
∑
k

∑
q.i

∑
k12=k

θ(2−qk)θ(2−jk2)
1

|k1|3−2ϵ|k2|3

.tϵ22qϵ,
where in the last inequality we used Lemma 3.10. By a similar calculation we also get that for
ϵ, η > 0 small enough

E[|∆q(π0,⋄(P
i1i2Dj0K

ε,j2 , uε,j11 )(t1)− π0,⋄(P
i1i2Dj0K

ε,j2 , uε,j11 )(t2)

− π0,⋄(P
i1i2Dj0K

ε,j2 , uε,j11 )(t1) + π0,⋄(P
i1i2Dj0K

ε,j2 , uε,j11 )(t2))|2]
.C(ε1, ε2)|t1 − t2|η2q(ϵ+2η),

where C(ε1, ε2) → 0 as ε1, ε2 → 0, which by Gaussian hypercontractivity, Lemma 3.1 and
similar argument as (3.16) implies that there exists vi1i2j0j16 ∈ C([0, T ], C−δ) for i1, i2, j0, j1 =
1, 2, 3 such that

π0,⋄(P
i1i2Dj0K

ε,j2 , uε,j11 ) → vi1i2j0j16 ∈ C([0, T ], C−δ).
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By a similar argument we also obtain that there exists vi1i2j0j17 ∈ C([0, T ], C−δ) for i1, i2, j0, j1 =
1, 2, 3 such that

π0,⋄(P
i1i2Dj0K

ε,i2 , uε,j11 ) → vi1i2j0j17 ∈ C([0, T ], C−δ).

3.3.4 Renormalisation for uε,i2 u
ε,j
2

In this subsection we deal with uε,i2 u
ε,j
2 and prove that uε,i2 ⋄ uε,j2 → ui2 ⋄ u

j
2 in C([0, T ]; C−δ). We

have the following identities:

uε,i2 u
ε,j
2

=(2π)−9/2(
3∑

i1,i2,j1,j2=1

∑
k1234=k

∫ t

0

∫ t

0

e−|k12|2(t−s)−|k34|2(t−s̄) : X̂ε,i1
s (k1)X̂

ε,i2
s (k2)X̂

ε,j1
s̄ (k3)X̂

ε,j2
s̄ (k4) : dsds̄ek

P̂ ii1(k12)ık
i2
12P̂

jj1(k34)ık
j2
34

+ 4
3∑

i1,i2,j1,j2=1

∑
k24=k,k1

∫ t

0

∫ t

0

e−|k12|2(t−s)−|k4−k1|2(t−s̄)f(εk1)
2e−|k1|2|s−s̄|

2|k1|2
: X̂ε,i2

s (k2)X̂
ε,j2
s̄ (k4) : dsds̄ek

P̂ ii1(k12)ık
i2
12P̂

jj1ı(k4 − k1)(k
j2
4 − kj21 )

3∑
j3=1

P̂ i1j3(k1)P̂
j1j3(k1)

+ 2
3∑

i1,i2,j1,j2=1

∑
k1,k2

∫ t

0

∫ t

0

e−|k12|2(t−s+t−s̄)f(εk1)
2f(εk2)

2e−(|k1|2+|k2|2)|s−s̄|

4|k1|2|k2|2
dsds̄P̂ ii1(k12)P̂

jj1(k12)

ıki212(−ık
j2
12)

3∑
j3,j4=1

P̂ i1j3(k1)P̂
j1j3(k1)P̂

i2j4(k2)P̂
j2j4(k2)) := I1t + I2t + I3t .

By a easy computation we obtain that

I3t =(2π)−9/2

3∑
i1,i2,j1,j2=1

∑
k1,k2

f(εk1)
2f(εk2)

2P̂ ii1(k12)P̂
jj1(k12)k

i2
12k

j2
12

3∑
j3,j4=1

P̂ i1j3(k1)P̂
j1j3(k1)P̂

i2j4(k2)

P̂ j2j4(k2)
1

|k1|2|k2|2(|k1|2 + |k2|2 + |k12|2)
(
1− e−2|k12|2t

2|k12|2
−

∫ t

0

e−2|k12|2(t−s)−(|k1|2+|k2|2+|k12|2)sds).

Let

Cε,ij
2 =(2π)−9/2

3∑
i1,i2,j1,j2=1

∑
k1,k2

f(εk1)
2f(εk2)

2P̂ ii1(k12)P̂
jj1(k12)k

i2
12(−k

j2
12)

3∑
j3,j4=1

P̂ i1j3(k1)P̂
j1j3(k1)

P̂ i2j4(k2)P̂
j2j4(k2)

1

2|k1|2|k2|2(|k1|2 + |k2|2 + |k12|2)
1

|k12|2
.

Define
φε,ij
2 = I3t − Cε,ij

2 .

48



Then for ρ > 0 we have

|φε
2| .

∑
k1,k2

|k12|2
1

|k1|2|k2|2(|k1|2 + |k2|2 + |k12|2)
(
e−2|k12|2t

2|k12|2
+

∫ t

0

e−2|k12|2(t−s)−(|k1|2+|k2|2+|k12|2)sds)

.t−ρ
∑
k1,k2

1

|k1|2|k2|2|k12|2+2ρ
. t−ρ.

Terms in the second chaos: Now we come to I2t : For ϵ > 0 small enough we have the
following inequalities

E|∆qI
2
t |2 .

∑
k

∑
k24=k,k1,k3

θ(2−qk)2
∫ t

0

∫ t

0

∫ t

0

∫ t

0

e−|k12|2(t−s)−|k4−k1|2(t−s̄)−|k23|2(t−σ)−|k4−k3|2(t−σ̄)

e−|k1|2|s−s̄|−|k2|2|s−σ|−|k4|2|s̄−σ̄|−|k3|2|σ−σ̄|

|k1|2|k2|2|k3|2|k4|2
dsds̄|k12(k4 − k1)k23(k4 − k3)|

.tϵ
∑
k

∑
k24=k,k1,k3

θ(2−qk)2

|k1|2|k2|2|k3|2|k4|2|k1 − k4|1−ϵ|k4 − k3||k12|1−ϵ|k23|

.tϵ
∑
k

∑
k24=k

θ(2−qk)2

|k2|2|k4|2
∑
k1

1

|k1 − k4||k1|2|k12|
∑
k3

1

|k3 − k4||k3|2|k23|

.tϵ
∑
k

∑
k24=k

θ(2−qk)2

|k2|2|k4|2
(
∑
k1

1

|k1 − k4|2−2ϵ|k1|2
)1/2(

∑
k1

1

|k12|2−2ϵ|k1|2
)1/2

(
∑
k3

1

|k3 − k4|2|k3|2
)1/2(

∑
k3

1

|k23|2|k3|2
)1/2

.tϵ
∑
k

∑
k24=k

θ(2−qk)2

|k2|3−ϵ|k4|3−ϵ
. tϵ22qϵ,

where in the last two inequalities we used Lemma 3.10.
Terms in the fourth chaos:
Now we consider I1t . For ϵ > 0 small enough we have the following calculations:

E|∆qI
1
t |2

.
∑
k

∑
k1234=k

θ(2−qk)2(

∫ t

0

∫ t

0

∫ t

0

∫ t

0

e−|k12|2(t−s+t−σ)−|k34|2(t−s̄+t−σ̄) e
−(|k1|2+|k2|2)|s−σ|−(|k3|2+|k4|2)|s̄−σ̄|

|k1|2|k2|2|k3|2|k4|2

dsds̄dσdσ̄|k12k34|2 +
∫ t

0

∫ t

0

∫ t

0

∫ t

0

e−|k12|2(t−s)−|k23|2(t−σ)−|k34|2(t−s̄)−|k14|2(t−σ̄) 1

|k1|2|k2|2|k3|2|k4|2

dsds̄dσdσ̄|k12k34k14k23|)

.tϵ
∑
k

∑
k1234=k

θ(2−qk)2(
1

|k1|2|k2|2|k3|2|k4|2|k12|2−ϵ|k34|2−ϵ

+
1

|k1|2|k2|2|k3|2|k4|2|k12|1−ϵ/2|k34|1−ϵ/2|k14|1−ϵ/2|k23|1−ϵ/2
)
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.tϵ(22qϵ + (
∑

k1234=k

θ(2−qk)2

|k1|2|k2|2|k3|2|k4|2|k12|2−ϵ|k34|2−ϵ
)1/2(

∑
k1234=k

θ(2−qk)2

|k1|2|k2|2|k3|2|k4|2|k14|2−ϵ|k23|2−ϵ
)1/2)

.tϵ22qϵ,
where we used Lemma 3.10 in the last inequality. By a similar calculation we also get that for
ϵ, η > 0 small enough

E[|∆q(u
ε1,i
2 ⋄ uε1,j2 (t1)− uε1,i2 ⋄ uε1,j2 (t2)− uε2,i2 ⋄ uε2,j2 (t1) + uε2,i2 ⋄ uε2,j2 )(t2))|2]

.C(ε1, ε2)|t1 − t2|η2q(ϵ+2η),

where C(ε1, ε2) → 0 as ε1, ε2 → 0, which by Gaussian hypercontractivity, Lemma 3.1 and
similar argument as (3.16) implies that there exists vij4 ∈ C([0, T ], C−δ), i, j = 1, 2, 3 and some
φ2 such that

uε,i2 ⋄ uε,j2 → vij4 ∈ C([0, T ], C−δ),

and φε
2 converges to some φ2 with respect to ∥φ∥ = supt∈[0,T ] t

ρ|φ(t)| for any ρ > 0.
Combining all the convergence results we obtained above and Theorem 3.8 we obtain local

existence and uniqueness of the solution to 3D Navier-Stokes equation driven by space-time
white noise.

Theorem 3.11 Let z ∈ (1/2, 1/2 + δ0) with 0 < δ0 < 1/2 and u0 ∈ C−z. Then there exists
a unique local solution to

Lui =
3∑

i1=1

P ii1ξ − 1

2

3∑
i1=1

P ii1(
3∑

j=1

Dj(u
i1uj)) u(0) = u0,

in the following sense: For ξε =
∑

k f(εk)ξ̂(k)ek with f a smooth radial function with compact
support satisfying f(0) = 1 and for ε > 0 consider the maximal unique solution uε of the
following equation such that uε4 ∈ C((0, T ε); C1/2−δ0)

Luε,i =
3∑

i1=1

P ii1ξε − 1

2

3∑
i1=1

P ii1(
3∑

j=1

Dj(u
ε,i1uε,j)) uε(0) = Pu0.

Then there exists a strictly positive, σ(u0, ξ) measurable random time τ such that

E( sup
t∈[0,τ ]

∥uε − u∥−z)
p → 0,

for all p ≥ 1.
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suggestions for this work.

References

[BCD11] H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differen-
tial equations, vol. 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer, Heidelberg, 2011.

50



[BG97] L. Bertini, G. Giacomin, Stochastic Burgers and KPZ equations from particle systems.
Comm. Math. Phys. 183, no. 3, (1997), 571607.

[Bon81] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux
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