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1 Introduction

The paper involves three essential areas of study.
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1. Elliptic semilinear PDEs with distributional drift.

2. Backward stochastic differential equations (BSDEs) driven by càdlàg martingales
with terminal condition at random terminal time.

3. The representation of solutions of the above mentioned BSDEs through solutions
of PDEs.

We consider a one-dimensional semilinear PDE of the type

Lu = F
(

x, u, u′
)

, (1.1)

on [0, 1] with boundary conditions, where L is the generator of a one-dimensional stochas-

tic differential equation of the type Lg = σ2

2 g
′′ + β′g′, with σ, β being real continuous

functions and σ is strictly positive. So the drift β′ is the derivative of a continuous
function β, therefore a distribution. A typical example of such β is the path of a fixed
continuous process. F is a continuous real function defined on [0, 1]×R

2. When F does
not depend on u and u′, and x varies on the real line, (1.1) was introduced in [13, 14],
via the notion of C1-solutions which appear as limit of solutions of elliptic problems with
regularized coefficients. Indeed [13, 14] investigated the case of initial conditions.
One-dimensional stochastic differential equations with distributional drift were ex-

amined by several authors, see [13, 14, 2, 19] and references therein, with a recent
contribution by [17]. Such an equation appears formally as

dXt = β′(Xt)dt+ σ(Xt)dWt. (1.2)

If β is the path of a two-sided Brownian motion and σ = 1, the solution X models a
dynamical system in a random irregular medium context.
More recently some contributions also appeared in the multidimensional case, see [1],

when the drift is a Kato class measure and in [12] for other type of time dependent drifts.
This paper is devoted to the following main objectives.

1. We study existence and uniqueness of a solution u of the semilinear equation (1.1)
with prescribed initial conditions for u(0) and u′(0), see Proposition 3.6.

2. We show that the initial value problem allows to provide a solution to the boundary
value problem on [0, 1] for (1.1), see Proposition 3.12.

3. We explore several assumptions on F which provide existence and/or uniqueness
of the boundary value problem, see Corollary 3.11 and Propositions 3.12 and 3.14.

4. We study the uniqueness of solutions of BSDEs driven by a càdlàg martingale M
such that 〈M〉 is continuous, see Theorem 5.3.

5. We show that a solution of the PDE (1.1) with Dirichlet boundary conditions
on [0, 1] generates a solution to a special forward BSDE (see Theorem 6.2) with
terminal condition at the random time τ , where τ is the exit time from [0, 1] of a
solution X of an SDE with distributional drift.
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6. Those solutions which are associated with (1.1) are the unique solution of the
corresponding BSDE (in some reasonable class) whenever F fulfills in particular
some strict monotonicity condition in the second variable (i. e. (3.18)) is fulfilled.

7. We illustrate situations where the BSDE admits no uniqueness in a reasonable class
but the probabilistic representation still holds.

As we mentioned, a significant object of study is a backward SDE with random terminal
time, which was studied and introduced by [10] when the driving martingale is a Brow-
nian motion. BSDEs driven by a càdlàg martingale with fixed time terminal time were
studied in [6, 11, 8, 5].
The paper is organized as follows. After the introduction in Section 2, we remind

some preliminaries about linear elliptic PDEs with initial condition and the notion of
martingale problem related to an SDE with distributional drift. In Section 3, we discuss
existence and uniqueness of (1.1), in Section 4 we discuss the first exit time properties
of a solution to equation (1.2). In Section 5 we investigate uniqueness for BSDEs with
random terminal condition with related probabilistic representation. Finally Section 6
shows how a solution to (1.1) generates a solution to a special BSDE with terminal
condition at random time.

2 Preliminaries

2.1 The linear elliptic PDE with distributional drift

If I is a real open interval, then C(I) will be the space of continuous functions on I
endowed with the topology of uniform convergence on compacts. For k ≥ 0, Ck(I)
will be a similar space equipped with the topology of uniform convergence of the first
k derivatives. If I = R, then we will simply write C, Ck instead of C(R), Ck(R). If
I = [a, b] with −∞ < a < b < +∞, then u : I → R is said to be of class C1([a, b]) if it is
of class C1((a, b)) and if the derivative extends continuously to [a, b].
In this section we introduce the “generator” L of our diffusion with distributional drift

adopting the notations and conventions of [13, 14].
Let σ, β ∈ C0 such that σ > 0. We consider formally a PDE operator of the following

type [13, section 2]:

Lg =
σ2

2
g′′ + β′g′. (2.1)

By a mollifier, we intend a function Φ belonging to the Schwartz space S (R) with
∫

Φ (x) dx = 1. We denote

Φn (x) := nΦ(nx), σ2n := σ2 ∗ Φn, βn := β ∗ Φn.

We then consider

Lng =
σ2n
2
g′′ + β′ng

′. (2.2)

A priori, σ2n, βn and the operator Ln depend on the mollifier Φ.
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Definition 2.1. Let l ∈ C0. A function f ∈ C1(R) is said to be a C1-solution to

Lf = l, (2.3)

if, for any mollifier Φ, there are sequences (fn) in C
2, (ln) in C

0 such that

Lnfn = ln, fn → f in C1, ln → l in C0. (2.4)

The following proposition gives conditions for the existence of a solution h to the
homogeneous version of (2.3), see [13, prop. 2.3].

Proposition 2.2. Let a ∈ R be fixed. There is a C1-solution to Lh = 0 such that
h′ (x) 6= 0 for every x ∈ R if and only if

Σ (x) := lim
n→∞

2

∫ x

a

β′n
σ2n

(y) dy (2.5)

exists in C0, independently from the mollifier. Moreover, in this case, any solution
C1-solution f to Lf = 0 fulfills

f ′ (x) = e−Σ(x)f ′(a), ∀x ∈ R. (2.6)

Remark 2.3. 1. In particular, this proves the uniqueness of the problem

Lf = l, f ∈ C1, f (a) = x0, f ′ (a) = x1, (2.7)

for every l ∈ C0, x0, x1 ∈ R.

2. In most of the cases we will set a = 0.

In the sequel we will always suppose the existence of Σ as in (2.5). We will denote
h : R → R such that h(0) = 0 and h′ = exp (−Σ) and hn : R → R so that hn = exp (−Σn)

with Σn = 2
∫ x

0
β′

n

σ2
n

(y) dy.

Lemma 2.4. A solution to problem (2.7) is given by

f (a) = x0,

f ′ (x) = h′ (x)

(

2

∫ x

a

l (y)

(σ2h′) (y)
dy + x1

)

.

The proposition below was established in [13, Remark 2.7].

Proposition 2.5. Let a ∈ R and l ∈ C0 and x0, x1 ∈ R. Then there is a unique
C1-solution to

Lu = l (2.8)

u(a) = x0, u′(a) = x1.

The solution satisfies

u′ (x) = e−Σ(x)

(

2

∫ x

a

eΣ(x) l (y)

σ2 (y)
dy + x1

)

. (2.9)

We will denote by DL the set of all f ∈ C1 which are C1-solutions of Lf = l for some
l ∈ C0. This defines without ambiguity L : DL → C0.
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2.2 Related martingale problem

For the moment we fix a probability space (Ω,G,P). All processes will be considered
with index in R+.
For convenience, we follow the framework of stochastic calculus introduced in [21] and

developed in several papers. A survey of that calculus in finite dimension is given in [20].
We will fix a filtration F = (Ft) which will fulfill the usual conditions.
The covariation of two continuous processes X and Y is defined as follows. Suppose

that
At := lim

ε→0+
Cε(X,Y )t (2.10)

exists for any t ∈ [0, T ] in probability, where

Cε(X,Y )t :=
1

ε

∫ t

0
(Xs+ε −Xs) (Ys+ε − Ys) ds.

We say that (X,Y ) admit a covariation if the random function (At) admits a (necessarily
unique) continuous version, which will be designated by [X,Y ]. For [X,X] we often
shortly write [X]. All the covariation processes will be continuous.

Remark 2.6. In [20, Propositions 1, 9 and 11, Remarks 1 and 2] we can find the
following.

a) If [X,X] exists, then it is always an increasing process and X is called a finite
quadratic variation process. If [X,X] ≡ 0, then X is said to be a zero quadratic
variation process.

b) Let X and Y be continuous processes such that [X,Y ], [X,X], [Y, Y ] exist. Then
[X,Y ] is a bounded variation process. If f, g ∈ C1, then

[f(X), g(Y )]t =

∫ t

0
f ′(X)g′(Y ) d[X,Y ].

c) If A is a zero quadratic variation process and X is a finite quadratic variation
process, then [X,A] ≡ 0.

d) A bounded variation process is a zero quadratic variation process.

e) If X and Y are F-semimartingales, then [X,Y ] is the usual covariation process
〈

MX ,MY
〉

of their martingale components.

An F-Dirichlet process is the sum of an F-local continuous martingale M and an
F-adapted zero quadratic variation process A, see [15, 4].

Remark 2.7. Let X =M +A be an F-Dirichlet process.

1. Remark 2.6c) and e) together with the bilinearity of the covariation operator imply
that [X] = 〈M〉.
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2. If f ∈ C1, then f(X) =Mf +Af is an F-Dirichlet process, where

Mf =

∫ ·

0
f ′(Xs) dMs

and Af := f(X) −Mf has zero quadratic variation. This easily follows from the
bilinearity of covariation and Remark 2.6b), c) and e). See also [4] for a similar
result and Proposition 17 in [20] for a generalization to weak Dirichlet processes.

Definition 2.8. Given a stopping time τ and a process X, we denote by Xτ the stopped
process

Xτ
t := Xt∧τ , t ≥ 0.

Remark 2.9. Let τ be an F-stopping time. If X is an F-semimartingale (resp. F-
Dirichlet process), then the stopped processes Xτ is also a semimartingale (resp. F-
Dirichlet process).

In the classical theory of Stroock and Varadhan, see e. g. [22], the solutions of martin-
gale problems are probabilities on the canonical space C([0, T ]) equipped with its Borel
σ-field and the Wiener measure. Here the sense is a bit different since the solutions are
considered to be processes.

Definition 2.10. A process X (defined on some probability space), is said to solve the
martingale problem MP(σ, β;x0) related to L with initial condition X0 = x0, x0 ∈ R if

f(Xt)− f (x0)−

∫ t

0
Lf(Xs)ds

is a local martingale for any f ∈ DL.

In the sequel we will denote by FX = (FX
t ) the canonical filtration associated with

X.

Definition 2.11. We say that the martingale problem MP(σ, β;x0) admits uniqueness
(in law) if any processes X1 and X2, defined on some probability space and solving the
martingale problem, have the same law.

The proposition below was the object of Proposition 3.13 of [13].

Proposition 2.12. Let v be the unique solution to Lv = 1 in the C1-sense such that
v (0) = v′ (0) = 0. Then there exists a unique (in law) solution to the martingale problem
related to L with prescribed initial condition x0 ∈ R if and only if

v (−∞) = v (+∞) = +∞. (2.11)

In several contexts (see [13]) the solution of previous martingale problem appears to
be a solution (in the proper sense) of (1.2), but it will not be used in this paper.
Proposition 2.12 implies the following.
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Proposition 2.13. Let x0 ∈ R. The martingale problem MP(σ, β;x0) admits exactly
one solution in law if and only if the function v : R → R defined by

v(0) = 0,

v′ (x) = e−Σ(x)

(

2

∫ x

0

1

σ2
(y) dy

)

(2.12)

fulfills

v (−∞) = −∞, v (+∞) = +∞. (2.13)

Proof. This follows from Proposition 2.12, Proposition 2.5 and from the fact that v
defined in (2.12) is the solution of the problem

Lv = 1, v (0) = v′ (0) = 0.

From now on Assumption (2.13) for the function v defined by (2.12) will always be
in force. Let then X be a solution to the martingale problem on a suitable probability
space and FX be its canonical filtration.

Remark 2.14. i) By Remark 3.3 of [13], choosing f as the identity function, X is
an FX -Dirichlet process, whose local martingale part MX is such that

[

MX
]

t
=

∫ t

0
σ2(Xs)ds.

ii) Consequently by Remark 2.6c) and the bilinearity of covariation it follows [X]t =
∫ t

0 σ
2(Xs)ds.

Proposition 2.15. Let X be a solution of MP(σ, β;x0) for some x0 ∈ R. For every
ϕ ∈ DL we have

ϕ(Xt) = ϕ(X0) +

∫ t

0
ϕ′(Xs)dM

X
s +

∫ t

0
(Lϕ)(Xs)ds.

Proof. By definition of the martingale problem there is an FX -local martingaleMϕ such
that

ϕ(Xt) = ϕ(X0) +Mϕ
t +

∫ t

0
(Lϕ)(Xs)ds. (2.14)

On the other hand, by Remark 2.14i) and Remark 2.7 ϕ(Xt) is an FX -Dirichlet process
with decomposition

ϕ(Xt) = ϕ(X0) +

∫ t

0
ϕ′(Xs)dM

X
s +Aϕ

t , (2.15)

where [Aϕ] ≡ 0. By the uniqueness of Dirichlet decomposition and the identification of
(2.14) and (2.15) the result follows.
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3 The semilinear elliptic PDE with distributional drift and

boundary conditions

In this section we present the deterministic analytical framework that we will need in
the paper.

3.1 The linear case

We explain here how to reduce the study of our initial problem to a boundary value
problem.

Definition 3.1. Let a, b, A,B ∈ R, such that −∞ < a < b < ∞. Additionally, let
g : [a, b] → R be continuous. We say that u : [a, b] → R is a solution of the boundary
value problem











Lu = g,

u(a) = A,

u(b) = B

(3.1)

if there is a continuous extension g̃ : R → R of g and a function ũ ∈ DL fulfilling
ũ
∣

∣

[a,b] = u, such that ũ is a solution of

Lũ = g̃, (3.2)

in the sense of Definition 2.1, and ũ(a) = A, ũ(b) = B.

Proposition 3.2. Let g : [0, 1] → R be continuous, A,B ∈ R, a = 0 and b = 1. Then
there exists a unique solution u to (3.1), given by

u(x) = f(x) +

∫ 1

0
K(x, y)g(y)dy (3.3a)

f(x) :=
B
∫ x

0 dye
−Σ(y) +A

∫ 1
x
dye−Σ(y)

∫ 1
0 dye

−Σ(y)
(3.3b)

K(x, y) := 1y≤x
2eΣ(y)

σ2(y)

∫ x

y

dze−Σ(z) − 2

∫ x

0 dre
−Σ(r)

∫ 1
0 dre

−Σ(r)

eΣ(y)

σ2(y)

∫ 1

y

dze−Σ(z). (3.3c)

Remark 3.3. For every y ∈ [0, 1], x 7→ K(x, y) is absolutely continuous and (x, y) 7→
∂xK(x, y) belongs to L∞([0, 1]2).

Proof of Proposition 3.2. We start with existence. Let g̃ be a continuous extension of g
and x1 ∈ R. Then, by Proposition 2.5, there exists a unique solution ũ to the problem
on the real line,

Lũ(x) = g̃(x), x ∈ R, (3.4a)

ũ(0) = A, (3.4b)

ũ′(0) = x1, (3.4c)
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given by

ũ(x) = A+

∫ x

0
e−Σ(y)

(

2

∫ y

0
eΣ(z) g̃(z)

σ2(z)
dz + x1

)

dy. (3.5)

We look for x1 ∈ R, so that ũ(1) = B. This gives

B = A+ x1

∫ 1

0
e−Σ(y)dy + 2

∫ 1

0
dye−Σ(y)

∫ y

0
dzeΣ(z) g̃(z)

σ2(z)

x1 =
B −A− 2

∫ 1
0 dze

Σ(z) g̃(z)
σ2(z)

∫ 1
z
dye−Σ(y)

∫ 1
0 e

−Σ(y)dy
.

We insert x1 into (3.5) and use the fact that u = ũ|[0,1] and g = g̃|[0,1]. This gives (3.3),
and we get u(0) = A and u(1) = B.
To show uniqueness, let v1 and v2 be two solutions of (3.1), and set v = v1−v2. Then

there is ṽ ∈ DL with ṽ|[0,1] = v and an l̃ ∈ C with l̃|[0,1] = 0, so that

Lṽ(x) = l̃, l̃
∣

∣

[0,1] = 0

ṽ(0) = ṽ(1) = 0.

We need to show that v ≡ 0. By Lemma 2.4 we get

ṽ′(x) = e−Σ(x)

(

2

∫ x

0

l̃(y)

σ2(y)
eΣ(y)dy + ṽ′(0)

)

∀x ∈ R.

In particular, since l̃
∣

∣

[0,1] = 0, we get

ṽ′(x) = e−Σ(x)ṽ′(0), ∀x ∈ [0, 1].

Consequently, for x ∈ [0, 1],

ṽ(x) =

(∫ x

0
dy e−Σ(y)

)

ṽ′(0).

Since ṽ(1) = 0, it follows ṽ′(0) = 0 and so v(x) = ṽ(x) = 0 ∀x ∈ [0, 1].

3.2 Solution of the semilinear problem on the real line

We extend here the notion of C1-solution to the semilinear case.

Definition 3.4. Let F : R× R
2 → R be a continuous function. We say that u ∈ C1 is

a C1-solution (on the real line) of

Lu = F
(

x, u, u′
)

(3.6)

if u is a C1-solution of Lu = h, with h : R → R defined by h(x) = F (x, u(x), u′(x)).
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Definition 3.5. A function F : I×R×R → R, (x, y, z) 7→ F (x, y, z) will be said globally
Lipschitz with respect to z (resp. (y, z)) if F is Lipschitz with respect to z (resp. (y, z))
uniformly on x varying in I and y in R (resp. uniformly on x varying in I).
More precisely, F is globally Lipschitz with respect to z if there exists some constant k,
such that

|F (x, y, z)− F (x, y, z̃)| ≤ k |z − z̃| , ∀x ∈ I, ∀y, z, z̃ ∈ R. (3.7)

k is called Lipschitz constant for F . Similarly we speak about Lipschitz constant k re-
lated to a function F which is globally Lipschitz with respect to (y, z).

Proposition 3.6. Suppose that F : R3 → R, so that (x, y, z) 7→ F (x, y, z) restricted to
K × R

2, for any compact interval K, is Lipschitz with respect to (y, z). Then there is a
unique solution of

Lu = F
(

x, u(x), u′(x)
)

, x ∈ R,

u(0) = x0,

u′(0) = x1.

(3.8)

Proof. By Proposition 2.5, u : R → R of class C1 is a C1-solution if and only if

u′ (x) = e−Σ(x)

(

2

∫ x

0

eΣ(y)

σ2 (y)
F
(

y, u (y) , u′ (y)
)

dy + x1

)

, ∀x ∈ R,

u(0) = x0.

(3.9)

We can reduce the well-posedness of (3.9) to the well-posedness of

u′ (x) = e−Σ(x)

(

2

∫ x

0

eΣ(y)

σ2 (y)
F
(

y, u (y) , u′ (y)
)

dy + x1

)

, ∀x ∈ [−N,N ],

u(0) = x0,

(3.10)

for every N ∈ N
∗. In the sequel of the proof, since (3.10) depends on N , we will often

denote it by (3.10)(N).
Indeed, if uN is a solution of (3.10)(N), then any solution of (3.10)(N+1), restricted to

[−N,N ] is a solution (3.10)(N). In this way the yield of a solution of (3.9) is equivalent
to the yield of a family (uN ) of functions which are respectively solutions of (3.10)(N).
In the sequel we fix N ∈ N

∗ and we study existence and uniqueness for (3.10)(N), which
is a PDE in a compact interval. We consider the map T : C1 ([−N,N ]) → C1 ([−N,N ])
defined by

Tf(0) = x0

(Tf)′ (x) = e−Σ(x)

(

2

∫ x

0

eΣ(y)

σ2(y)
F
(

y, f(y), f ′(y)
)

dy + x1

)

.
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Clearly a function u ∈ C1 ([−N,N ]) is a strong solution of (3.10)(N) if and only if
Tu = u. C1 ([−N,N ]) is a Banach space equipped with the norm

‖f‖N = sup
|x|≤N

[

|f(x)|+ |f ′(x)|
]

.

The norm ‖·‖N is equivalent to

‖f‖N,λ = sup
|x|≤N

(

|f(x)|+ |f ′(x)|
)

eΣ(x)−λ|x|,

where λ > 0, has to be suitably chosen. It remains to show that T admits a unique
fixed point. For this we will show that T is a contraction with respect to ‖·‖N,λ. Let

u, v ∈ C1 ([−N,N ]). Let us denote by K/2 a Lipschitz constant for F . We get

∣

∣

∣
(Tu− Tv)′(x)eΣ(x)

∣

∣

∣

≤ 2

∣

∣

∣

∣

∣

∫ x

0

∣

∣F
(

y, u(y), u′(y)
)

− F
(

y, v(y), v′(y)
)∣

∣

eΣ(y)

σ2(y)
dy

∣

∣

∣

∣

∣

≤

≤ K sup
|z|≤N

1

σ2(z)

∣

∣

∣

∣

∫ x

0

(∣

∣u′(y)− v′(y)
∣

∣+ |u(y)− v(y)|
)

eΣ(y)dy

∣

∣

∣

∣

≤

≤ K sup
|z|≤N

1

σ2(z)

∣

∣

∣

∣

∫ x

0
eλ|y|dy

∣

∣

∣

∣

‖u− v‖N,λ

= K sup
|z|≤N

1

σ2(z)

eλ|x| − 1

λ
‖u− v‖N,λ .

This implies that, for every x ∈ [−N,N ],

∣

∣(Tu− Tv)′ (x)
∣

∣ eΣ(x)−λ|x| ≤
K

λ
sup
|z|≤N

1

σ2(z)
‖u− v‖N,λ . (3.11)

On the other hand, since (Tu)(0) = (Tv)(0) = x0 we have

|(Tu− Tv)(x)| ≤

∣

∣

∣

∣

∫ x

0

∣

∣(Tu− Tv)′ (y)
∣

∣ dy

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∫ x

0
eΣ(y)−λ|y|

∣

∣(Tu− Tv)′ (y)
∣

∣ e−Σ(y)+λ|y|dy

∣

∣

∣

∣

≤

≤ sup
|s|≤N

e−Σ(s) sup
|y|≤N

(

eΣ(y)−λ|y|
∣

∣(Tu− Tv)′(y)
∣

∣

) eλ|x| − 1

λ
.

Finally, taking into account (3.11), we get

eΣ(x)−λ|x| |(Tu− Tv)(x)| ≤
K

λ2
sup
|s|≤N

e−Σ(s) sup
|y|≤N

eΣ(y) sup
|z|≤N

1

σ2(z)
‖u− v‖N,λ . (3.12)
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Summing up (3.11) and (3.12) we get

‖Tu− Tv‖N ≤ C(λ) ‖u− v‖N,λ , (3.13)

where

C(λ) =
K

λ
sup
|z|≤N

1

σ2(z)
+
K

λ2
sup
s≤N

e−Σ(s) sup
|y|≤N

eΣ(y) sup
|x|≤N

1

σ2(x)
.

If C(λ) < 1, (3.13) has shown that T is a contraction. The condition can be fulfilled by
choosing λ sufficiently large.

3.3 The semi-linear case with boundary conditions

Definition 3.7. Let

i) a, b ∈ R, such that 0 < a < b <∞,

ii) A,B ∈ R, and

iii) F : [a, b]× R
2 → R be a continuous function.

We say that u : [a, b] → R of class C1([a, b]) is a solution of the boundary value problem











Lu(x) = F (x, u, u′),

u(a) = A,

u(b) = B

(3.14)

if u is a solution of the boundary value problem










Lu = ℓ,

u(a) = A,

u(b) = B,

in the sense of Definition 3.1 with ℓ : [a, b] → R defined by ℓ(x) = F (x, u(x), u′(x)).

In Section 5 we will observe that solving (3.14) is strongly related to the problem of
solving BSDEs with random terminal time.

Lemma 3.8. Suppose that the assumptions of Definition 3.7 are fulfilled. Then, u is a
solution of the boundary value problem











Lu(x) = F (x, u, u′),

u(a) = A

u(b) = B

(3.15)

if and only if the functions u1, u2 : [a, b] → R, given by

u1 = u,

u2 = eΣu′,
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belong to C1([a, b]) and fulfill

u′1(x) = e−Σ(x)u2(x),

u′2(x) = 2
eΣ(x)

σ2(x)
F
(

x, u1(x), e
−Σ(x)u2(x)

)

,

u1(a) = A,

u1(b) = B.

(3.16)

Proof. Let u be a solution of the boundary value problem (3.15). This means, by Defi-
nition 3.7, that u is a solution of the boundary value problem











Lu = ℓ,

u(a) = A,

u(b) = B,

with
ℓ(x) = F

(

x, u(x), u′(x)
)

,

in the sense of Definition 3.1. By that definition, there are continuous extensions ũ and
ℓ̃ such that

ũ|[a,b] = u,

ℓ̃|[a,b] = ℓ,

and
Lũ = ℓ̃

in the sense of Definition 2.1. Since ũ ∈ C1, we can define

xa := ũ′(a).

By Proposition 2.5 it follows that

ũ′(x) = e−Σ(x)

(

2

∫ x

a

eΣ(y)

σ2(y)
ℓ̃(y)dy + xa

)

, ∀x ∈ R.

By setting ℓ̃1, ℓ̃2, ũ1, ũ2 : R → R as

ℓ̃1 := ũ′,

ℓ̃2 := 2
eΣ

σ2
ℓ̃,

ũ1 = ũ,

ũ2 = ũ′eΣ,
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it yields that ũ1, ũ2 belong to C1 and

ũ′1(x) = ℓ̃1(x) ∀x ∈ R,

ũ′2(x) = ℓ̃2(x) ∀x ∈ R,

ũ1(a) = A,

ũ1(b) = B.

It follows now that u1, u2 ∈ C1 ([a, b],R), which are respectively restrictions of ũ1, ũ2,
solve (3.16).
Concerning the converse, let u1, u2 ∈ C1 ([a, b];R]), so that (3.16) is fulfilled. We

define ℓ̃2 : R → R as

ℓ̃2(x) = 2
eΣ(x)

σ2(x)
ℓ̃(x),

where ℓ̃ : R → R is a continuous extension of

ℓ(x) = F
(

x, u1(x), u2(x)e
−Σ(x)

)

.

By (3.16), we have for some xa ∈ R

u2(x) = 2

∫ x

a

eΣ(y)

σ2(y)
ℓ̃(y)dy + xa, (3.17)

for x ∈ [a, b]. We define ũ2 : R → R as the right-hand side of (3.17) for all x ∈ R.
Clearly ũ2 is a C1 extension of u2. We also define

ℓ̃1(x) = e−Σ(x)ũ2(x), x ∈ R.

(3.16) gives
u′1(x) = ℓ̃1(x) = e−Σ(x)ũ2(x), x ∈ [a, b].

We define ũ1(x) =
∫ x

a
ℓ̃1(y)dy + A, x ∈ R. ũ1 is a C1 extension of u1. Consequently,

setting ũ = ũ1, we get

ũ′(x) = ũ′1(x) = ℓ̃1(x) = e−Σ(x)ũ2(x) = e−Σ(x)

(

2

∫ x

a

eΣ(y)

σ2(y)
ℓ̃(y)dy + xa

)

,

ũ(a) = A,

taking into account (3.17) and the consideration below. We define u : [a, b] → R as
restriction of ũ and get

u(a) = ũ(a) = A,

u(b) = ũ(b) = ũ1(b) = u1(b) = B,

by (3.16). By Proposition 2.5, Definition 3.1 and Definition 3.4, u is a solution to the
boundary value problem (3.15).
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The following result provides uniqueness under some monotonicity conditions.

Proposition 3.9. Let
F : [a, b]× R

2 → R,

(x, y, z) 7→ F (x, y, z),

be a continous function fulfilling the following assumptions.

1. F is non-decreasing in y, i. e.

(F (x, y, z)− F (x, ỹ, z)) (y − ỹ) ≥ 0, ∀y, ỹ, z ∈ R, x ∈ [a, b]. (3.18)

2. F is globally Lipschitz (with respect to z).

Then, for any A,B ∈ R, the boundary value problem










Lu(x) = F
(

x, u, u′
)

,

u(a) = A,

u(b) = B,

(3.19)

has at most one C1-solution.

Proof. Let u and v in C1 ([a, b]) be two solutions of the boundary value problem (3.19)
and define

xa := u′(a),

ya := v′(a).

Then, by Lemma 3.8, we get

u(x) = A+

∫ x

a

dze−Σ(z)

(

2

∫ z

a

eΣ(y)

σ2(y)
F
(

y, u(y), u′(y)
)

dy + xa

)

, ∀x ∈ [a, b], (3.20a)

v(x) = A+

∫ x

a

dze−Σ(z)

(

2

∫ z

a

eΣ(y)

σ2(y)
F
(

y, v(y), v′(y)
)

dy + ya

)

, ∀x ∈ [a, b], (3.20b)

u(a) = v(a) = A, (3.20c)

u(b) = v(b) = B. (3.20d)

Indeed, we are interested in the C1-function

φ : [a, b] → R

φ = u− v,

which fulfills φ(a) = φ(b) = 0. We consider now the C2-function χ, given by

χ(a) = 0 (3.21a)

χ′(x) = eΣ(x)φ′(x), (3.21b)
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and we define
ψ := χ′φ.

By using (3.21b), the monotonicity and Lipschitz conditions, we get, on [a, b],

ψ′ = χ′′φ+ χ′φ′ ≥ χ′′φ = 2
eΣ

σ2
(

F
(

x, u, u′
)

− F
(

x, v, v′
))

(u− v) ≥

≥ 2
eΣ

σ2

(

F

(

x,
u+ v

2
, u′
)

− F

(

x,
u+ v

2
, v′
))

(u− v) ≥ −
2k

σ2
∣

∣χ′φ
∣

∣ ,

where k is the Lipschitz constant. So we get the differential inequality

ψ′(x) ≥ −
2k

σ2(x)
|ψ(x)| , x ∈ [a, b],

ψ(a) = 0,

ψ(b) = 0.

By some basic properties of differential inequalities (see e. g. [23, Preface]), we get

ψ(x) ≥ 0, x ∈ [a, b]. (3.22)

On the other hand,

∫ b

a

ψ(x)e−Σ(x)dx =

∫ b

a

φ′(x)φ(x)dx =
φ2(x)

2

∣

∣

∣

∣

b

a

= 0. (3.23)

Finally, combining (3.22) and (3.23) leads to

ψ(x) = 0, ∀x ∈ [a, b].

By definition of ψ it follows that (φ2)′ = 0 so that φ2 is constantly equal to φ2(0) = 0.

We consider now a classical boundary value problem of the type considered in (3.16).
Let f1, f2 : R3 → R be continuous and let a, b, A,B ∈ R, −∞ < a < b < ∞. We are
looking for solutions u1, u2 : [a, b] → R of the system

u′1(x) = f1(x, u1(x), u2(x)), (3.24a)

u′2(x) = f2(x, u1(x), u2(x)), (3.24b)

u1(a) = A, (3.24c)

u1(b) = B. (3.24d)

Theorem 2.1.1 in [3] states the following.

Theorem 3.10. Let I = (α, β], −∞ ≤ α < β < ∞, and I0 = (α, β). Assume the
following.
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i) For every (x, y) ∈ I0 ×R z 7→ f1(x, y, z) is an increasing function. Moreover we
suppose

lim
z→±∞

f1(x, y, z) = ±∞,

uniformly on compact sets in I0 × R.

ii) All the local solutions defined on a subinterval of I of (3.24a) and (3.24b) extend
to a solution on the whole interval I.

iii) There exists at most one solution of (3.24), for all a = a0, b = b0 ∈ I0 and all
A = A0, B = B0 ∈ R.

Then there exists exactly one solution of (3.24) if a ∈ I0 and b ∈ I.

Previous theorem has an important consequence at the level of existence and unique-
ness of boundary value problems.

Corollary 3.11. Let F : [a, b]×R
2 → R, (x, y, z) 7→ F (x, y, z) be a continuous function.

We suppose the following.

i) y 7→ F (x, y, 0) has linear growth uniformly with respect to x.

ii) F fulfills the monotonicity condition (3.18).

iii) F is globally Lipschitz in z.

Then there exists exactly one solution to the boundary value problem










Lu(x) = F (x, u, u′),

u(a) = A

u(b) = B.

(3.25)

Proof. Uniqueness follows immediately from Proposition 3.9. To show existence, we
make use of Theorem 3.10. Let α < a and β > b. We extend F continuously on the
entire R

3 by introducing a new function F̃ in the following way:

F̃ (x, y, z) :=











F (a, y, z), x < a,

F (x, y, z), a ≤ x ≤ b,

F (b, y, z), x > b.

(3.26)

F fulfills the assumptions of Lipschitz-continuity and monotonicity, and so does F̃ . At
this point we can show the existence of a unique solution u1, u2 : [a, b] → R of the system

u′1(x) = eΣ(x)u2(x),

u′2(x) = 2
eΣ(x)

σ2(x)
F̃
(

x, u1(x), e
−Σ(x)u2(x)

)

,

u1(a) = A,

u1(b) = B.

(3.27)
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That coincides with (3.24) setting

f1(x, y, z) = eΣ(x)z,

f2(x, y, z) = 2
eΣ(x)

σ2(x)
F̃
(

x, y, ze−Σ(x)
)

.

As the mentioned existence will be a consequence of Theorem 3.10, we check the validity
of its assumptions. Clearly, i) is fulfilled. Furthermore, by assumption, F̃ : R

3 →
R is continuous and has linear growth in the second and third variable. Therefore
assumption ii) is fulfilled too. Indeed, by Peano theorem, we can continue (to the left and
to the right) locally any solution of (3.27) to a possibly exploding solution. The linear
growth condition and Gronwall’s lemma imply that no solution explodes. Moreover,
Assumption iii) of Theorem 3.10 holds. In fact, since F̃ fulfills the monotonicity condition
(3.18) and is globally Lipschitz in z, uniqueness follows from Proposition 3.9. Finally,
by Lemma 3.8, u = u1 is a solution of (3.25).

The proposition below shows existence and uniqueness in the Lipschitz case without
the monotonicity condition.

Proposition 3.12. Let F : [0, 1] × R
2 → R, (x, y, z) 7→ F (x, y, z) be bounded and

globally Lipschitz with respect to (y, z). Then there exists a solution of the boundary
value problem











Lu(x) = F
(

x, u, u′
)

,

u(0) = A,

u(1) = B,

for any A,B ∈ R.

Proof. We extend F to F̃ in the way of (3.26) with a = 0 and b = 1. Moreover, we define
a real function Φ : R → R in the following way: for x0 = A and x1 ∈ R we denote the
solution of (3.8) by ux1 . Its existence follows from Proposition 3.6 since F̃ is Lipschitz
with respect to (y, z). Now we set Φ(x1) = ux1(1). Since Σ, F and σ are continuous, Φ
can shown to be continuous as well. We leave this to the reader. By (3.9), we get then
the following relation:

Φ(x1)− x0 =

∫ 1

0
dxe−Σ(x)

(

2

∫ x

0

eΣ(y)

σ2(y)
F
(

y, ux1(y), (ux1)′ (y)
)

dy + x1

)

. (3.28)

Since F is bounded,
lim

x1→∞
Φ(x1) = ∞ = − lim

x1→−∞
Φ(x1). (3.29)

Consequently, by mean value theorem, for each B ∈ R, there is an x1 so that Φ(x1) =
B.
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Remark 3.13. If F is not bounded, one cannot ensure existence in general. To give
an example, we set L = d2

dx2 and F (x, y, z) = −π2y. Then the corresponding boundary
value problem











u′′ = −π2u,

u(0) = 0,

u(1) = 1,

has no solution.

Proposition 3.14. Let a = 0, b = 1, and F : [0, 1]× R× R → R, (x, y, z) 7→ F (x, y, z)
be globally Lipschitz with respect to (y, z) and Lipschitz-constant k, fulfilling

k <
1

supx∈[0,1]
∫ 1
0 dy (|K(x, y)|+ |∂xK(x, y)|)

, (3.30)

where K was defined in (3.3c). Then, (3.14) has a unique solution for any A,B ∈ R.

Proof. We consider the map T : C1([0, 1]) → C1([0, 1]) defined by

Th(x) = f(x) +

∫ 1

0
K(x, y)F (y, h(y), h′(y))dy,

with f is given by (3.3b). Taking into account Definition 3.7 and Proposition 3.2, (3.14)
is well-posed if and only if T has a fixed point. We show the latter assertion. C1([0, 1])
is a Banach space equipped with the norm

‖h‖ = sup
x∈[0,1]

(

|h(x)|+
∣

∣h′(x)
∣

∣

)

.

To show that T admits a unique fixed point, we will show that T is a contraction with
respect to ‖ · ‖. Let u, v ∈ C1([0, 1]). We get

|(Tu− Tv)(x)| =

∣

∣

∣

∣

∫ 1

0
K(x, y)

(

F
(

y, u(y), u′(y)
)

− F
(

y, v(y), v′(y)
))

dy

∣

∣

∣

∣

≤

∫ 1

0
dy |K(x, y)| k

(

|u(y)− v(y)|+
∣

∣u′(y)− v′(y)
∣

∣

)

≤

∫ 1

0
dy |K(x, y)| k‖u− v‖

(3.31)

and

∣

∣(Tu− Tv)′ (x)
∣

∣ =

∣

∣

∣

∣

∫ 1

0
∂xK(x, y)

(

F
(

y, u(y), u′(y)
)

− F
(

y, v(y), v′(y)
))

dy

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ 1

0
dy∂xK(x, y)k

(

|u(y)− v(y)|+
∣

∣u′(y)− v′(y)
∣

∣

)

dy

∣

∣

∣

∣

≤

∫ 1

0
dy |∂xK(x, y)| k‖u− v‖.

(3.32)
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Summing up (3.31) and (3.32) and taking the supremum over x gives

‖Tu− Tv‖ ≤ sup
x∈[0,1]

∫ 1

0
dy (|K(x, y)|+ |∂xK(x, y)|) k‖u− y‖.

It follows, that T is a contraction if k fulfills (3.30).

4 Exit time of the solution to the forward martingale problem

We are interested in the nature of the first exit time τ from the interval [0, 1] of a solution
X = Xx to the martingale problem with respect to L and initial condition x ∈ [0, 1]. So
we define τ as

τ :=

{

inf
{

t ≥ 0
∣

∣Xt /∈ [0, 1]
}

:
{

t ≥ 0
∣

∣Xt /∈ [0, 1]
}

6= ∅
∞ : otherwise.

Proposition 4.1. τ has finite expectation. In particular τ is finite almost surely.

Proof. We consider Γ : [0, 1] → R as the unique solution of

LΓ = −1

Γ(0) = Γ(1) = 0,

in the sense of Definition 3.1, and we consider the associated function Γ̃ ∈ DL. Since
X is a solution to the martingale problem with respect to L and initial condition x, the
process

Nt = Γ̃(Xt)− Γ̃(x)−

∫ t

0
LΓ̃(Xr)dr,

is a local martingale. By Proposition 2.15 we have Nt =
∫ t

0 Γ̃
′(Xs)dM

X
s , which, by

Remark 2.14, implies that

[N ]t =

∫ t

0
σ2(Xs)Γ̃

′(Xs)
2ds.

Now, let (τn) be the family of stopping times defined as

τn := inf

{

t ≥ 0

∣

∣

∣

∣

∫ t

0
σ2(Xs)Γ̃

′(Xs)
2ds ≥ n

}

with the assumption that inf (∅) = ∞.
The stopped processes N τn are clearly square integrable martingales. By Doob’s

stopping theorem for martingales, the processes (N τn
t∧τ )t≥0 are again martingales. Con-

sequently,

E

(

Γ̃ (Xτn∧t∧τ )− Γ̃(x)−

∫ τn∧t∧τ

0

(

LΓ̃
)

(Xr)dr

)

= 0.
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Since LΓ̃ restricted to [0, 1] equals −1, the previous expression gives

E
(

Γ̃ (Xτn∧t∧τ )− Γ̃(x)
)

+ E (τn ∧ t ∧ τ) = 0.

Now we take the limit n→ ∞, and we can use the theorems of monotone and dominated
convergence, since

∣

∣

∣
Γ̃ (Xτn∧t∧τ )

∣

∣

∣
≤ sup

x∈[0,1]
|Γ(x)| .

This gives, for every x ∈ [0, 1],

E (Γ (Xt∧τ ))− Γ(x) + E (t ∧ τ) = 0. (4.1)

Finally, we let t→ ∞, we then get

E (τ) = Γ(x)− E (Γ (Xτ )) = Γ(x),

by the same arguments as those used taking n→ ∞ above.

As byproduct of the proof of Proposition 4.1 we get the following.

Proposition 4.2. The expectation of the exit time τ is exactly Γ(x), where Γ is the
unique solution of

LΓ = −1

Γ(0) = Γ(1) = 0.

5 Martingale driven BSDEs with Random Terminal Time

5.1 Notion of solution

The present section does not aim at the greatest generality, which could be the object
of future research. We consider the case of one-dimensional BSDEs driven by square
integrable martingales with continuous predictable bracket.
Backward SDEs driven by martingales were investigated by several authors, see e. g.

[6], [8], see also [11], [7] and [9] for recent developments. We are interested in such a
BSDE with terminal condition at random time. This is motivated by the fact that the
forward SDE (martingale problem) only admits weak solutions, therefore the reference
filtration will only be the canonical one related to the solution and not the one associated
with the underlying Brownian motion. We consider the following data.

i) An a. s. finite stopping time τ .

ii) An F-local martingale (Mt)t≥0 with an F-predictable continuous quadratic vari-
ation process 〈M〉. We suppose moreover that M τ is an F-square integrable
martingale, and we suppose the existence of a deterministic increasing function
ρ : R+ → R+ with ρ(0) = 0 and

〈M τ 〉t ≤ ρ(t), ∀t ≥ 0.
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iii) A terminal condition ξ ∈ L2 (Ω,Fτ , P ;R).

iv) A coefficient f : Ω× [0, T ]× R
2 → R, such that the process f(·, t, y, z), t ≥ 0, is

predictable for every y, z.

Our BSDE is the following.

Yt = ξ −

∫ ∞

t

1{τ≥s}ZsdMs +

∫ ∞

t

1{τ≥s}f (ω, s, Ys, Zs) d 〈M〉s − (Oτ −Ot∧τ ) . (5.1)

Without restriction of generality we suppose Zt = 0 if t > τ and Ot = Oτ for t ≥ τ .

Definition 5.1. Let (Y, Z,O) be a triple of processes with the following properties.

i) Y is càdlàg F-adapted.

ii) Z is F-predictable such that E
(∫ τ

0 Z
2
sd 〈M〉s

)

<∞.

iii) O is a square integrable martingale such that O0 = 0 and E
(

O2
τ

)

<∞. Further-
more, O is strongly orthogonal to M , i. e. 〈M,O〉 = 0.

iv) Zt = 0 if t > τ and Ot = Oτ for t ≥ τ .

Such a triplet (Y, Z,O) is called solution of the BSDE (f, τ, ξ) if it fulfills (5.1).

Remark 5.2. i) If t ≥ τ in (5.1) we get Yt = ξ = Yτ , so in particular Yt = Yτ , t ≥
τ .

ii) Indeed we will always suppose that M =M τ so that (5.1) can be rewritten as

Yt = ξ −

∫ ∞

t

ZsdMs +

∫ ∞

t

f (ω, s, Ys, Zs) d 〈M〉s − (Oτ −Ot∧τ ) . (5.2)

When M is a Brownian motion, this was treated in [10] from which we inherit and
adopt very close notations.

5.2 Uniqueness of Solutions

Theorem 5.3. Let a, b, κ ∈ R and set γ = b2 − 2a. We suppose the following.

i) (f (ω, s, y1, z)− f (ω, s, y2, z)) (y1 − y2) ≤ −a |y1 − y2|
2, for every ω ∈ Ω, s ∈

[0, T ], y1, y2, z ∈ R.

ii) |f (ω, s, y, z1)− f (ω, s, y, z2)| ≤ b |z1 − z2|, for every ω ∈ Ω, s ∈ [0, T ], y ∈ R.

iii) |f(ω, s, y, z)− f(ω, s, 0, 0)| ≤ κ (|y|+ κ′) + b|z|, where κ′ ∈ {1, 0}.

iv) E
(∫ τ

0 e
θ〈M〉

t

(

f(t, 0, 0)2 + κ′
)

d 〈M〉t
)

<∞ for every θ < γ.

Let ξ ∈ L2 (Ω,Fτ ). Then the BSDE (f, τ, ξ) admits at most one solution (Y, Z,O),
such that

E

(

Y 2
0 +

∫ τ

0
eγ〈M〉

t(Y 2
t + Z2

t )d 〈M〉t + eγ〈M〉
td 〈O〉t

)

<∞. (5.3)
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Remark 5.4. 1. In the proof of Theorem 5.3 that we develop below, we omit the
dependence of f on ω in order to simplify the notations.

2. If we suppose F0 to be the trivial σ-field, then Y 2
0 can be deleted in (5.3).

Before the proof of Theorem 5.3, we start with a technical lemma, which is the gen-
eralization of Proposition 4.3 in [10].

Lemma 5.5. Suppose the validity of hypotheses i), ii) and iii) of Theorem 5.3, and let
(Y, Z,O) be a solution of BSDE (f, τ, ξ) such that for some θ,

E

(

Y 2
0 +

∫ τ

0
eθ〈M〉

s

(

|Ys|
2 + |Zs|

2 + f2(s, 0, 0) + κ′
)

d 〈M〉s +

∫ τ

0
eθ〈M〉

sd 〈O〉s

)

<∞.

(5.4)
Then

E

(

sup
s≤τ

eθ〈M〉
s |Ys|

2

)

<∞, (5.5)

and

Nt =

∫ t∧τ

0
eθ〈M〉

sYs− (ZsdMs + dOs) =

∫ t

0
eθ〈M〉

sYs− (ZsdMs + dOs) (5.6)

is a uniformly integrable martingale.

Proof. Since Y solves the BSDE, by integration by parts we get

e
θ

2
〈M〉

t∧τYt∧τ = Y0 +

∫ t∧τ

0
e

θ

2
〈M〉

s (ZsdMs + dOs)−

−

∫ t∧τ

0
e

θ

2
〈M〉

sf (s, Ys, Zs) d 〈M〉s +
θ

2

∫ t∧τ

0
e

θ

2
〈M〉

sYsd 〈M〉s . (5.7)

By Assumption ii) of Section 5.1, 〈M〉 is continuous. Consequently,

[

e
θ

2
〈M〉Y

]

t∧τ
=
[

N θ
]

t∧τ
, (5.8)

where

N θ
t :=

∫ t

0
e

θ

2
〈M〉

s (ZsdMs + dOs) . (5.9)

Remark 5.6. From (5.4) it follows that

E

(∫ τ

0
eθ〈M〉

s

(

Z2
sd 〈M〉s + d 〈O〉s

)

)

<∞.

Consequently, N θ is a square integrable martingale. So, by the proof of Proposition 4.50
in [16], there is a uniformly integrable martingale Mθ, so that

[

N θ
]

=
〈

N θ
〉

+Mθ.
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We continue with the proof of Lemma 5.5 by using Itô’s formula and (5.7) getting

eθ〈M〉
t∧τY 2

t∧τ − Y 2
0 =

(

e
θ

2
〈M〉

t∧τYt∧τ

)2
− Y 2

0 =

= 2

∫ t∧τ

0
e

θ

2
〈M〉

sYs−d
(

e
θ

2
〈M〉

sYs

)

+
[

e
θ

2
〈M〉Y

]

t∧τ
=

= 2

∫ t∧τ

0
eθ〈M〉

sYs− (ZsdMs + dOs)−

− 2

∫ t∧τ

0
eθ〈M〉

sYsf (s, Ys, Zs) d 〈M〉s+

+ 2
θ

2

∫ t∧τ

0
eθ〈M〉

sY 2
s d 〈M〉s +

[

N θ
]

t∧τ
,

(5.10)

where in the latter equality we have taken into account (5.8). Since 〈M〉 is continuous
we have been allowed to replace Ys− with Ys in the two lines above. By use of Cauchy-
Schwarz, the inequality 2αβ ≤ α2 + β2 and assumption iii) of Theorem 5.3, there is a
constant c, depending on κ, b and θ, such that

eθ〈M〉
t∧τY 2

t∧τ − Y 2
0 ≤ c

∫ t∧τ

0
eθ〈M〉

s

(

Y 2
s + Z2

s +

+ f2(s, 0, 0) + κ′
)

d 〈M〉s + 2

∫ t∧τ

0
e

θ

2
〈M〉

sYs−dN
θ
s +

[

N θ
]

t∧τ
. (5.11)

Now we continue with a localization of (5.11). For that we define for each n ∈ N a
stopping time τ(n) by

τ(n) := inf {t|Yt ≥ n} ∧ n.

Replacing t with t ∧ τ(n) in (5.11) gives

eθ〈M〉
t∧τ(n)∧τY 2

t∧τ(n)∧τ − Y 2
0 ≤ c

∫ t∧τ(n)∧τ

0
eθ〈M〉

s

(

Y 2
s + Z2

s +

+ f2(s, 0, 0) + κ′
)

d 〈M〉s + 2

∫ t∧τ(n)∧τ

0
e

θ

2
〈M〉

sYs−dN
θ
s +

[

N θ
]

t∧τ(n)∧τ
. (5.12)

We take the supremum over t in the left-hand side and afterwards the expectation.
Reminding that

Nt =

∫ t

0
e

θ

2
〈M〉

sYs−dN
θ
s , (5.13)

this yields

E

(

sup
t≤τ(n)∧τ

(

eθ〈M〉
t∧τ(n)∧τY 2

t∧τ(n)∧τ

)

)

≤

≤ E
(

Y 2
0

)

+ cE (D) + 2E

(

sup
t≥0

∣

∣

∣N
τ(n)∧τ
t

∣

∣

∣

)

+ E

(

[

N θ
]

τ(n)∧τ

)

, (5.14)
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where

D =

∫ τ

0
eθ〈M〉

s

(

Y 2
s + Z2

s + f2(s, 0, 0) + κ′
)

d 〈M〉s , (5.15)

which has finite expectation because of (5.4). By Remark 5.6,

E

(

[

N θ
]

τ(n)∧τ

)

= E

(

〈

N θ
〉

τ(n)∧τ

)

=

= E

(

∫ τ(n)∧τ

0
eθ〈M〉

s

(

Z2
sd 〈M〉s + d 〈O〉s

)

)

.

(5.16)

We show now that N τ(n)∧τ is a square integrable martingale. This happens because by
(5.6) we have

E
(

〈N〉τ(n)∧τ

)

= E

(

∫ τ(n)∧τ

0
e2θ〈M〉

sY 2
s

(

Z2
sd 〈M〉s + d 〈O〉s

)

)

≤

≤ n2E

(∫ τ∧n

0
e2θ〈M〉

s

(

Z2
sd 〈M〉s + d 〈O〉s

)

)

≤

≤ n2eθρ(n)E

(∫ τ

0
eθ〈M〉

s

(

Z2
sd 〈M〉s + d 〈O〉s

)

)

<∞,

taking into account Assumption ii) at the beginning of Section 5.1. So by Proposition
4.50 of [16], there is a uniformly integrable martingale M̃ so that

[

N τ(n)∧τ
]

=
〈

N τ(n)∧τ
〉

+ M̃.

Due to the Burkholder-Davis-Gundy (BDG) inequalities (see e. g. [18, Theorem IV.48]),
there is a universal constant c0 such that

E

(

sup
t≥0

∣

∣

∣
N

τ(n)∧τ
t

∣

∣

∣

)

≤ c0E

(

[N,N ]
1
2

τ(n)∧τ

)

. (5.17)

We denote by N the local martingale

Nt =

∫ t

0
ZsdMs +Ot.

By Theorem 29 in Chapter II of [18] the right-hand side of (5.17) equals

c0E





(

∫ τ(n)∧τ

0
eθ〈M〉

seθ〈M〉
sY 2

s d [N ]s

) 1
2



 ≤

≤ c0E





(

sup
t≤τ(n)∧τ

(

eθ〈M〉
tY 2

t

)

) 1
2
(

∫ τ(n)∧τ

0
eθ〈M〉

sd [N ]s

) 1
2



 . (5.18)
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By 2αβ ≤ α2

c3
+ c3β

2, for any c3 > 0, the right-hand side of (5.18) is bounded by

c0
2c3

E

(

sup
t≤τ(n)∧τ

(

eθ〈M〉
tY 2

t

)

)

+
c0c3
2
E

(

∫ τ(n)∧τ

0
eθ〈M〉

sd[N ]s

)

=

=
c0
2c3

E

(

sup
t≤τ(n)∧τ

(

eθ〈M〉
tY 2

t

)

)

+
c0c3
2
E

(

[

N θ
]

τ(n)∧τ

)

, (5.19)

also using (5.9) and [18], Theorem 29, chapter II. This gives, by (5.17), (5.16) and (5.18),

E

(

sup
t≥0

∣

∣

∣N
τ(n)∧τ
t

∣

∣

∣

)

≤
c0
2c3

E

(

sup
t≤τ(n)∧τ

(

eθ〈M〉
tY 2

t

)

)

+

+
c0c3
2
E

(

∫ τ(n)∧τ

0
eθ〈M〉

s

(

Z2
sd 〈M〉s + d 〈O〉s

)

)

. (5.20)

Plugging (5.16) and (5.20) in (5.14) gives

E

(

sup
t≤τ(n)∧τ

(

eθ〈M〉
tY 2

t

)

)

≤

≤ E
(

Y 2
0

)

+ E (D) (1 + c+ c0c3) +
c0
c3
E

(

sup
t≤τ(n)∧τ

(

eθ〈M〉
tY 2

t

)

)

.

Choosing c3 = 2c0, we get

E

(

sup
t≤τ(n)∧τ

(

eθ〈M〉
tY 2

t

)

)

≤ 2E
(

Y 2
0

)

+ 2E (D)
(

1 + c+ 2c20
)

.

By monotone convergence theorem, letting n→ ∞, we get

E

(

sup
t≤τ

(

eθ〈M〉
tY 2

t

)

)

≤ 2E
(

Y 2
0

)

+ 2E(D)
(

1 + c+ 2c20
)

,

which shows (5.5).
We go on with the second part, i. e. the fact that N defined in (5.6) is a uniformly

integrable martingale. By BDG and Cauchy-Schwarz inequalities,

E

(

sup
t≥0

|Nt|

)

≤ c0E
(

[N,N ]
1
2

)

≤ c0E

(

(∫ ·

0
e2θ〈M〉

sY 2
s−d[N ]s

) 1
2

)

≤

≤ c0E

(

(

sup
t≤τ

eθ〈M〉
tY 2

t

) 1
2
(∫ τ

0
eθ〈M〉

sd[N ]s

) 1
2

)

≤

≤ c0

(

E

(

sup
t≤τ

eθ〈M〉
tY 2

t

)) 1
2
(

E

(∫ τ

0
eθ〈M〉

sd[N ]s

)) 1
2

=

= c0

(

E

(

sup
t≤τ

eθ〈M〉
tY 2

t

)) 1
2 (

E
([

N θ
]

τ

)) 1
2
. (5.21)
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By Remark 5.6

E
([

N θ
]

τ

)

= E
(〈

N θ
〉

τ

)

= E

(∫ τ

0
eθ〈M〉

s

(

Z2
sd 〈M〉s + d 〈O〉s

)

)

<∞.

This shows that N is a uniformly integrable martingale and finally, Lemma 5.5 is estab-
lished.

Proof of Theorem 5.3. We start with some a priori bounds. Let θ < γ. By assump-
tions i) and ii), for any ε ≥ 0, using 2αβ ≤ α2

1+ε
+ (1 + ε)β2, we can easily show that

2 (y − ȳ) (f(s, y, z)− f (s, ȳ, z̄)) ≤ −2a |y − ȳ|2 + b2(1 + ε) |y − ȳ|2 +
|z − z̄|2

1 + ε
. (5.22)

Let
(

Y i, Zi, Oi
)

, i = 1, 2 be two solutions fulfilling (5.3) of the statement. By similar
arguments as (5.10) and in the lines before, for Y = Y 1−Y 2, Z = Z1−Z2, O = O1−O2

we have

eθ〈M〉
τY 2

τ − eθ〈M〉
t∧τY 2

t∧τ =

∫ τ

t∧τ
θeθ〈M〉

sY 2
s d 〈M〉s + 2

∫ τ

t∧τ
e

θ

2
〈M〉

sYs−dN
θ
s−

− 2

∫ τ

t∧τ
eθ〈M〉

sYs
(

f
(

s, Y 1
s , Z

1
s

)

− f
(

s, Y 2
s , Z

2
s

))

d 〈M〉s +
[

N θ
]

τ
−
[

N θ
]

t∧τ
, (5.23)

where N θ was defined in (5.9). By (5.22) we get

2

∫ τ

t∧τ
eθ〈M〉

sYs
(

f
(

s, Y 1
s , Z

1
s

)

− f
(

s, Y 2
s , Z

2
s

))

d 〈M〉s ≤

≤

∫ τ

t∧τ
eθ〈M〉

s

(

b2(1 + ε)− 2a
)

Y 2
s d 〈M〉s +

∫ τ

t∧τ
eθ〈M〉

s

|Zs|
2

1 + ε
d 〈M〉s . (5.24)

(Y i, Zi, Oi), i = 1, 2 fulfills (5.4) by (5.3) and Assumption iv) of Theorem 5.3. Conse-
quently (Y, Z,O) also fulfills (5.4). By Remark 5.6, since θ < γ, N θ is a square integrable
martingale and

[

N θ
]

=
〈

N θ
〉

+Mθ,

where Mθ is a uniformly integrable martingale. So

E
([

N θ
]

τ
−
[

N θ
]

t∧τ

)

= E

(∫ τ

t∧τ
eθ〈M〉

s

(

Z2
sd 〈M〉s + d 〈O〉s

)

)

. (5.25)

(5.23), (5.24) and the fact that Yτ = 0, gives

eθ〈M〉
t∧τY 2

t∧τ +
[

N θ
]

τ
−
[

N θ
]

t∧τ
+ 2

∫ τ

t∧τ
e

θ

2
〈M〉

sYs−dN
θ
s ≤

≤

∫ τ

t∧τ
eθ〈M〉

s

(

b2(1 + ε)− 2a− θ
)

Y 2
s d 〈M〉s +

∫ τ

t∧τ
eθ〈M〉

s

Z2
s

1 + ε
d 〈M〉s . (5.26)
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By Lemma 5.5, since θ < γ,

(∫ t∧τ

0
e

θ

2
〈M〉

sYs−dN
θ
s

)

t≥0

is a uniformly integrable martingale. So its expectation is zero. By previous considera-
tions, (5.24) and (5.25), we take the expectation in (5.26) to get

E

(

eθ〈M〉
t∧τY 2

t∧τ +

∫ τ

t∧τ
eθ〈M〉

s

(

εZ2
s

1 + ε
d 〈M〉s + d 〈O〉s

))

≤

≤ E

(∫ τ

t∧τ
eθ〈M〉

s

(

b2(1 + ε)− 2a− θ
)

Y 2
s d 〈M〉s

)

. (5.27)

Since θ < γ = b2 − 2a, then b2(1 + ε)− 2a− θ > 0, ∀ε ≥ 0. We let ε→ 0 so that (5.27)
becomes

E

(

eθ〈M〉
t∧τY 2

t∧τ +

∫ τ

t∧τ
eθ〈M〉

sd 〈O〉s

)

≤

≤ E

(∫ τ

t∧τ
eθ〈M〉

s

(

b2 − 2a− θ
)

Y 2
s d 〈M〉s

)

. (5.28)

Equation (5.28) holds for every θ < γ. We let θ ր γ. By monotone convergence theorem
we get

E

(

eγ〈M〉
t∧τY 2

t∧τ +

∫ τ

t∧τ
eγ〈M〉

sd 〈O〉s

)

≤ 0. (5.29)

Equation (5.29) finally shows that Y ≡ 0 and 〈O〉 ≡ 0. Coming back to (5.27), it easily
follows that Z ≡ 0 d 〈M〉 a. s.

Remark 5.7. Adapting the results of [10] Proposition 3.3, it is possible to state and
prove also an existence theorem. We have decided not to do it for two reasons.

1. The techniques can be adapted from the proof of Proposition 3.3 by the same
techniques as in the proof of Theorem 5.3.

2. For our applications to the probabilistic representation of semilinear PDEs, we
already provide an existence theorem through the resolution of the PDE.

6 Solutions for BSDEs via solutions of elliptic PDEs

In this final section we will make the assumption of Section 2.1 which guarantee existence
and uniqueness in law of the martingale problem with respect to L. In particular we will
suppose that σ > 0, Σ as defined in (2.5) exists and Assumption (2.13) for the function
v defined in (2.12). Let x0 ∈ R.
Let X solving a martingale problem MP(σ, β;x0) (2.2). In this section we are inter-

ested in a BSDE with terminal condition at the random time τ , which is the exit time of
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X from interval [0, 1]. Since X solves the martingale problem, by Remark 2.14, X is an
F-Dirichlet process with F-local martingale component MX . M will be MX equipped
with the canonical filtration FX of X.
Let F : R3 → R continuous. We set

f(ω, t, y, z) = −F (Xt(ω), y, z), t ≥ 0, y, z ∈ R. (6.1)

We define
τ = inf { t ≥ 0|Xt /∈ I} . (6.2)

Let u0, u1 ∈ R and set ξ = 1{Xτ=0}u0 + 1{Xτ=1}u1, so

ξ = u(Xτ ), (6.3)

for a function u : [0, 1] → R such that u(0) = u0, u(1) = u1.
Our method allows to construct solutions of BSDE(f, ξ, τ) even in cases that f does

not fulfill necessarily Lipschitz or monotonicity assumptions.
We need to check that we are in the framework of the hypotheses at the beginning of

Section 5.1.

• i) is verified because of Proposition 4.1.

• ii) holds because

〈M τ 〉t =

∫ t∧τ

0
σ2(Xs)ds ≤ ρ(t),

where ρ(t) = t supx∈[0,1] σ
2(x).

• iii) is fulfilled since ξ is a bounded random variable, of course Fτ -measurable.

• iv) is verified, by construction and because X is a continuous adapted process.

The aim of this section is to show that the C1 type solutions of elliptic PDEs in the
sense of Definition 3.7 produce solutions to a BSDE of the type defined in Definition 5.1.

Remark 6.1. 1. FX is generally not a Brownian filtration, so that the theory of [10]
for existence and uniqueness of BSDEs with random terminal time cannot directly
be applied.

2. Even for a simple equation of the type

dXt = σ0(Xt)dWt,

where σ0 is only a continuous bounded non-degenerate function, FX is not neces-
sarily equal to FW even though W is an FX -Brownian motion.

3. In general, the solution of a semilinear PDE of the type (3.14) can associated with
the solution of a BSDE driven by the martingale MX which is the martingale
component of the FX -Dirichlet process X.
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4. In Section 5 we have investigated BSDEs driven by (even not continuous) martin-
gales, which has an independent interest.

Theorem 6.2. Let I = [0, 1] and u : I → R be a C1-solution of

Lu (x) = F
(

x, u (x) , u′ (x)
)

u (0) = u0

u (1) = u1.

(6.4)

Let x0 ∈ [0, 1]. Let (Xt) = Xx0 be a solution of MP(σ, β;x) on some probability space
(Ω,G, P ). We set, for t ∈ [0, T ],

Yt = u(Xτ
t )

Zt = u′(Xt)σ(Xt)1[0,τ ](t)

Ot = 0.

Then (Y, Z,O) is a solution on (Ω,G, P ) to the BSDE (f, ξ, τ), where f, τ, ξ were defined
in (6.1), (6.2), (6.3).

Proof. We remind that, by Proposition 4.1, τ <∞ almost surely.
By Definitions 3.7 and 3.1, there exists ũ ∈ DL which extends u to the real line and

Lũ = ℓ̃ and ℓ̃ : R → R is a continuous function extending ℓ(x) = F (x, u(x), u′(x)). By
definition of martingale problem, we have

M ũ
t := ũ(Xt)− ũ(X0)−

∫ t

0
Lũ(Xs)ds, t ∈ [0, T ], (6.5)

is an FX -local martingale. We define

WX
t :=

∫ t

0

dMX
s

σ(Xs)
,

where MX is the martingale part of the Dirichlet process X. Taking into account
Remark 2.7, we have

[

WX
]

t
=
〈

WX
〉

t
=

∫ t

0

1

σ2(Xs)
d
〈

MX
〉

s
= t, ∀t ≥ 0. (6.6)

By Lévy’s characterization theorem WX is an
(

FX
)

-Brownian motion. By Kunita-
Watanabe theorem, there is an

(

FX
)

-predictable process (Rt) such that

∫ T

0
R2

sds <∞, a.s.,

and an
(

FX
)

-local martingale (Ot) such that
〈

WX , O
〉

= 0 and

M ũ
t =

∫ t

0
RsdW

X
s +Ot. (6.7)
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Since WX and O are continuous we get

[

WX , O
]

=
〈

WX , O
〉

= 0. (6.8)

By Remark 2.6 b) and Remark 2.14 (ii) we get

[ũ(X), X]t =

∫ t

0
ũ′(Xs)d [X,X]s =

∫ t

0
ũ′(Xs)σ

2(Xs)ds.

By Remark 2.7 ũ(X) is an FX -Dirichlet process, By Remark 2.6c), by (6.7) and (6.8),
we have

[ũ(X), X)]t =
[

M ũ, X
]

t
=
[

M ũ,WX
]

t
=

∫ t

0
Rsds.

By differentiation we get
Rt = ũ′(Xt)σ(Xt) dt dP a. e.

By Remark 2.7 Ỹt = ũ(Xt) is an
(

FX
)

-Dirichlet process with martingale component
∫ t

0 u
′(Xs)dM

X
s . On the other hand, by (6.5) and (6.7),

(

Ỹt

)

is an
(

FX
)

-semimartingale

with martingale component

∫ ·

0
ũ′(Xs)σ(Xs)dW

X +O =

∫ ·

0
ũ′(Xs)dM

X
s +O.

By uniqueness of decomposition of Dirichlet processes O vanishes. We set now

Yt = ũ(Xt∧τ )

Zt = ∂xũ(Xt)σ(Xt)1[0,τ ](t).

(6.5) gives

ũ(Xt)− ũ(X0) =

∫ t

0
Lũ(Xs)ds+

∫ t

0
ũ′(Xs)dM

X
s .

Stopping previous identity at time τ , for every T > 0, implies

YT∧τ − Yt∧τ =

∫ T∧τ

t∧τ
Lu(Xs)ds+

∫ T∧τ

t∧τ
u′(Xs)σ(Xs)dW

X
s .

Letting T → ∞, since τ <∞ a. s. gives

Yt = Yτ −

∫ τ

t∧τ
Lu(Xs)ds−

∫ τ

t∧τ
ZsdW

X
s .

Since u solves equation (6.4), (Y, Z,O) solves BSDE (f, τ, ξ) with O ≡ 0. In particular
the conditions of Definition 5.1 are fulfilled. In fact i), iii) and iv) are trivial. ii) holds
since ∂xu is bounded on [0, 1].

Remark 6.3. Since u is bounded, that we also have E
(

supt≤τ Y
2
t

)

<∞.
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By Theorem 6.2, Corollary 3.11 and the Propositions 3.12 and 3.14, we conclude the
following.

Corollary 6.4. Let F : [0, 1]× R
2 → R be continuous. Suppose that at least one of the

following assumptions holds.

a) F (x, y, z) has linear growth in y, it is non-decreasing in y (i. e. (3.18) is fulfilled)
and it is globally Lipschitz in z.

b) F (x, y, z) is bounded and globally Lipschitz with respect to (y, z).

c) F (x, y, z) is globally Lipschitz with respect to (y, z) and Lipschitz-constant k, ful-
filling

k <
1

supx∈[0,1]
∫ 1
0 dy (|K(x, y)|+ |∂xK(x, y)|)

,

K being the kernel introduced in (3.3c). Then there is a solution (Y, Z,O) of BSDE
(f, τ, ξ), given by (5.1), where f, τ, ξ were defined in (6.1), (6.2), (6.3).

Remark 6.5. The solution is provided in the statement of Theorem 6.2.

Corollary 6.6. Let F : [0, 1]× R
2 → R with the following assumptions.

i) F has linear growth in y uniformly in x,

ii) (F (x, y1, z)− F (x, y2, z)) (y1 − y2) ≥ a (y1 − y2)
2 for some a,

iii) F is globally Lipschitz in z with constant b.

iv) γ = b2 − 2a ≤ 0.

Then the solution (Y, Z,O) provided by Corollary 6.4 is unique in the class of

E

(∫ τ

0
eγ〈M〉

sY 2
s d 〈M〉s +

∫ τ

0
eγ〈M〉

sZ2
sd 〈M〉s +

∫ τ

0
eγ〈M〉

sd 〈O〉s

)

<∞. (6.9)

Remark 6.7. a) Condition iv) implies that a < 0. In particular F is increasing in
y.

b) The validity of hypotheses i), ii), iii) imply Hypothesis a) in Corollary 6.4.

c) The solution provided by Corollary 6.4 fulfills (6.9) since γ ≤ 0, u, u′ are bounded
and O ≡ 0.

d) If γ > 0, then the solutions provided by Corollary 6.4 do not necessarily fulfill
(6.9). Indeed, even when X is a Brownian motion, τ has no exponential moments.
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Remark 6.8. When γ is strictly positive, i.e. Assumption iv) is not fulfilled, then
BSDE(f, τ, ξ) is generally not well-posed in the class of (Y, Z,O) fulfilling (5.3) with
γ = 0, i.e.

E

(

Y 2
0 +

∫ τ

0
(Y 2

t + Z2
t )d 〈M〉t + d 〈O〉t

)

<∞. (6.10)

This can be illustrated by the example below.
Consider F (x, y, z) = −π2y. The PDE

{

u′′(x) = F (x, u, u′(x))

u(0) = u(1) = 0
(6.11)

is not well-posed, since u(x) = γ sin(πx), γ ∈ R, provide a class of solutions of (6.11),
and so by Theorem 6.2 provides a family of solutions of BSDE (f, τ, ξ), ξ ≡ 0, f, τ, ξ
being defined in (6.1), (6.2), (6.3). We observe that a = −π2, so b2 − 2a > 0.
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