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Abstract

In this paper, we present a general framework for solving stochastic functional differen-
tial equations in infinite dimensions in the sense of martingale solutions, which can be
applied to a large class of SPDE with finite delays, e.g. d-dimensional stochastic frac-
tional Navier-Stokes equations with delays, d-dimensional stochastic reaction-diffusion
equations with delays, d-dimensional stochastic porous media equations with delays.
Moreover, under local monotonicity conditions for the nonlinear term we obtain the
existence and uniqueness of strong solutions to SPDE with delays.
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1 Introduction

Recently stochastic partial differential equations (SPDE) with delays have been paid a lot
of attention (see e.g [BBT14], [BDT12], [CR04] [TLT02], [J10] and the references therein).
There is a large amount of literature on the mathematical theory and on applications of
stochastic functional (or delay) differential equations (see e.g. [M84], [RS08], [HMS09] and
the reference therein). When one wants to model some evolution phenomena arising in
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physics, biology, engineering, etc., some hereditary characteristics such as after-effect, time-
lag or time-delay can appear in the variables. Typical examples arise in the mathematical
modelling of materials with termal memory, biochemical reactions, population models, etc.
(see, for instance, [R96], [W96] and references cited therein). So, one is naturally lead to use
functional differential equations which take into account the history of the system. However,
in most cases, randomness affects the model , so that the system should be modelled by a
stochastic functional equation.

There are a lot of studies about existence and uniqueness of probabilistically strong
solutions for various classes of nonlinear SPDEs with time delays in a variational framework
( see e.g. [CGR02], [CLT00], [J10]): Let

V ⊂ H0
∼= H∗

0 ⊂ V ∗

be a Gelfand triple and

dx(t) = [A1(t, x(t)) + A2(t, xt)]dt+B(t, xt)dW (t), t ∈ [0,∞),

x(s) = ψ(s), s ∈ [−h, 0],
(1.1)

where W is a cylindrical Wiener process on a separable Hilbert space U , xt(s) := x(t + s)
and A1 : R+ × V → V ∗ is B(R+) ⊗ B(V )-measurable, A2 : R+ × C([−h, 0];H0) → V ∗ is
B(R+) ⊗ B(C([−h, 0];H0))-measurable, B : R+ × C([−h, 0];H0) → L2(U ;H0) is B(R+) ⊗
B(C([−h, 0];H0))-measurable. In the above references the authors suppose that A1, i.e.
the nonlinear term without delay, satisfies monotonicity conditions, whereas A2, i.e. the
nonlinear term with delay, satisfies Lipschitz conditions with respect to a suitable norm.
If we consider more general equations with nonlinear terms not satisfying monotonicity
conditions such as Navier-Stokes equations and more interesting delay terms like A2(t, x) =∫ 0

−h
f(x(t+ r))dr · ∇x(t− r1(t)) +∇b(x(t− r2(t))), we cannot apply the above result. Here

r1, r2 : R → [0, h] and f is a bounded Lipschitz continuous function on R, b is a linear growth
and continuous function on R

To obtain the existence and uniqueness of solutions for the equations containing more
general nonlinear terms and more interesting delays, we tried to use the monotonicity trick
and assumed that the nonlinear terms satisfy local monotonicity conditions as Wei Liu and
the first named author did in [LR10]. However, when we apply this method, the local
monotonicity condition should be: There exist locally bounded measurable functions ρ :
V → [0,+∞) and ρ1 : C([−h, 0];H0) → [0,+∞) such that
(1.2)

V ∗⟨A1(t, ξ(t))− A1(t, η(t)) + A2(t, ξt)− A2(t, ηt), ξ(t)− η(t)⟩V + ∥B(t, ξt)−B(t, ηt)∥22
≤[ρ(η(t)) + ρ1(ηt)]∥ξ(t)− η(t)∥2H0

,

for ξ, η ∈ C([−h,∞), H0) ∩ Lp
loc([−h,∞);V ) with p ≥ 1. Here the middle norm is the H0-

norm, not the norm for the paths like C([−h, 0], H0)-norm, which is not natural and cannot
even cover the Lipschitz case mentioned above.

Instead, in this paper we take a different approach. First, we provide a general framework
to prove existence of solutions (see Theorems 2.1 and 2.2) under very weak assumptions
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(see (H1), (H2), (H3)) in the sense of D. W. Stroock and S.R.S. Varadhan’s martingale
problem (see [SV79]), which can be applied to a large class of SPDEs with delays, such as
stochastic fractional Navier-Stokes equations with delay in any dimensions (see Section 5.1),
stochastic reaction-diffusion equations with delay (see Section 5.2) and stochastic porous
media equations with delay in any dimension (see Section 5.3). We also emphasize that for
our existence results, we only assume continuity, coercivity and growth conditions written
in terms of integrals over time, which enables us to cover a large number of equations with
interesting delays (see Remark 2.2 (ii)). Second, under local monotonicity conditions for
the nonlinear terms we obtain pathwise uniqueness for SPDEs with delays, which implies
existence and uniqueness of (probabilistically) strong solution by the Yamada-Watanabe
Theorem. Here we also emphasize that our local monotonicity condition (H4) can cover the
examples we mentioned above. It is clearly weaker than the Lipschitz condition and (1.2),
since instead of the middle norm H0 we use a norm for the paths and the local term in the
local monotonicity condition may depend on the paths of two solutions.

This paper is organized as follows: In Section 2, we introduce the general framework
and state the main results on existence of martingale solutions. In Section 3, we give the
proofs of the main results from Section 2. In Section 4 we concentrate on the uniqueness
of probabilistically strong solutions. In Section 5, we apply the main results from Sections
2 and 4 to stochastic fractional Navier-Stokes equations with delays in any dimensions (see
Section 5.1), to stochastic reaction-diffusion equations with delays (see Section 5.2) and to
stochastic porous media equations with delays in any dimensions (see Section 5.3).

2 Existence of Martingale solutions

Let (H, ⟨·, ·⟩H) be a separable Hilbert space and X, V,Y be three separable and reflexive
Banach spaces with norms ∥ · ∥X, ∥ · ∥V and ∥ · ∥Y such that

X ⊂ V ⊂ Y ⊂ H

continuously and densely. By Kuratowski’s theorem we have that X ∈ B(V), V ∈ B(Y),
Y ∈ B(H) and B(Y) = B(H) ∩ Y,B(X) = B(V ) ∩ X,B(V ) = B(Y) ∩ V .

If we identify the dual of H with itself, we get

X ⊂ H ≃ H∗ ⊂ X∗

continuously and densely.
If X∗⟨·, ·⟩X denotes the dualization between X and its dual space X∗, then it follows that

X∗⟨u, v⟩X = ⟨u, v⟩H, v ∈ X, u ∈ H∗.

Moreover, we assume that X is a Hilbert space and X ⊂ H compactly.
Let

{e1, e2, · · · } ⊂ X
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be an orthonormal basis of H and let Hn := span{e1, · · · , en} and E := span{e1, e2, · · · } is
dense in X∗. Let Πn : X∗ → Hn be defined by

Πny :=
n∑

i=1

X∗⟨y, ei⟩Xei, y ∈ X∗.

Since X ⊂ H is compact and hence so is H(≃ H∗) ⊂ X∗, we can choose {en : n ∈ N} ⊂ X in
such a way that

∥Πny∥X∗ ≤ ∥y∥X∗, ∀n ∈ N, y ∈ X∗,

(cf the proof of [AR89, Proposition 3.5]).

Remark 2.1. X∗ will be the space where the SPDE will initially hold. H will eventually be
the state space for the solutions of the equation. Y and V are spaces to identify integrability
properties of the solutions. In applications we choose Y = H (see examples in Sections 5.1
and 5.2) or Y = V (see the example in Section 5.3).

Let {Wt}t≥0 be a cylindrical Wiener process on a separable Hilbert space U w.r.t a
complete filtered probability space (Ω,F0, (F0

t ),P) and (L2(U ;H), ∥ · ∥L2(U,H)) denotes the
space of all Hilbert-Schmidt operators from U to H. Let

C := C([−h, 0];X∗) ∩ L∞(−h, 0;H),

with norm

∥ψ∥C := sup
−h≤s≤0

∥ψ(s)∥H, ψ ∈ C,

and

C∞ := C([−h,∞);X∗) ∩ L∞
loc([−h,∞);H),

equipped with the corresponding metric,

Lp
Y := Lp([−h, 0];Y), Lp

V := Lp([−h, 0];V ) and Lp
H := Lp([−h, 0];H), p > 1.

Since H ⊂ X∗ is compact, it is easy to see that

C = Cbw([−h, 0];H),

where the latter denotes the set of all norm-bounded weakly continuous functions from
[−h, 0] to H. Then obviously C with the above norm is Polish.

Given a path y ∈ C([−h,+∞);X∗) and t ≥ 0, we associate with it a path yt ∈
C([−h, 0];X∗) by setting yt(s) = y(t+ s), s ∈ [−h, 0].

We consider the following stochastic evolution equation

dx(t) = [A1(t, x(t)) + A2(t, xt)]dt+B(t, xt)dW (t), t ∈ [0,∞),

x(s) = ψ(s), s ∈ [−h, 0],
(2.1)
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where A1 : R+×V → X∗ is B(R+)⊗B(V )-measurable, A2 : R+× (Lp
V ∩C) → X∗ is B(R+)⊗

B(Lp
V ∩C)-measurable, B : R+× (Lp

V ∩C) → L2(U ;H) is B(R+)⊗B(Lp
V ∩C)-measurable for

some p ≥ 2. Now we fix p and suppose that for every u ∈ S1 := Lp
loc([−h,∞);V ) ∩ C∞,

A1(·, u(·)) ∈ L1
loc([0,∞);X∗), A2(·, u·) ∈ L1

loc([0,∞);X∗).

Let us now state the precise conditions on the coefficients of equation (2.1):
First we introduce the following function class Uq, q ≥ 1: A lower semi-continuous func-

tion N : Y → [0,∞] belongs to Uq if N (y) = 0 implies y = 0, and

N (cy) ≤ cqN (y), ∀c ≥ 0, y ∈ Y,

and

{y ∈ Y : N (y) ≤ 1} is compact in Y.

Then we can extend N to a B(X∗)/B([0,∞])-measurable function on X∗ by setting
N (x) = ∞, x ∈ X∗\Y.

Suppose that there exists N1 ∈ Up for p ≥ 2 as above such that

(2.2) ∥x∥pV . N1(x), ∀x ∈ Y,

where ∥x∥V := +∞ if x ∈ Y\V , and the following holds: ∥ΠnA1(·, ·)∥X∗ is locally bounded
on R+ × Hn, ∥ΠnA2(·, ·)∥X∗ , ∥ΠnB(·, ·)∥L2(U,H) are bounded on balls in R+ × C([−h, 0);Hn)
and for every t > 0, ΠnA1(t, ·) is continuous on Hn, ΠnA2(t, ·),ΠnB(t, ·) are continuous on
C([−h, 0];Hn) and N1(x) ≤ Cn∥x∥pHn

for x ∈ Hn.
(H1) (Weakened demicontinuity) If {un, u, n ∈ N} ⊂ C∞ with un converging to u in

S0 := Lp
loc([−h,∞);Y) ∩ C([−h,∞);X∗) and weakly in Lp

loc([−h,∞);V ), then for every
R > 0 and cut-off function χR ∈ C∞

0 (R) satisfying

χR(x) =

{
1 for |x| ≤ R,
0 for |x| > 2R,

we have for all v ∈ X, t ≥ 0,

(2.3) lim
n→∞

∫ t

0
X∗⟨A1(s, u

n(s)), v⟩X χR(∥un(s)∥H)ds =
∫ t

0
X∗⟨A1(s, u(s)), v⟩X χR(∥u(s)∥H)ds,

(2.4) lim
n→∞

∫ t

0
X∗⟨A2(s, u

n
s ), v⟩Xds =

∫ t

0
X∗⟨A2(s, us), v⟩Xds,

and

lim
n→∞

∫ t

0

∥B∗(s, uns )(v)−B∗(s, us)(v)∥Uds = 0,

where B∗ denotes the adjoint operator of B.
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(H2) (Coercivity) There exist locally bounded measurable functions λ1, c1 : R 7→ R+ such
that for u ∈ C([−h,∞);X), t ≥ 0 with

∫ t

0
N1(u(s))ds <∞∫ t

0
X∗⟨A1(s, u(s)) + A2(s, us), u(s)⟩Xds

≤− 1

2

∫ t

0

N1(u(s))ds+ c1(t)

∫ 0

−h

N1(u(s))ds+ λ1(t)

∫ t

0

(1 + ∥us∥2C)ds.

(H3) (Growth condition) There exist locally bounded measurable functions λ2, λ3, λ4 :
R 7→ R+ and γ′ ≥ γ > 1 such that for all u ∈ S1, t ≥ 0∫ t

0

∥A1(s, u(s))∥γX∗ds ≤ λ2(t)[

∫ t

0

N1(u(s))ds]
γ′
+ λ3(t)(1 + sup

s∈[0,t]
∥u(s)∥γ

′

H ),

∫ t

0

∥A2(s, us)∥γX∗ds ≤ λ2(t)[

∫ t

−h

N1(u(s))ds]
γ′
+ λ3(t)(1 + sup

s∈[−h,t]

∥u(s)∥γ
′

H ),

∥B(t, ut)∥2L2(U ;H) ≤ λ4(t)(1 + ∥ut∥2C).

Remark 2.2. (i) If yn strongly converges to y in Y, for every v ∈ X, s ∈ R+,

lim
n→∞ X∗⟨A1(s, y

n), v⟩X = X∗⟨A1(s, y), v⟩X,

and
N1(·) ≍ ∥ · ∥pV ,

(2.3) in (H1) holds by (H3) and the dominated convergence theorem. In this case (2.4)
is equivalent to the following demicontinuity: if un converge to u in S0 and weakly in
Lp
loc([−h,∞);V ), A2(·, un· ) converge to A2(·, u·) weakly in L1

loc([0,∞);X∗).
(ii) Since we consider stochastic differential equations with delay, the coercivity conditions

and growth conditions we assume are written in terms of integrals over time, more precisely
in the dualization between L1

loc([−h,∞);X∗) and L∞
loc([−h,∞);X), which is of course weaker

than the general coercivity conditions and growth conditions without time integrals. For
(H2) and (H3) it is very natural to use

∫ 0

−h
N1(u(s))ds to control the growth of the nonlinear

term, which also enables us to cover more interesting nonlinear terms with delay (see Section
5).

Let Ω0 := C([−h,∞);X∗) with the metric

ρ(x, y) :=
∞∑

m=1

1

2m
( sup
s∈[−h,m]

∥x(s)− y(s)∥X∗ ∧ 1).

Define the canonical process x : Ω0 → X∗ as x(t, ω) := ω(t). For t ≥ 0 define the σ-algebra
by

Ft := σ{x(r) : r ≤ t}.

and −h ≤ t ≤ 0, Ft := F0, F := ∨t≥0Ft.
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Definition 2.1. (Martingale Solution) Given an initial value ψ ∈ C, a probability measure
P ∈ P(Ω0) (=all probability measure on Ω0), is called a martingale solution of Eq. (1.1) if

(M1) P (x(t) = ψ(t),−h ≤ t ≤ 0) = 1 and for every n ∈ N

P

{
x ∈ Ω0 :

∫ n

0

∥A1(s, x(s)) + A2(s, xs)∥X∗ds+

∫ n

0

∥B(s, xs)∥2L2(U ;H)ds < +∞
}

= 1;

(M2) for every l ∈ E the process

Ml(t, x) := X∗⟨x(t), l⟩X −
∫ t

0
X∗⟨A1(s, x(s)) + A2(s, xs), l⟩Xds, t ≥ 0,

is a continuous square integrable (Ft)-martingale with respect to P , whose quadratic varia-
tion process is given by

⟨Ml⟩(t, x) :=
∫ t

0

∥B∗(s, xs)(l)∥2Uds, t ≥ 0.

Remark 2.3. By Kuratowski’s theorem Lp
V ∈ B(C) and B(Lp

V ∩C) = B(C)∩Lp
V . Furthermore,

A2 : R+ × (Lp
V ∩ C) → X∗ is B(R+) ⊗ B(Lp

V ∩ C)-measurable and the map x → xs is Fs-
measurable, which imply that for s ≥ 0, A2(s, xs) is (Fs)-adapted.

Now we can state the first main result.

Theorem 2.1. Suppose (H1)− (H3) hold for some p ≥ 2. Then for every ψ ∈ C satisfying

(2.5) N (ψ) := sup
n

∫ 0

−h

N1(Πnψ(t))dt+

∫ 0

−h

N1(ψ(t))dt <∞,

(2.1) has a martingale solution P such that for every q ∈ N, T > 0

EP

(
sup

t∈[−h,T ]

∥x(t)∥2qH + [

∫ T

0

N1(x(t))dt]
q

)
<∞.

Remark 2.4. (i) Condition (2.5) ensures the crucial energy estimate in Lemma 3.1 below by
the coercivity condition (H2). If N1(Πnψ) ≤ N1(ψ) for ψ ∈ V , which holds in the examples

in Sections 5.1, 5.2, then condition (2.5) is satisfied if
∫ 0

−h
N1(ψ(t))dt < ∞. In general,

condition (2.5) holds if ψ is smooth enough.
(ii) Condition (2.5) can be dropped if c1 = 0 in (H2) and (2.4) in (H1) holds if un converge

to u in Lp
loc([−h,∞);H) ∩ C([−h,∞);X∗).

Definition 2.2. We say that there exists a weak solution of equation (2.1) if given every
ψ ∈ C ∩ Lp

V , there exists a stochastic basis (Ω,F , {Ft}t∈[−h,∞), P ), a cylindrical Wiener
process W on the space U and a progressively measurable process X : [−h,∞) × Ω → H,
such that for P -a.e. ω ∈ Ω,

X(·, ω) ∈ S1,
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and such that P -a.s.
X(t) = ψ(t),−h ≤ t ≤ 0,

and

X∗⟨X(t), l⟩X −
∫ t

0
X∗⟨A1(s,X(s)) + A2(s,Xs), l⟩Xds = ⟨X(0), l⟩H + ⟨

∫ t

0

B(s,Xs)dW (s), l⟩H,

for t ∈ [0,∞) and all l ∈ X.

Moreover, by [On05, Theorem 2] and Theorem 2.1 we obtain the following results.

Theorem 2.2. Suppose (H1) − (H3) hold for some p ≥ 2. Then for every ψ ∈ C with
N (ψ) < ∞, (2.1) has a weak solution X : [−h,∞) × Ω → H such that for every q ∈ N,
T > 0

EP

(
sup

t∈[−h,T ]

∥X(t)∥2qH + [

∫ T

−h

N1(X(t))dt]q

)
<∞.

3 Proof of Theorem 2.1

3.1 Finite dimensional case

Now we prove Theorem 2.1 for U = H = X = Rd. In this case

Ω0 = C([−h,∞);Rd),

C := C([−h, 0];Rd),

A(t, u) := A1(t, u(0)) + A2(t, u), ∀u ∈ C.

Define for n ∈ N, x ∈ C([−h,∞);Rd)

An(t, x) := 1{t≤n}χn( sup
−h≤s≤t

∥x(s)∥Rd)A(t, xt), Bn(t, x) := 1{t≤n}χn( sup
−h≤s≤t

∥x(s)∥Rd)B(t, xt),

where 0 ≤ χn ∈ C(R+;R) is a decreasing cutoff function with

χn(r) =

{
1 for r ≤ n,
0 for r > 2n,

Then for n ∈ N, An(·, x(·)) and Bn(·, x(·)) are bounded and progressively measurable and
for each t > 0 An(t, x(·)), Bn(t, x(·)) are continuous on Ω0 and Ft-measurable. By a similar
argument as in the proof of [SV79, Theorem 6.1.6] we obtain that there exists a probability
measure Pn ∈ P(Ω0) such that Pn(x(t) = ψ(t),−h ≤ t ≤ 0) = 1 and

Mn(t, x) := x(t)− x(0)−
∫ t

0

An(s, x)ds, x ∈ Ω0,
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is a continuous square integrable (Ft)-martingale with square variation process

⟨Mn⟩(t, x) =
∫ t

0

(Bn)∗(s, x)Bn(s, x)ds, t ≥ 0.

Although in [SV79, Theorem 6.1.6] it requires that the initial value takes values in Rd, we
can still use a similar argument as in the proof to obtain the above results even if the initial
value belongs to C.

By Itô’s formula and (H2), (H3) we have
(3.1)

∥x(t)∥2H

=∥x(0)∥2H +

∫ t

0

(
2⟨An(s, x), x(s)⟩+ ∥Bn(s, x)∥2L2(Rd;Rd)

)
ds+ 2

∫ t

0

x(s)dMn(s)

=∥x(0)∥2H +

∫ t

0

(
1{s≤n}χn( sup

−h≤r≤s
∥x(r)∥Rd)[2⟨A(s, xs), x(s)⟩+ ∥Bn(s, xs)∥2L2(Rd;Rd)]

)
ds

+ 2

∫ t

0

x(s)dMn(s)

=∥x(0)∥2H + χn( sup
−h≤r≤0

∥x(r)∥Rd)

∫ c

0

(
[2⟨A(s, xs), x(s)⟩+ ∥B(s, xs)∥2L2(Rd;Rd)]

)
ds

+ 2

∫ t

0

x(s)dMn(s)

≤∥ψ(0)∥2H + C

∫ t

0

(
∥xs∥2C + 1

)
ds+ 2

∫ t

0

x(s)dMn(s) + CN (ψ),

where 0 ≤ c ≤ t ∧ n, C is a generic constant (independent of n) and we used mean value
theorem for integrations in the third equality. By the BDG(=Burkholder-Davis-Gundy)
inequality, (H3) and Young’s inequality we have

EPn( sup
r∈[0,t]

∥x(r)∥2H)

≤∥ψ(0)∥2H + CEPn

∫ t

0

(
∥xs∥2C + 1

)
ds+ 2EPn( sup

r∈[0,t]
|
∫ r

0

x(s)dMn(s)|)

+ CN (ψ)

≤∥ψ(0)∥2H + CEPn

∫ t

0

(
∥xs∥2C + 1

)
ds+ CN (ψ)

+ CEPn( sup
r∈[0,t]

∥x(r)∥2H
∫ t

0

∥B(s, xs)∥2L2(Rd;Rd)ds)
1/2

≤∥ψ(0)∥2H + CEPn

∫ t

0

(
∥xs∥2C + 1

)
ds+ CN (ψ) +

1

2
EPn sup

r∈[0,t]
∥x(r)∥2H.

Hence by Gronwall’s inequality we obtain for every T > 0

EPn( sup
r∈[−h,T ]

∥x(r)∥2H) ≤ CT (1 + sup
t∈[−h,0]

∥ψ(t)∥2H +N (ψ)).
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Similar as in the proof of Lemma 3.1 below we obtain that for q ∈ N there exists CT > 0
such that for all n ∈ N we have

(3.2) EPn sup
t∈[−h,T ]

∥x(t)∥2qH ≤ CT

(
∥ψ∥2qC + 1 +N (ψ)q

)
,

which combining with our assumption for N1 in finite dimensional case also implies that

EPn

∫ T

−h

N1(x(t))dt ≤ CT

(
∥ψ∥2pC + 1 +N (ψ)p

)
,

Moreover, as in infinite dimensional case (cf. Section 3.2 below) we have for some β ∈
(0, 1)

sup
n

EPn

(
sup

s̸=t∈[0,T ]

|x(t)− x(s)|
|t− s|β

)
≤ C,

which implies that for every T > 0 (Pn)n∈N is tight on C([−h,+∞);Rd). Selecting a subse-
quence if necessary, we may assume that Pn weakly converges to some probability measure
P on C([−h,+∞);Rd). By Skorohod’s representation theorem, there exists a probability
space (Ω̃, F̃ , P̃ ) and C([−h,+∞);Rd)-valued random variables x̃n and x̃ such that

(i) x̃n has the law Pn for each n ∈ N;
(ii) x̃n → x̃ in C([−h,+∞);Rd), P̃ -a.e., and x̃ has the law P .
By similar arguments as in the infinite dimensional case, we have obtained the existence

of martingale solutions in the finite dimensional case.

3.2 Infinite dimensional case

The first step of the proof is mainly based on the Galerkin approximation.
Obviously, Πn|H is just the orthogonal projection onto Hn in H and we have

X∗⟨ΠnA1(t, y), v⟩X = ⟨ΠnA1(t, y), v⟩H = X∗⟨A1(t, y), v⟩X, y ∈ Y, v ∈ Hn,

and

X∗⟨ΠnA2(t, u), v⟩X = ⟨ΠnA2(t, u), v⟩H = X∗⟨A2(t, u), v⟩X, u ∈ C ∩ Lp
Y, v ∈ Hn.

Let {g1, g2, · · · } be an orthonormal basis of U and

W
(n)
t :=

n∑
i=1

⟨Wt, gi⟩Ugi = Π̃nWt,

where Π̃n is the orthogonal projection onto span{g1, · · · , gn} in U .
Now for each finite n ∈ N we consider the following stochastic equation on Hn

dx(n)(t) = [ΠnA1(t, x
(n)(t)) + ΠnA2(t, x

(n)
t )]dt+ΠnB(t, x

(n)
t )dW (n)(t),

x(n)(t) = Πnψ(t), t ∈ [−h, 0].
(3.3)
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Set
Ω(n) := C([−h,∞);Hn)

and
F (n)

t := B(C([−h, t];Hn)),F (n) := ∨t≥0F (n)
t .

By the solvability of SDDE in the finite dimensional case (see Section 3.1) we know that
(3.3) has a martingale solution, i.e. there exists a probability measure Pn ∈ P(Ω(n)) such
that (M1) and (M2) hold.

In order to construct the solution of (2.1), we need some a priori estimates for x(n).

Lemma 3.1. Under the assumptions in Theorem 2.1, for every q ∈ N, T > 0 there exists
CT > 0 such that for all n ∈ N we have

(3.4) EPn sup
t∈[−h,T ]

∥x(n)(t)∥2qH + EPn(

∫ T

−h

N1(x
(n)(t))dt)q ≤ CT

(
∥ψ∥2qC + 1 +N (ψ)q

)
.

Proof. First by (M2) the following equality holds in Hn

x(n)(t) = Πnx(0) +

∫ t

0

[ΠnA1(r, x
(n)(r)) + ΠnA2(r, x

(n)
r )]dr +Mn(t, x

(n)), t ∈ [0, T ],

where Mn(t, x
(n)), t ∈ [0, T ], is a continuous Hn-valued (F (n)

t )-martingale with respect to Pn,
whose covariation operator process in Hn is given by

⟨Mn⟩(t, x(n)) =
∫ t

0

ΠnB(s, x(n)s )Π̃nΠ̃
∗
nB

∗(s, x(n)s )Π∗
nds, t ≥ 0.

By Itô’s formula and (H2) we have

∥x(n)(t)∥2H =∥x(n)(0)∥2H +

∫ t

0

[2⟨A1(s, x
(n)(s)) + A2(s, x

(n)
s ), x(n)(s)⟩Hn

+ ∥ΠnB(s, x(n)s )Π̃n∥2L2(U,H)]ds+M (1)
n (t, x(n))

≤∥ψ(0)∥2H +

∫ t

0

(
−N1(x

(n)(s)) + (2λ1(t) + λ4(t))(1 + ∥x(n)s ∥2C)
)
ds+ 2c1(t)N (ψ)

+M (1)
n (t, x(n)), t ∈ [0, T ],

(3.5)

where M
(1)
n (t, x(n)) is a continuous real-valued (F (n)

t )-martingale with respect to Pn, whose
quadratic variation process is given by

⟨M (1)
n ⟩(t, x(n)) := 4

∫ t

0

∥(ΠnB(s, x(n)s )Π̃n)
∗x(n)(s)∥2Uds, t ≥ 0.

By (3.5) we obtain that for t ∈ [0, T ]

∥x(n)(t)∥2H+
∫ t

0

N1(x
(n)(s))ds ≤ ∥ψ(0)∥2H+(2λ1(t)+λ4(t))

∫ t

0

(1+∥x(n)s ∥2C)ds+2c1(t)N (ψ)+M (1)
n (t, x(n)),
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which implies that for every q ∈ N
(3.6)

∥x(n)(t)∥2qH +[

∫ t

0

N1(x
(n)(s))ds]q ≤ C∥ψ(0)∥2qH +C

∫ t

0

(1+∥x(n)s ∥2qC )ds+CN (ψ)q+C|M (1)
n (t, x(n))|q,

where C depends on q and t and independent of n. For every given n ∈ N we define the
stopping time

τ
(n)
R = inf{t ∈ [0, T ] : ∥x(n)(t)∥H > R} ∧ T, R > 0.

Here inf ∅ := ∞. It is obvious that

lim
R→∞

τ
(n)
R = T, n ∈ N.

By the B-D-G inequality we have

EPn sup
r∈[0,t∧τ (n)

R ]

∣∣M (1)
n (r, x(n))

∣∣q
≤C(q)EPn

(∫ t∧τ (n)
R

0

∥x(n)(s)∥2H∥B(s, x(n)s )∥2L2(U,H)ds

)q/2

≤C(q)EPn

(∫ t∧τ (n)
R

0

∥x(n)(s)∥2H
(
∥x(n)s ∥2C + 1

)
ds

)q/2

≤C(q)EPn

ε sup
s∈[0,t∧τ (n)

R ]

∥x(n)(s)∥2qH + Cε

(∫ t∧τ (n)
R

0

(∥x(n)s ∥2C + 1)ds

)q


≤εEPn sup
s∈[0,t∧τ (n)

R ]

∥x(n)(s)∥2qH + tq−1CεEPn

∫ t∧τ (n)
R

0

(
sup
r∈[0,s]

∥x(n)(r)∥2qH + 1

)
ds+ CT∥ψ∥2qC , t ∈ [0, T ],

(3.7)

where ε > 0 is a small constant and Cε comes from Young’s inequality and may change from
line to line.

Then by (3.6), (3.7) and Gronwall’s lemma we have

EPn sup
t∈[0,τ (n)

R ]

∥x(n)(t)∥2qH + EPn [

∫ τ
(n)
R

0

N1(x
(n)(s))ds]q ≤ C

(
∥ψ∥2qC + 1 +N (ψ)q

)
, n ≥ 1,

where C is a constant independent of n.
For R → ∞, (3.4) now follows from the monotone convergence theorem.

Proof of Theorem 2.1. Since Ω(n) = C([−h,∞);Hn) is a closed subset of Ω. We
extend Pn to a probability measure P̂n on (Ω,F) by setting

P̂n(A) := Pn(A ∩ Ωn), A ∈ F .
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We now show that (P̂n)n∈N is tight on

S := S0 ∩ Lp,w
loc ([−h,∞);V ),

where S0 := C([−h,∞),X∗) ∩ Lp
loc([−h,∞);Y) and Lp,w

loc ([−h,∞);V ) denotes the space
Lp
loc([−h,∞);V ) equipped with the weak topology.
By [GRZ09, Lemma 4.3], the reflexivity of space Lp(−h, T ;V ) for every T , the fact that

N (ψ) < ∞, and by Lemma 3.1 and (2.2) we only need to prove that for some β > 0 and
every T > 0

sup
n∈N

EP̂n

(
sup

s,t∈[0,T ],s ̸=t

∥x(t)− x(s)∥X∗

|t− s|β

)
= sup

n∈N
EPn

(
sup

s,t∈[0,T ],s ̸=t

∥x(n)(t)− x(n)(s)∥X∗

|t− s|β

)
<∞.

By (H3) and Lemma 3.1 we have

(3.8)

EPn

[
sup

s,t∈[0,T ],s ̸=t

(
∥
∫ t

s

ΠnA1(r, x
(n)(r)) + ΠnA2(r, x

(n)
r )dr∥γX∗/|t− s|γ−1

)]

≤CγEPn

[∫ T

0

∥ΠnA1(r, x
(n)(r))∥γX∗ + ∥ΠnA2(r, x

(n)
r )∥γX∗dr

]
≤CγEPn

[∫ T

0

∥A1(r, x
(n)(r))∥γX∗ + ∥A2(r, x

(n)
r )∥γX∗dr

]
≤CγEPn [

∫ T

0

N1(x
(n)(r))dr]γ

′
+ CγEPn( sup

r∈[−h,T ]

∥x(n)(r)∥γ
′

H + 1) + CγN (ψ)γ
′ ≤ CT,γ′ ,

and for every 0 ≤ s < t ≤ T and q ∈ N

EPn∥Mn(t, x
(n))−Mn(s, x

(n))∥2qH ≤CqEPn

(∫ t

s

∥B(r, xr)∥2L2(U ;H)dr

)q

≤Cq|t− s|q−1EPn

(∫ t

s

∥B(r, xr)∥2qL2(U ;H)dr

)
≤Cq|t− s|qEPn( sup

s∈[−h,T ]

∥x(s)∥2qH + 1)

≤Cq|t− s|q(∥ψ∥2qC +N (ψ)q + 1).

By Kolmogorov’s criterion, for every α ∈ (0, q−1
2q

) we get

EPn

(
sup

s,t∈[0,T ],s ̸=t

∥Mn(t, x
(n))−Mn(s, x

(n))∥2qH
|t− s|qα

)
≤ Cq(∥ψ∥2qC +N (ψ)q + 1).

Now we obtain that for some β > 0

sup
n∈N

EPn

(
sup

s,t∈[0,T ],s ̸=t

∥x(n)(t)− x(n)(s)∥X∗

|t− s|β

)
<∞,
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which as we mentioned above implies that (P̂n)n∈N is tight on S.
By Skorohod’s representation theorem in [J98], there exists a probability space (Ω̃, F̃ , P̃ )

and S-valued random variables x̃(n) and x̃ such that
(i) x̃(n) has the law P̂n for each n ∈ N;
(ii) x̃(n) → x̃ in S, P̃ -a.e., and x̃ has the law P . (Here selecting a subsequence if necessary.)
Then we have

P (x(t) = ψ(t),−h ≤ t ≤ 0) = P̃ (x̃(t) = ψ(t),−h ≤ t ≤ 0)

= lim
n→∞

P̃ (x̃(n)(t) = Πnψ(t),−h ≤ t ≤ 0) = lim
n→∞

P̂n(x(t) = Πnψ(t),−h ≤ t ≤ 0) = 1.

For every q ∈ N set

ξq(t, x) := sup
r∈[−h,t]

∥x(r)∥2qH +

(∫ t

0

N1(x(r))dr

)q

.

By Fatou’s lemma, Lemma 3.1 and the lower semi-continuity of ξq(t, x) with respect to x on
S, we have

EP (ξq(t, x)) =EP̃ [ξq(t, x̃)] ≤ lim inf
n→∞

EP̃ [ξq(t, x̃
(n))]

= lim inf
n→∞

EP̂n [ξq(t, x)]

≤C[∥ψ∥2qC + 1 +N (ψ)q].

Now we verify (M2) for P .
Fixing l ∈ E , we want to show Ml(t, x), t ≥ 0, in (M2) is a continuous (Ft)-martingale

with respect to P , whose square variation process is given by

⟨Ml⟩(t, x) =
∫ t

0

∥B∗(s, xs)(l)∥2Uds, t ≥ 0.

By Lemma 3.1 we have

(3.9) lim
n→∞

EP̃ |X∗⟨x̃(n)(t)− x̃(t), l⟩X| = 0.

Now for the nonlinear part, set for R > 0

G1
R(t, x) :=

∫ t

0
X∗⟨A1(s, x(s)), l⟩X · χR(∥x(s)∥H)ds,

where χR ∈ C∞
0 (R) is a cutoff function with χR(r) = 1 if |r| ≤ R and χR(r) = 0 if |r| > 2R.

By (H1) we obtain P̃ -a.s.

(3.10)

∫ t

0
X∗⟨A2(s, x̃

(n)
s ), l⟩Xds→

∫ t

0
X∗⟨A2(s, x̃s), l⟩Xds, n→ ∞,

and
G1

R(t, x̃
(n)) → G1

R(t, x̃), n→ ∞.
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Moreover, by (H3) and Lemma 3.1 we have

sup
n

EP̃

(∫ t

0

∥A1(s, x̃
(n)(s))∥γX∗ds

)
=sup

n
EPn

(∫ t

0

∥A1(s, x
(n)(s))∥γX∗ds

)
<∞,

and

sup
n

EP̃

(∫ t

0

∥A2(s, x̃
(n)
s )∥γX∗ds

)
=sup

n
EPn

(∫ t

0

∥A2(s, x
(n)
s )∥γX∗ds

)
<∞,

which implies that

lim
n→∞

EP̃ |G1
R(t, x̃

(n))−G1
R(t, x̃)| = 0,

and

(3.11) lim
n→∞

EP̃ |
∫ t

0

[X∗⟨A2(s, x̃
(n)
s ), l⟩X − X∗⟨A2(s, x̃s), l⟩X]ds| = 0.

Set

G(t, x) :=

∫ t

0
X∗⟨A1(s, x), l⟩Xds,

by (H3) and Lemma 3.1 we have

lim
R→∞

sup
n

EP̃ |G1
R(t, x̃

(n))−G(t, x̃(n))|

≤∥l∥X lim
R→∞

sup
n
[(EP̃

∫ t

0

∥A1(s, x̃
(n)(s))∥γX∗ds)1/γ(

∫ t

0

P̃ (∥x̃(n)(s)∥H ≥ R)ds)(γ−1)/γ]

≤∥l∥X lim
R→∞

sup
n
(EP̃

∫ t

0

∥A1(s, x̃
(n)(s))∥γX∗ds)1/γ(EP̃

∫ t

0

∥x̃(n)(s)∥γHds)
(γ−1)/γ/Rγ−1

=∥l∥X lim
R→∞

sup
n
(EPn

∫ t

0

∥A1(s, x
(n)(s))∥γX∗ds)1/γ(EPn

∫ t

0

∥x(n)(s)∥γHds)
(γ−1)/γ/Rγ−1 = 0,

and similarly

lim
R→∞

EP̃ |G1
R(t, x̃)−G(t, x̃)| = 0,

which imply that

(3.12) lim
n→∞

EP̃ |G(t, x̃(n))−G(t, x̃)| = 0.

On the other hand, by Lemma 3.1 and (H3) we have
(3.13)

lim
n→∞

EP̃ |
∫ t

0
X∗⟨ΠnA1(s, x̃

(n)(s)) + ΠnA2(s, x̃
(n)
s ), l⟩X − X∗⟨A1(s, x̃

(n)(s)) + A2(s, x̃
(n)
s ), l⟩Xds|

≤ lim
n→∞

EP̃ |
∫ t

0
X∗⟨A1(s, x̃

(n)(s)) + A2(s, x̃
(n)
s ), (Πn − I)l⟩Xds| = 0.
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Combining (3.9), (3.11), (3.12) and (3.13) we obtain that for t > 0

(3.14) lim
n→∞

EP̃ |⟨Mn(t, x̃
(n)), l⟩ −Ml(t, x̃)| = 0.

Let t > s ≥ 0 and g be every bounded and real valued Fs-measurable continuous function
on S. Using (3.14) we have

EP ((Ml(t, x)−Ml(s, x))g(x)) =EP̃ ((Ml(t, x̃)−Ml(s, x̃))g(x̃))

= lim
n→∞

EP̃ ((⟨Mn(t, x̃
(n)), l⟩ − ⟨Mn(s, x̃

(n)), l⟩)g(x̃(n)))

= lim
n→∞

EP̂n((⟨Mn(t, x), l⟩ − ⟨Mn(s, x), l⟩)g(x))

=0.

On the other hand by the B-D-G inequality (H3) and Lemma 3.1 we have

sup
n

EP̃ |⟨Mn(t, x̃
(n)), l⟩|2q ≤C sup

n
EP̃

(∫ t

0

∥B∗(s, x̃(n)s )(l)∥2Uds
)q

≤C sup
n

EP̃

(∫ t

0

∥B∗(s, x̃(n)s )(l)∥2qU ds

)
< +∞.

Then by (3.14) we obtain that for t ≥ 0

lim
n→∞

EP̃ |⟨Mn(t, x̃
(n)), l⟩ −Ml(t, x̃)|2 = 0,

and by (H1)

lim
n→∞

EP̃

(∫ t

0

∥(ΠnBΠ̃n)
∗(s, x̃(n)s )(l)−B∗(s, x̃s)(l)∥2Uds

)
= 0,

which imply that

EP

(
M2

l (t, x)−
∫ t

0

∥B∗(r, xr)(l)∥2Udr|Fs

)
=M2

l (s, x)−
∫ s

0

∥B∗(r, xr)(l)∥2Udr.

Now the result follows. �

4 Uniqueness of the solutions

Now we consider the pathwise uniqueness of the solutions. We introduce another Hilbert
space H0, which is the space where we obtain uniqueness of the solutions.

Let
V ⊂ H0

∼= H∗
0 ⊂ V ∗

be a Gelfand triple, i.e. (H0, ⟨·, ·⟩H0) is a separable Hilbert space, identified with its dual
space by the Riesz isomorphism, V is as in Section 2 and it is continuously and densely
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embedded into H0. If V ∗⟨·, ·⟩V denotes the dualization between V and its dual space V ∗, it
follows that

V ∗⟨u, v⟩V = ⟨u, v⟩H0 , u ∈ H0, v ∈ V.

Since X ⊂ V continuously we have that

V ∗ ⊂ X∗,

and there exists a bounded linear operator Λ : X → V such that

(4.1) V ∗⟨u,Λv⟩V = X∗⟨u, v⟩X, u ∈ V ∗, v ∈ X.

In fact, since X ⊂ V continuously, we have that for u ∈ H0 ⊂ V ∗ ⊂ X∗, v ∈ X

|X∗⟨u, v⟩X| ≤ ∥u∥X∗∥v∥X ≤ C∥u∥V ∗∥v∥X ≤ C∥u∥H0∥v∥X,

which implies that there exists some Λ0v ∈ H0 such that for u ∈ H0

⟨u,Λ0v⟩H0 = X∗⟨u, v⟩X,

hence v 7→ Λ0v is linear. Moreover since

|⟨u,Λ0v⟩H0 | = |X∗⟨u, v⟩X| ≤ C∥u∥V ∗ ,

by extension (4.1) follows.
Suppose that for p ≥ 2 as in Section 2, A1 : R+ × V → V ∗ is B(R+)⊗B(V )-measurable;

A2 : R+× (Lp
V ∩C) → V ∗ is B(R+)⊗B(Lp

V ∩C)-measurable; B : R+× (Lp
V ∩C) → L2(U ;H0)

is B(R+)⊗ B(Lp
V ∩ C)-measurable.

There exist locally bounded measurable functions c2, c3 : R → R+ and ρ1 : R+ × (C ∩
Lp
V ) → [0,+∞) such that for u, η ∈ S1, A1(·, u(·)), A2(·, u·) ∈ L1

loc([0,∞);V ∗), B(·, u·) ∈
L2
loc([0,∞);L2(U ;H0)) and every t ≥ 0:
(H4) (Local monotonicity)

2

∫ t

0
V ∗⟨A1(s, u(s)) + A2(s, us)− A1(s, η(s))− A2(s, ηs), u(s)− η(s)⟩V ds

≤
∫ t

0

[ρ1(s, ηs) + ρ1(s, us)]∥us − ηs∥2C([−h,0];H0)
ds+ c2(t)

∫ 0

−h

N1(u(s)− η(s))ds,

∫ t

0

∥B(s, us)−B(s, ηs)∥2L2(U ;H0)
ds

≤
∫ t

0

[ρ1(s, ηs) + ρ1(s, us)]∥us − ηs∥2C([−h,0];H0)
ds+ c2(t)

∫ 0

−h

N1(u(s)− η(s))ds,

and ∫ t

0

ρ1(s, ηs)ds ≤ c3(t)[

∫ t

−h

N1(η(s))ds]
q + c3(t)(1 + sup

s∈[−h,t]

∥η(s)∥2qH ),
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for some q ∈ N.
(H5) (Growth condition) There exist locally bounded measurable functions λ5, λ6 : R 7→

R+ such that for u ∈ S1, we have for every t ≥ 0,∫ t

0

[∥A1(s, u(s))∥
p

p−1

V ∗ +∥A2(s, us)∥
p

p−1

V ∗ ]ds ≤ λ5(t)[

∫ t

−h

N1(u(s))ds]
q+λ5(t)( sup

s∈[−h,t]

∥u(s)∥2qH +1),

∥B(t, ut)∥2L2(U ;H0)
≤ λ6(t)(1 + ∥ut∥2C),

for some q ∈ N.
By (H5) and Theorem 2.2 we obtain that

Theorem 4.1. Suppose (H1) − (H3), (H5) hold for some p ≥ 2. Then for every ψ ∈
C([−h, 0];H0)∩C with N (ψ) <∞, (2.1) has a weak solution X ∈ C([−h,∞);H0) such that
for every q ∈ N, T > 0

EP

(
sup

t∈[−h,T ]

∥X(t)∥2qH + [

∫ T

−h

N1(X(t))dt]q

)
<∞,

and

EP

(
sup

t∈[−h,T ]

∥X(t)∥2H0

)
≤ C.

Proof. By Theorem 2.2 we have that for every l ∈ X, t ∈ [0, T ]

X∗⟨X(t), l⟩X −
∫ t

0
X∗⟨A1(s,X(s)) + A2(s,Xs), l⟩Xds = ⟨X(0), l⟩H + ⟨

∫ t

0

B(s,Xs)dW (s), l⟩H.

By (H5) and Theorem 2.2 we know that for every T > 0

(4.2) EP

∫ T

0

[∥A1(s,X(s))∥
p

p−1

V ∗ + ∥A2(s,Xs)∥
p

p−1

V ∗ ]ds ≤ C,

(4.3) EP

∫ T

0

∥B(s,Xs)∥2L2(U ;H0)
ds ≤ C,

for some constant C. We define

X̄(t) := X(0) +

∫ t

0

[A1(s,X(s)) + A2(s,Xs)]ds+

∫ t

0

B(s,Xs)dW (s),

in V ∗. By (4.1) we obtain that for every l ∈ X, t ∈ [0, T ]

X∗⟨X̄(t), l⟩X −
∫ t

0
X∗⟨A1(s,X(s)) + A2(s,Xs), l⟩Xds = ⟨X(0), l⟩H + ⟨

∫ t

0

B(s,Xs)dW (s), l⟩H,
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which implies that
X(t) = X̄(t) ∀t ∈ [0,∞), P − a.s..

Moreover, by (2.2) and Theorem 2.2 we obtain

EP

∫ T

0

∥X(s)∥pV ds ≤ C,

which combined with (4.2), (4.3) and [PR07, Theorem 4.2.5] implies thatX ∈ C([−h,∞), H0)
and

EP [ sup
t∈[0,T ]

∥X(t)∥2H0
] ≤ C.

�
Definition 4.1. We say that there exists a (probabilistically) strong solution to (2.1) if
for every probability space (Ω,F , (Ft)t∈[0,T ], P ) with an (Ft)-Wiener process W and given
an initial value ψ ∈ Lp(−h, 0;V ) ∩ C([−h, 0];H0) ∩ C there exists an (Ft)-adapted process
X : [0, T ]× Ω → H0 such that for P -a.e. ω ∈ Ω,

X(·, ω) ∈ S1 ∩ C([−h,∞);H0),

and such that P -a.s.
X(t) = ψ(t),−h ≤ t ≤ 0,

X(t) = X(0) +

∫ t

0

[A1(s,X(s)) + A2(s,Xs)]ds+

∫ t

0

B(s,Xs)dW (s),

holds in V ∗ for all t ∈ [0,∞).

Theorem 4.2. Suppose that (H1) − (H5) hold. Then for every ψ ∈ C([−h, 0];H0) ∩ C
with N (ψ) < ∞, (2.1) has a unique (probabilistically) strong solution X ∈ C([−h,∞);H0)
satisfying for every T > 0 and q ∈ N

(4.4) EP

(
sup

t∈[−h,T ]

∥X(t)∥2qH + [

∫ T

0

N1(X(t))dt]q

)
<∞.

Moreover,

EP

(
sup

t∈[−h,T ]

∥X(t)∥2H0

)
<∞.

Proof. Suppose X, Y are the solutions of (2.1), both with initial conditions ψ respectively,
i.e.

X(t) = ψ(0) +

∫ t

0

[A1(s,X(s)) + A2(s,Xs)]ds+

∫ t

0

B(s,Xs)dW (s), t ∈ [0, T ];

Y (t) = ψ(0) +

∫ t

0

[A1(s, Y (s)) + A2(s, Ys)]ds+

∫ t

0

B(s, Ys)dW (s), t ∈ [0, T ].

(4.5)
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Then by Itô’s formula we have

∥X(t)− Y (t)∥2H0

≤2

∫ t

0
V ∗⟨A1(s,X(s)) + A2(s,Xs)− A1(s, Y (s))− A2(s, Ys), X(s)− Y (s)⟩V ds

+ 2

∫ t

0

⟨X(s)− Y (s), (B(s,Xs)−B(s, Ys))dW (s)⟩H0

+

∫ t

0

∥B(s,Xs)−B(s, Ys)∥2L2(U ;H0)
ds, t ∈ [0, T ].

Define

τn := inf{t ≥ 0|
∫ t

0

[ρ1(s, Ys) + ρ1(s,Xs)]ds > n} ∧ T.

By (4.4) and (H4) we have
lim
n→∞

τn = T, P − a.s..

By (H4) and the B-D-G inequality we have for every stopping time τ

E sup
t∈[0,τ∧τn]

∥X(t)− Y (t)∥2H0

≤CE
∫ τ∧τn

0

(ρ1(s,Xs) + ρ1(s, Ys))∥Xs − Ys∥2C([−h,0];H0)
ds

+ 2E sup
0≤t≤τ∧τn

∫ t

0

⟨X(s)− Y (s), (B(s,Xs)−B(s, Ys))dW (s)⟩H0

≤CE
∫ τ∧τn

0

(ρ1(s,Xs) + ρ1(s, Ys))∥Xs − Ys∥2C([−h,0];H0)
ds+

1

2
E sup

t∈[0,τ∧τn]
∥X(t)− Y (t)∥2H0

.

By [GM83 Lemma 2] we have for every n ∈ N

X(t) = Y (t), t ∈ [0, τn], P− a.s..

Letting n→ ∞ we have
X(t) = Y (t), t ∈ [0,∞), P− a.s..

Then by using the Yamada-Watanabe Theorem (see e.g. [Ku07], [RSZ08]) the results follow.

5 Application to examples

In this section we describe some examples for (2.1) satisfying conditions (H1)-(H5) imposed
above. First, we recall some useful estimates which will be used later.

Let O be a bounded open domain in Rd with smooth boundary and let C∞
0 (O) denote the

set of all smooth functions from O to R with compact support. For p > 1, let Lp(O) be the
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Lp -space with norm denoted by ∥·∥Lp . If A is −∆ on the domain O with Dirichlet boundary
condition, then we have the following estimates which will be used later. For s ≥ 0, p ∈ [1,∞]
we use W s,p

0 (O) to denote the Sobolev space of all f ∈ L2 for which ∥As/2f∥Lp is finite.

Remark 5.1. Here we can also consider the equation on the torus Td and the results still can
be applied in this case.

We shall also use the following standard Sobolev inequality (cf. [St70, Chapter V]):

Lemma 5.1. Suppose that q > 1, p ∈ [q,∞) and

1

p
+
σ

d
=

1

q
.

Suppose that f ∈ W σ,q
0 , then f ∈ Lp and there is a constant C ≥ 0 such that

∥f∥Lp ≤ C∥f∥Wσ,q
0
.

In the following, let {W k(t); t ≥ 0, k ∈ N} be a sequence of independent standard Brow-
nian motions and l2 be the Hilbert space of all square summable sequences of real number
sequences. We will use ∂i := ∂ξi , ∂

2
ij := ∂2ξiξj and the usual Einstein summation convention.

5.1 Fractional Navier-Stokes equation

Now we apply Theorem 2.1 to the stochastic d-dimensional fractional Navier-Stokes equation
in a bounded domain O in Rd with smooth boundary:

(5.1)

du(t) =[−(−∆)αu(t)− u(t) · ∇u(t) +∇p(t)

+ c1u(t− r1(t)) · ∇u(t) + c2

∫ 0

−h

u(t+ r) · ∇u(t)dr

+

∫ 0

−h

f1(r, ξ, u(t+ r))dr + f(ξ, u(t− r2(t)))]dt

+ [∇p̃i(t) + gi(ξ, u(t− r3(t)))]dW
i(t),

divu(t) = 0,

u(t, ξ) = 0, (t, ξ) ∈ [−h,∞)× ∂O,

u(t) = ψ(t),−h ≤ t ≤ 0,

where p(t, ξ) and p̃i(t, ξ), i ∈ N, are unknown scalar functions, u is the velocity vector, ci ∈
R, i = 1, 2, ri, i = 1, 2, 3, are continuous differentiable functions on R with 0 ≤ ri(t) < h, i =
1, 2, 3, sup r′i(t) < 1, i = 1, 2, f and g are functions from O×Rd to Rd and Rd×l2, respectively,
continuous with respect to the second variable, f1 is a function from [−h, 0]×O×Rd to Rd,
continuous with respect to the third variable, satisfying for some κ0 > 0 and q ∈ L2(O)

|f1(r, ξ, u)|+ |f(ξ, u)|+ ∥g(ξ, u)∥l2 ≤ κ0 · |u|+ q(ξ), ∀(r, ξ, u) ∈ [−h, 0]×O × Rd.
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When α = 1, g = c1 = c2 = f = f1 = 0, (5.1) reduces to the usual Navier-Stokes
equation. In the case without delay for general α this equation has been studied by many
authors (see [W05], [Z12], [RZZ14b] and the references therein). In [W05], the author obtains
global existence and uniqueness of solutions for small initial values when α > 1

2
. In [Z12], the

author obtains local existence and uniqueness of solutions by using a stochastic Lagrangian
particle trajectories approach for α = 1

2
and global existence and uniqueness when d = 2.

In [RZZ14b] we obtain local existence and uniqueness of solutions of stochastic fractional
Navier-Stokes equations for α ∈ (0, 1] and every d ∈ N.

Let C∞
0,σ(O)

d be the space of all smooth d-dimensional divergence free vector fields on O
with compact supports in O. For s ≥ 0, p > 1, the completion of C∞

0,σ(O)
d in W s,p

0 (O)d is
denoted by W s,p

0,σ(O). Below we choose

Y = H = W 0,2
0,σ (O), V = Wα,2

0,σ (O)

and
X∗ = (W 2+d,2

0,σ (O))∗,X = W 2+d,2
0,σ (O).

Let P be the orthogonal projection operator from L2(O)d onto H. We define the operators
A1, A2 and B as follows: for x ∈ C∞

0,σ(O)

A1(x) := −P [(−∆)αx]− P [(x · ∇)x],

and for u ∈ C([−h, 0];C∞
0,σ(O))

A2(t, u) :=c1P [u(−r1(t)) · ∇u(0)] + c2P [

∫ 0

−h

u(r) · ∇u(0)dr]

+ P [

∫ 0

−h

f1(r, u(r))dr] + Pf(u(−r2(t))).

B(t, u) := P[g(u(−r3(t)))].

Then by similar arguments as in [GRZ09] we have that for x1, y1, x, y ∈ C∞
0,σ(O),

(5.2) ∥P(−∆)αx− P(−∆)αy∥X∗ ≤ C∥x− y∥H,

(5.3) ∥P [x1 · ∇x]− P [y1 · ∇y]∥X∗ ≤ C∥x1∥H∥x− y∥H + C∥y∥H∥x1 − y1∥H.

We can extend the operators A1 and A2, B to H and C such that for x ∈ H, u ∈ C, A1(x) ∈ X∗

and A2(t, u) ∈ X∗, B(t, u) ∈ L2(l2,H). Thus, we can write the system in the following
abstract form

du(t) = [A1(t, u(t)) + A2(t, ut)]dt+B(t, ut)dW (t), u(t) = ψ(t),−h ≤ t ≤ 0.

Moreover, by (5.2), (5.3) we have that for u ∈ C∞

A1(u(·)) ∈ L1
loc([0,∞);X∗), A2(·, u·) ∈ L1

loc([0,∞);X∗).
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Let en, n ∈ N, Πn,Hn be as in Section 2. We can easily deduce that ∥ΠnA1(·)∥X∗ is locally
bounded and continuous on Hn and ∥ΠnA2(·, ·)∥X∗ , ∥ΠnB(·, ·)∥L2(U ;H) are bounded on balls
in R+ × C([−h, 0];Hn). Furthermore, for every t ∈ [0, T ], we have for u, v ∈ C([−h,∞);X)

∥P [u(t− r1(t)) · ∇u(t)]− P [v(t− r1(t)) · ∇v(t)]∥X∗

≤C[ sup
s∈[−h,T ]

∥u(s)∥H + sup
s∈[−h,T ]

∥v(s)∥H] sup
s∈[−h,T ]

∥u(s)− v(s)∥H,

and

∥
∫ 0

−h

P[u(t+ r) · ∇u(s)]− P [v(t+ r) · ∇v(t)]dr∥X∗

≤C[ sup
s∈[−h,T ]

∥u(s)∥H + sup
s∈[−h,T ]

∥v(s)∥H] sup
s∈[−h,T ]

∥u(s)− v(s)∥H,

which implies that for every t > 0, ΠnA2(t, ·),ΠnB(t, ·) are continuous on C([−h, 0];Hn).

We define the functional N1 on H as follows:

N1(u) =

{
∥(−∆)

α
2 u∥2L2(O) if u ∈ Wα,2

0,σ (O),

0 otherwise.

We easily deduce that N1 ∈ U2. In this case N (ψ) <∞ is equivalent to ψ ∈ L2([−h, 0];V ).

Theorem 5.2. For every ψ ∈ C ∩ L2
V (5.1) has a weak solution X : [−h,∞)×Ω → H such

that for every q ∈ N, T > 0

EP

(
sup

t∈[−h,T ]

∥X(t)∥2qH + [

∫ T

−h

N1(X(t))dt]q

)
<∞.

Proof. First we check (H3): by (5.2), (5.3) and the linear growth of f, f1, g we have for
u ∈ C∞, t ≥ 0,

∥A1(u(t))∥X∗ ≤ C(1 + ∥ut∥2C),

∥A2(t, ut)∥X∗ ≤C[∥u(t− r1(t))∥H∥u(t)∥H +

∫ 0

−h

∥u(t+ r)∥H∥u(t)∥Hdr]

+ C[1 + ∥u(t− r2(t))∥H +

∫ 0

−h

∥u(t+ r)∥Hdr]

≤C(1 + ∥ut∥2C),

∥B(t, ut)∥2L2(l2;H) ≤ C(1 + ∥ut∥2C),

where C is a constant changing from line to line. Now (H3) follows immediately by integrat-
ing with respect to t.
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Now we check (H1): by Remark 2.2, (H3), (5.2) and (5.3) it follows that (2.3) holds in
this case. Now by (5.3) we have for u, v ∈ L2

loc([−h,∞);H) and t > 0∫ t

0

∥P [u(s− r1(s)) · ∇u(s)]− P [v(s− r1(s)) · ∇v(s)]∥X∗ds

≤C(
∫ t

0

∥u(s)∥2Hds)
1
2 (

∫ t

0

∥u(s− r1(s))− v(s− r1(s))∥2Hds)
1
2

+ (

∫ t

0

∥v(s− r1(s))∥2Hds)
1
2 (

∫ t

0

∥u(s)− v(s)∥2Hds)
1
2

≤C
(
(

∫ t

−h

∥u(s)∥2Hds)
1
2 + (

∫ t

−h

∥v(s)∥2Hds)
1
2

)
(

∫ t

−h

∥u(s)− v(s)∥2Hds)
1
2 ,

where in the last inequality we used supt r
′
i(t) < 1. Similarly, for u, v ∈ L2

loc([−h,∞);H) and
t > 0 ∫ t

0

∥
∫ 0

−h

(P [u(s+ r) · ∇u(s)]−P [v(s+ r) · ∇v(s)]) dr∥X∗ds

≤
∫ t

0

∫ 0

−h

∥P [u(s+ r) · ∇u(s)]− P [v(s+ r) · ∇v(s)]∥X∗drds

≤C
(
(

∫ t

−h

∥u(s)∥2Hds)
1
2 + (

∫ t

−h

∥v(s)∥2Hds)
1
2

)
(

∫ t

−h

∥u(s)− v(s)∥2Hds)
1
2 .

Let un converge to u in L2
loc([−h,∞),H). By Lebesgue’s dominated convergence theorem we

have ∫ t

0

∥P [

∫ 0

−h

f1(r, ·, un(s+ r))dr]− P [

∫ 0

−h

f1(r, ·, u(s+ r))dr]∥X∗ds

≤C
∫ t

0

∫ 0

−h

∥f1(r, ·, un(s+ r))− f1(r, ·, u(s+ r))∥L1(O)drds→ 0, n→ ∞.

Similarly, the convergence for f can be obtained. Then the above estimates imply that (2.4)
in (H1) holds in this case. The convergence for g can be obtained similarly.

For (H2), since

X∗⟨P[y · ∇x], x⟩X = ⟨y · ∇x, x⟩H = 0, x, y ∈ X,

we have that for u ∈ C([−h,∞);X),

X∗⟨A1(u(t)) + A2(ut), u(t)⟩X =−N1(u(t)) +

∫ 0

−h

⟨f1(r, ·, u(t+ r)), u(t)⟩Hdr

+ ⟨f(·, u(t− r2(t))), u(t)⟩H
≤−N1(u(t)) + C(1 + ∥ut∥2C).

Now (H2) follows by taking integration w.r.t. t.
By Theorem 2.2 the results follow.

Stochastic 2-D Navier-Stokes equation
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Now we come to the case d = 2, α = 1. Define

H0 = H, V =W 1,2
0,σ (O)

It is standard that using the Gelfand triple

V ⊆ H0 ≡ H∗
0 ⊆ V ∗,

we see that the following mappings

A1 : V → V ∗, A2 : R+ × (L2
V ∩ C) → V ∗

are well defined. For u ∈ S1, we easily deduce thatA1(·, u(·)), A2(·, u·) ∈ L1
loc([0,∞);V ∗), B(·, u·) ∈

L2
loc([0,∞);L2(l2;H0)).
Suppose that f1, f, g satisfy

(5.4) |f1(r, ξ, u1)−f1(r, ξ, u2)|+|f(ξ, u1)−f(ξ, u2)| ≤ C(1+|u1|γ+|u2|γ)|u1−u2|, 1 ≤ γ ≤ 2

(5.5) ∥g(ξ, u1)− g(ξ, u2)∥l2 ≤ C|u1 − u2|.

Theorem 5.3. Fix d = 2, α = 1. Suppose that f1, f and g satisfy (5.4), (5.5) respectively.
Then for every ψ ∈ L2(−h, 0;V )∩C([−h, 0];H0), (5.1) has a unique (probabilistically) strong
solution X ∈ C([−h,∞), H0) satisfying for every T > 0 and q ∈ N

EP

(
sup

t∈[−h,T ]

∥X(t)∥2qH + [

∫ T

0

N1(X(t))dt]q

)
<∞.

Proof. Now we check (H4): we have for u, v ∈ L2
loc([−h,∞);V ) ∩ C([−h,∞);H)

|
∫ T

0
V ∗⟨u(s− r1(s)) · ∇u(s)− v(s− r1(s)) · ∇v(s), u(s)− v(s)⟩V ds|

≤C
∫ T

0

∥∇u(s)∥H∥u(s− r1(s))− v(s− r1(s))∥L4∥u(s)− v(s)∥L4ds

≤C
∫ T

0

∥∇u(s)∥H∥u(s− r1(s))− v(s− r1(s))∥1/2V ∥u(s− r1(s))− v(s− r1(s))∥1/2H

∥u(s)− v(s)∥1/2V ∥u(s)− v(s)∥1/2H ds

≤C
∫ T

0

∥∇u(s)∥2H∥us − vs∥2Cds+ ε[

∫ T

0

∥u(s)− v(s)∥2V ds]1/2[
∫ T

0

∥u(s− r1(s))− v(s− r1(s))∥2V ds]1/2

≤C
∫ T

0

∥∇u(s)∥2H∥us − vs∥2Cds+ ε

∫ T

−h

∥∇u(s)−∇v(s)∥2Hds,

where we used divv = 0 in the first inequality, Lemma 5.1 and the interpolation inequality
in the second inequality, Young’s inequality in the third inequality.
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For u(s) · ∇u(s) and
∫ 0

−h
u(s+ r) · ∇u(s)dr we have similar results.

Now for f we have for u, v ∈ L2
loc([−h,∞);V ) ∩ C([−h,∞),H)

|
∫ T

0
V ∗⟨f(u(s− r2(s)))− f(v(s− r2(s))), u(s)− v(s)⟩V ds|

≤C
∫ T

0

∫
[|u(s− r2(s))|γ + |v(s− r2(s))|γ + 1]|u(s− r2(s))− v(s− r2(s))||u(s)− v(s)|dξds

≤C
∫ T

0

[1 + ∥u(s− r2(s))∥γLγp1 + ∥v(s− r2(s))∥γLγp1 ]∥u(s− r2(s))− v(s− r2(s))∥L2q1

∥u(s)− v(s)∥L2q1ds

≤C
∫ T

0

[1 + ∥u(s− r2(s))∥γLγp1 + ∥v(s− r2(s))∥γLγp1 ]∥u(s− r2(s))− v(s− r2(s))∥σV ∥u(s)− v(s)∥σV

∥u(s− r2(s))− v(s− r2(s))∥1−σ
H ∥u(s)− v(s)∥1−σ

H ds

≤C
∫ T

0

[1 + ∥u(s− r2(s))∥
σ0γ

1
1−σ

V ∥u(s− r2(s))∥
(1−σ0)γ

1
1−σ

H

+ ∥v(s− r2(s))∥
σ0γ

1
1−σ

V ∥v(s− r2(s))∥
(1−σ0)γ

1
1−σ

H ]∥us − vs∥2Cds

+ ε

∫ T

−h

∥u(s)− v(s)∥2V ds,

where 1
p1

+ 1
q1

= 1, σ = 1 − 1
q1
< 1, σ0 = 1 − 2

γp1
< 1, σ0γ

1−σ
≤ 2 and we used (5.4) in the first

inequality, Lemma 5.1 and the interpolation inequality in the third inequality. The term∫ 0

−h
f1(r, u(t+ r))dr can be treated similarly. Since g satisfies Lipschitz conditions, we easily

deduce that
∥B(t, ut)−B(t, vt)∥2L2(l2;H0)

≤ C∥ut − vt∥2C.
Now (H4) follows.

Now for (H5), we have for u ∈ L2
loc([−h,∞);V ) ∩ L∞

loc([−h,∞);H) ∩ C([−h,∞);X∗)∫ T

0

∥u(s− r1(s)) · ∇u(s)∥2V ∗ds ≤
∫ T

0

∥u(s− r1(s))∥2L4∥u(s)∥2L4ds

≤C
∫ T

0

∥u(s− r1(s))∥V ∥u(s− r1(s))∥H∥u(s)∥V ∥u(s)∥Hds

≤C[
∫ T

0

∥u(s− r1(s))∥2V ∥u(s− r1(s))∥2Hds]1/2[
∫ T

0

∥u(s)∥2V ∥u(s)∥2Hds]1/2

≤C
∫ T

−h

∥u(s)∥2V ∥u(s)∥2Hds

≤C[
∫ T

−h

∥u(s)∥2V ds]2 + C sup
s∈[−h,T ]

∥u(s)∥4H.

The other terms can be checked easily since f, f1, g satisfy linear growth conditions. There-
fore, existence and uniqueness of solutions follow from Theorem 4.2.
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Remark 5.2. The existence results in Section 2 can also be applied to other stochastic equa-
tions with delays from fluid dynamics such as the stochastic quasi-geostrophic equation with
delays, which has been studied in [RZZ14] without delays. However, to prove the unique-
ness of the solutions, we need Lp-estimates for the solutions, which cannot be obtained by
Theorem 4.2. This will be studied in the future.

5.2 Stochastic semilinear equation

Consider the following stochastic semilinear equation in a smooth domain O ⊂ Rd:

(5.6)

dX(t) =∆[X(t) + a1(X(t− r0(t))) +

∫ 0

−h

a2(r,X(t+ r))dr]dt

+ (f1(X(t)) + f2(X(t− r1(t))) +

∫ 0

−h

f3(r,X(t+ r))dr)

· [∇X(t) +∇X(t− r2(t)) +

∫ 0

−h

∇X(t+ r)dr]dt

+ [∂ib
i
1(X(t)) + ∂ib

i
2(X(t− r3(t))) +

∫ 0

−h

∂ib
i
3(r,X(t+ r))dr]dt

+ [g1(X(t)) + g2(X(t− r4(t))) +

∫ 0

−h

g3(r,X(t+ r))dr]dt

+ ci(X(t− r5(t)))dW
i(t),

X(t, ξ) = 0, (t, ξ) ∈ [−h,∞)× ∂O,

X(t) = ψ(t),−h ≤ t ≤ 0,

where ri, i = 0, 1, ..., 5, are continuous differentiable functions on R with 0 ≤ ri(t) < h, i =
0, 1, ..., 5, sup r′i(t) < 1, i = 0, 1, 2, 3, 4, a1, fi, bi, gi, i = 1, 2, and c are functions from O × R
to R, Rd, Rd, R and R × l2, respectively, continuous with respect to the second variable,
a2, f3, b3, g3 are functions from [−h, 0]× O × R to R, Rd, Rd, R, continuous with respect to
the third variable, satisfying

(5.7) |g1(ξ, u)| ≤ C[|u|γ1 + 1], g1(ξ, u)u ≤ C|u|2, (ξ, u) ∈ O × R,

for 2 ≤ γ1 < 2 + 4
d
, and for some κ0 > 0 and q ∈ L2(O)

(5.8)

∥b3(r, ξ, u)∥Rd + ∥b1(ξ, u)∥Rd + ∥b2(ξ, u)∥Rd + ∥c(ξ, u)∥l2
+ |g2(ξ, u)|+ |g3(r, ξ, u)|

≤κ0 · |u|+ q(ξ), ∀(r, ξ, u) ∈ [−h, 0]×O × R,

(5.9) sup
s

1

1− r′0(s)
|∂ua1(ξ, u)|+ h|∂ua2(r, ξ, u)| ≤

1

4
, ∀(r, ξ, u) ∈ [−h, 0]×O × R,
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(5.10) ∥∂ξa1(ξ, u)∥Rd + ∥∂ξa2(r, ξ, u)∥Rd ≤ C(1 + |u|), ∀(r, ξ, u) ∈ [−h, 0]×O × R.

Moreover, fi, i = 1, 2, and f3 are bounded and Lipschitz continuous with respect to the
second variable and the third variable respectively.

When fi, ai, bi = 0, i = 1, 2, 3, then the above equation is the stochastic reaction-diffusion
equation which has also attracted a lot of attention (see e.g. [DPZ92], [RZZ14a] and the
references therein).

Below we choose
Y = H = L2(O), V = W 1,2

0 (O),

and
X∗ = (W 2+d,2

0 (O))∗, X =W 2+d,2
0 (O).

We define the operators A and B as follows: for x ∈ C∞
0 (O)

A1(x) := ∆x+ ∂ib
i
1(x) + g1(x),

and for u ∈ C([−h, 0];C∞
0 (O))

A2(t, u) :=∆[a1(u(−r0(t))) +
∫ 0

−h

a2(r, u(r))dr] + [f1(u(0)) + f2(u(−r1(t))) +
∫ 0

−h

f3(r, u(r))dr]

· [∇u(0) +∇u(−r2(t)) +
∫ 0

−h

∇u(r)dr]

+ ∂ib
i
2(u(−r3(t))) +

∫ 0

−h

∂ib
i
3(r, u(r))dr + g2(u(−r4(t))) +

∫ 0

−h

g3(r, u(r))dr.

B(t, u) := c(u(−r5(t))).
Let en, n ∈ N, Πn,Hn be as in Section 2. We define the functional N1 on H as follows:

N1(u) =

{
∥∇u∥2L2(O) if u ∈ W 1,2

0,σ (O),

0 otherwise,

It is obvious that N1 ∈ U2. In this case N (ψ) <∞ is equivalent to ψ ∈ L2(−h, 0;V ).
Then we have for x, y ∈ C∞

0 (O), yn → y in H,

(5.11) ∥∆x−∆y∥X∗ ≤ C∥x− y∥H,

|X∗⟨f1(x) · ∇x− f1(y) · ∇y, φ⟩X| ≤C|X∗⟨f1(x) · (∇x−∇y) + (f1(x)− f1(y)) · ∇y, φ⟩X
≤C∥x− y∥H[∥∇x∥H + ∥∇y∥H + 1]∥φ∥X,

(5.12) |X∗⟨∂ibi1(yn)− ∂ib
i
1(y), φ⟩X| ≤C∥φ∥C1(O)

∫
|b1(ξ, yn(ξ))− b1(ξ, y(ξ))|dξ → 0.

Moreover, if yn → y in H and weakly in V , we obtain

|X∗⟨g1(yn)− g1(y), φ⟩X| ≤C∥φ∥C(O)

∫
|g1(ξ, yn(ξ))− g1(ξ, y(ξ))|dξ → 0,
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where we used (5.7) to deduce that

∥g1(·, yn(·))∥1+ε
L1+ε(O) ≤ C[1 + ∥yn∥(1+ε)γ1

L(1+ε)γ1
] ≤ C[1 + ∥yn∥

d(
(1+ε)γ1

2
−1)

V ∥yn∥
(1+ε)γ1−d(

(1+ε)γ1
2

−1)

H ],

where d( (1+ε)γ1
2

−1) < 2. By (5.7)-(5.10), we can extend the operators A1 and A2, B to V and
C ∩ L2

V such that for x ∈ V, u ∈ C ∩ L2
V , A1(x) ∈ X∗ and A2(t, u) ∈ X∗, B(t, u) ∈ L2(l2,H).

Thus, we can write the system in the following abstract form

du(t) = [A1(u(t)) + A2(t, ut)]dt+B(t, ut)dW (t), u(t) = ψ(t),−h ≤ t ≤ 0.

We can easily deduce that ∥ΠnA1(·)∥X∗ is locally bounded onHn and ∥ΠnA2(·, ·)∥X∗ , ∥ΠnB(·, ·)∥L2(l2;H)

are bounded on balls in R+ × C([−h, 0];Hn). Furthermore, we easily deduce that for every
t > 0, ΠnA1(t, ·) is continuous on Hn, ΠnA2(t, ·),ΠnB(t, ·) are continuous on C([−h, 0];Hn).

Theorem 5.4. For every ψ ∈ C ∩ L2
V (5.6) has a weak solution X : [−h,∞)×Ω → H such

that for every q ∈ N, T > 0

EP

(
sup

t∈[−h,T ]

∥X(t)∥2qH + [

∫ T

0

N1(X(t))dt]q

)
<∞.

Proof. Now we check (H1): Let un converge to u in L
2
loc([−h,∞);H) and weakly in L2

loc([−h,∞);V ).
We prove the convergence required in (H1) for each term. By (5.9) we have for φ ∈ X,

|
∫ t

0
X∗⟨∆[a1(un(s− r0(s)))− a1(u(s− r0(s)))], φ⟩Xds|

≤C[
∫ t

0

∥un(s− r0(s))− u(s− r0(s))∥2Hds]
1
2

→0, n→ ∞.

The convergence for a2 can be obtained similarly. Since f2 is bounded and Lipschitz contin-
uous with respect to the second variable, we have

|
∫ t

0
X∗⟨f2(un(s− r1(s))) · ∇un(s)− f2(u(s− r1(s))) · ∇u(s), φ⟩Xds|

≤C[
∫ t

0

∥∇un(s)∥2Hds]
1
2 [

∫ t

0

∥un(s− r1(s))− u(s− r1(s))∥2Hds]
1
2

+

∫ t

0
X∗⟨f2(u(s− r1(s)))[∇un(s)−∇u(s)], φ⟩Xds

≤C[
∫ t

0

∥∇un(s)∥2Hds]
1
2 [

∫ t

−h

∥un(s)− u(s)∥2Hds]
1
2

+

∫ t

0
X∗⟨f2(u(s− r1(s)))[∇un(s)−∇u(s)], φ⟩Xds

→0, n→ ∞,
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where we used that un converge to u weakly in L2
loc([−h,∞);V ) to deduce

∫ T

0
∥un(s)∥2V ds ≤

M in the last convergence. The convergence for f1(u(s)) ·∇u(s),
∫ 0

−h
f3(r, u(s+ r))dr ·∇u(s)

can be obtained similarly. Moreover, we have

|
∫ t

0
X∗⟨f2(un(s− r1(s))) · ∇un(s− r2(s))− f2(u(s− r1(s))) · ∇u(s− r2(s)), φ⟩Xds|

≤C[
∫ t

−h

∥∇un(s)∥2Hds]
1
2 [

∫ t

0

∥un(s− r1(s))− u(s− r1(s))∥2Hds]
1
2

+

∫ t

0
X∗⟨f2(u(s− r1(s))) · [∇un(s− r2(s))−∇u(s− r2(s))], φ⟩Xds

→0, n→ ∞,

where we used that un converge to u weakly in L2
loc([−h,∞);V ) in the last convergence.

Furthermore, we get that

|
∫ t

0

∫ 0

−h
X∗⟨f2(un(s− r1(s))) · ∇un(s+ r)− f2(u(s− r1(s))) · ∇u(s+ r), φ⟩Xdrds|

≤Ch[
∫ t

−h

∥∇un(s)∥2Hds]
1
2 [

∫ t

0

∥un(s− r1(s))− u(s− r1(s))∥2Hds]
1
2

+

∫ t

0

∫ 0

−h
X∗⟨f2(u(s− r1(s)))[∇un(s+ r)−∇u(s+ r)], φ⟩Xdrds

≤Ch[
∫ t

−h

∥∇un(s)∥2Hds]
1
2 [

∫ t

0

∥un(s− r1(s))− u(s− r1(s))∥2Hds]
1
2

+

∫ 0

−h

∫ t

0
X∗⟨f2(u(s− r1(s)))[∇un(s+ r)−∇u(s+ r)], φ⟩Xdsdr

→0, n→ ∞,

where we used un converge to u weakly in L2
loc([−h,∞);V ) and the Lebesgue’s dominated

convergence theorem in the last convergence. For the other terms in [f1(u(t)) + f2(u(t −
r1(t))) +

∫ 0

−h
f3(r, u(t + r))dr] · [∇u(t − r2(t)) +

∫ 0

−h
∇u(t + r)dr] we have similar estimates

and obtain similar convergence required in (H1). Now for b2, by (5.8) we have

|
∫ t

0
X∗⟨∂ibi2(un(s− r3(s)))− ∂ib

i
2(u(s− r3(s))), φ⟩Xds|

≤C∥φ∥C1(O)

∫ t

0

∥b2(un(s− r3(s)))− b2(u(s− r3(s)))∥L1(O)ds

→0, n→ ∞,

where the last convergence follows from the Lebesgue’s dominated convergence theorem.
The convergence for b1, b3 can be obtained similarly. For cut-off function χR as in (H1), we
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also have∫ t

0
X∗

∫
|g1(un(s))χR(∥un(s)∥H)− g1(u(s))χR(∥u(s)∥H)|1+ε|φ|1+εdξds

≤C∥φ∥1+ε
C(O)

∫ t

0

∥g1(un(s))χR(∥un(s)∥H)− g1(u(s))χR(∥u(s)∥H)∥1+ε
L1+ε(O)ds

≤C∥φ∥1+ε
C(O)

∫ t

0

[1 + ∥un(s)∥γ1(1+ε)

Lγ1(1+ε)χR(∥un(s)∥H) + ∥u(s)∥γ1(1+ε)

Lγ1(1+ε)χR(∥u(s)∥H)]ds

≤C
∫ t

0

[1 + ∥un(s)∥
d(

γ1(1+ε)
2

−1)

V χR(∥un(s)∥H)∥un(s)∥
γ1(1+ε)−d(

γ1(1+ε)
2

−1)

H

+ ∥u(s)∥d(
γ1(1+ε)

2
−1)

V χR(∥u(s)∥H)∥u(s)∥
γ1(1+ε)−d(

γ1(1+ε)
2

−1)

H ]ds

≤C
∫ t

0

[1 + ∥un(s)∥
d(

γ1(1+ε)
2

−1)

V + ∥u(s)∥d(
γ1(1+ε)

2
−1)

V ]ds.

Since d(γ1(1+ε)
2

− 1) ≤ 2 we obtain that∫ t

0
X∗⟨g1(un(s))χR(∥un(s)∥H)− g1(u(s))χR(∥u(s)∥H), φ⟩Xds→ 0, n→ ∞.

For g2 we have ∫ t

0
X∗⟨g2(un(s− r4(s)))− g2(u(s− r4(s))), φ⟩Xds

≤C∥φ∥C(O)

∫ t

0

∥g2(un(s− r4(s)))− g2(u(s− r4(s)))∥L1(O)ds

→0, n→ ∞,

where the last convergence follows from the Lebesgue’s dominated convergence theorem. The
convergence for

∫ 0

−h
g3(r, u(t + r))dr can be obtained similarly. By Remark 2.2 (i), (5.11)

and (5.12), we obtain∫ t

0
X∗⟨∆un(s)χR(∥un(s)∥H)−∆u(s)χR(∥u(s)∥H), φ⟩Xds→ 0, n→ ∞.

∫ t

0
X∗⟨∂ibi1(un(s))χR(∥un(s)∥H)− ∂ib

i
1(u(s))χR(∥u(s)∥H), φ⟩Xds→ 0, n→ ∞.

Then combining the estimates above, (2.3) and (2.4) in (H1) follow. By (5.8) we obtain that
if un converge to u in L2

loc([−h,∞);H), then

lim
n→∞

∫ t

0

∥B∗(s, uns )(v)−B∗(s, us)(v)∥l2ds = 0.

Now (H1) follows.
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For (H2); by (5.7)-(5.10) we have for u ∈ C([−h,∞),X) and T > 0∫ T

0
X∗⟨A1(u(t)) + A2(ut), u(t)⟩Xdt

=

∫ T

0

[−N1(u(t)) + X∗⟨∆[a1(u(t− r0(t))) +

∫ 0

−h

a2(u(t+ r))dr], u(t)⟩X + ⟨(f1(u(t)) + f2(u(t− r1(t)))

+

∫ 0

−h

f3(r, u(t+ r))dr) · (∇u(t) +∇u(t− r2(t)) +

∫ 0

−h

∇u(t+ r)dr), u(t)⟩

− ⟨bi1(u(t)) + bi2(u(t− r3(t))) +

∫ 0

−h

bi3(r, u(t+ r))dr, ∂iu(t)⟩

+ ⟨g1(u(t)) + g2(u(t− r4(t))) +

∫ 0

−h

g3(r, u(t+ r))dr, u(t)⟩]dt

≤
∫ T

0

[−7

8
N1(u(t)) + C(1 + ∥ut∥2C)]dt+

∫ 0

−h

N1(u(t))dt

+

∫ T

0

∫
[[|∂ua1(u(t− r0(t)))||∇u(t− r0(t))|+ |∂ξa1(u(t− r0(t)))|]|∇u(t)|

+

∫ 0

−h

[|∂ua2(u(t+ r))||∇u(t+ r)|+ |∂ξa2(u(t+ r))|]|∇u(t)|dr]dξdt

≤
∫ T

0

[−3

4
N1(u(t)) + C(1 + ∥ut∥2C)]dt+

∫ 0

−h

N1(u(t))dt+

(∫ T

0

∫
|∇u(t)|2dξdt

)1/2

[

(∫ T

0

∫
[|∂ua1(u(t− r0(t)))|2|∇u(t− r0(t))|2]dξdt

)1/2

+ h1/2
(∫ T

0

∫ ∫ 0

−h

|∂ua2(u(t+ r))|2|∇u(t+ r)|2drdξdt
)1/2

]

≤
∫ T

0

[−1

2
N1(u(t)) + C(1 + ∥ut∥2C)]dt+ 2

∫ 0

−h

N1(u(t))dt.

For (H3); Similar as the computation above we have u ∈ L2
loc([−h,∞);V )∩L∞

loc([−h,∞);H)∩
C([−h,∞);X∗) and every t > 0

∥A1(u(t))∥X∗ ≤ C(1 + ∥ut∥C + ∥u(t)∥d(
γ1
2
−1)

V ∥u(t)∥(γ1−d(
γ1
2
−1))

H ),

∥A2(t, ut)∥X∗ ≤C[1 + ∥u(t− r0(t))∥H + ∥ut∥C + ∥∇u(t)∥H

+ ∥∇u(t− r2(t))∥H +

∫ 0

−h

∥∇u(t+ r)∥Hdr],

∥B(t, ut)∥2L2(l2;H) ≤ C(1 + ∥ut∥2C),

where C is a constant changing from line to line. Now for 1 < γ < 2 with dγ(γ1
2
− 1) < 2 we
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have for every T > 0∫ T

0

[∥A1(u(t))∥γX∗ + ∥A2(t, ut)∥γX∗ ]dt

≤
∫ T

0

C(1 + ∥u(t)∥dγ(
γ1
2
−1)

V ∥u(t)∥γ(γ1−d(
γ1
2
−1))

H + ∥ut∥2C + ∥u(t)∥2V )dt+
∫ 0

−h

C∥u(t)∥2V dt,

∥B(t, ut)∥2L2(l2;H) ≤ C(1 + ∥ut∥2C).

Now (H3) follows. Then the results follow from Theorem 2.2.
Now we assume that

(5.13)

2∑
i=1

|gi(ξ, u1)− gi(ξ, u2)|+ |g3(r, ξ, u1)− g3(r, ξ, u2)|

≤C[|u1|γ3 + |u2|γ3 + 1]|u1 − u2|,∀(r, ξ, uj) ∈ [−h, 0]×O × R, j = 1, 2,

for 1 ≤ γ3 ≤ 4
d
.

∥c(ξ, u1)− c(ξ, u2)∥l2 ≤ C|u1 − u2|.

∂ua1, ∂ua2 do not depend on u.
If d ≤ 2, suppose that

(5.14)

2∑
i=1

∥bi(ξ, u1)− bi(ξ, u2)∥Rd + ∥b3(r, ξ, u1)− b3(r, ξ, u2)∥Rd

≤C(1 + |u1|+ |u2|)|u1 − u2|,∀(r, ξ, uj) ∈ [−h, 0]×O × R, j = 1, 2,

(5.15)
∥∂ξa1(ξ, u1)− ∂ξa1(ξ, u2)∥Rd + ∥∂ξa2(r, ξ, u1)− ∂ξa2(r, ξ, u2)∥Rd

≤C(1 + |u1|+ |u2|)|u1 − u2|,∀(r, ξ, uj) ∈ [−h, 0]×O × R, j = 1, 2,

If d ≥ 3, f1, f2, f3 do not depend on u, b1, b2, ∂ξa1 and b3, ∂ξa2 are Lipschitz continuous with
respect to the second variable and the third variable, respectively.

Choose H0 = H.
If γ1 ≤ (1 + 4

d
) ∧ 2(1 + 1

d
)− ε for some ε > 0, we have that for u ∈ L2

V ∩ C,

∥g1(u)∥V ∗ ≤ ∥g1(u)∥Lq ≤ C(1 + ∥u∥
d(

γ1
2
− 1

q
)

V ∥u∥
γ1−d(

γ1
2
− 1

q
)

H ),

where q = 2d
d+2

∨ (1 + ε0) for some ε0 and we used Lemma 5.1 in the first inequality. From
this we see that the following mappings

A1 : V → V ∗, A2 : R+ × (L2
V ∩ C) → V ∗

are well defined. For u ∈ S1, we easily deduce thatA1(·, u(·)), A2(·, u·) ∈ L1
loc([0,∞);V ∗), B(·, u·) ∈

L2
loc([0,∞);L2(l2;H0)).
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Theorem 5.5. Suppose that all the assumptions above are satisfied with γ1 ≤ (1+ 4
d
)∧2(1+

1
d
) − ε for some ε > 0. For every ψ ∈ L2(−h, 0;V ) ∩ C([−h, 0];H0), (5.6) has a unique

(probabilistically) strong solution X ∈ C([−h,∞);H0) satisfying for every T > 0, q ∈ N

EP

(
sup

t∈[−h,T ]

∥X(t)∥2qH + [

∫ T

0

N1(X(t))dt]q

)
<∞.

Proof. Now we check (H4):
When d ≥ 3 for f1, f2, f3 it is obvious that (H4) holds. Now we only check the case when

d ≤ 2: for u, v ∈ L2
loc([−h,∞);V ) ∩ C([−h,∞);H), T > 0, we have∫ T

0
V ∗⟨f2(u(s− r1(s))) · ∇u(s− r2(s))− f2(v(s− r1(s))) · ∇v(s− r2(s)), u(s)− v(s)⟩V ds

≤C
∫ T

0

∥∇u(s− r2(s))∥H∥u(s− r1(s))− v(s− r1(s))∥L4∥u(s)− v(s)∥L4ds

+ ε

∫ T

0

∥∇u(s− r2(s))−∇v(s− r2(s))∥2Hds+ C

∫ T

0

∥u(s)− v(s)∥2Hds

≤C
∫ T

0

∥∇u(s− r2(s))∥H∥u(s− r1(s))− v(s− r1(s))∥1/2V ∥u(s− r1(s))− v(s− r1(s))∥1/2H

∥u(s)− v(s)∥1/2V ∥u(s)− v(s)∥1/2H ds+ ε

∫ T

−h

∥∇u(s)−∇v(s)∥2Hds+ C

∫ T

0

∥u(s)− v(s)∥2Hds

≤C
∫ T

0

∥∇u(s− r2(s))∥2H∥us − vs∥2Cds+ ε[

∫ T

0

∥u(s)− v(s)∥2V ds]1/2

[

∫ T

0

∥u(s− r1(s))− v(s− r1(s))∥2V ds]1/2 + ε

∫ T

−h

∥∇u(s)−∇v(s)∥2Hds+ C

∫ T

0

∥u(s)− v(s)∥2Hds

≤C
∫ T

0

∥∇u(s− r2(s))∥2H∥us − vs∥2C + ε

∫ T

−h

∥∇u(s)−∇v(s)∥2Hds+ C

∫ T

0

∥u(s)− v(s)∥2Hds.

We also have for u, v ∈ L2
loc([−h,∞);V ) ∩ C([−h,∞);H), T > 0,∫ T

0
V ∗⟨f2(u(s− r1(s))) ·

∫ 0

−h

∇u(s+ r)dr − f2(v(s− r1(s))) ·
∫ 0

−h

∇v(s+ r)dr, u(s)− v(s)⟩V ds

≤C
∫ T

0

∫ 0

−h

∥∇u(s+ r)∥Hdr∥u(s− r1(s))− v(s− r1(s))∥L4∥u(s)− v(s)∥L4ds

+ ε

∫ T

0

∫ 0

−h

∥∇u(s+ r)−∇v(s+ r)∥2Hdrds+ C

∫ T

0

∥u(s)− v(s)∥2Hds

≤C
∫ T

0

∫ 0

−h

∥∇u(s+ r)∥2Hdr∥us − vs∥2Cds+ ε[

∫ T

0

∥u(s)− v(s)∥2V ds]1/2

[

∫ T

0

∥u(s− r1(s))− v(s− r1(s))∥2V ds]1/2 + εh

∫ T

−h

∥∇u(s)−∇v(s)∥2Hds+ C

∫ T

0

∥u(s)− v(s)∥2Hds

≤C
∫ T

0

∫ 0

−h

∥∇u(s+ r)∥2Hdr∥us − vs∥2Cds+ ε

∫ T

−h

∥∇u(s)−∇v(s)∥2Hds+ C

∫ T

0

∥u(s)− v(s)∥2Hds.
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We obtain similar bounds for the other terms including f1, f3. Now when d ≥ 3 we have for
u, v ∈ L2

loc([−h,∞);V ) ∩ C([−h,∞);H), s > 0

|V ∗⟨bi2(u(s− r3(s)))− bi2(v(s− r3(s))), ∂iu(s)− ∂iv(s)⟩V |
≤C∥us − vs∥2C + ε∥∇u(s)−∇v(s)∥2H.

We obtain similar bounds for b3.

When d ≤ 2 we have for u, v ∈ L2
loc([−h,∞);V ) ∩ C([−h,∞);H), T > 0,

∫ T

0

|V ∗⟨bi2(u(s− r3(s)))− bi2(v(s− r3(s))), ∂iu(s)− ∂iv(s)⟩V |ds

≤C
∫ T

0

∥b2(u(s− r3(s)))− b2(v(s− r3(s)))∥2Hds+ ε

∫ T

0

∥∇u(s)−∇v(s)∥2Hds

≤C
∫ T

0

[1 + ∥u(s− r3(s))∥2L4 + ∥v(s− r3(s))∥2L4 ]∥u(s− r3(s))− v(s− r3(s))∥2L4ds

+ ε

∫ T

0

∥∇u(s)−∇v(s)∥2Hds

≤C
∫ T

0

[1 + ∥u(s− r3(s))∥V ∥u(s− r3(s))∥H + ∥v(s− r3(s))∥V ∥v(s− r3(s))∥H]

∥u(s− r3(s))− v(s− r3(s))∥V ∥u(s− r3(s))− v(s− r3(s))∥Hds+ ε

∫ T

0

∥∇u(s)−∇v(s)∥2Hds

≤C
∫ T

0

[1 + ∥u(s− r3(s))∥2V ∥u(s− r3(s))∥2H + ∥v(s− r3(s))∥2V ∥v(s− r3(s))∥2H]∥us − vs∥2Cds

+ ε

∫ T

−h

∥u(s)− v(s)∥2V ds.

The other terms including b1, b3 can be estimated similarly. For a1 we have that for u, v ∈
L2
loc([−h,∞);V ) ∩ C([−h,∞);H), T > 0,

∫ T

0

|V ∗⟨∆(a1(u(s− r0(s)))− a1(v(s− r0(s)))), u(s)− v(s)⟩V |ds

≤C
∫ T

0

∥∂ξa1(u(s− r0(s)))− ∂ξa1(v(s− r0(s)))∥2Hds+ (ε+
1

4
)

∫ T

−h

∥∇u(s)−∇v(s)∥2Hds.

Then by the above estimates for b2, a1 can be estimated similarly. We also have similar
estimates for a2.
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For g we have for u, v ∈ L2
loc([−h,∞);V ) ∩ C([−h,∞);H), s > 0

V ∗⟨g1(u(s))− g1(v(s)), u(s)− v(s)⟩V

≤C
∫

[|u(s)|γ3 + |v(s)|γ3 + 1]|u(s)− v(s)|2dξ

≤C[1 + ∥u∥γ3Lγ3p + ∥v∥γ3Lγ3p ]∥u− v∥2L2q

≤C[1 + ∥u∥γ3Lγ3p + ∥v∥γ3Lγ3p ]∥u− v∥2σV ∥u− v∥2(1−σ)
H

≤C[1 + ∥u∥γ3
1

1−σ

Lγ3p + ∥v∥γ3
1

1−σ

Lγ3p ]∥u− v∥2H + ε∥u− v∥2V

≤C[1 + ∥u∥σ0γ3
1

1−σ

V ∥u∥(1−σ0)γ3
1

1−σ

H + ∥v∥σ0γ3
1

1−σ

V ∥v∥(1−σ0)γ3
1

1−σ

H ]∥u− v∥2H + ε∥u− v∥2V ,

where 1
p
+ 1

q
= 1, σ = (1

2
− 1

2q
)d < 1, σ0 = (1

2
− 1

γ3p
)d < 1, σ0γ3

1−σ
≤ 2. Similarly we have for

u, v ∈ L2
loc([−h,∞);V ) ∩ C([−h,∞);H), T > 0∫ T

0
V ∗⟨g2(u(s− r4(s)))− g2(v(s− r4(s))), u(s)− v(s)⟩V

≤C
∫ T

0

∫
[|u(s− r4(s))|γ3 + |v(s− r4(s))|γ3 + 1]|u(s− r4(s))− v(s− r4(s))||u(s)− v(s)|dξ

≤C
∫ T

0

[1 + ∥u(s− r4(s))∥γ3Lγ3p + ∥v(s− r4(s))∥γ3Lγ3p ]∥u(s− r4(s))− v(s− r4(s))∥L2q

∥u(s)− v(s)∥L2qds

≤C
∫ T

0

[1 + ∥u(s− r4(s))∥γ3Lγ3p + ∥v(s− r4(s))∥γ3Lγ3p ]∥u(s− r4(s))− v(s− r4(s))∥σV ∥u(s)− v(s)∥σV

∥u(s− r4(s))− v(s− r4(s))∥1−σ
H ∥u(s)− v(s)∥1−σ

H ds

≤C
∫ T

0

[1 + ∥u(s− r4(s))∥
σ0γ3

1
1−σ

V ∥u(s− r4(s))∥
(1−σ0)γ3

1
1−σ

H

+ ∥v(s− r4(s))∥
σ0γ3

1
1−σ

V ∥v(s− r4(s))∥
(1−σ0)γ3

1
1−σ

H ]∥us − vs∥2Cds

+ ε

∫ T

−h

∥u(s)− v(s)∥2V ds.

g3 can be estimated similarly.
For (H5); for a we have for u ∈ L2

loc([−h,∞);V )∩C([−h,∞);X∗)∩L∞
loc(−h,∞;H), T > 0∫ T

0

∥∆a1(u(t− r0(t)))∥2V ∗dt

≤C
∫ T

0

[∥∂ua1(u(t− r0(t)))∇u(t− r0(t))∥2H + ∥∂ξa1(u(t− r0(t)))∥2H]dt

≤C
∫ T

0

[∥∇u(t− r0(t))∥2H + ∥u(t− r0(t))∥2H + 1]dt

≤C
∫ T

−h

[∥∇u(t)∥2H + ∥u(t)∥2H + 1]dt.
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Since γ1 ≤ (1 + 4
d
) ∧ 2(1 + 1

d
) − ε, by Lemma 5.1 and the interpolation inequality, we have

for u ∈ L2
loc([−h,∞);V ) ∩ L∞

loc([−h,∞);H) ∩ C([−h,∞);X∗) and every T > 0

∥A1(u(t))∥V ∗ ≤C(1 + ∥ut∥C + ∥u(t)∥
d(

γ1
2
− 1

q
)

V ∥u(t)∥
(γ1−d(

γ1
2
− 1

q
))

H + ∥∇u(t)∥H),

∥A2(t, ut)∥V ∗ ≤C[1 + ∥u(t− r0(t))∥V + ∥ut∥C + ∥∇u(t)∥H

+ ∥∇u(t− r2(t))∥H +

∫ 0

−h

∥∇u(t+ r)∥Hdr],

∥B(t, ut)∥2L2(l2;H) ≤ C(1 + ∥ut∥2C),

where q = 2d
d+2

∨ (1+ ε), W−1,2 ⊂ Lq continuously and C is a constant changing from line to
line. Now we have for every T > 0∫ T

0

[∥A1(u(t))∥2V ∗ + ∥A2(t, ut)∥2V ∗ ]dt

≤
∫ T

0

C(1 + ∥u(t)∥
2d(

γ1
2
− 1

q
)

V ∥u(t)∥
2(γ1−d(

γ1
2
− 1

q
))

H + ∥u(t)∥2V + ∥ut∥2C)dt+
∫ 0

−h

C∥u(t)∥2V dt

+

∫ T

0

(∥∇u(t)∥2H + ∥∇u(t− r2(t))∥2H +

∫ 0

−h

∥∇u(t+ r)∥2Hdr)dt

≤[

∫ T

0

C(1 + ∥u(t)∥2V )dt]2 + sup
t∈[−h,T ]

∥u(t)∥
4(γ1−d(

γ1
2
− 1

q
))

H +

∫ 0

−h

C∥u(t)∥2V dt

+ C

∫ T

−h

∥∇u(t)∥2Hdt+ C(1 + sup
t∈[−h,T ]

∥u(t)∥2H),

and

∥B(t, ut)∥2L2(l2,H) ≤ C(1 + ∥ut∥2C).

Now (H5) follows. Then the results follow from Theorem 4.2.

5.3 Stochastic generalized Porous Medium Euqations

For k ≥ 0, p > 1, the dual space of W k,p
0 (O) is given by W−k,p′(O), where p′ = p

p−1
. The

following Sobolev embeddings hold:

W k,p
0 (O) ⊂ Cm(Ō), 0 ≤ m < k − d

p
.

By Poincare’s inequality we have for x ∈ W 1,2
0 (O)∫

O

|x(ξ)|2dξ ≤ ρO

∫
O

|∇x(ξ)|2dξ.
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Consider the following quasi linear SPDE with Dirichlet boundary conditions:
(5.16)
dX(t) =[∂2ija

ij(ξ,X(t)) + ∂ib
i(ξ,X(t)) + c(ξ,X(t))]dt

+ [∂ib
i
1(ξ,X(t− r1(t)), X(t)) +

∫ 0

−h

∂ib
i
2(r, ξ,X(t+ r), X(t))dr + c1(ξ,X(t− r2(t)))

+

∫ 0

−h

c2(r, ξ,X(t+ r))dr]dt+ σi(ξ,X(t− r3(t)))dW
i(t),

X(t, ξ) = 0, (t, ξ) ∈ R+ × ∂O,

X(t) = ψ(t),−h ≤ t ≤ 0,

where ri, i = 1, 2, 3, are continuous differentiable functions on R satisfying −h ≤ ri ≤ 0, i =
1, 2, 3 and sup r′i(t) < 1, i = 1, 2, a, b, c, c1 and σ are functions from O × R to Rd2 , Rd, R, R
and l2 respectively, continuous with respect to the second variable; b1(ξ, u1, u2) is a function
from O ×R×R to Rd, continuous with respect to (u1, u2); b2(r, ξ, u1, u2) is a function from
[−h, 0] × O × R × R to Rd, continuous with respect to (u1, u2); c1(ξ, u1) is a function from
O × R to R, c2(r, ξ, u1) is a function from [−h, 0]×O × R to R, continuous with respect to
the third variable, and satisfy for some fixed q ≥ 2 and all ξ ∈ O, u1, u2 ∈ R, r ∈ [−h, 0]:

∂ua
ij(ξ, u1)xixj ≥ κa,0|u1|q−2|x|2, x ∈ Rd,

∥a(ξ, u1)∥Rd2 ≤ κa,1(|u1|q−1 + 1),

∥∂ja·j(ξ, u1)∥Rd + ∥b(ξ, u1)∥Rd ≤ κa,b|u1|q−1 + κ′a,b|u1|
q
2 ,

|c(ξ, u1)| ≤ κc,1|u1|q−1 + κc,2(|u1|+ 1),

∥b1(ξ, u1, u2)∥Rd ≤ C|u1||u2|
q
2
−1,

∥b2(r, ξ, u1, u2)∥Rd ≤ C|u1||u2|
q
2
−1,

|c1(ξ, u1)| ≤ κc,2(|u1|+ 1),

|c2(r, ξ, u1)| ≤ κc,2(|u1|+ 1),

∥σ(ξ, u1)∥l2 ≤ κσ(|u1|+ 1),

where all κ with subscripts are strictly positive constants, and

κa,b
2

(1 +
q2ρO
4

) +
κc,1 · q2ρO

4
≤ κa,0

2
.

We choose

V = Y := Lq(O), H := L2(O),

and

X := W d+2,2
0 (O), X∗ :=W−d−2,2(O).
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Let en, n ∈ N,, Πn,Hn be as in Section 2. Define the functional N1 on Y as follows:

N1(y) :=

{
κ0

q2

∫
|∇(|y(ξ)| q2−1y(ξ))|2dξ if |y| q2−1y ∈ W 1,2

0 (O),

+∞ otherwise .

Then by [GRZ09 Lemma 5.1] we know N1 ∈ Uq. In this case, if ψ ∈ Lq(−h, 0;W 1∨ d+ε
2

,2

0 ) for
some ε > 0, we have N1(ψ) ≤ C∥ψ∥

W
1∨ d+ε

2 ,2

0

, then N (ψ) <∞.

Define for x ∈ V = Lq(O)

A1(x) := ∂2ija
ij(·, x(·)) + ∂ib

i(·, x(·)) + c(·, x(·)) ∈ X∗,

and for u ∈ Lq
V ∩ C,

A2(t, u) :=∂ib
i
1(·, u(−r1(t)), u(0)) +

∫ 0

−h

∂ib
i
2(r, ·, u(r), u(0))dr + c1(·, u(−r2(t)))

+

∫ 0

−h

c2(r, ·, u(r))dr ∈ X∗,

B(t, u) := σ(·, u(−r3(t))) ∈ L2(l
2;H).

Thus, we can write the system in the following abstract form

dX(t) = [A1(X(t)) + A2(t,Xt)]dt+B(t,Xt)dW (t), u(0) = u0.

We can easily deduce that ∥ΠnA1(·)∥X∗ is locally bounded onHn and ∥ΠnA2(·, ·)∥X∗ , ∥ΠnB(·, ·)∥L2(l2;H)

are bounded on balls in R+ × C([−h, 0];Hn). Furthermore, we easily deduce that for
every t > 0 ΠnA1(t, ·) is continuous on Hn and ΠnA2(t, ·),ΠnB(t, ·) are continuous on
C([−h, 0];Hn).

Theorem 5.6. For every ψ ∈ Lq(−h, 0;V ) ∩ C with N (ψ) < ∞ (5.16) has a weak solution
X : [−h,∞)× Ω → H such that for every q1 ∈ N, T > 0

EP

(
sup

t∈[−h,T ]

∥X(t)∥2q1H + [

∫ T

0

N1(X(t))dt]q1

)
<∞.

Proof. Now for (H1); let un converge to u in L2
loc([−h,∞);H) and weakly in Lq

loc([−h,∞);V ).
We have for cut-off function χR and every t > 0

|
∫ t

0
X∗⟨∂2ija(un(s)), φ⟩XχR(∥un(s)∥H)− X∗⟨∂2ija(u(s)), φ⟩XχR(∥u(s)∥H)ds|

=|
∫ t

0

∫
[a(un(s))χR(∥un(s)∥H)− a(u(s))χR(∥u(s)∥H)]∂2ijφdξds|.

Moreover, we obtain for all n ∈ N∫ t

0

∫
|a(un(s))χR(∥un(s)∥H)− a(u(s))χR(∥u(s)∥H)|

q
q−1dξds

≤C∥φ∥C2(O)

∫ t

0

∫
[|un(s)|q + |u(s)|q + 1]dξds ≤M,
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which implies that for every t > 0∫ t

0
X∗⟨∂2ija(un(s)), φ⟩XχR(∥un(s)∥H)− X∗⟨∂2ija(u(s)), φ⟩XχR(∥u(s)∥H)ds→ 0.

Similar convergence also hold for the terms including b and c. Then (2.3) follows. Now for
(2.4) we have for every t > 0

|
∫ t

0
X∗⟨∂ibi1(un(s− r1(s)), un(s))− ∂ib

i
1(u(s− r1(s)), u(s)), φ⟩Xds|

≤C∥φ∥C1(O)

∫ t

0

∫
|b1(un(s− r1(s)), un(s))− b1(u(s− r1(s)), u(s))|dξds

≤C∥φ∥C1(O)

∫ t

0

∫
[|un(s− r1(s))||un(s)|q/2−1 + |u(s− r1(s))||u(s)|q/2−1]dξds.

Now for 1 < γ < q
q−1

we have for every t > 0∫ t

0

∫
[|un(s− r1(s))|γ|un(s)|(q/2−1)γ + |u(s− r1(s))|γ|u(s)|(q/2−1)γ]dξds

≤
∫ t

0

∫
|un(s− r1(s))|2 + |u(s− r1(s))|2 + C[|un(s)|q + |u(s)|q + 1]dξds

≤C
∫ t

−h

[∥un(s)∥2H + ∥u(s)∥2H + ∥un(s)∥qV + ∥u(s)∥qV + 1]ds.

Then we obtain for every t > 0∫ t

0
X∗⟨∂ibi1(un(s− r1(s)), un(s))− ∂ib

i
1(u(s− r1(s)), u(s)), φ⟩Xds→ 0, n→ ∞.

The convergence for b2 can be obtained similarly. Now for c1 we have for every t > 0∫ t

0
X∗⟨c1(un(s− r2(s)))− c1(u(s− r2(s))), φ⟩Xds

=

∫ t

0

∫
(c1(un(s− r2(s)))− c1(u(s− r2(s))))φdξds

Similarly, we obtain that∫ t

0

∫
|c1(un(s− r2(s)))− c1(u(s− r2(s)))|dξds

≤C∥φ∥C(O)

∫ t

0

∫
[|un(s− r2(s))|+ |u(s− r2(s))|+ 1]dξds.

Similarly as above we obtain for every t > 0∫ t

0
X∗⟨c1(un(s− r2(s)))− c1(u(s− r2(s))), φ⟩Xds→ 0, n→ ∞.
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We obtain the similar convergence results for c2. Then combining the estimates above,
(2.4) in (H1) follows. By the assumptions for σ we obtain that if un converge to u in
L2
loc([−h,∞);H) then

lim
n→∞

∫ t

0

∥B∗(s, uns )(v)−B∗(s, us)(v)∥l2ds = 0.

So (H1) follows.
Now for (H2); by a similar calculation in [GRZ09, Section 5] we obtain that∫ T

0
X∗⟨A1(u(t)) + A2(ut), u(t)⟩Xdt

≤
∫ T

0

[−N1(u(t)) + C(1 + ∥ut∥2C)]dt

−
∫ T

0

[X∗⟨bi1(u(t− r1(t)), u(t)) +

∫ 0

−h

bi2(r, u(t+ r), u(t))dr, ∂iu(t)⟩X

+ X∗⟨c1(u(t− r2(t))) +

∫ 0

−h

c2(r, u(t+ r))dr, u(t)⟩X]dt

≤
∫ T

0

[−N1(u(t)) + C(1 + ∥ut∥2C)

+ C

∫ (
|u(t− r1(t))||u(t)|

q
2
−1|∇u(t)|+

∫ 0

−h

|u(t+ r)||u(t)|
q
2
−1|∇u(t)|dr

)
dξ

+ X∗⟨c1(u(t− r2(t))) +

∫ 0

−h

c2(r, u(t+ r))dr, u(t)⟩X]dt

≤
∫ T

0

[−1

2
N1(u(t)) + C(1 + ∥ut∥2C)]dt+ c

∫ 0

−h

N1(u(t))dt.

Now for (H3); for u ∈ C([−h,∞);X) we have

∥∂2ija(u(s))∥X∗ ≤ C

∫
[|u(s)|q−1 + 1]dξ ≤ C(N1(u(s)) + 1).

Now for b we have

∥∂ibi1(u(s− r1(s)), u(s))∥X∗ ≤ C∥b1(u(s− r1(s)), u(s))∥L1(O)

≤C
∫

|u(s− r1(s))||u(s)|q/2−1dξ.

Now for 1 < γ < q
q−1

we have∫
|u(s− r1(s))|γ|u(s)|(q/2−1)γdξ

≤
∫

|u(s− r1(s))|2 + C[|u(s)|q + 1]dξ

≤C[∥us∥2C +N1(u(s)) + 1].

41



Similarly, we obtain that

∥
∫ 0

−h

∂ib
i
2(u(s+ r), u(s))∥γX∗ ≤ C[∥us∥2C +N1(u(s)) + 1].

Now for c1, c2 we also have

∥c1(u(s− r2(s)))∥X∗ + ∥
∫ 0

−h

c2(r, u(r))dr∥X∗

≤C[∥us∥C + 1].

∥B(t, ut)∥2L2(l2;H) ≤ C(1 + ∥ut∥2C).

Then (H3) follows. Now the results follow from Theorem 2.2.

Now we prove the uniqueness. We consider the case where

(5.17)

dX(t) =[∆Φ(X(t)) + c(ξ)X(t) + c1(ξ)X(t− r2(t))

+

∫ 0

−h

c2(r, ξ)X(t+ r)dr]dt+ σi(ξ)X(t− r3(t))dW
i(t),

X(t, ξ) = 0, (t, ξ) ∈ R+ × ∂O,

X(t) = ψ(t),−h ≤ t ≤ 0,

where c, c1, c2, ∥σ∥l2 ∈ W 1,2
0 (O) and Φ : R → R is a continuous function satisfying (Φ(s) −

Φ(t))(s − t) ≥ 0, Ψ(s)s ≥ m1|s|q − m2, |Ψ(s)| ≤ m3|s|q−1 + m4, s, t ∈ R,m1,m3,m4 >
0,m2 ≥ 0. In this case, we choose the following Gelfand triple:

V = Lq(O) ⊂ W−1,2(O) =: H0
∼= H∗

0 =:W 1,2
0 (O) ⊂ (Lq(O))∗ = V ∗.

From [PR07, Chapter 4], we only need to check (H4) for c: we have

V ∗⟨c1(ξ)u(t− r2)− c1(ξ)v(t− r2), u(t)− v(t)⟩V
≤C∥c1(ξ)(u(t− r2)− v(t− r2))∥H0∥(u(t)− v(t))∥H0

≤C∥ut − vt∥2C([−h,0];H0)
.

For c, c2, σ we have similar estimates. Then we obtain:

Theorem 5.7. For every ψ ∈ Lq(−h, 0;V ) ∩ C([−h, 0];H0) with N (ψ) < ∞, (5.17) has
a unique (probabilistically) strong solution X ∈ C([−h,∞), H0) satisfying for every T >
0, q1 ∈ N

EP

(
sup

t∈[−h,T ]

∥X(t)∥2q1H + [

∫ T

0

N1(X(t))dt]q1

)
<∞.
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