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Abstract. The paper is devoted to the study of fractal properties of subsets of the set of
non-normal numbers with respect to Rényi f -expansions generated by continuous increasing
piecewise linear functions defined on [0,+∞). All such expansions are expansions for real num-
bers generated by infinite linear IFS f = {f0, f1, ..., fn, ...} with the following list of ratios
Q∞ = (q0, q1, ..., qn, ...).

We prove the superfractality of the set of Q∞-essentially non-normal numbers, i.e. real
numbers having no asymptotic frequencies of any digits from the alphabet A = {0, 1, ..., n, ...},
for any infinite stochastic vector Q∞, independently of the finiteness resp. infiniteness of its
entropy and independently of the faithfulness resp. non-faithfulness of the family of cylinders
generated by these expansions.
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1. Introduction

The notions of self-similar sets and self-similar measures are by now quite well known. They
can be defined in a standard way by lists of similarity ratios (q0, q1, ..., qn−1) and probabilities
(p0, p1, ..., pn−1) (see, e.g., [8, 9, 10]). Properties of such sets and measures are well investigated
under the open set condition (see, e.g., [9]). On the other hand natural generalizations to the
case of infinite (even linear) IFS (iterated function system) lead to a series of new phenomena.
Let us mention only two interesting aspects related to the infinite IFS. The first one is naturally
related to the possible divergence of the entropy of the stochastic vector of similarity ratios
Q∞ = (q0, q1, ..., qn, ...).
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The second and rather unexpected aspect is related to the faithfulness (non-faithfulness) of
the system of cylindrical sets from the coding space generated by infinite IFS ([3, 19]). To explain
this phenomenon let us recall that a family Φ of coverings is said to be a fine covering system
of the unit interval if for an arbitrary set E ⊂ [0, 1), and for each number ε > 0 there exists
an at most countable ε-covering {Ej} of E (Ej ∈ Φ, |Ej | ≤ ε). Let α be a positive number.
The α-dimensional Hausdorff measure of a bounded subset E with respect to a given family of
subsets Φ is defined by

Hα(E,Φ) = lim
ε→0

 inf
d(Ej)≤ε

∑
j

|(Ej)|α

 = lim

ε→0
mα
ε (E,Φ),

where the infimum is taken over all at most countable ε-coverings {Ej} of E, Ej ∈ Φ. We remark
that, generally speaking, Hα(E,Φ) depends on the family Φ. The family of all bounded sets, the
family of all open sets and the family of all closed sets all give rise to the same α-dimensional
Hausdorff measure (see, e.g., [8]), which will be denoted by H α(E).

Definition 1. The nonnegative number

dimH(E,Φ) = inf{α : Hα(E,Φ) = 0} (1)

is called the Hausdorff dimension of the set E with respect to the family of subsets Φ.

Definition 2. A fine covering system Φ is said to be faithful if for any subset E ⊂ [0, 1] one has

dimH(E,Φ) = dimH(E).

In [3] it has been shown that even for the simplest case of infinite IFS, leading to the classical
Lüroth expansion, the family of corresponding cylinders is non-faithful for the determination of
the Hausdorff dimension of subsets from the unit interval.

Let Q∞ = (q0, q1, ..., qn, ...) be an infinite stochastic vector with strictly positive coordinates.
Let us consider the infinite iterated functions system (IFS) generated by the following countable
set of similitudes

F0(x) = q0 · x, Fi(x) = qi · x+ (q0 + ...+ qi−1), ∀i ∈ N, x ∈ [0, 1),

(see, e.g., [8, 10] for details about IFS). It is clear that [0, 1) is invariant w.r.t. this IFS, and
it generates a cylindrical expansion for real numbers from [0, 1). Indeed, for any real number
x ∈ [0, 1) there exists a unique sequence ω = ω(x) = (ω1, ω2, ..., ωn, ...) ∈ {0, 1, 2, ...}∞ such that

x =

∞∩
n=1

Fω1 ◦ Fω2 ◦ ... ◦ Fωn([0, 1)) =: ∆Q∞
ω1ω2...ωn.... (2)

The expression x = ∆Q∞
ω1(x)ω2(x)...ωn(x)...

, ωk ∈ N
∪
{0} is said to be the Q∞-expansion of x ∈ [0, 1).

In the sequel, we will use the notation ∆ω1(x)...ωn(x)... instead of ∆Q∞
ω1(x)...ωn(x)...

whenever no
confusion can arise. Every point x ∈ [0, 1) has a unique Q∞-expansion.

The above expansion is actually the f -expansion (see, e.g., [7, 22] for details), which is gen-
erated by the following strictly increasing continuous function f defined on [0,+∞) such that
f(0) = 0 and f increases linearly on each interval [n, n + 1] with f(n + 1) − f(n) = qn, ∀n ∈
{0, 1, 2, ...}.
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This expansion can also be explained in the following geometric way (see [20]). Given a
Q∞-matrix we consecutively perform decompositions of the interval [0, 1).

Step 1. We decompose [0, 1) (from the left to the right) into the union of intervals ∆i1 ,
i1 ∈ {0, 1, 2, . . .} (without common points) of length |∆i1 | = qi1 ,

[0, 1) =

∞∪
i1=0

∆i1 .

Each interval ∆i1 is called a 1-rank interval.
Step k ≥ 2. We decompose (from the left to the right) each (k − 1)-interval ∆i1i2...ik−1

into
the union of k-rank intervals ∆i1i2...ik (without common points)

∆i1i2...ik−1
=

∞∪
ik=0

∆i1i2...ik ,

whose lengths

|∆i1i2...ik | = qi1 · qi2 · · · qik =
k∏
s=1

qis (3)

are related as follows∣∣∆i1i2...ik−10

∣∣ : ∣∣∆i1i2...ik−11

∣∣ : · · · : ∣∣∆i1i2...ik−1ik

∣∣ : · · · = q0 : q1 : · · · : qik : · · · .

For any sequence of indices {ik}, ik ∈ {0, 1, 2 . . .}, there corresponds the sequence of non-trivial
embedded intervals

∆i1 ⊃ ∆i1i2
⊃ · · · ⊃ ∆i1i2...ik

⊃ · · ·

such that |∆i1...ik | → 0, k → ∞, due to (3). Therefore, there exists a unique point x ∈ [0, 1)

belonging to all intervals ∆i1 , ∆i1i2 , ..., ∆i1i2...ik , . . . .

Conversely, for any point x ∈ [0, 1) there exists a unique sequence of embedded intervals
∆i1 ⊃ ∆i1i2 ⊃ ... ⊃ ∆i1i2...ik ⊃ ... containing x, i.e.,

x =

∞∩
k=1

∆i1i2...ik =

∞∩
k=1

∆i1(x)i2(x)...ik(x) = ∆i1(x)i2(x)...ik(x).... (4)

In the sequel, Φ = Φ(Q∞) will be the family of all possible cylinders of the Q∞-partition of
the interval [0, 1), i.e.,

Φ = {E : E = ∆α1...αn , αi ∈ N0, i = 1, 2, ..., n; n ∈ N}. (5)

In [3] it has been shown that the fine covering system generated by the Q∞-expansion is not
necessarily faithful. In particular, if there exist a positive integer m0 > 1 and real numbers A
and B such that

A

(i+ 1)m0
≤ qi ≤

B

(i+ 1)m0
, ∀i ∈ N, (6)

then the fine covering system generated by the Q∞-expansion is non-faithful.
In this paper we develop techniques and study fractal properties of subsets of non-normal

numbers w.r.t. the Q∞-expansions even for the case where the stochastic vector Q∞ has infinite
entropy and the corresponding family Φ(Q∞) is non-faithful.
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2. Fractal properties of the set of Q∞-quasinormal numbers

Let Ni(x, n) be the number of digits «i» among the first n digits of the Q∞-expansion of x.

Definition 3. If the limit lim
n→∞

Ni(x,n)
n exists, then its value νQ∞

i (x) is said to be the asymptotic
frequency of the digit «i» in the Q∞-expansion of x.

By the law of large numbers, for Lebesgue almost all real numbers from the unit interval the
following equalities hold

νQ∞
i (x) = qi, ∀i ∈ N0.

Definition 4. A real number x is said to be Q∞-normal, if

νQ∞
i (x) = qi, ∀i ∈ N0.

It is clear that the set N(Q∞) of Q∞-normal numbers is of full Lebesgue measure, and,
therefore, it is a set of full Hausdorff dimension.

Definition 5. The set

W (Q∞) =

{
x : ∀i ∈ N0, lim

n→∞

Ni(x, n)

n
exists

}∩
N(Q∞). (7)

is said to be the set of Q∞-quasinormal numbers.

Theorem 1. The set of Q∞-quasinormal numbers is of full Hausdorff dimension, i.e.,

dimH(W (Q∞)) = 1.

Proof. Let Q∞ = (q0 q1 q2 . . . qj . . .) be a given stochastic vector.
Let Mk = {x : νQ∞

i (x) = qi
sk
, ∀i ≤ k; νQ∞

i (x) = 0,∀i > k}, where sk =
∑k

i=0 qk.

Thus Mk ⊂W (Q∞).

Let us consider the random variable ξ which is defined by ξ = ∆ξ1ξ2...ξj ..., where the random
variables ξj are given by

ξj 0 1 2 ... k k + 1 k + 2 . . .
q0
sk

q1
sk

q2
sk

... qk
sk

0 0 . . .

The above random variable ξ is known to be a random variable with independent identically
distributed Q-digits ([24, P. 152]), where Q is given by

Q = (q0, q1, . . . , qk, 1−
k∑
i=0

qi)

and P is given by

P =

(
q0
sk
,
q1
sk
, . . . ,

qk
sk
, 0

)
.

So, we may apply Theorem 6 from [11], which states that the Hausdorff dimension of the
distribution of any random variable ξ with independent identically distributed Q-digits can be
calculated as follow:

dimH µξ =

k∑
i=0

qi
sk

ln qi
sk

k∑
i=0

qi
sk

ln qi

.
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The set Mk is the spectrum of the measure µξ. Hence,

dimH(Mk) ≥ dimH µξ =

(
q0
sk

ln q0 + . . . qksk ln qk

)
−
(
q0
sk

ln sk + . . . qksk ln sk

)
q0
sk

ln q0 + . . .+ qk
sk

=

= 1−
ln sk
sk

(q0 + . . .+ qk)
q0
sk

ln q0 + . . .+ qk
sk

= 1− sk ln sk
q0 ln q0 + . . . qk ln qk

.

It is clear that sk → 1 and sk ln sk → 0 as k → ∞. Therefore, dimH(Mk) tends to 1 as k → ∞.

It easy to check that
∪∞
k=1Mk ⊂W (Q∞).

By properties of the Hausdorff dimension, we have

dimH

( ∞∪
k=1

Mk

)
= sup

k
dimH(Mk)

and
dimH(W (Q∞)) ≥ sup

k
dimH(Mk) = 1,

which proves the theorem. �
Remark 1. The above proof is valid for the case where the stochastic vector Q∞ has a finite

entropy as well as for the case where −
∞∑
i=0

qi ln qi = +∞, i.e. Q∞ has infinite entropy.

3. Fractal properties of the set of Q∞-partially non-normal numbers

Definition 6. The set

D(Q∞) =

{
x : lim

n→∞

Ni(x, n)

n
does not exist for at least one i ∈ N0

}
(8)

is said to be the set of Q∞-non-normal numbers.

It is clear that the set of Q∞-non-normal numbers is of zero Lebesgue measure.

Definition 7. The set

P (Q∞) =

{
x : ∃i ∈ N ∪ {0} : νQ∞

i (x) does not exist, ∃j ∈ N ∪ {0} : νQ∞
j (x) exists

}
is said to be the set of Q∞-partially non-normal numbers.

Theorem 2. The set P (Q∞) of Q∞-partially non-normal numbers is of full Hausdorff dimen-
sion.

Proof. To prove that the set P (Q∞) is of full Hausdorff dimension it is enough to show that for
any ε > 0 there exists a subset P (ε) ⊂ P (Q∞) such that dimH P (ε) > 1− ε.

Let Q∞ = (q0 q1 q2 . . . qj . . .) be a given stochastic vector. Let us consider the following set

Ps,k = {x : x = ∆
α
(1)
1 (x)α

(1)
2 (x)...α

(1)
2s (x)01α

(2)
1 (x)α

(2)
2 (x)...α

(2)
4s (x)0011 ...

α
(m)
1 (x)α

(m)
2 (x)...α

(m)
2ms(x)00 . . . 0︸ ︷︷ ︸

2m−1

11 . . . 1︸ ︷︷ ︸
2m−1

...
, α

(i)
j ∈ {0, 1 . . . , k − 1}} =

= {x : x = ∆α1(x)α2(x)...αj(x)...,

αj ∈ {0, 1, . . . , k − 1} if j ∈M∗, αj = 0 if j ∈M0, αj = 1 if j ∈M1},
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where m ∈ N and

M∗ =
∪
m

Mm
∗ ,

Mm
∗ = {rm + 1, rm + 2, . . . , rm + 2ms}, rm = (s+ 1)(2m − 2),

M0 =
∪
m

Mm
0 ,

Mm
0 = {rm + 2ms+ 1, rm + 2ms+ 2, . . . , rm + 2ms+ 2m−1},

M1 =
∪
m

Mm
1 ,

Mm
1 = {rm + 2ms+ 2m−1 + 1, rm + 2ms+ 2m−1 + 2, . . . , rm + 2ms+ 2m}.

Actually, the set Ps,k belongs to the family of Cantor-like sets C[Q∞, {Vj}], where Vj =

{0, 1, ..., k − 1} iff j ∈M∗; Vj = {0} iff j ∈M0; and Vj = {1} iff j ∈M1. It is clear that for any
x ∈ Ps,k the limits lim

n→∞
N0(x,n)

n , lim
n→∞

N1(x,n)
n do not exist and νi(x) = 0, ∀i > k. So,

Ps,k ⊂ P (Q∞), ∀s, k ∈ N. (9)

Let γk =
k−1∑
i=0

qi, h(k) = −
k−1∑
i=0

qi
γk

ln qi
γk
, and let us prove that the Hausdorff dimension of the set

Ps,k is not less then

dimH(Ps,k) ≥
2sh(k)

2sh(k)− 2s ln γk − ln q0q1
.

Let {ηi} be a sequence of independent random variables with the following distributions:
if i ∈M∗, then ηi takes values 0, 1, . . . , k−1 with probabilities q∗0, q∗1, . . . , q∗k−1, where q∗j =

1
γk
qj ;

if i ∈M0, then ηi takes the value 0 with probability 1;
if i ∈M1, then ηi takes the value 1 with probability 1.
Let µξ be the probability distribution of the corresponding random variable ξ = ∆η1η2...ηi...

with independent Q∞-digits.
Let us determine the Hausdorff dimension of the measure µξ. To this end we introduce an

auxiliary random variable ψ with independent Q-digits (see, e.g., [5] for details) connected with
the above Q∞-expansion and defined as follows. If

Q∞ = (q0, q1, ..., qk−1, qk, qk+1, ...),

then

Q = (q0, q1, ..., qk−1, qk), with qk =

∞∑
i=k

qi,

i.e., this Q-expansion is generated by the following k + 1 similitudes

F0(x) = q0 · x, F1(x) = q1 · x+ q0, ..., Fk−1(x) = qk−1 · x+ (q0 + ...qk−2),

Fk(x) = qk · x+ (q0 + ...+ qk−1).

Then the random variable ψ is defined by

ψ = ∆Q
η1η2...ηi..., (10)

where the random variables η1, η2, ... are the same as above. From the construction of the random
variables ξ and ψ it follows that they have the same probability distribution µ = µξ = µψ, which
is uniformly distributed on the set As,k.
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Fine fractal properties of random variables with independent Q∗-digits were studied in [5]. In
particular, an explicit formula for the determination of the Hausdorff dimension for probability
measures with independent Q∗-digits was presented there.

Since any random variable with independentQ-digits belongs to the family of random variables
with independent Q∗-digits (in such a case all columns of the matrix Q∗ are the same), we may
apply Theorem 1 from [5]. This theorem states that if inf

i,j
qij = q > 0, then the Hausdorff

dimension of the random variable with independent Q∗-digits is equal to

lim
n→∞

Hn

Bn
,

where

Hn =

n∑
j=1

hj , hj = −
s−1∑
i=0

pij ln pij ,

and

Bn =

n∑
j=1

bj , bj = −
s−1∑
i=0

pij .

In our case s = k + 1, qij = qi, i ∈ {0, 1, ..., k − 1}, and qkj = qk, ∀j ∈ N.
The probabilities pij give us the distributions of the above random variables ηj , i.e.,
if j ∈ M∗, then ηj takes the values 0, 1, 2, ..., k − 1, k with probabilities p0j = q∗0, p1j =

q∗1, ..., p(k−1)j = q∗k−1, pkj = 0, respectively, where q∗j =
1
γk
qj ;

if j ∈M0, then ηj takes the value 0 with probability p0j = 1;
if j ∈M1, then ηj takes the value 1 with probability p1j = 1.

So, if j ∈M∗, then hj = h(k) = −
k−1∑
i=0

qi
γk

ln qi
γk
, bj = −

k−1∑
i=0

qi
γk

ln qi;

if j ∈M0, then hj = 0, bj = − ln q0;
if j ∈M1, then hj = 0, bj = − ln q1.

It is also clear that bj = hj + ln 1
γk

for j ∈M∗.

Therefore,

dimH µ = lim
n→∞

Hn

Bn
=

2sh(k)

2sh(k)− 2s ln γk − ln q0q1
.

Since the set As,k is the support of the measure µξ, we get

dimH Ps,k ≥ dimH µ =
2sh(k)

2sh(k)− 2s ln γk − ln q0q1
.

For a given ε we can choose k0(ε) ∈ N and s0(ε) ∈ N such that ∀k > k0(ε), ∀s > s0(ε) the
following inequality holds:

2sh(k)

2sh(k)− 2s ln γk − ln q0q1
=

1

1− ln γk
h(k) −

ln q0q1
2sh(k)

> 1− ε.

Set k = k0(ε) + 1, s = s0(ε) + 1. Then Ps,k ⊂ P (Q∞) and dimH(Ps,k) > 1− ε, which proves
the theorem. �
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4. Fractal properties of the set of Q∞-essentially non-normal numbers

Definition 8. The set

L(Q∞) =

{
x : lim

k→∞

Ni(x, k)

k
does not exist, ∀i ∈ N0

}
(11)

is said to be the set of Q∞-essentially non-normal numbers.

Theorem 3. Let Q∞ be a stochastic vector such that
∞∑
j=0

ln2 qj
2j

< +∞. (12)

Then the set L(Q∞) of Q∞-essentially non-normal numbers is of full Hausdorff dimension.

Proof. Let s and l > 2 be fixed positive integers. Let us consider the following set:

Ts, l =
{
x : x ∈ (0, 1), x = ∆0α1,1α1,2 . . . α1,2s︸ ︷︷ ︸

first group

001α2,1α2,2 . . . α2,22s︸ ︷︷ ︸
second group

2k−1︷ ︸︸ ︷
0 . . . 0

2k−2︷ ︸︸ ︷
1 . . . 1 . . .

21︷ ︸︸ ︷
(k − 2)(k − 2)

20︷ ︸︸ ︷
(k − 1)αk,1αk,2 . . . αk,2ks︸ ︷︷ ︸

k-th group

. . .

,

where αk,j ∈ {0, 1, . . . , l − 1}, ∀k ∈ N
}
.

Let us denote by Fix(j) the set of numbers of positions of the fixed digit «j» in the Q∞-
expansion of x ∈ Ts, l. Let us describe the set Fix(j) more precisely.

The fixed digit «j» firstly appears in the (j + 1)-th group. The fixed digit «j» appears 2k−1

times in the (j + k)-th group.
The quantity of all positions before the (j + k)-th group is equal to

(21 − 1 + 21s) + (22 − 1 + 22s) + . . .+ (2j+k−1 − 1 + 2j+k−1s) =

= (21 + 22 + . . .+ 2j+k−1) + s(21 + 22 + . . .+ 2j+k−1)− (j + k − 1) =

= (2j+k − 2) + (2j+k − 2)s− (j + k) + 1 =

= (2j+k − 2)(s+ 1)− (j + k) + 1.

The (j + k)-th group starts with

2j+k−1 zeros
2j+k−2 digits «1»

...
2k digits «j − 1».


in all: 2k(2j−1 + 2j−2 + . . .+ 21 + 1) =

= 2k(2j − 1) digits.

Therefore,

(2j+k − 2)(s+ 1)− (j + k) + 1 + 2k(2j − 1) + i,where i ∈ {1, 2, 3, . . . , 2k−1}

are numbers of the position of the fixed number «j» in the (k + j)-th group. Then for any
j ∈ {0, 1, 2, . . .} = N0 we get

Fix(j) = {n : n = (2j+k − 2)(s+ 1)− (j + k) + 2k(2j − 1) + 1 + i,

i ∈ {1, 2, . . . , 2k−1}, k ∈ N}



ON FRACTAL PROPERTIES OF NON-NORMAL NUMBERS W.R.T. RÉNYI f -EXPANSIONS 9

Let

Fix =
∞∪
j=0

Fix(j); Flex = N \ Fix.

Then the set Ts, l can be defined by

Ts, l = {x : x = ∆α1(x)α2(x)...αk(x)...;

αk(x) = j for all k ∈ Fix(j), j ∈ N0;

αk(x) ∈ {0, 1, . . . , l − 1} for all k ∈ Flex}.

The proof can be naturally splitted into a sequence of lemmas. Lemma 1 shows that Ts, l ⊂
L(Q∞).

Lemma 1. For any s ∈ N and for any l ∈ N, l > 2 the set Ts, l consists of real numbers having
no frequencies of any Q∞-digit.

Proof. Let us show that for any x ∈ Ts, l the limit lim
k→∞

N0(x,k)
k does not exist.

Let m′
k(0) + 1 be the number of the position at which the k-th group is started, i.e.,

m′
k(0) =

= (1 + 2s) + (2 + 1 + 4s) + . . .+ (2k−2 + . . .+ 21 + 1 + 2k−1s) =

= (21 − 1 + 2s) + (22 − 1 + 22s) + . . .+ (2k−1 − 1 + 2k−1s) =

= (2k − 2)− (k − 1) + s(2k − 2) = (2k − 2)(s+ 1)− k + 1.

Let m′′
k(0) = m′

k(0) + 2k−1.

N0(x,m
′
k(0)) = (1 + 2 + . . . 2k−2) + τ0(x,m

′
k(0)) = 2k−1 − 1 + τ0(x,m

′
k(0)),

where τ0(x,m′
k(0)) is the number of zeros among first m′

k(0) digits.

N0(x,m
′′
k(0)) = 2 · 2k−1 − 1 + τ0(x,m

′
k(0)).

N0(x,m
′
k(0))

m′
k(0)

=
2k−1 − 1 + τ0(m

′
k(0))

(2k − 2)(s+ 1)− k + 1
=

1
2 − 1

2k
+

τ0(m′
k(0))

2k

(1− 2
2k
)(s+ 1)− k−1

2k

;

N0(x,m
′′
k(0))

m′′
k(0)

=
2k − 1 + τ0(m

′
k(0))

(2k − 2)(s+ 1) + 2k−1 − k + 1
=

1− 1
2k

+
τ0(m′

k(0))

2k

(1− 2
2k
)(s+ 1) + 1

2 − k−1
2k

.

If x ∈ Ts, l and the limit lim
k→∞

τ0(x, m′
k(0))

2k
does not exist, then the limit lim

k→∞
N0(x, m′

k(0))

m′
k(0)

also

does not, and consequently the limit lim
k→∞

N0(x, k)
k does not exist.

If the limit lim
k→∞

τ0(x, m′
k(0))

2k
= a(x) exists, then

N0(x, m
′
k(0))

m′
k(0)

−→
1
2 + a(x)

s+ 1
=

2a(x) + 1

2s+ 2
,

but
N0(x, m

′′
k(0))

m′′
k(0)

−→ 1 + a(x)

s+ 1 + 1
2

=
2a(x) + 2

2s+ 3
>

2a(x) + 1

2s+ 2
.

Therefore, for any x ∈ Ts, l the digit «0» does not have a frequency in the Q∞-expansion of x.
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In the same manner we can see that for any x ∈ Ts, l and for any digit «i» the limit lim
k→∞

Ni(x, k)
k

does not exist. �

Lemma 2.

dimH(Ts, l) = dimH(Ts, l,Φ).

Proof. It is clear that Hα
ε (Ts, l) ≤ Hα

ε (Ts, l,Φ).

Let us show that Hα
ε (Ts, l) ≥ Hα

ε (Ts, l,Φ).

Let Ej = [aj , bj ] be an arbitrary closed interval from some covering of the set Ts, l.
Write Ij = Ts, l ∩ Ej .
There exist cylinders containing the set Ij . Let ∆j

α1...αk denote the cylinder of the minimal
length among all cylinders containing the set Ij .

Then (k + 1) ∈ Flex. Otherwise the cylinder ∆j
α1...αk should not be the smallest cylinder

containing the set Ij . For example, Ij ⊂ ∆j
α1...αkα(k+1)

⊂ ∆j
α1...αk .

Let cj = inf Ij , dj = sup Ij .

Let

∆j
α1...αk

:=
∞∪
i=0

∆j
α1...αki

.

Since cj is the infimum of Ij , we have that cj ∈ ∆j
α1...αk0

.

Since Ts, l ∩∆j
α1...αki

= ∅, ∀i ≥ l and Ts, l ∩∆j
α1...αk(l−1) ̸= ∅ and dj is the supremum of Ij , it

follows that dj ∈ ∆j
α1...αk(l−1).

Hence ∆j
α1...αk1

⊂ [cj , dj ]. Therefore

|(cj , dj)| > |∆j
α1...αk1

| = q1 · |∆j
α1...αk

|.

So, |∆j
α1...αk | < 1

q1
(dj − cj) ≤ 1

q1
(bj − aj).

Thus for any closed interval Ej we can cover the set Ts, l ∩ Ej by one cylinder of length not
larger then 1

q1
|Ej |.

Therefore, for any ε > 0, any α ∈ (0, 1] and any ε-covering of Ts, l we get

Hα
ε (Ts, l,Φ) ≤

1

qα1

∑
j

|Ej |α.

Hence,

Hα
ε (Ts, l,Φ) ≤

1

qα1
Hα
ε (Ts, l)

for any ε > 0 and any α ∈ (0, 1].

By letting ε approach 0 we can prove that

Hα(Ts, l) ≤ Hα(Ts, l,Φ) ≤
1

qα1
Hα(Ts, l)

for any α ∈ (0, 1].

So, dimH(Ts, l,Φ) = dimH(Ts, l). �
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Lemma 3. The Hausdorff dimension of the set Ts, l is not less then

dimH(Ts, l) ≥

l−1∑
i=0

qi ln qi − sl ln sl

l−1∑
i=0

qi ln qi +
sl
s lim
j→∞

j−1∑
k=0

(2j−k−1)
(2j−2)

ln qk

,

where sl = q0 + q1 + . . .+ ql−1.

Proof. Let us construct the singularly continuous probability measure such that the set Ts, l will
be the spectrum of the constructed measure.

Let ξ(l) be a random variable with independent Q∞-digits ξk(l) defined by

ξ(l) = ∆ξ1(l)ξ2(l)...ξk(l)...,

where ξk(l) are defined by probability distributions:

If k ∈ Fix(j), then
ξk(l) j

pjk = 1
, j ∈ N0;

If k ∈ Flex, then
ξk(l) 0 1 . . . l − 1

p0k =
q0
sl

p1k =
q1
sl

. . . p(l−1)k =
ql−1

sl

,

where sl = q0 + q1 + . . .+ ql−1.

Let µξ(l) be the above defined probability distribution of the corresponding random variable
ξ(l) with independent Q∞-digits.

The set Ts, l is the spectrum of the measure µξ(l).
So,

dimH(Ts, l) ≥ dimH µξ(l).

By Theorem 3.1 from [15], if
∞∑
k=1

∞∑
i=0

pik ln2 pik

k2
<∞ and

∞∑
k=1

∞∑
i=0

pik ln2 qk

k2
<∞, then

dimH(µξ(l),Φ(Q∞)) = lim
n→∞

h1 + h2 + . . .+ hn
b1 + b2 + . . .+ bn

.

In our case
∞∑
k=1

∞∑
i=0

pik ln2 pik

k2
<∞, because

∞∑
i=0

pik ln
2 pik =


0, if k ∈ Fix,
l−1∑
i=0

qi
sl
ln2 qisl = c1(l), if k ∈ Flex.

Let us show that
∞∑
k=1

∞∑
i=0

pik ln2 qk

k2
<∞.

Since
∞∑
i=0

pik ln
2 qi =


ln2 qj , if k ∈ Fix(j),
l−1∑
i=0

qi
sl
ln2 qi = c2(l), if k ∈ Flex,

it is sufficient to prove the convergence of the series
∞∑
j=0

( ∑
i∈Fix(j)

ln2 qj
i2

)
.
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Let us denote by m(j) the minimal element of the set Fix(j).

m(j) = (2j+1 − 2(s+ 1)− (j + 1) + 2(2j − 1) + 2 > s2j .

Then

∞∑
j=0

 ∑
i∈Fix(j)

ln2 qj
i2

 <

∞∑
j=0

 ∞∑
i=m(j)

ln2 qj
i2

 ∼
∞∑
j=0

ln2 qj
m(j)

≤
∞∑
j=0

ln2 qj
s2j

.

By assumption,
∞∑
j=0

ln2 qj
2j

<∞. Therefore,
∞∑
j=0

( ∑
i∈Fix(j)

ln2 qj
i2

)
< +∞.

Hence,

dimH(µξ(l), Φ)) = lim
n→∞

h1 + h2 + . . .+ hn
b1 + b2 + . . .+ bn

=

= lim
j→∞

j−1∑
k=1

2ks
l−1∑
i=0

qi
sl
ln qi

sl

j−1∑
k=1

2ks
l−1∑
i=0

qi
sl
ln qi +

j−1∑
k=0

(2j−k − 1) ln qk

=

= lim
j→∞

(2j − 2)s
l−1∑
i=0

qi
sl
ln qi

sl

(2j − 2)s
l−1∑
i=0

qi
sl
ln qi +

j−1∑
k=0

(2j−k − 1) ln qk

=

= lim
j→∞

(2j − 2) ssl

(
l−1∑
i=0

qi ln qi − ln sl
l−1∑
i=0

qi

)
(2j − 2) ssl

l−1∑
i=0

qi ln qi +
j−1∑
k=0

(2j−k − 1) ln qk

=

= lim
j→∞

l−1∑
i=0

qi ln qi − sl ln sl

l−1∑
i=0

qi ln qi +
sl
s

j−1∑
k=0

(2j−k−1)
(2j−2)

ln qk

=

=

l−1∑
i=0

qi ln qi − sl ln sl

l−1∑
i=0

qi ln qi +
sl
s lim
j→∞

j−1∑
k=0

(2j−k−1)
(2j−2)

ln qk

.

So, lim
j→∞

j−1∑
k=0

(2j−k−1)
(2j−2)

| ln qk| ≤ lim
j→∞

j−1∑
k=0

| ln qk|
2k

=
∞∑
k=0

| ln qk|
2k

<∞, because
∞∑
j=0

ln2 qj
2j

<∞. �

Let Ts =
∞∪
l=3

Ts, l. taking into account lemma 2 and the definition of the Hausdorff dimension

of a measure, we get

dimH(Ts, l) = dimH(Ts, l,Φ) ≥ dimH(µξ(l),Φ).
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Then

dimH(Ts) = sup
l

dimH(Ts, l) ≥

≥ sup
l

l−1∑
i=0

qi ln qi − sl ln sl

l−1∑
i=0

qi ln qi +
sl
s

∞∑
k=0

ln qk
2k

=

∞∑
i=0

qi ln qi

∞∑
i=0

qi ln qi +
1
s

∞∑
k=0

ln qk
2k

.

Finally,
dimH(L(Q∞)) ≥ sup

s
dimH(Ts) = 1.

�

Remark 2. From the proof of the latter theorem it is clear that the assumption
∞∑
j=0

ln2 qj
2j

< ∞

was necessary for using Theorem 3.1 from [15]. It is natural to ask whether this condition is just
a technical one and whether it is possible ( by using other techniques) to show that the Hausdorff
dimension of the set Ts,l is close to 1 for large enough s and l. Unfortunately this is not the case.

Let us show that one can choose a stochastic vector Q∞, such that
∞∑
j=0

ln2 qj
2j

= ∞, and for any

fixed s ∈ N and any fixed l ∈ N the Hausdorff dimension of the set Ts, l equals to zero.
Let for a fixed s ∈ N and a fixed l ∈ N, the elements of the stochastic vector Q∞ be defined

by

qi =
A

(l2i+1s)i+1
,

where 1
A =

∞∑
i=0

1

(l2
i+1s)i+1

.

From the construction of the set Ts, l it follows that this set can be covered by l2s ·l22s ·. . .·l2k−1s

cylinders of rank m, where m is the order number of the position of the last fixed digit in the
k-th group.

It is obvious, that l2s · l22s · . . . · l2k−1s = l(2
k−2)s < ls·2

k
.

The length of each cylinders of the covering is not larger than

q2
k−1

0 · q2k−1−1
1 · . . . · q2k−2 · qk−1 < qk−1 =

A

(l2ks)k
.

Therefore, for any positive α the α-volume of the latter covering of the set Ts, l does not exceed
the value

ls·2
k ·
(

A

(l2ks)k

)α
= Aα · ls·2

k

(ls·2k)α
=

Aα

(ls·2k)αk−1
,

which tends to zero as k tends to infinity.
So, dimH(Ts, l,Φ) = 0.

For the completeness of the metric and topological classification of real numbers via the as-
ymptotic behavior of their digits in Q∞−expansion, we mention the following result.

Theorem 4 ([3]). The set L(Q∞) of Q∞-essentially non-normal numbers is of the second Baire
category.
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Remark 3. The latter theorem shows that Q∞-essentially non-normal numbers are generic from
the topological point of view.

Summarizing, we have

Lebesgue measure Hausdorff dimension Baire category
N(Q∞) 1 1 first
W (Q∞) 0 1 first
P (Q∞) 0 1 first
L(Q∞)∗ 0 1 second

∗ — in the case where
∞∑
j=0

ln2 qj
2j

< +∞.

Some open problems.
1) We strongly believe that the set of Q∞-essentially non-normal numbers is of full Hausdorff

dimension for any choice of the stochastic matrix Q∞, but up to now this conjecture is still open.
2) The superfractality of the set of essentially non-normal numbers has been proven for a series

of different expansions for real numbers (see, e.g., [2, 1, 16, 17, 18, 21]). So, it is naturally to ask
whether there exist expansions f such that:

2.1. the corresponding set L(f) of f -essentially non-normal numbers is not of full Hausdorff
dimension;

2.1. the whole set D(f) of f -non-normal numbers is not of full Hausdorff dimension?
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