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Abstract

We study a new marked continuous contact model in d-dimensional

space (d ≥ 3), where the mark of any particle is interpreted as the in-

dividual genome of a bacterium. The fecundity and mortality rates

are now mark dependent. Under general conditions we prove that for

certain values of fecundity rates (the critical regime) this system has

the one-parameter set of invariant measures parametrized by the spa-

tial density of particles. Also we prove that non-equilibrium process

starting from the marked Poisson initial state converges to one of these

invariant measures.

Keywords: continuous contact model; non-equilibriumMarkov pro-

cess; integral equations

1 Introduction

In this paper we study a critical (stationary) regime in quasispecies contact
model in the continuum, including the case of genome dependent mortality
rates. Such models can be considered as a special case of birth-and-death
processes in the continuum, see [4, 6]. The phase space of such processes is
the space Γ = Γ(Rd × S) of locally �nite marked con�gurations in Rd with
marks s ∈ S from a compact metric space S. Our purpose here is to describe
various stationary regimes and to specify relations between solutions of the
Cauchy problem and these stationary regimes. A detailed analysis of non-
equilibrium dynamics of the quasispecies continuous contact model and some
generalizations of the model will be done in forthcoming papers.

∗The work is partially supported by SFB 701 (Universitat Bielefeld) and by RFFI,
grant 13-01-12410 OFI-M

†Fakultat fur Mathematik, Universitat Bielefeld, 33615 Bielefeld, Germany
(kondrat@math.uni-bielefeld.de).

‡Institute for Information Transmission Problems, Moscow, Russia (s.a.pirogov@bk.ru).
§Institute for Information Transmission Problems, Moscow, Russia (ejj@iitp.ru).

1



With biological point of view, the stochastic system under study can
be considered as a model of an asexual reproduction under mutations and
selections, where an individual at the point u ∈ Rd with the genome s ∈ S
produces an o�spring distributed in the coordinate space and in the genome
space with the rate α(u− v)Q(s, s′). The function Q(s, s′) is said to be the
mutation kernel. Moreover, since mortality rates in our model can depend
on genomes, then selection rules are also included in the evolution under
consideration. Using results about convergence of the correlation functions as
t → ∞ we can identify the �rst correlation function of the stationary regime
with a density of quasispecies in space, where the conception of quasispecies
was introduced in [1], see also [8].

As in [4] we prove in this paper the existence of the stationary distri-
butions for the marked contact model in d-dimensional continuous space,
d ≥ 3, see Theorems 1-2 below. We consider here the model with the inner
structure of particles (genomes of bacteria). Invariant distributions form the
one-parameter family parametrized by the spatial density of particles. More-
over, invariant distributions are not Poisson and the genomes of bacteria are
not independent random variables. The origin of this dependence is the exis-
tence of recent common ancestors for spatially close individuals. In contrast
to [4], the average spatial density for considered system is not a conserved
quantity. So the asymptotic value of the density can di�er from its initial
value, see Remark 1.

2 Main results.

2.1 Homogeneous mortality rates

We consider a quasispecies contact model on M = Rd × S, where d ≥ 3
and S is a compact metric space. A structural description of the considered
process is given by a heuristic generator de�ned on proper class of functions
(observables) F : Γ → R as follows:

(LF )(γ) =
∑
x∈γ

(F (γ\x)−F (γ)) + κ

∫
M

∑
y∈γ

a(x, y)(F (γ ∪ x)−F (γ))dx, (1)

where dx = dλdν is a product of the Lebesgue measure λ on Rd and some
�nite Borel measure ν on S with supp ν = S.

Here b(x, γ) = κ
∑

y∈γ a(x, y) are birth rates related to the contact model,
and m(x, γ) ≡ 1 are death (mortality) rates. We take a(x, y) in the following
form:

a(x, y) = α(τ(x)− τ(y))Q(σ(x), σ(y)), (2)
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τ and σ are projections ofM on Rd and S respectively, α(u) ≥ 0 is a function
on Rd such that ∫

Rd

α(u)du = 1, (3)∫
Rd

|u|2α(u)du < ∞, (4)

the covariance matrix C

Cjk =

∫
Rd

ujukα(u)du − mjmk, mj =

∫
Rd

ujα(u)du, (5)

is non-degenerate;

α̂(p) =

∫
Rd

ei(p,u)α(u)du ∈ L1(Rd). (6)

It follows in particular that |α̂(p)| < 1 for all p ̸= 0.
We suppose that the function Q on S × S is a) continuous on S × S and

b) strictly positive. Then the Krein-Rutman theorem [7] implies that there
are a positive number r > 0 and a strictly positive continuous function q(s)
on S, such that Qq = rq for the integral operator

(Qh)(s) =

∫
S

Q(s, s′)h(s′)dν(s′), (7)

and the spectrum of Q, except r, which is a discrete spectrum accumulated
to 0, is contained in the open disk {z : |z| < r} ⊂ C. (Here we consider
the spectrum of the integral operator (7) in the Banach space of continuous
functions C(S)). This "rest spectrum" is the spectrum of Q on the subspace
"biorthogonal to q", i.e. on the subspace of the functions h(s) such that∫

S

h(s) q̃(s) dν(s) = 0.

Here q̃(s) is the stricily positive eigenfunction of the adjoint operatorQ⋆(s, s′) =
Q(s′, s). We take κcr = r−1 and now including κcr in Q we shall suppose that
r = 1, i.e. Qq = q. So the "renormalized critical value of κ" equals 1 and
we omit κ in (1) in what follows. We also normalize the function q by the
condition ∫

S

q(s)dν(s) = 1. (8)

Note that the existence problem for Markov processes in Γ for general
birth and death rates is an essentially open problem. An alternative way of
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studying the evolution of the system is to consider the corresponding statis-
tical dynamics. The latter means that instead of a time evolution of con-
�gurations we consider a time evolution of initial states (distributions), i.e.
solutions of the corresponding forward Kolmogorov (Fokker-Planck) equa-
tion, see ([2, 5]) for details.

We should remind basic notations and constructions to derive time evo-
lution equations on correlation functions of the considered model. Let B(M)
be the family of all Borel sets in M = Rd × S, and Bb(M) ⊂ B(M) denotes
the family of all bounded sets from B(M). The con�guration space Γ(M)
consists of all locally �nite subsets of M :

Γ = Γ(M) = {γ ⊂ M : |γ ∩ Λ| < ∞ for all Λ ∈ Bb(M)}.

Together with the con�guration space Γ(M) we de�ne the space of �nite
con�gurations

Γ0 = Γ0(M) =
⊔

n∈N∪{0}

Γ
(n)
0 ,

where Γ
(n)
0 is the space of n-point con�gurations:

Γ
(n)
0 = {η ⊂ M : |η| = |τ(η)| = n}.

We denote the set of bounded measurable functions with bounded support by
Bbs(Γ0), and the set of cylinder functions on Γ by Fcyl(Γ). Each F ∈ Fcyl(Γ) is
characterized by the following relation: F (γ) = F (γΛ) for some Λ ∈ Bb(M).

Next we de�ne a mapping from Bbs(Γ0) into Fcyl(Γ) as follows:

(K G)(γ) =
∑
η⊂γ

G(η), γ ∈ Γ, η ∈ Γ0,

where the summation is taken over all �nite subcon�gurations η ∈ Γ0 of the
in�nite con�guration γ ∈ Γ, see i.g. [4] for details. This mapping is called
K-transform.

Proposition 1. The operator L̂ = K−1LK (the image of L under the
K-transform) on functions G ∈ Bbs(Γ0) has the following form:

(L̂G)(η) = −|τ(η)|G(η) +

∫
M

∑
y∈η

a(x, y)G((η\y) ∪ x)dx + (9)

∫
M

∑
y∈η

a(x, y)G(η ∪ x)dx.
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The development of the formula (9) is the same as in [4].

Denote by M1
fm(Γ) the set of all probability measures µ which have �nite

local moments of all orders, i.e.∫
Γ

|γΛ|n µ(dγ) < ∞

for all Λ ∈ Bb(M) and n ∈ N. If a measure µ ∈ M1
fm(Γ) is locally absolutely

continuous with respect to the Poisson measure (associated with the measure
dx), then there exists the corresponding system of the correlation functions

k
(n)
µ of the measure µ, well known in statistical physics, see e.g. [9].
As it was shown in [6] there exists a Markov process on the con�guration

space Γ(Rd) of locally �nite con�gurations in Rd with the corresponding
generator associated with the contact process, see [4]. In our conditions it is
possible to apply arguments from [6] to construct the Markov process Xγ

t on
the space of marked con�gurations Γ = Γ(M). Let {µt}t≥0 ⊂ M1

fm(Γ) be the
evolution of states corresponding to such process Xγ

t and described by the
dual Kolmogorov equation with the adjoint operator L∗. Then the evolution
of the corresponding system of correlation functions is de�ned by the duality
equation

⟨L̂G, k⟩ = ⟨G, L̂∗k⟩, G ∈ Bbs(Γ0).

Using the representation (9) we de�ne the operator L̂∗ adjoint to the operator
L̂ and obtain the following system of equations for correlation functions in a
recurrent form:

∂k(n)

∂t
= L̂∗

nk
(n) + f (n), n ≥ 1; f (1) = 0, (10)

which is the main object for study in this paper. Here f (n) is a function on
Mn de�ned as

f (n)(x1, . . . , xn) =
n∑

i=1

k(n−1)(x1, . . . , x̌i, . . . , xn)
n∑

j ̸=i

a(xi, xj), n ≥ 2, (11)

f (1) ≡ 0. The operator L̂∗
n, n ≥ 1, is de�ned as:

L̂∗
nk

(n)(x1, . . . , xn) = −nk(n)(x1, . . . , xn)+

n∑
i=1

∫
M

a(xi, y)k
(n)(x1, . . . , xi−1, y, xi+1, . . . , xn)dy. (12)
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We take the initial (for t = 0) data

k(n)(t = 0, ϱ;x1, . . . , xn) = ϱn
n∏

i=1

q(σ(xi)). (13)

corresponding to the marked Poisson point �eld with the intensity ϱ and
the distribution of marks q(s)dν(s) meeting (8). In fact, we consider in the
paper only the case when the initial measures equal to the product of Poisson
measure over the space and an independent measure over the mark space,
see also a general form (61) for the initial data in Remark 1 below.

Invariant measures of the contact process (if exist!) are described in terms
of correlation functions k(n) on Mn as a positive solutions of the following
system:

L̂∗
nk

(n) + f (n) = 0, n ≥ 1, k(0) ≡ 1, (14)

where L̂∗
n, f

(n) are de�ned as in (11) - (12).
Consider the operator L̂∗

n as an operator on the space

Xn = C
(
Sn, L∞

inv((R
n)d)

)
,

where L∞
inv consists of the bounded translation invariant functions φ(w1, . . . , wn)

of n variables:

φ(w1 + a, . . . , wn + a) = φ(w1, . . . , wn), wi = τ(xi) ∈ Rd.

In this section we prove the existence of the solution k(n) ∈ Xn, n ≥ 1 of
the system (14), such that k(n) have a speci�ed asymptotics when |τ(xi) −
τ(xj)| → ∞ for all i ̸= j. We also prove a strong convergence of the solu-
tions of the Cauchy problem (10) - (13) to the solution of the system (14) of
stationary (time-independent) equations.

Theorem 1. I. Let the birth kernel a(x, y) of the contact model meet
conditions (2)-(7), and κcr = r−1.

Then for any positive constant ϱ ∈ R+ there exists a unique probability

measure µϱ such that its system of correlation functions {k(n)
ϱ } is translation

invariant, solves (14), satis�es the following condition

|k(n)
ϱ (x1, . . . , xn) − ϱn

n∏
i=1

q(σ(xi))| → 0, (15)

when |τ(xi)− τ(xj)| → ∞ for all i ̸= j, and satis�es the following estimate

k(n)
ϱ (x1, . . . , xn) ≤ D Cn(n!)2

n∏
i=1

q(σ(xi)) for any x1, . . . , xn, (16)
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for some positive constants C = C(ϱ,Q, α), D. Here q(s) is the normalized

eigenfunction of Q. Moreover, the �rst correlation function k
(1)
ϱ (x) of µϱ is

exactly ϱ q(s).
II. For any n ≥ 1 the solution k(n)(t) of the Cauchy problem (10) - (13)

converges to the solution k
(n)
ϱ (15) of the system (14) of stationary (time-

independent) equations as t → ∞:

∥k(n)(t) − k(n)
ϱ ∥Xn → 0. (17)

2.2 Species dependent mortality rates

Analogous results are valid in the case when mortality rates depends on σ(x):

(L̃F )(γ) =
∑
x∈γ

m(σ(x)) (F (γ\x)−F (γ)) + κ

∫
M

∑
y∈γ

a(x, y)(F (γ∪x)−F (γ))dx,

(18)
with

a(x, y) = α(τ(x)− τ(y))Q(σ(x), σ(y)),

τ and σ are projections of M on Rd and S respectively, m(σ(x)) > 0. In this
case using the Krein-Rutman theorem for the integral operator Q̃ with the
kernel

Q̃(s, s′) =
Q(s, s′)

m(s)

we get the existence of the maximal eigenvalue r̃ > 0 and the corresponding
maximal positive eigenfunction g(s) > 0 for the operator Q̃.

Correlation functions for the invariant measure in this case can be con-
structed as a solution of the system of equations

L̃∗
nk̃

(n) + f̃ (n) = 0, n ≥ 1, k̃(0) ≡ 1, (19)

where

f̃ (n)(x1, . . . , xn) = κ
n∑

i=1

k̃(n−1)(x1, . . . , x̌i, . . . , xn)
n∑

j ̸=i

a(xi, xj), n ≥ 2,

f̃ (1) ≡ 0,

L̃∗
nk̃

(n)(x1, . . . , xn) = −
n∑

i=1

m(σ(xi)) k̃
(n)(x1, . . . , xn) +
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κ

n∑
i=1

∫
M

a(xi, y)k̃
(n)(x1, . . . , xi−1, y, xi+1, . . . , xn)dy.

Theorem 2. Let m(s) > 0, Q(s, s′) > 0, s, s′ ∈ S are continuous
functions on S and S × S respectively; g(s) > 0 is the positive eigenfunction
corresponding to the maximal eigenvalue r̃ > 0 of the integral operator

(Q̃h)(x) =

∫
S

Q̃(s, s′)h(s′)dν(s′), with Q̃(s, s′) =
Q(s, s′)

m(s)
.

Let κcr = r̃−1. Then for any positive constant ϱ ∈ R+ there exists a unique

probability measure µ̃ϱ such that its system of correlation functions {k̃(n)
ϱ } is

translation invariant, solves (19), satis�es the following condition

|k̃(n)
ϱ (x1, . . . , xn) − ϱn

n∏
i=1

g(σ(xi))| → 0, (20)

when |τ(xi)− τ(xj)| → ∞ for all i ̸= j, and satis�es the following estimate

k̃(n)
ϱ (x1, . . . , xn) ≤ D Cn(n!)2

n∏
i=1

g(σ(xi)) for any x1, . . . , xn,

with positive constants C, D. Here g(s) is the normalized eigenfunction of

the operator Q̃. The �rst correlation function k̃
(1)
ϱ (x) of µ̃ϱ is exactly ϱg(s).

Moreover, the solution of the Cauchy problem for the system of equations

∂k̃(n)

∂t
= L̃∗

nk̃
(n) + f̃ (n), n ≥ 1; f (1) = 0,

with the initial data

k̃(n)|t=0(x1, . . . , xn) = ϱn
n∏

i=1

g(σ(xi)),

converges to the system of the correlation functions {k̃(n)
ϱ } de�ned by (20).

3 The proof of Theorem 1. Stationary prob-

lem.

In this section we prove the �rst part of Theorem 1 using the induction in n.
For n = 1 in (14) we have

−k(1)(x) +

∫
M

a(x, y)k(1)(y)dy = 0. (21)
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As we construct a translation invariant �eld let us look for k(1)(x) in the form

k(1)(x) = h(σ(x))

Then (21) is rewritten as

−h(s) +

∫
S

Q(s, s′)h(s′)dν(s′) = 0, (22)

which means that
h(s) = ϱ q(s),

or
k(1)(x) = ϱ q(σ(x)).

From the normalization condition (8) it follows that ϱ has the sense of the
spatial density of particles.

As a warm-up let us solve the equation (14) for the special case n =
2, S = {0}, m(0) = q(0) = 1, Q(0, 0) = 1. In this case M = Rd. Then the
equation for k(2)(x) is written as

L̂∗
2k

(2) + f (2) = 0, (23)

with

f (2)(x1, x2) = ϱ(a(x1, x2) + a(x2, x1)) = ϱ(α(x1 − x2) + α(x2 − x1)). (24)

Thus, the operator L̂∗
2 = L(1) + L(2), where

L(1)k(2)(x1, x2) =

∫
Rd

α(x1 − y)k(2)(y, x2)dy − k(2)(x1, x2), (25)

and analogously

L(2)k(2)(x1, x2) =

∫
Rd

α(x2 − y)k(2)(x1, y)dy − k(2)(x1, x2). (26)

Using translation invariant property we have:

k(2)(x1, x2) = k(2)(x1 − x2).

After the Fourier transform we can rewrite (23) - (26) as

(α̂(p) + α̂(−p)− 2) k̂(p) = −ϱ (α̂(p) + α̂(−p)). (27)
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Therefore,

k̂(p) = ϱ
α̂(p) + α̂(−p)

2− α̂(p)− α̂(−p)
+ Aδ(p), (28)

where A is an arbitrary constant, and we will explain later how to choose A
in the general case.

Expanding α̂(p) in the Taylor series up to the second order and using the
conditions (3) - (6) on the function α we see that k̂(p) has an integrable sin-
gularity ∼ |p|−2 at p = 0 if the dimension d ≥ 3. Thus there exist in�nitely
many translation invariant functions k(2)(x1−x2) ∈ L∞(Rd) satisfying equa-
tion (23).

Now let us turn to the general case. If for any n > 1 we succeed to solve
the equation (14) and express k(n) through f (n), then knowing the expression
of f (n) through k(n−1) via (11), we get the solution of the full system (14). So
we have to invert the operator L̂∗

n, and it is su�cient for us to do it on

some class of translation invariant functions. The precise statement
will be presented later for (L̂∗

n)
−1f (n), see formula (36).

Remind that

L̂∗
n =

n∑
i=1

Li, (29)

where
Lik(n)(x1, . . . , xn) = (30)∫

M

a(xi, y)k
(n)(x1, . . . , xi−1, y, xi+1, . . . , xn)dy − k(n)(x1, . . . , xn).

Proposition 2.The operator etL̂
∗
n is monotone.

Proof. The monotonicity of the operator etL̂
∗
n follows from (29) - (30):

etL̂
∗
n = ⊗n

i=1e
tLi

, etL
i

= e−tetA
i

,

and the positivity of operators

Aik(n) =

∫
M

a(xi, y)k
(n)(x1, . . . , xi−1, y, xi+1, . . . , xn)dy.

�

First consider the restriction of L̂∗
n to the invariant subspace consisting

of the functions of the form

φ(τ(x1), . . . , τ(xn))
n∏

i=1

q(σ(xi)), where φ(w1, . . . , wn) ∈ L∞
inv((R

n)d).
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The operator L̂∗
n acts on these functions as

Ln,max =
n∑

i=1

Li
max, (31)

where

Li
max φ(w1, . . . , wn)

n∏
i=1

q(σ(xi)) = (32)

n∏
i=1

q(σ(xi))

(∫
Rd

α(wi − u)φ(w1, . . . , wi−1, u, wi+1, . . . , wn)du− φ(w1, . . . , wn)

)
.

This formula follows from the equality Qq = q. Remind that κcr is "ab-
sorbed" in Q. Formula (32) means that in this case we have only spatial
convolutions and no integration over S. In the Fourier variables the operator
Ln,max acts as a multiplication operator by the function

n∑
i=1

α̂(pi) − n.

To invert Ln,max let us notice that if φ(w1, . . . , wn) is a translation invariant
function then its Fourier transform has a form

φ̂(p1, . . . , pn) δ(p1 + . . .+ pn).

On the subspace of the "momentum space" (p1, . . . , pn) speci�ed by the equa-
tion p1 + . . . + pn = 0 the function 1∑n

i=1 α̂(pi)−n
has an integrable singularity

∼ 1
|p|2 at p = 0. This property will be crucial for inverting of the operator

Ln,max on a proper class of functions.

Next we will construct a solution of the system (14) - (12) satisfying (15)
and meeting the estimate

k(n)(x1, . . . , xn) ≤ Kn

n∏
i=1

q(σ(xi)) (33)

where Kn = DCn(n!)2, D, C are constants.
As follows from (11) the function f (n) is the sum of functions of the form

f(x1, . . . , xn) = k(n−1)(x1, . . . , x̌i, . . . , xn) a(xi, xj), xi ∈ M. (34)

Below we invert the operator L̂∗
n on the set of functions of the form (34), see

(44) below.
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We suppose by induction that

k(n−1)(x1, . . . , xn−1) ≤ Kn−1

n−1∏
i=1

q(σ(xi)),

then
f(x1, . . . , xn) ≤ Kn−1a(xi, xj)

∏
l ̸=i

q(σ(xl)). (35)

We put

v
(n)
i,j =

∫ ∞

0

etL̂
∗
nf dt, (36)

where f is a function of the form (34).
Since the function q(s) is strictly positive on the compact S, the following

inequality holds:

a(xi, xj) ≤ c q(σ(xi)) α(τ(xi)− τ(xj)) (37)

with a constant c. Then using the monotonicity, identity Qq = q, and in-
equality (37) we get from (35), (29) and (31)

etL̂
∗
nf ≤ Kn−1 e

tL̂∗
na(xi, xj)

∏
l ̸=i

q(σ(xl)) ≤ Kn−1 e
t(Li+Lj)a(xi, xj)

∏
l ̸=i

q(σ(xl)) ≤

(38)

cKn−1e
t(Li

max+Lj
max)α(τ(xi)− τ(xj))

n∏
l=1

q(σ(xl)).

Using formula (32), the Fourier transform and the Fubini theorem we �nally

obtain from (37) - (38) the upper bound on v
(n)
i,j :

v
(n)
i,j =

∫ ∞

0

etL̂
∗
nf dt ≤

cKn−1

n∏
i=1

q(σ(xi))

∣∣∣∣∫ ∞

0

∫
Rd

et(α̂(p)+α̂(−p)−2)α̂(p)dpdt

∣∣∣∣ = cAKn−1

n∏
i=1

q(σ(xi)),

where

A =
1

(2π)d

∣∣∣∣∫ ∞

0

∫
Rd\{0}

et(α̂(p)+α̂(−p)−2)α̂(p)dpdt

∣∣∣∣ ≤ ∫
Rd

|α̂(p)|
2− α̂(p)− α̂(−p)

dp < ∞

(39)
when d ≥ 3.
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Integrability of the function |α̂(p)|
2−α̂(p)−α̂(−p)

, see (39), implies by the Lebesgue-

Riemann lemma that the function v
(n)
i,j de�ned by (36) satis�es the following

condition:

v
(n)
i,j (x1, . . . , xn) → 0 when |τ(xi)− τ(xj)| → ∞ (40)

for all i ̸= j. As the function f (n) (11) is the sum of n(n − 1) similar terms
we see that k(n)(x1, . . . , xn) given by

k(n) =
(
−L̂∗

n

)−1

f (n) =
∑
i̸=j

v
(n)
i,j

is bounded by the function

Cn2Kn−1

n−1∏
i=1

q(σ(xi))

for some C > 0. Thus we get the recurrence inequality

Kn ≤ Cn2Kn−1, (41)

and by induction it follows that

Kn ≤ Cn (n!)2. (42)

The general solution k(n)(x1, . . . , xn) of the system (14) has the form

k(n)(x1, . . . , xn) =

∫ ∞

0

etL̂
∗
nf (n)(x1, . . . , xn) dt + An

n∏
i=1

q(σ(xi)),

where An are constants. If we are looking for the set of correlation functions
k(n) for which

|k(n)(x1, . . . , xn) − ϱn
n∏

i=1

q(σ(xi))| → 0, when |τ(xi)− τ(xj)| → ∞ (43)

for all i ̸= j, then we put

k(n)
ϱ =

∫ ∞

0

etL̂
∗
nf (n)dt + ϱn

n∏
i=1

q(σ(xi)). (44)

It is clear that the last term in (44) vanishes under the action of L̂∗
n, and (43)

holds because we got (40). Denote this solution by k
(n)
ϱ .

13



In this case instead of (41) we have the recurrence

Kn ≤ Cn2Kn−1 + ϱn. (45)

Taking Ln = Kn

Cn(n!)2
we have

Ln ≤ Ln−1 +
ϱn

Cn(n!)2
≤ D

with some positive constant D > 0. Thus we have

Kn ≤ DCn(n!)2, (46)

which di�ers from (42) only by the constant factor.

Thus we proved the existence of solutions {k(n)
ϱ } of the system (14) corre-

sponding to the stationary problem. To verify that this system of correlation
function is associated with a measure mϱ on the con�guration space, we will
prove in the next section that the measure mϱ can be constructed as a limit

of an evolution of measures µ
(t)
ϱ associated with the solutions of the Cauchy

problem (10) with corresponding initial data (13).

4 The proof of Theorem 1. The Cauchy prob-

lem.

In this section we �nd the solution of the Cauchy problem (10) - (13) and
prove the convergence (17). Using Duhamel formula we have

k(n)(t) = k(n)(0) +

∫ t

0

e(t−s)L̂∗
nf (n)(s) ds, (47)

where f (n)(s) is expressed through k(n−1)(s) via (11). We also used there
that the operator L̂∗

n annihilates k(n)(0) of the form (13).

Let us notice that k
(n)
ϱ given by (44) have no product form (13). We have

k(n)(t)− k(n)
ϱ =

(
etL̂

∗
n − E

)
k(n)
ϱ +

etL̂
∗
n(k(n)(0)− k(n)

ϱ ) +

∫ t

0

e(t−s)L̂∗
nf (n)(s) ds =

etL̂
∗
n(k(n)(0)− k(n)

ϱ ) +

∫ t

0

e(t−s)L̂∗
n(f (n)(s)− f (n)

ϱ ) ds. (48)

14



Here f
(n)
ϱ are expressed in terms of k

(n−1)
ϱ by (11), and we used that the

equation L̂∗
nk

(n)
ϱ = −f

(n)
ϱ implies(

etL̂
∗
n − E

)
k(n)
ϱ = −

∫ t

0

d

ds
e(t−s)L̂∗

nk(n)
ϱ ds = −

∫ t

0

e(t−s)L̂∗
nf (n)

ϱ ds

We shall prove now that both terms in (48) converge to 0 in sup-norm of Xn.
For the �rst term using inversion formula (44) and (13) we have

etL̂
∗
n(k(n)(0)− k(n)

ϱ ) = etL̂
∗
n(k(n)(0)− v(n) − k(n)(0)) = −etL̂

∗
nv(n), (49)

where

v(n) =

∫ ∞

0

esL̂
∗
nf (n)

ϱ ds. (50)

Since

f (n)
ϱ (x1, . . . , xn) =

∑
i,j: i̸=j

k(n−1)
ϱ (x1, . . . , x̌i, . . . , xn) a(xi, xj),

then

v(n)(x1, . . . , xn) =
∑

i,j: i ̸=j

∫ ∞

0

esL̂
∗
nk(n−1)

ϱ (x1, . . . , x̌i, . . . , xn) a(xi, xj) ds.

To prove that ∥etL̂∗
nv(n)∥Xn → 0 as t → ∞ it is enough to prove that its

Fourier transform tends to 0 in L1 norm when t → ∞.
Using the estimate (16) on k

(n)
ϱ together with the inequality (37) on

a(xi, xj) we can estimate etL̂
∗
nv(n) applying the monotonicity of etL̂

∗
n and (31)

- (32): ∣∣∣(etL̂∗
n v(n)

)
(x1, . . . , xn)

∣∣∣ ≤

DCn−1((n− 1)!)2cetL̂
∗
n

∑
i̸=j

∫ ∞

0

es
∑n

i=1 L
i

n∏
i=1

q(σ(xi)) α(τ(xi)− τ(xj)) ds ≤

DCn−1((n− 1)!)2c
n∏

i=1

q(σ(xi))
∑
i̸=j

∫
R2d

et(α̂(pi)+α̂(pj)−2)

∫ ∞

0

es(α̂(pi)+α̂(pj)−2) |α̂(pi)| δ(pi + pj) dsdpidpj ≤

DCn−1(n!)2c
n∏

i=1

q(σ(xi))

∫
Rd

et(α̂(p)+α̂(−p)−2) |α̂(p)|
2− α̂(p)− α̂(−p)

dp.

15



Here the presence of δ-function corresponds to the shift invariance. Since
the function |α̂(p)|

2−α̂(p)−α̂(−p)
is integrable in the momentum space for d ≥ 3 and

α̂(p) + α̂(−p) < 2 for p ̸= 0, then the function

Ã et(α̂(p)+α̂(−p)−2) |α̂(p)|
2− α̂(p)− α̂(−p)

.

tends to 0 in L1 norm (in "momentum" variables p) when t → ∞. Conse-
quently its inverse Fourier transform tends to 0 inXn norm (i.e. in sup-norm)
when t → ∞. Thus we proved that the �rst term in (48) tends to 0 in sup-
norm when t → ∞.

We consider now the second term in (48) and will prove that∫ t

0

e(t−s)L̂∗
n(f (n)(s)− f (n)

ϱ ) ds → 0 (51)

in sup-norm when t → ∞ using induction assumption that

∥k(n−1)(t) − k(n−1)
ϱ ∥Xn−1 → 0 as t → ∞. (52)

As the �rst step of induction we have

k(1)(t, x) ≡ k(1)
ϱ (x) = ϱ q(σ(x)). (53)

Next the induction assumption (52) implies that

∥k(n−1)(t)∥Xn−1 ≤ Mn−1 for all t ≥ 0 (54)

with some positive constant depending only on n. Really, the operator L̂∗
n is

bounded and the function a(x, y) is bounded, hence the norm of the solution
k(n) of the problem (10) (with any bounded for l ≤ n initial data) is evidently
bounded on any compact time interval [0, τ ]. On the other hand, for any

ε > 0 there exists τ such that for all t > τ the norm ∥k(n−1)(t)− k
(n−1)
ϱ ∥ < ε

by (52). Thus the bound (54) is proved.
From (52) it follows that

∥f (n)(t) − f (n)
ϱ ∥Xn → 0 as t → ∞. (55)

To estimate the integral (51) we rewrite it as a sum(∫ τ

0

+

∫ t

τ

)
esL̂

∗
n(f (n)(t− s)− f (n)

ϱ ) ds. (56)
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Let us estimate the second integral in (56) using the monotonicity of the

semigroup esL̂
∗
n :∣∣∣∣∫ t

τ

esL̂
∗
n(f (n)(t− s)− f (n)

ϱ ) ds

∣∣∣∣ ≤
∫ t

τ

esL̂
∗
n
(
|f (n)(t− s)|+ |f (n)

ϱ |
)
ds ≤

(57)(
Mn−1 + ∥k(n−1)

ϱ ∥
) ∫ t

τ

esL̂
∗
n

∑
i̸=j

a(xi, xj) ds.

Using the inequality

a(xi, xj) ≤ cq(σ(xi))q(σ(xj))α(τ(xi)− τ(xj))

we conclude that it will be su�cient to estimate for any pair i ̸= j the
following integral∫ t

τ

∫
Rd

es(α̂(p)+α̂(−p)−2)|α̂(p)| dp ds ≤
∫ ∞

τ

∫
Rd

es(α̂(p)+α̂(−p)−2)|α̂(p)| dp ds

(58)
Since the integral∫ ∞

0

∫
Rd

es(α̂(p)+α̂(−p)−2)|α̂(p)| dp ds =

∫
Rd

|α̂(p)|
2− α̂(p)− α̂(−p)

dp (59)

converges, then the integral (58) tends to 0 when τ → ∞. Consequently we
can take τ in such a way that (58) is less than ε, and then (57) is less than
Cε for some C and any t > τ .

Finally let us estimate the �rst integral in (56) for a given τ :∫ τ

0

esL̂
∗
n(f (n)(t− s)− f (n)

ϱ ) ds. (60)

From (55) it follows that we can choose t0 > τ such that for t > t0 the
following estimate holds

∥f (n)(t− τ)− f (n)
ϱ ∥Xn <

ε

τ
.

Consequently the norm of (60) is less than ε. Finally, for t > t0 the integral
in (51) is less than (C+1)ε in sup-norm and convergence (51) as well as (48)
to zero is proved.

Thus we proved the strong convergence (17). The �nal step of the proof
follows the same line as in [4]. Using results from [6] we can conclude that

the solution {k(n)
ϱ (t)} of the Cauchy problem (10) is a system of correlation
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functions corresponding to the evolution of states {µt}. And the limit of µt

as t → ∞ will be a measure µϱ corresponding to the limit

lim
t→∞

k(n)
ϱ (t) = k(n)

ϱ ,

where k
(n)
ϱ is a solution (44) of the system (14).

5 Concluding remarks and the proof of Theo-

rem 2.

Remark 1. If instead of (13) we take the initial data in the form

k̄(n)|t=0(x1, . . . , xn) = ϱn
n∏

i=1

h(σ(xi)) (61)

for some ϱ > 0 and some normalized positive function h(s),
∫
S
h(s)dν(s) = 1

(not necessarily the eigenfunction of Q and not necessarily continuous), then
we have convergence

k̄(n)(t) → k(n)
ϱ1

, t → ∞,

where k
(n)
ϱ1 is de�ned by the formula (44), and

ϱ1 =
ϱ⟨h, q̃⟩
⟨q, q̃⟩

=
ϱ
∫
S
h(s) q̃(s) dν(s)∫

S
q(s) q̃(s) dν(s)

. (62)

Here q̃ is the positive eigenfunction of the adjoint operator Q∗.
To prove this convergence we should make some small modi�cations in

the above reasoning.
1) In (49) we have the additional term

etL̂
∗
n(k̄(n)(0)− k(n)(0, ϱ1)).

This term does not depend on space coordinates and equals to

⊗ie
t(Qi−E)(k̄(n)(0)− k(n)(0, ϱ1)). (63)

Here Qi is the operator Q acting on i-th spin variable. From the Krein-
Rutman theorem it follows that (63) tends to 0 if (62) is ful�lled.

2) The condition (53) is also violated. The �rst correlation function k(1)(t)
now depends on time ( but not depends on space variables) and satis�es an
equation

∂k(1)

∂t
= L̂∗

1 k(1) = (Q− E) k(1)
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with the initial data k̄(1)|t=0 = ϱ h(s). Then

k(1)(t) → ϱ1 q(s), t → ∞

by the Krein-Rutman theorem provided the density equation (62) is ful�lled.

The same approach can be applied when the initial data are mixtures
of marked Poisson �elds with di�erent spatial densities and di�erent mark
distributions (provided marks are mutually independent).

Remark 2. Law of large numbers. Theorem 1 implies the correlation
decay

|k(2)
ϱ (x1, x2) − k(1)

ϱ (x1)k
(1)
ϱ (x2)| → 0,

when |τ(x1) − τ(x2)| → ∞. By the standart application of the Chebyshev
inequality, see e.g. [9], we get the low of large numbers for the number of
particles, i.e. the existence of the spatial density of particles:

N(V )

V
→ ϱ, as V → ∞.

The proof of Theorem 2 is completely analogous to the proof of
Theorem 1, when m(s) ≡ 1. We only should check that

L̃∗
n

n∏
i=1

g(σ(xi)) = 0.

Indeed, we have

L̃∗
n =

n∑
i=1

L̃i,

L̃i

n∏
j=1

g(σ(xj)) =

∏
j ̸=i

g(σ(xj))

(
−m(σ(xi))g(σ(xi)) + κcr

∫
S

Q(σ(xi), s
′)g(s′)dν(s′)

)
= 0,

since κcrQ̃g = g implies

κcr

∫
S

Q(s, s′)g(s′)dν(s′) = m(s) g(s).
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