Equilibrium diffusion on the cone of discrete Radon measures

Diana Conache

Fakultät für Mathematik, Universität Bielefeld, Postfach 10 01 31, D-33501 Bielefeld, Germany;

e-mail: dputan@math.uni-bielefeld.de

Yuri G. Kondratiev

Fakultät für Mathematik, Universität Bielefeld, Postfach 10 01 31, D-33501 Bielefeld, Germany; NPU, Kyiv, Ukraine

e-mail: kondrat@math.uni-bielefeld.de

Eugene Lytvynov

Department of Mathematics, Swansea University, Singleton Park, Swansea SA2 8PP, U.K.

e-mail: e.lytvynov@swansea.ac.uk

Abstract

Let $\mathbb{K}(\mathbb{R}^d)$ denote the cone of discrete Radon measures on \mathbb{R}^d . There is a natural differentiation on $\mathbb{K}(\mathbb{R}^d)$: for a differentiable function $F : \mathbb{K}(\mathbb{R}^d) \to \mathbb{R}$, one defines its gradient $\nabla^{\mathbb{K}}F$ as a vector field which assigns to each $\eta \in \mathbb{K}(\mathbb{R}^d)$ an element of a tangent space $T_{\eta}(\mathbb{K}(\mathbb{R}^d))$ to $\mathbb{K}(\mathbb{R}^d)$ at point η . Let $\phi : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ be a potential of pair interaction, and let μ be a corresponding Gibbs perturbation of (the distribution of) a completely random measure on \mathbb{R}^d . In particular, μ is a probability measure on $\mathbb{K}(\mathbb{R}^d)$ such that the set of atoms of a discrete measure $\eta \in \mathbb{K}(\mathbb{R}^d)$ is μ -a.s. dense in \mathbb{R}^d . We consider the corresponding Dirichlet form

$$\mathscr{E}^{\mathbb{K}}(F,G) = \int_{\mathbb{K}(\mathbb{R}^d)} \langle \nabla^{\mathbb{K}} F(\eta), \nabla^{\mathbb{K}} G(\eta) \rangle_{T_{\eta}(\mathbb{K})} \, d\mu(\eta).$$

Integrating by parts with respect to the measure μ , we explicitly find the generator of this Dirichlet form. By using the theory of Dirichlet forms, we prove the main result of the paper: If $d \geq 2$, there exists a conservative diffusion process on $\mathbb{K}(\mathbb{R}^d)$ which is properly associated with the Dirichlet form $\mathscr{E}^{\mathbb{K}}$.

Keywords: Completely random measure, diffusion process, discrete Radon measure, Dirichlet form, Gibbs measure

MSC: 60J60, 60G57

1 Introduction

Let X denote the Euclidean space \mathbb{R}^d and let $\mathscr{B}(X)$ denote the Borel σ -algebra on X. Let $\mathbb{M}(X)$ denote the space of all Radon measures on $(X, \mathscr{B}(X))$. The space $\mathbb{M}(X)$ is equipped with the vague topology, and let $\mathscr{B}(\mathbb{M}(X))$ denote the corresponding Borel σ -algebra on it. A random measure on X is a measurable mapping $\xi : \Omega \to \mathbb{M}(X)$, where (Ω, \mathscr{F}, P) is a probability space, see e.g. [8]. A random measure ξ is called completely random if, for any mutually disjoint sets $A_1, \ldots, A_n \in \mathscr{B}(X)$, the random variables $\xi(A_1), \ldots, \xi(A_n)$ are independent [9].

The cone of discrete Radon measures on X is defined by

$$\mathbb{K}(X) := \left\{ \eta = \sum_{i} s_i \delta_{x_i} \in \mathbb{M}(X) \, \Big| \, s_i > 0, \, x_i \in X \right\}.$$

Here δ_{x_i} denotes the Dirac measure with mass at x_i . In the above representation, the atoms x_i are assumed to be distinct and their total number is at most countable. By convention, the cone $\mathbb{K}(X)$ contains the null mass $\eta = 0$, which is represented by the sum over an empty set of indices *i*. As shown in [6], $\mathbb{K}(X) \in \mathscr{B}(\mathbb{M}(X))$. One endows $\mathbb{K}(X)$ with the vague topology.

A random measure ξ which takes values in $\mathbb{K}(X)$ with probability one is called a random discrete measure. It follows from Kingman's result [9] that each completely random measure ξ can be represented as $\xi = \xi' + \eta$, where ξ' is a deterministic measure on X and η is a random discrete measure. An important example of a random discrete measure is the gamma measure [19], which has many distinguished properties. It should be noted that, for a wide class of random discrete measures (including the gamma measure), the set of atoms of $\eta = \sum_i s_i \delta_{x_i}$, i.e., $\{x_i\}$, is dense in X.

In this paper, we will only use the distribution μ of a random discrete measure. So, below by a random discrete measure we will always mean a probability measure μ on $(\mathbb{K}(X), \mathscr{B}(\mathbb{K}(X)))$. (Here $\mathscr{B}(\mathbb{K}(X))$ is the Borel σ -algebra on $\mathbb{K}(X)$.)

In [6] Gibbs perturbations of the gamma measure were constructed, and in [16] this result was extended to Gibbs perturbations of a general completely random discrete measure. More precisely, let $\phi : X \times X \to \mathbb{R}$ be a potential of pair interaction, which satisfies the conditions (C1), (C2) below. In particular, it is assumed that the function ϕ is symmetric, bounded, has finite range (i.e., $\phi(x, x') = 0$ if the distance between xand x' is sufficiently large), and the positive part of ϕ dominates, in a sense, its negative part. For $\eta \in \mathbb{K}(X)$, we heuristically define the energy of η (Hamiltonian) by

$$H(\eta) := \frac{1}{2} \int_{X^2 \setminus D} \phi(x, x') \, d\eta(x) \, d\eta(x'),$$

where $D = \{(x, x') \in X^2 \mid x = x'\}$. Let ν be a completely random discrete measure. The Gibbs perturbation of ν corresponding to the potential ϕ is heuristically defined as a probability measure μ on $\mathbb{K}(X)$ given by

$$d\mu(\eta) := \frac{1}{Z} e^{-H(\eta)} d\nu(\eta),$$

where Z is a normalizing factor. A rigorous definition of μ is given through the Dobrushin–Lanford–Ruelle equation. It is proven in [6] that such a Gibbs measure exists. In [16], it was shown that such a Gibbs measure is unique, provided the supremum norm of ϕ , i.e., $\|\phi\|_{\infty}$, and the first moment of ν are sufficiently small. In the general case, the uniqueness problem is still open.

Any Gibbs measure μ satisfies the Nguyen–Zessin identity in which the relative energy of interaction between a single atom measure $\eta = s\delta_x$ and a discrete measure $\eta' \in \mathbb{K}(X)$, with no atom at x, is given by

$$H(\eta \mid \eta') = s \int_X \phi(x, x') \, d\eta'(x').$$

In [10] (see also [7]), some elements of differential geometry on $\mathbb{K}(X)$ were introduced. In particular, for a differentiable function $F : \mathbb{K}(X) \to \mathbb{R}$, one defines its gradient $\nabla^{\mathbb{K}}F$ as a vector field which assigns to each $\eta \in \mathbb{K}(X)$ an element of a tangent space $T_{\eta}(\mathbb{K}(X))$ to $\mathbb{K}(X)$ at point η . It should be stressed that $\mathbb{K}(X)$ is not a flat space, in the sense that the tangent space $T_{\eta}(\mathbb{K})$ changes with a change of η .

So, in this paper, we consider the Dirichlet form

$$\mathscr{E}^{\mathbb{K}}(F,G) := \int_{\mathbb{K}(\mathbb{R}^d)} \left\langle \nabla^{\mathbb{K}} F(\eta), \nabla^{\mathbb{K}} G(\eta) \right\rangle_{T_{\eta}(\mathbb{K})} d\mu(\eta).$$
(1)

This bilinear form is initially defined on an appropriate set of smooth cylinder functions on $\mathbb{K}(X)$. Using the Nguyen–Zessin identity, we carry out integration by parts with respect to the Gibbs measure μ , and find the L^2 -generator of the bilinear form $\mathscr{E}^{\mathbb{K}}$ (containing the potential ϕ and its gradient). This, in particular, proves the closability of the bilinear form $\mathscr{E}^{\mathbb{K}}$ on $L^2(\mathbb{K}(X), \mu)$. This result extends [10] (see also [7]), where the L^2 -generator of $\mathscr{E}^{\mathbb{K}}$ (the Laplace operator) was derived in the case of no interaction, $\phi = 0$, and when the completely random measure $\mu = \nu$ is the law of a measure-valued Lévy process.

The main result of the paper is the existence of a conservative diffusion process on $\mathbb{K}(X)$ which is properly associated with the Dirichlet form $\mathscr{E}^{\mathbb{K}}$. For this, one assumes that the dimension of the underlying space X is ≥ 2 . (It is intuitively clear that in the case where the dimension of X is equal to one, such a result should fail.) We note that this diffusion process has continuous sample paths in $\mathbb{K}(X)$ with respect to the vague topology. The diffusion process has μ as invariant (and even symmetrizing) measure. To prove the main result, we use the general theory of Dirichlet forms [13] as well as the theory of Dirichlet forms over configuration spaces [14, 18], see also [1, 11].

The paper is organized as follows. In Section 2, we recall how differentiation on $\mathbb{K}(X)$ is introduced [10], and how the Gibbs measure μ is constructed [6, 16]. In Section 3, we formulate the results of the paper. Finally, Section 4 contains the proofs.

2 Preliminaries

2.1 Differentiation on $\mathbb{K}(X)$

In this subsection, we follow [10]. A starting point to define differentiation on $\mathbb{K}(X)$ is the choice of a natural group \mathfrak{G} of transformations of $\mathbb{K}(X)$. So let $\operatorname{Diff}_0(X)$ denote the group of C^{∞} diffeomorphisms of X which are equal to the identity outside a compact set. Let $C_0(X \to \mathbb{R}_+)$ denote the multiplicative group of continuous functions on X with values in $\mathbb{R}_+ := (0, \infty)$ which are equal to one outside a compact set. The group $\operatorname{Diff}_0(X)$ naturally acts on X, hence on $C_0(X \to \mathbb{R}_+)$. So we define a group \mathfrak{G} by

$$\mathfrak{G} := \operatorname{Diff}_0(X) \land C_0(X \to \mathbb{R}_+)$$

the semidirect product of $\text{Diff}_0(X)$ and $C_0(X \to \mathbb{R}_+)$. As a set, \mathfrak{G} is equal to the Cartesian product of $\text{Diff}_0(X)$ and $C_0(X \to \mathbb{R}_+)$, and the product in \mathfrak{G} is given by

$$g_1g_2 = (\psi_1 \circ \psi_2, \, \theta_1(\theta_2 \circ \psi_1^{-1})) \quad \text{for } g_1 = (\psi_1, \theta_1), \, g_2 = (\psi_2, \theta_2) \in \mathfrak{G}.$$

The group \mathfrak{G} naturally acts on $\mathbb{K}(X)$: for any $g = (\psi, \theta) \in \mathfrak{G}$ and any $\eta \in \mathbb{K}(X)$, we define $g\eta \in \mathbb{K}(X)$ by

$$d(g\eta)(x) := \theta(x) \, d(\psi^*\eta)(x).$$

Here $\psi^*\eta$ is the pushforward of η under ψ .

The Lie algebra of the Lie group $\operatorname{Diff}_0(X)$ is the space $\operatorname{Vec}_0(X)$ consisting of all smooth vector fields acting from X into X which have compact support. For $v \in$ $\operatorname{Vec}_0(X)$, let $(\psi_t^v)_{t\in\mathbb{R}}$ be the corresponding one-parameter subgroup of $\operatorname{Diff}_0(X)$, see e.g. [2]. As the Lie algebra of $C_0(X \to \mathbb{R}_+)$ we may take the space $C_0(X)$ of all realvalued continuous functions on X with compact support. For each $h \in C_0(X)$, the corresponding one-parameter subgroup of $C_0(X \to \mathbb{R}_+)$ is given by $(e^{th})_{t\in\mathbb{R}}$. Thus, $\mathfrak{g} := \operatorname{Vec}_0(X) \times C_0(X)$ can be thought of as a Lie algebra that corresponds to the Lie group \mathfrak{G} . For an arbitrary $(v, h) \in \mathfrak{g}$, we may consider the curve $\{(\psi_t^v, e^{th}), t \in \mathbb{R}\}$ in \mathfrak{G} . For a function $F : \mathbb{K}(X) \to \mathbb{R}$ we define its derivative in direction (v, h) by

$$\nabla_{(v,h)}^{\mathbb{K}}F(\eta) := \frac{d}{dt}\Big|_{t=0}F((\psi_t^v, e^{th})\eta), \quad \eta \in \mathbb{K}(X),$$

provided the derivative on the right hand side of this formula exists.

A tangent space to $\mathbb{K}(X)$ at $\eta \in \mathbb{K}(X)$ is defined by

$$T_{\eta}(\mathbb{K}(X)) := L^2(X \to X \times \mathbb{R}, \eta), \tag{2}$$

the L^2 -space of $X \times \mathbb{R}$ -valued vector fields on X which are square integrable with respect to the measure η . We then define a gradient of a differentiable function $F : \mathbb{K}(X) \to \mathbb{R}$ at η as the element $(\nabla^{\mathbb{K}} F)(\eta)$ of $T_{\eta}(\mathbb{K})$ which satisfies

$$\nabla_{(v,h)}^{\mathbb{K}}F(\eta) = \langle \nabla^{\mathbb{K}}F(\eta), (v,h) \rangle_{T_{\eta}(\mathbb{K})} \text{ for all } (v,h) \in \mathfrak{g}.$$

Remark 1. Note that, in the above definitions, one could replace $\mathbb{K}(X)$ with the wider space $\mathbb{M}(X)$. This is why, in paper [10], the gradient $\nabla^{\mathbb{K}}$ was actually denoted by $\nabla^{\mathbb{M}}$.

Let us now define a set of test functions on $\mathbb{K}(X)$. Let us denote by $\tau(\eta)$ the set of atoms of η , and for each $x \in \tau(\eta)$, let $s_x := \eta(\{x\})$. Thus, we have

$$\eta = \sum_{x \in \tau(\eta)} s_x \delta_x.$$

We define a metric on \mathbb{R}_+ by

$$d_{\mathbb{R}_+}(s_1, s_2) := \left| \log(s_1) - \log(s_2) \right|, \quad s_1, s_2 \in \mathbb{R}_+.$$

Then \mathbb{R}_+ becomes a locally compact Polish space, and any set of the form [a, b], with $0 < a < b < \infty$, is compact. We denote $\widehat{X} := \mathbb{R}_+ \times X$, and let $C_0^{\infty}(\widehat{X})$ denote the space of all smooth functions on \widehat{X} with compact support. For each $\varphi \in C_0^{\infty}(\widehat{X})$ and $\eta \in \mathbb{K}(X)$, we define

$$\langle\!\langle \varphi, \eta \rangle\!\rangle := \sum_{x \in \tau(\eta)} \varphi(s_x, x).$$

Note that the latter sum contains only finitely many nonzero terms.

We denote by $\mathscr{FC}(\mathbb{K}(X))$ the set of all functions $F : \mathbb{K}(X) \to \mathbb{R}$ of the form

$$F(\eta) = g(\langle\!\langle \varphi_1, \eta \rangle\!\rangle, \dots, \langle\!\langle \varphi_N, \eta \rangle\!\rangle), \quad \eta \in \mathbb{K}(X),$$
(3)

where $g \in C_b^{\infty}(\mathbb{R}^N)$, $\varphi_1 \ldots, \varphi_N \in C_0^{\infty}(\widehat{X})$, and $N \in \mathbb{N}$. Here $C_b^{\infty}(\mathbb{R}^N)$ is the set of all infinitely differentiable functions on \mathbb{R}^N which, together with all their derivatives, are bounded.

Let $F : \mathbb{K}(X) \to \mathbb{R}, \eta \in \mathbb{K}(X)$, and $x \in \tau(\eta)$. We define

$$\nabla_x F(\eta) := \nabla_y \big|_{y=x} F(\eta - s_x \delta_x + s_x \delta_y), \tag{4}$$

$$\nabla_{s_x} F(\eta) := \frac{d}{du} \Big|_{u=s_x} F(\eta - s_x \delta_x + u \delta_x), \tag{5}$$

provided the derivatives exist. Here the variable y is from X, ∇_y denotes the gradient on X in the y variable, and the variable u is from \mathbb{R}_+ .

An easy calculation shows that, for each function $F \in \mathscr{FC}(\mathbb{K}(X))$, the gradient $\nabla^{\mathbb{K}}F$ exists and is given by

$$(\nabla^{\mathbb{K}}F)(\eta, x) = \left(\frac{1}{s_x}\nabla_x F(\eta), \nabla_{s_x}F(\eta)\right), \quad \eta \in \mathbb{K}(X), \ x \in \tau(\eta).$$
(6)

2.2 The Gibbs measures

We start with defining a class of completely random measures. Let $l: \hat{X} \to \mathbb{R}_+$ be a measurable function which satisfies the following conditions: for dx-a.a. $x \in X$

$$\int_{\mathbb{R}_{+}} \frac{l(s,x)}{s} \, ds = \infty \tag{7}$$

and for each $\Lambda \in \mathscr{B}_0(X)$,

$$\int_{\mathbb{R}_+ \times \Lambda} l(s, x) \, ds \, dx < \infty. \tag{8}$$

Here $\mathscr{B}_0(X)$ denotes the collection of all sets from $\mathscr{B}(X)$ which have compact closure. We define a measure σ on \widehat{X} by

e define a measure o on X by

$$d\sigma(s,x) := \frac{l(s,x)}{s} \, ds \, dx. \tag{9}$$

Since (8) holds, we may define a completely random measure ν as a probability measure on $\mathbb{K}(X)$ which has Fourier transform

$$\int_{\mathbb{K}(X)} e^{i\langle f,\eta\rangle} \, d\nu(\eta) = \exp\left[\int_{\widehat{X}} (e^{isf(x)} - 1) \, d\sigma(s,x)\right], \quad f \in C_0(X),$$

see e.g. [3]. Here we denote $\langle f, \eta \rangle := \int_X f(x) d\eta(x)$. The measure ν can also be characterized through the Mecke identity: ν is the unique probability measure on $\mathbb{K}(X)$ which satisfies, for each measurable function $F : \hat{X} \times \mathbb{K}(X) \to [0, \infty]$,

$$\int_{\mathbb{K}(X)} \sum_{x \in \tau(\eta)} F(s_x, x, \eta) \, d\nu(\eta) = \int_{\mathbb{K}(X)} d\nu(\eta) \int_{\widehat{X}} d\sigma(s, x) \, F(s, x, \eta + s\delta_x). \tag{10}$$

For example, by choosing $l(s, x) = e^{-s}$, we get the gamma measure ν [19]. More generally, we may fix measurable functions $\alpha, \beta : X \to \mathbb{R}_+$ and set

$$l(s,x) = \beta(x)e^{-s/\alpha(x)}.$$

Then conditions (7), (8) are satisfied when $\alpha(x)\beta(x) \in L^1_{\text{loc}}(X, dx)$.

Let us now recall the definition of a Gibbs measure from [6,16]. Additionally to (7) and (8), we assume that, for each $\Lambda \in \mathscr{B}_0(X)$,

$$\int_{\mathbb{R}_+ \times \Lambda} l(s, x) s \, ds \, dx < \infty. \tag{11}$$

Let $\phi: X \times X \to \mathbb{R}$ be a pair potential which satisfies the following two conditions:

(C1) ϕ is a symmetric, bounded, measurable function which satisfies, for some R > 0,

$$\phi(x, y) = 0 \quad \text{if } |x - y| > R$$

(C2) There exists $\delta > 0$ such that

$$\inf_{x,y\in X: \ |x-y|\leq \delta} \phi(x,y) > \varepsilon \|\phi^-\|_{\infty}.$$

Here

$$\|\phi^-\|_{\infty} := \sup_{x,y \in X} (-\phi(x,y) \lor 0)$$

and $\varepsilon := 2v_d d^{d/2} (R/\delta + 1)$, where $v_d := \pi^{d/2} / \Gamma(d/2 + 1)$ is the volume of a unit ball in X.

Remark 2. Note that condition (C2) excludes the potential $\phi = 0$. Note also that conditions (C1) and (C2) are trivially satisfied if $\phi(x, y) = \psi(x - y)$, where $\psi \in C_0(X)$, $\psi(x) = \psi(-x)$, and $\psi(0) > v_d d^{d/2} ||\psi^-||_{\infty}$.

For any $\eta, \xi \in \mathbb{K}(X)$ and $\Lambda \in \mathscr{B}_0(X)$, we define the relative energy (Hamiltonian)

$$H_{\Lambda}(\eta \mid \xi) := \frac{1}{2} \int_{\Lambda^2 \setminus D} \phi(x, y) \, d\eta(x) \, d\eta(y) + \int_{\Lambda^c} \int_{\Lambda} \phi(x, y) \, d\eta(x) \, d\xi(y),$$

where $\Lambda^c := X \setminus \Lambda$. Note that $H_{\Lambda}(\eta \mid \xi)$ is well defined and finite.

For each $\Lambda \in \mathscr{B}(X)$, we denote $\mathbb{K}(\Lambda) := \{\eta \in \mathbb{K}(X) \mid \tau(\eta) \subset \Lambda\}$. Note that $\mathbb{K}(\Lambda) \in \mathscr{B}(\mathbb{K}(X))$. Let ν_{Λ} denote the pushforward of the completely random measure ν under the canonical projection

$$\mathbb{K}(X) \ni \eta \mapsto \eta_{\Lambda} := \sum_{x \in \tau(\eta) \cap \Lambda} s_x \delta_x \in \mathbb{K}(\Lambda).$$

The measure ν_{Λ} has Fourier transform

$$\int_{\mathbb{K}(\Lambda)} e^{i\langle f,\eta\rangle} \, d\nu_{\Lambda}(\eta) = \exp\left[\int_{\mathbb{R}_{+}\times\Lambda} (e^{isf(x)} - 1) \, d\sigma(s,x)\right], \quad f \in C_{0}(X).$$

Proposition 3 ([6,16]). Let (7)–(9), (11) hold and let conditions (C1) and (C2) be satisfied. Then, for any $\Lambda \in \mathscr{B}_0(X)$ and $\xi \in \mathbb{K}(X)$,

$$0 < Z_{\Lambda}(\xi) := \int_{\mathbb{K}(\Lambda)} e^{-H(\eta \mid \xi)} d\nu_{\Lambda}(\eta) < \infty.$$

For each $\Lambda \in \mathscr{B}_0(X)$ with $\int_{\Lambda} dx > 0$, the local Gibbs state with boundary condition $\xi \in \mathbb{K}(X)$ is defined as a probability measure on $\mathbb{K}(\Lambda)$ given by

$$d\mu_{\Lambda}(\eta \mid \xi) := \frac{1}{Z_{\Lambda}(\xi)} e^{-H(\eta \mid \xi)} d\nu_{\Lambda}(\eta).$$

For each $B \in \mathscr{B}(\mathbb{K}(X))$, $\Lambda \in \mathscr{B}_0(X)$, and $\xi \in \mathbb{K}(X)$, we define

$$B_{\Lambda,\xi} := \{\eta \in \mathbb{K}(\Lambda) \mid \eta + \xi_{\Lambda^c} \in B\} \in \mathscr{B}(\mathbb{K}(\Lambda))$$

and hence we can define the local specification $\Pi = {\pi_{\Lambda}}_{\Lambda \in \mathscr{B}_0(X)}$ on $\mathbb{K}(X)$ as the family of stochastic kernels

$$\mathscr{B}(\mathbb{K}(X)) \times \mathbb{K}(X) \ni (B,\xi) \mapsto \pi_{\Lambda}(B \mid \xi) \in [0,1]$$

given by $\pi_{\Lambda}(B \mid \xi) := \mu_{\Lambda}(B_{\Lambda,\xi}).$

Definition 4. A Gibbs perturbation of a completely random measure ν corresponding to a pair potential ϕ is defined as a probability measure μ on $(\mathbb{K}(X), \mathscr{B}(\mathbb{K}(X)))$ which satisfies the following Dobrushin–Lanford–Ruelle (DLR) equation:

$$\int_{\mathbb{K}(X)} \pi_{\Lambda}(B \mid \xi) \, d\mu(\xi) = \mu(B), \tag{12}$$

for any $B \in \mathscr{B}(\mathbb{K}(X))$ and $\Lambda \in \mathscr{B}_0(X)$. We denote by $G(\nu, \phi)$ the set of all such probability measures μ .

Theorem 5 ([6,16]). Let the conditions of Proposition 3 be satisfied. Then the set $G(\nu, \phi)$ is non-empty. Furthermore, each measure $\mu \in G(\nu, \phi)$ has finite moments: for each $\Lambda \in \mathscr{B}_0(X)$ and $n \in \mathbb{N}$,

$$\int_{\mathbb{K}(X)} \eta(\Lambda)^n \, d\mu(\eta) < \infty.$$
(13)

Since (7) holds, for each $\Lambda \in \mathscr{B}_0(X)$ with $\int_{\Lambda} dx > 0$, for ν -a.a. $\eta \in \mathbb{K}(X)$, the set $\tau(\eta) \cap \Lambda$ is infinite. Using the DLR equation, we therefore obtain the following result.

Proposition 6. Let the conditions of Proposition 3 be satisfied, and let $\mu \in G(\nu, \phi)$. Let $\Lambda \in \mathscr{B}_0(X)$ with $\int_{\Lambda} dx > 0$. Then, for μ -a.a. $\eta \in \mathbb{K}(X)$, the set $\tau(\eta) \cap \Lambda$ is infinite. In particular, the set $\tau(\eta)$ is μ -a.s. dense in X.

By analogy with [15], the Gibbs measures have the following property.

Theorem 7. Let the conditions of Proposition 3 be satisfied, and let $\mu \in G(\nu, \phi)$. Then μ satisfies the following Nguyen–Zessin identity: for each measurable function $F: \widehat{X} \times \mathbb{K}(X) \to [0, \infty],$

$$\int_{\mathbb{K}(X)} \sum_{x \in \tau(\eta)} F(s_x, x, \eta) \, d\mu(\eta)$$

=
$$\int_{\mathbb{K}(X)} \int_{\widehat{X}} \exp\left[-s \int_X \phi(x, x') \, d\eta(x')\right] F(s, x, \eta + s\delta_x) \, d\sigma(s, x) d\mu(\eta). \quad (14)$$

Proof. By the same arguments as in the proof of [6, Theorem 6.3], it is enough to show that, for each $\Lambda \in \mathscr{B}_0(X)$, equality (14) holds for all functions F of the form $F(s, x, \eta) = f(s, x)g(\eta_\Lambda)$, where $f \in C_0(\widehat{X})$, $f \ge 0$, the support of f is a subset of $\mathbb{R}_+ \times \Lambda$ and $g : \mathbb{K}(\Lambda) \to [0, \infty)$ is bounded and measurable. By the DLR equation (12) and the Mecke identity (10), we have

$$\int_{\mathbb{K}(X)} \sum_{x \in \tau(\eta)} F(s_x, x, \eta) d\mu(\eta) = \int_{\mathbb{K}(X)} \int_{\mathbb{K}(X)} \sum_{x \in \tau(\eta) \cap \Lambda} f(s_x, x) g(\eta) \pi_{\Lambda}(d\eta \mid \xi) d\mu(\xi)$$

$$= \int_{\mathbb{K}(X)} \int_{\mathbb{K}(\Lambda)} \sum_{x \in \tau(\eta)} f(s_x, x) g(\eta) \frac{1}{Z_{\Lambda}(\xi)} e^{-H_{\Lambda}(\eta \mid \xi_{\Lambda^c})} d\nu_{\Lambda}(\eta) d\mu(\xi)$$

$$= \int_{\mathbb{K}(X)} \int_{\mathbb{K}(\Lambda)} \int_{\mathbb{R}_+ \times \Lambda} f(s, x) g(\eta + s\delta_x) \frac{1}{Z_{\Lambda}(\xi)} e^{-H_{\Lambda}(\eta + s\delta_x \mid \xi_{\Lambda^c})} d\sigma(s, x) d\nu_{\Lambda}(\eta) d\mu(\xi)$$

$$= \int_{\widehat{X}} \int_{\mathbb{K}(X)} \int_{\mathbb{K}(X)} F(s, x, \eta + s\delta_x) \exp\left[-s \int_{X \setminus \{x\}} \phi(x, x') d\eta(x')\right] \pi_{\Lambda}(d\eta \mid \xi) d\mu(\xi) d\sigma(s, x)$$

$$= \int_{\mathbb{K}(X)} \int_{\widehat{X}} \exp\left[-s \int_{X \setminus \{x\}} \phi(x, x') d\eta(x')\right] F(s, x, \eta + s\delta_x) d\sigma(s, x) d\mu(\eta), \quad (15)$$

where the last line is obtained by applying the DLR equation (12) again. Note that, for a fixed $\eta \in \mathbb{K}(X)$, since the set $\tau(\eta)$ is countable, we have $\sigma(\tau(\eta) \times \mathbb{R}_+) = 0$. Hence, in formula (15), instead of the integral $\int_{X \setminus \{x\}} \phi(x, x') d\eta(x')$, we may write $\int_X \phi(x, x') d\eta(x')$.

3 The results

In this section, we will introduce the Dirichlet form $\mathscr{E}^{\mathbb{K}}$ and formulate the results. We postpone the proofs to Section 4.

Let the conditions of Proposition 3 be satisfied and let us fix any Gibbs measure $\mu \in G(\nu, \phi)$. For any $F, G \in \mathscr{FC}(\mathbb{K}(X))$, we define $\mathscr{E}^{\mathbb{K}}(F, G)$ by formula (1). Note that, by (6) and (13), we indeed have

$$\int_{\mathbb{K}(X)} \left| \langle \nabla^{\mathbb{K}} F(\eta), \nabla^{\mathbb{K}} G(\eta) \rangle_{T_{\eta}(\mathbb{K})} \right| d\mu(\eta) < \infty.$$

Lemma 8. Let $F, G \in \mathscr{FC}(\mathbb{K}(X))$ and let F = 0 μ -a.e. Then $\mathscr{E}^{\mathbb{K}}(F, G) = 0$.

Thus, we may consider $\mathscr{E}^{\mathbb{K}}$ as a symmetric bilinear form on $L^2(\mathbb{K}(X), \mu)$ with domain $\mathscr{FC}(\mathbb{K}(X))$. Note that $\mathscr{FC}(\mathbb{K}(X))$ is dense in $L^2(\mathbb{K}(X), \mu)$. Let us now find the L^2 -generator of this form. Analogously to (4), (5), we define, for each function $F \in \mathscr{FC}(\mathbb{K}(X)), \eta \in \mathbb{K}(X)$, and $x \in \tau(\eta)$,

$$\Delta_x F(\eta) := \Delta_y \big|_{y=x} F(\eta - s_x \delta_x + s_x \delta_y),$$

$$\Delta_{s_x} F(\eta) := \frac{d^2}{du^2} \big|_{u=s_x} F(\eta - s_x \delta_x + u \delta_x),$$

where Δ_y is the Laplace operator on X acting in the y variable.

The following proposition gives, in particular, the explicit form of the L^2 -generator of the bilinear form $(\mathscr{E}^{\mathbb{K}}, \mathscr{FC}(\mathbb{K}(X)))$.

Proposition 9. Assume that $l \in C^1(\widehat{X})$ and $\phi \in C^1(X \times X)$. For each $F \in \mathscr{FC}(\mathbb{K}(X))$, we define a function $L^{\mathbb{K}}F \in L^2(\mathbb{K}(X), \mu)$ by

$$L^{\mathbb{K}}F(\eta) = \sum_{x\in\tau(\eta)} \left[\frac{1}{s_x} \Delta_x F(\eta) + \frac{1}{s_x} \langle \nabla_x \log l(s,x), \nabla_x F(\eta) \rangle_X - \int_X d(\eta - s_x \delta_x)(x') \langle \nabla_x \phi(x,x'), \nabla_x F(\eta) \rangle_X + s_x \Delta_{s_x} F(\eta) + s_x (\nabla_{s_x} \log l(s_x,x)) (\nabla_{s_x} F(\eta)) - \left(\int_X d(\eta - s_x \delta_x)(x') \phi(x,x') \right) s_x \nabla_{s_x} F(\eta) \right].$$
(16)

Here $\langle \cdot, \cdot \rangle_X$ denotes the scalar product in X. Then, for any $F, G \in \mathscr{FC}(\mathbb{K}(X))$,

$$\mathscr{E}^{\mathbb{K}}(F,G) = (-L^{\mathbb{K}}F,G)_{L^{2}(\mathbb{K}(X),\mu)}.$$
(17)

The bilinear form $(\mathscr{E}^{\mathbb{K}}, \mathscr{FC}(\mathbb{K}(X)))$ is closable on $L^2(\mathbb{K}(X), \mu)$, and its closure, denoted by $(\mathscr{E}^{\mathbb{K}}, D(\mathscr{E}^{\mathbb{K}}))$ is a Dirichlet form. The operator $(-L^{\mathbb{K}}, \mathscr{FC}(\mathbb{K}(X)))$ has Friedrichs' extension, which we denote by $(-L^{\mathbb{K}}, D(L^{\mathbb{K}}))$.

Remark 10. Note that, in the case where μ is the Gibbs perturbation of the gamma measure, i.e., when $l(s, x) = e^{-s}$, formula (16) becomes

$$L^{\mathbb{K}}F(\eta) = \sum_{x \in \tau(\eta)} \left[\frac{1}{s_x} \Delta_x F(\eta) - \int_X d(\eta - s_x \delta_x)(x') \langle \nabla_x \phi(x, x'), \nabla_x F(\eta) \rangle_X + s_x \left(\Delta_{s_x} F(\eta) - \nabla_{s_x} F(\eta) \right) - \left(\int_X d(\eta - s_x \delta_x)(x') \phi(x, x') \right) s_x \nabla_{s_x} F(\eta) \right].$$

We are now ready to formulate the main result of the paper.

Theorem 11. Assume that the conditions of Propositions 3 and 9 be satisfied. Further assume that the dimension d of the space X is ≥ 2 . Then there exists a conservative diffusion process on $\mathbb{K}(X)$ (i.e., a conservative strong Markov process with continuous sample paths in $\mathbb{K}(X)$),

$$M^{\mathbb{K}} = (\Omega^{\mathbb{K}}, \mathscr{F}^{\mathbb{K}}, (\mathscr{F}^{\mathbb{K}}_t)_{t \ge 0}, (\Theta^{\mathbb{K}}_t)_{t \ge 0}, (\mathfrak{X}^{\mathbb{K}}(t))_{t \ge 0}, (\mathbb{P}^{\mathbb{K}}_\eta)_{\eta \in \mathbb{K}(X)}),$$

(cf. [4]) which is properly associated with the Dirichlet form $(\mathscr{E}^{\mathbb{K}}, D(\mathscr{E}^{\mathbb{K}}))$, i.e., for all $(\mu$ -versions of) $F \in L^2(\mathbb{K}(X), \mu)$ and all t > 0 the function

$$\mathbb{K}(X) \ni \eta \mapsto (p_t^{\mathbb{K}} F)(\eta) := \int_{\Omega} F(\mathfrak{X}(t)) \, d\mathbb{P}_{\eta}^{\mathbb{K}}$$

is an $\mathscr{E}^{\mathbb{K}}$ -quasi-continuous version of $\exp(tL^{\mathbb{K}})F$ (cf. [13, Chap. 1, Sect. 2]). Here $\Omega^{\mathbb{K}} = C([0,\infty) \to \mathbb{K}(X)), \ \mathfrak{X}^{\mathbb{K}}(t)(\omega) = \omega(t), \ t \geq 0, \ \omega \in \Omega^{\mathbb{K}}, \ (\mathscr{F}_t^{\mathbb{K}})_{t\geq 0} \ together \ with \ \mathscr{F}^{\mathbb{K}}$ is the corresponding minimum completed admissible family (cf. [5, Section 4.1]) and $\Theta_t^{\mathbb{K}}, \ t \geq 0$, are the corresponding natural time shifts.

In particular, $M^{\mathbb{K}}$ is μ -symmetric (i.e., $\int G p_t^{\mathbb{K}} F d\mu = \int F p_t^{\mathbb{K}} G d\mu$ for all $F, G : \mathbb{K}(X) \to [0, \infty), \mathscr{B}(\mathbb{K}(X))$ -measurable) and has μ as an invariant measure.

 $M^{\mathbb{K}}$ is up to μ -equivalence unique (cf. [13, Chap. IV, Sect. 6]).

Remark 12. In addition to (7)–(11), let us assume that the function l(s, x) satisfies, for each $\Lambda \in \mathscr{B}_0(X)$,

$$\int_{\mathbb{R}_+ \times \Lambda} l(s, x) s^i \, ds \, dx < \infty, \quad i = 2, 3.$$

This implies that the completely random measure ν satisfies, for each $\Lambda \in \mathscr{B}_0(X)$,

$$\int_{\mathbb{K}(X)} \eta(\Lambda)^n \, d\nu(\eta) < \infty \quad \text{for } n = 1, 2, 3, 4.$$

Then it easily follows from the proofs of Proposition 9 and Theorem 11 that these statements remain true when $l \in C^1(\widehat{X})$ and the pair potential ϕ is equal to zero, i.e., when $\mu = \nu$.

We note that, in paper [10], for a different choice of a tangent space $T_{\eta}(\mathbb{K})$ and in the case where l(s, x) = l(s) is independent of x and $\mu = \nu$, the corresponding diffusion process on $\mathbb{K}(X)$ was constructed explicitly. However, for the choice of the tangent space $T_{\eta}(\mathbb{K})$ as in this paper, even in the case where $\mu = \nu$, an explicit construction of the diffusion process is an open problem, see Subsec. 5.2 in [10].

4 The proofs

4.1 Proofs of Lemma 8 and Proposition 9

We start with the following

Lemma 13. For any $F, G \in \mathscr{FC}(\mathbb{K}(X))$,

$$\mathscr{E}^{\mathbb{K}}(F,G) = \int_{\mathbb{K}(X)} d\mu(\eta) \int_{\widehat{X}} ds \, dx \, l(s,x) \, \exp\left[-s \int_{X} \phi(x,x') \, d\eta(x')\right] \\ \times \left[\frac{1}{s^2} \langle \nabla_x F(\eta + s\delta_x), \nabla_x G(\eta + s\delta_x) \rangle_X + \left(\frac{d}{ds} F(\eta + s\delta_x)\right) \left(\frac{d}{ds} G(\eta + s\delta_x)\right)\right]. \tag{18}$$

Proof. Formula (18) follows directly from (1), (2), (4)–(6), and (14).

Proof of Lemma 8. By (C1) and (13), for a fixed $x \in X$, we get

$$\int_{\mathbb{K}(X)} \int_{X} |\phi(x, x')| \, d\eta(x') \, d\mu(\eta) < \infty.$$

Hence, for μ -a.a. $\eta \in \mathbb{K}(X)$, we have $\int_X |\phi(x, x')| d\eta(x') < \infty$. Therefore, on $\widehat{X} \times \mathbb{K}(X)$, the measures

$$l(s,x) \exp\left[-s \int_X \phi(x,x') \, d\eta(x')\right] ds \, dx \, d\mu(\eta)$$

and $ds dx d\mu(\eta)$ are equivalent.

Let $F \in \mathscr{FC}(\mathbb{K}(X))$ be such that F = 0 μ -a.e. Then, for any $\Lambda \in \mathscr{B}_0(X)$, we get by (14)

$$\begin{split} &\int_{\mathbb{K}(X)} d\mu(\eta) \int_{\widehat{X}} ds \, dx \, l(s,x) \exp\left[-s \int_{X} \phi(x,x') \, d\eta(x')\right] |F(\eta+s\delta_x)|\chi_{\Lambda}(x) \\ &= \int_{\mathbb{K}(X)} |F(\eta)| \, \eta(\Lambda) \, d\mu(\eta) = 0. \end{split}$$

Here χ_{Λ} denotes the indicator function of the set Λ . Hence, $F(\eta + s\delta_x) = 0$ for $ds \, dx \, d\mu(\eta)$ -a.a. $(s, x, \eta) \in \widehat{X} \times \mathbb{K}(X)$. For each fixed $\eta \in \mathbb{K}(X)$, the function $(s, x) \mapsto F(\eta + s\delta_x)$ is continuous. Therefore, for μ -a.a. $\eta \in \mathbb{K}(X)$, $F(\eta + s\delta_x) = 0$ for all $(s, x) \in \widehat{X}$. Hence, by Lemma 13, for each $G \in \mathscr{FC}(\mathbb{K}(X))$, $\mathscr{E}^{\mathbb{K}}(F, G) = 0$. \Box

Proof of Proposition 9. We first note that $(\mathscr{E}^{\mathbb{K}}, \mathscr{FC}(\mathbb{K}(X)))$ is a pre-Dirichlet form form on $L^2(\mathbb{K}(X), \mu)$, i.e., if it is closable then its closure is a Dirichlet form. This assertion follows, by standard methods, directly from [13, Chap. I, Proposition 4.10] (see also [13, Chap. II, Exercise 2.7]). For a fixed $\eta \in \mathbb{K}(X)$, the function $(s, x) \mapsto F(\eta + s\delta_x)$ is constant outside a compact set in \widehat{X} . Note also that, for each fixed $\eta \in \mathbb{K}(X)$, the function $x \mapsto \int_X \phi(x, x') d\eta(x')$ is differentiable on X and its gradient is equal to $\int_X \nabla_x \phi(x, x') d\eta(x')$. Hence carrying out integration by parts in formula (18), we get for any $F, G \in \mathscr{FC}(\mathbb{K}(X))$,

$$\mathscr{E}^{\mathbb{K}}(F,G) = \int_{\mathbb{K}(X)} d\mu(\eta) \int_{\widehat{X}} ds \, dx \, l(s,x) \exp\left[-s \int_{X} \phi(x,x') \, d\eta(x')\right] G(\eta + s\delta_x)$$

$$\times \left[-\frac{1}{s^2} \Delta_x F(\eta + s\delta_x) - \frac{1}{s^2} \langle \nabla_x \log l(s,x), \nabla_x F(\eta + s\delta_x) \rangle_X + \frac{1}{s} \int_{X} d\eta(x') \, \langle \nabla_x \phi(x,x'), \nabla_x F(\eta + s\delta_x) \rangle_X - \Delta_s F(\eta + s\delta_x) - \left(\nabla_s \log l(s,x)\right) \left(\nabla_s F(\eta + s\delta_x)\right) + \left(\int_{X} \phi(x,x') \, d\eta(x')\right) \left(\nabla_s F(\eta + s\delta_x)\right)\right].$$

Applying formula (14), we get (16), (17).

It easily follows from (16) that, for a fixed $F \in \mathscr{FC}(\mathbb{K}(X))$, there exist $\Lambda \in \mathscr{B}_0(X)$ and C > 0 such that

$$|L^{\mathbb{K}}F(\eta)| \le C(\eta(\Lambda) + \eta(\Lambda)^2), \quad \eta \in \mathbb{K}(X).$$

Hence, by (13), $L^{\mathbb{K}}F \in L^2(\mathbb{K}(X), \mu)$. Thus, the bilinear form $(\mathscr{E}^{\mathbb{K}}, \mathscr{FC}(\mathbb{K}(X)))$ has L^2 -generator. Hence, it is closable and its closure is a Dirichlet form. The last statement of the proposition about Friedrichs' extension is a standard fact of functional analysis. \Box

4.2 Proof of Theorem 11

We will divide the proof into several steps.

Step 1. To prove the theorem, we will initially construct a diffusion process on a certain subset of the configuration space over \hat{X} . So in this step, we will present the necessary definitions and constructions related to the configuration space.

We denote by $\Gamma(\hat{X})$ the space of all $\mathbb{N}_0 \cup \{\infty\}$ -valued Radon measures on \hat{X} . Here $\mathbb{N}_0 := \{0, 1, 2, \ldots\}$. The space $\Gamma(\hat{X})$ is endowed with the vague topology and let $\mathscr{B}(\Gamma(\hat{X}))$ denote the corresponding σ -algebra.

The configuration space over \widehat{X} , denoted by $\Gamma(\widehat{X})$, is defined as the collection of all locally finite subsets of \widehat{X} :

 $\Gamma(\widehat{X}) := \big\{ \gamma \subset \widehat{X} \mid |\gamma \cap A| < \infty \text{ for each compact } A \subset \widehat{X} \big\}.$

Here $|\gamma \cap A|$ denotes the cardinality of the set $\gamma \cap A$. One usually identifies a configuration $\gamma \in \Gamma(\widehat{X})$ with the Radon measure $\sum_{(s,x)\in\gamma} \delta_{(s,x)}$ on \widehat{X} . Thus, one gets the inclusion $\Gamma(\widehat{X}) \subset \ddot{\Gamma}(\widehat{X})$.

Let $\Gamma_{pf}(\widehat{X})$ denote the subset of $\Gamma(\widehat{X})$ which consists of all configurations γ which satisfy:

(i) if $(s_1, x_1), (s_2, x_2) \in \gamma$ and $(s_1, x_1) \neq (s_2, x_2)$, then $x_1 \neq x_2$;

(ii) for each
$$\Lambda \in \mathscr{B}_0(X)$$
, $\sum_{(s,x)\in\gamma\cap(\mathbb{R}_+\times\Lambda)} s < \infty$

We have $\Gamma_{pf}(\widehat{X}) \in \mathscr{B}(\widetilde{\Gamma}(\widehat{X}))$, and we denote by $\mathscr{B}(\Gamma_{pf}(\widehat{X}))$ the trace σ -algebra of $\mathscr{B}(\widetilde{\Gamma}(\widehat{X}))$ on $\Gamma_{pf}(\widehat{X})$. Equivalently, $\mathscr{B}(\Gamma_{pf}(\widehat{X}))$ is the Borel σ -algebra on the space $\Gamma_{pf}(\widehat{X})$ equipped with the vague topology.

The following statement is proven in [6, Theorem 6.2].

Proposition 14 ([6]). Consider a bijective mapping $\mathscr{R} : \Gamma_{pf}(\widehat{X}) \to \mathbb{K}(X)$ defined by

$$\Gamma_{pf}(\widehat{X}) \ni \gamma = \{(s_i, x_i)\} \mapsto \mathscr{R}\gamma := \sum_i s_i \delta_{x_i} \in \mathbb{K}(X).$$
(19)

Then the mapping \mathscr{R} and its inverse $\mathscr{R}^{-1} : \mathbb{K}(X) \to \Gamma_{pf}(\widehat{X})$ are measurable.

Note that the pushforward of the completely random measure ν under \mathscr{R}^{-1} is the Poisson measure on $\Gamma(\widehat{X})$ with intensity measure σ : if we denote this measure by π , the Fourier transform of π is given by

$$\int_{\Gamma_{pf}(\widehat{X})} e^{i\langle f,\gamma\rangle} \, d\pi(\gamma) = \exp\left[\int_{\widehat{X}} (e^{if(s,x)} - 1) \, d\sigma(s,x)\right], \quad f \in C_0(\widehat{X}).$$

Here we denote $\langle f, \gamma \rangle := \int_{\widehat{X}} f \, d\gamma = \sum_{(s,x) \in \gamma} f(s,x).$

Let ρ denote the pushforward of the Gibbs measure μ under \mathscr{R}^{-1} . By Theorem 7 and (19), the measure ρ satisfies, for each measurable function $F : \widehat{X} \times \Gamma(\widehat{X}) \to [0, \infty]$,

$$\begin{split} \int_{\Gamma_{pf}(\widehat{X})} \sum_{(s,x)\in\gamma} F(s,x,\gamma) \, d\rho(\gamma) \\ &= \int_{\Gamma_{pf}(\widehat{X})} d\rho(\gamma) \int_{\widehat{X}} d\sigma(s,x) \, \exp\left[-\sum_{(s',x')\in\gamma} ss'\phi(x,x')\right] F(s,x,\gamma \cup \{(s,x)\}). \end{split}$$

Let $\mathscr{FC}(\Gamma_{pf}(\widehat{X}))$ denote the set of functions on $\Gamma_{pf}(\widehat{X})$ which are of the form $F(\gamma) = G(\mathscr{R}\gamma)$ for some $G \in \mathscr{FC}(\mathbb{K}(X))$. Thus, $\mathscr{FC}(\Gamma_{pf}(\widehat{X}))$ consists of all functions F of the form

$$F(\gamma) = g(\langle \varphi_1, \gamma \rangle, \dots, \langle \varphi_N, \gamma \rangle), \quad \gamma \in \Gamma_{pf}(\widehat{X}),$$

where the functions $g, \varphi_1, \ldots, \varphi_N$ are as in (3). Thus, we may equivalently consider a bilinear form $(\mathscr{E}^{\Gamma}, \mathscr{F}\mathscr{C}(\Gamma_{pf}(\widehat{X})))$ on $L^2(\Gamma_{pf}(\widehat{X}), \rho)$ which is defined by

$$\mathscr{E}^{\Gamma}(F,G) := \mathscr{E}^{\mathbb{K}}(F \circ \mathscr{R}^{-1}, G \circ \mathscr{R}^{-1}), \quad F, G \in \mathscr{F}\mathscr{C}(\Gamma_{pf}(\widehat{X})).$$

As easily seen, for any $F, G \in \mathscr{FC}(\Gamma_{pf}(\widehat{X}))$, we have

$$\mathscr{E}^{\Gamma}(F,G) = \int_{\Gamma(\widehat{X})} \sum_{(s,x)\in\gamma} \left[\frac{1}{s} \langle \nabla_x F(\gamma), \nabla_x G(\gamma) \rangle_X + s \big(\nabla_s F(\gamma) \big(\nabla_s G(\gamma) \big) \Big] d\rho(\gamma), \right]$$

where $\nabla_x F(\gamma)$ and $\nabla_s G(\gamma)$ are defined analogously to formulas (4), (5). By Proposition 9, the bilinear form $(\mathscr{E}^{\Gamma}, \mathscr{F}\mathscr{C}(\Gamma_{pf}(\widehat{X})))$ is closable on $L^2(\Gamma_{pf}(\widehat{X}), \rho)$, and its closure, denoted by $(\mathscr{E}^{\Gamma}, D(\mathscr{E}^{\Gamma}))$, is a Dirichlet form.

Step 2. Our aim now is to construct a diffusion process on $\Gamma_{pf}(\widehat{X})$ which is properly associated with the Dirichlet form $(\mathscr{E}^{\Gamma}, D(\mathscr{E}^{\Gamma}))$. We will initially construct such a process on a bigger space $\ddot{\Gamma}_f(\widehat{X})$. In this step, we will define the set $\ddot{\Gamma}_f(\widehat{X})$ and construct a metric on it such that the set $\ddot{\Gamma}_f(\widehat{X})$ equipped with this metric is a Polish space.

For each $\Lambda \in \mathscr{B}_0(X)$, we define a local mass \mathfrak{M}_{Λ} by

$$\mathfrak{M}_{\Lambda}(\gamma) := \int_{\widehat{X}} \chi_{\Lambda}(x) s \, d\gamma(s, x), \quad \gamma \in \ddot{\Gamma}(\widehat{X}).$$

We set

 $\ddot{\Gamma}_f(\widehat{X}) := \big\{ \gamma \in \ddot{\Gamma}(\widehat{X}) \mid \mathfrak{M}_{\Lambda}(\gamma) < \infty \text{ for each } \Lambda \in \mathscr{B}_0(X) \big\}.$

We have $\ddot{\Gamma}_f(\hat{X}) \in \mathscr{B}(\ddot{\Gamma}(\hat{X}))$, and let $\mathscr{B}(\ddot{\Gamma}_f(\hat{X}))$ denote the Borel σ -algebra on the space $\ddot{\Gamma}_f(\hat{X})$ equipped with the vague topology.

We will now construct a bounded metric on $\ddot{\Gamma}_f(\hat{X})$ in which this space will be complete and separable. Let $d_V(\cdot, \cdot)$ denote the bounded metric on $\ddot{\Gamma}(\hat{X})$ which was introduced in [14, Section 3]. Recall that this metric generates the vague topology on $\ddot{\Gamma}(\hat{X})$, and $\ddot{\Gamma}(\hat{X})$ is complete and separable in this metric.

For each $k \in \mathbb{N}$, we fix any function $\phi_k \in C_0^{\infty}(X)$ such that

$$\chi_{B(k)} \le \phi_k \le \chi_{B(k+1)}, \quad \left| \frac{\partial}{\partial x_i} \phi_k(x) \right| \le 2 \chi_{B(k+1)}(x),$$

$$i = 1, \dots, d, \ x = (x^1, \dots, x^d) \in X.$$
(20)

Here

$$B(k) := \{ x = (x^1, \dots, x^d) \in X \mid \max_{i=1,\dots,d} |x_i| \le k \}.$$

Next, we fix any $q \in (0, 1)$. We take any sequence $(\psi_n)_{n \in \mathbb{Z}}$ such that, for each $n \in \mathbb{Z}$, $\psi_n \in C_0^{\infty}(\mathbb{R})$ and

$$\chi_{[q^n, q^{n-1}]} \le \psi_n \le \chi_{[q^{n+1}, q^{n-2}]}, \quad |\psi'_n| \le \frac{2}{q^n - q^{n+1}} \chi_{[q^{n+1}, q^n] \cup [q^{n-1}, q^{n-2}]}.$$
(21)

For each $k \in \mathbb{N}$ and $n \in \mathbb{Z}$, we define

$$\varkappa_{kn}(s,x) := \phi_k(x)\psi_n(s)s, \quad (s,x) \in \widehat{X}.$$
(22)

Note that $\varkappa_{kn} \in C_0^{\infty}(\widehat{X})$. For any $k \in \mathbb{N}$ and $\gamma, \gamma' \in \ddot{\Gamma}_f(\widehat{X})$, we define

$$d_k(\gamma, \gamma') := \sum_{n \in \mathbb{Z}} |\langle \varkappa_{kn}, \gamma - \gamma' \rangle|.$$
(23)

As follows from (20) and (21), for each $\gamma \in \ddot{\Gamma}_f(\widehat{X})$,

$$\sum_{n\in\mathbb{Z}} \langle \varkappa_{kn}, \gamma \rangle = \int_{\widehat{X}} d\gamma(s, x) \,\phi_k(x) \left(\sum_{n\in\mathbb{Z}} \psi_n(s) \right) s$$
$$\leq 4 \int_{\widehat{X}} d\gamma(s, x) \phi_k(x) s \leq 4 \,\mathfrak{M}_{B(k+1)}(\gamma) < \infty.$$
(24)

Therefore, $d_k(\gamma, \gamma') < \infty$ for all $\gamma, \gamma' \in \ddot{\Gamma}_f(\widehat{X})$. Clearly, $d_k(\cdot, \cdot)$ satisfies the triangle inequality.

Let $(c_k)_{k=1}^{\infty}$ be a sequence of $c_k > 0$ such that $\sum_{k=1}^{\infty} c_k < \infty$. Below, in formula (35), we will make an explicit choice of the sequence $(c_k)_{k=1}^{\infty}$. We next define

$$d_f(\gamma, \gamma') := \sum_{k=1}^{\infty} c_k \frac{d_k(\gamma, \gamma')}{1 + d_k(\gamma, \gamma')}, \quad \gamma, \gamma' \in \ddot{\Gamma}_f(\widehat{X}).$$

Clearly, $d_f(\cdot, \cdot)$ also satisfies the triangle inequality. We finally define the metric

$$d(\gamma, \gamma') := d_V(\gamma, \gamma') + d_f(\gamma, \gamma'), \quad \gamma, \gamma' \in \ddot{\Gamma}_f(\widehat{X}).$$

Proposition 15. $(\ddot{\Gamma}_f(\widehat{X}), d(\cdot, \cdot))$ is a complete, separable metric space.

Proof. Let $\{\gamma_i\}_{i=1}^{\infty}$ be a Cauchy sequence in $(\ddot{\Gamma}_f(\widehat{X}), d(\cdot, \cdot))$. Then $\{\gamma_i\}_{i=1}^{\infty}$ is a Cauchy sequence in $(\ddot{\Gamma}(\widehat{X}), d_V(\cdot, \cdot))$. Since the latter space is complete, there exists $\gamma \in \ddot{\Gamma}(\widehat{X})$ such that $\gamma_i \to \gamma$ vaguely as $i \to \infty$. Denote

$$a_{kn}^{(i)} := \langle \varkappa_{kn}, \gamma_i \rangle, \quad a_{kn} := \langle \varkappa_{kn}, \gamma \rangle, \quad k \in \mathbb{N}, \ n \in \mathbb{Z}$$

As $\varkappa_{kn} \in C_0(\widehat{X})$, we therefore get:

for each
$$k \in \mathbb{N}$$
 and $n \in \mathbb{Z}$ $a_{kn}^{(i)} \to a_{kn}$ as $i \to \infty$. (25)

Note that, for each $k \in \mathbb{N}$ and $i \in \mathbb{N}$, $a_{kn}^{(i)} \ge 0$ for all $n \in \mathbb{Z}$ and by (24)

$$\sum_{n \in \mathbb{N}} a_{kn}^{(i)} < \infty$$

Hence, $(a_{kn}^{(i)})_{n\in\mathbb{Z}}\in\ell^1(\mathbb{Z})$. As $\{\gamma_i\}_{i=1}^{\infty}$ is a Cauchy sequence in $(\ddot{\Gamma}_f(\widehat{X}), d(\cdot, \cdot)),$

$$\lim_{i,j\to\infty}\sum_{n\in\mathbb{Z}}|a_{kn}^{(i)}-a_{kn}^{(j)}|=\lim_{i,j\to\infty}d_k(\gamma_i,\gamma_j)=0,\quad k\in\mathbb{N}.$$

Hence, $\{(a_{kn}^{(i)})_{n\in\mathbb{Z}}\}_{i=1}^{\infty}$ is a Cauchy sequence in $\ell^1(\mathbb{Z})$. Since the latter space is complete, the sequence $\{(a_{kn}^{(i)})_{n\in\mathbb{Z}}\}_{i=1}^{\infty}$ is convergent in $\ell^1(\mathbb{Z})$. In view of (25), we therefore conclude that the $\ell^1(\mathbb{Z})$ -limit of this sequence is $(a_{kn})_{n\in\mathbb{Z}}$. This, in particular, implies that

$$\sum_{n\in\mathbb{Z}}a_{kn} = \sum_{n\in\mathbb{Z}} \langle \varkappa_{kn}, \gamma \rangle < \infty, \quad k \in \mathbb{N}.$$
(26)

By (21), $\sum_{n=1}^{\infty} \psi_n(s) \ge 1$ for all $s \in \mathbb{R}_+$. We therefore deduce from (26) that $\gamma \in \ddot{\Gamma}_f(\widehat{X})$. Furthermore,

$$d_k(\gamma_i, \gamma) = \sum_{n \in \mathbb{Z}} |a_{kn}^{(i)} - a_{kn}| \to 0 \text{ as } i \to \infty, \quad k \in \mathbb{N}.$$

Hence $d(\gamma_i, \gamma) \to 0$ as $i \to \infty$. Thus, $(\ddot{\Gamma}_f(\hat{X}), d(\cdot, \cdot))$ is complete. The proof of the separability of this space is routine, so we skip it.

Step 3. We will now consider $(\mathscr{E}^{\Gamma}, D(\mathscr{E}^{\Gamma}))$ as a Dirichlet form on $L^2(\ddot{\Gamma}_f(\widehat{X})), \rho)$ and prove that is is quasi-regular. For the definition of quasi-regularity of a Dirichlet form, see [13, Chap. IV, Def. 3.1] and [14, subsec. 4.1].

We consider the complete separable metric space $(\ddot{\Gamma}_f(\widehat{X}), d(\cdot, \cdot))$, and let $\mathscr{B}(\ddot{\Gamma}_f(\widehat{X}), d)$ denote the corresponding Borel σ -algebra on $\ddot{\Gamma}_f(\widehat{X})$.

Lemma 16. We have $\mathscr{B}(\ddot{\Gamma}_f(\widehat{X})) = \mathscr{B}(\ddot{\Gamma}_f(\widehat{X}), d)$.

Proof. We have $d(\gamma, \gamma') \geq d_V(\gamma, \gamma')$ for all $\gamma, \gamma' \in \ddot{\Gamma}_f(\widehat{X})$. Therefore, $\mathscr{B}(\ddot{\Gamma}_f(\widehat{X})) \subset \mathscr{B}(\ddot{\Gamma}_f(\widehat{X}), d)$. On the other hand, it follows from the construction of the metric $d(\cdot, \cdot)$ that, for a fixed $\gamma' \in \ddot{\Gamma}_f(\widehat{X})$, the function

$$\ddot{\Gamma}_f(\widehat{X}) \ni \gamma \mapsto d(\gamma, \gamma') \in \mathbb{R}$$

is $\mathscr{B}(\ddot{\Gamma}_f(\widehat{X}))$ -measurable. Hence, for any $\gamma' \in \ddot{\Gamma}_f(\widehat{X})$ and r > 0,

$$\{\gamma \in \ddot{\Gamma}_f(\widehat{X}) \mid d(\gamma, \gamma') < r\} \in \mathscr{B}(\ddot{\Gamma}_f(\widehat{X})).$$
(27)

But in a separable metric space, every open set can be represented as a countable union of open balls, see e.g. Theorem 2 and its proof in [12, p. 206]. Hence, (27) implies the inclusion $\mathscr{B}(\ddot{\Gamma}_f(\hat{X}), d) \subset \mathscr{B}(\ddot{\Gamma}_f(\hat{X}))$.

We will now consider ρ as a probability measure on the measurable space $(\ddot{\Gamma}_f(\widehat{X}), \mathscr{B}(\ddot{\Gamma}_f(\widehat{X})))$, and $(\mathscr{E}^{\Gamma}, D(\mathscr{E}^{\Gamma}))$ as a Dirichlet form on the space $L^2(\ddot{\Gamma}_f(\widehat{X}), \rho)$.

On $D(\mathscr{E}^{\Gamma})$ we consider the norm

$$||F||_{D(\mathscr{E}^{\Gamma})} := \mathscr{E}^{\Gamma}(F, F)^{1/2} + ||F||_{L^{2}(\ddot{\Gamma}_{f}(\widehat{X}), \rho)}$$

We define a square field operator

$$S^{\Gamma}(F)(\gamma) := \sum_{(s,x)\in\gamma} \left[\frac{1}{s} \|\nabla_x F(\gamma)\|_X^2 + s |\nabla_s F(\gamma)|^2 \right],$$
(28)

where $F \in \mathscr{FC}(\Gamma_{pf}(\widehat{X})), \gamma \in \Gamma_{pf}(\widehat{X})$, and $\|\cdot\|_X$ denotes the Euclidean norm in X. As easily seen, S^{Γ} extends by continuity in the norm $\|\cdot\|_{D(\mathscr{E}^{\Gamma})}$ to a mapping $S^{\Gamma}: D(\mathscr{E}^{\Gamma}) \to L^1(\ddot{\Gamma}_f(\widehat{X}), \rho)$, and furthermore $\mathscr{E}^{\Gamma}(F, F) = \int_{\ddot{\Gamma}_f(\widehat{X})} S^{\Gamma}(F) d\rho$.

Lemma 17. For each $\gamma \in \ddot{\Gamma}_f(\widehat{X})$, we have $d(\cdot, \gamma) \in D(\mathscr{E}^{\Gamma})$. Furthermore, there exists $G \in L^1(\ddot{\Gamma}_f(\widehat{X}), \rho)$ (independent of γ) such that $S^{\Gamma}(d(\cdot, \gamma)) \leq G \rho$ -a.e.

Proof. Recall that $d(\cdot, \gamma) = d_V(\cdot, \gamma) + d_f(\cdot, \gamma)$. Using the methods of [14, Section 4] (see also [11, Section 6]), one can show that $d_V(\cdot, \gamma) \in D(\mathscr{E}^{\Gamma})$ and there exists $G_1 \in L^1(\ddot{\Gamma}_f(\widehat{X}), \rho)$ (independent of γ) such that $S^{\Gamma}(d_V(\cdot, \gamma)) \leq G_1 \rho$ -a.e. Hence, we only need to prove that $d_f(\cdot, \gamma) \in D(\mathscr{E}^{\Gamma})$ and there exists $G_2 \in L^1(\ddot{\Gamma}_f(\widehat{X}), \rho)$ (independent of γ) such that $S^{\Gamma}(d_f(\cdot, \gamma)) \leq G_2 \rho$ -a.e.

Analogously to the proof of [14, Lemma 4.7], we fix any sequence $(\zeta_n)_{n=1}^{\infty}$ such that $\zeta_n \in C_0^{\infty}(\mathbb{R}), \int_{\mathbb{R}} \zeta_n(t) dt = 1, \zeta_n(t) = \zeta_n(-t)$ for all $t \in \mathbb{R}$, $\operatorname{supp}(\zeta_n) \subset (-1/n, 1/n)$. We define

$$u_n(t) := \int_{\mathbb{R}} |t - t'| \zeta_n(t') dt' - \int_{\mathbb{R}} |t'| \zeta_n(t') dt', \quad t \in \mathbb{R}.$$

It is easy to check that, for each $n \in \mathbb{N}$, $u_n \in C^{\infty}(\mathbb{R})$, $|u_n(t)| \leq |t|$, $u_n(t) \to |t|$ as $n \to \infty$ for each $t \in \mathbb{R}$, $u'_n(t) \to \operatorname{sign}(t)$ as $n \to \infty$ for each $t \in \mathbb{R} \setminus \{0\}$, and $|u'_n(t)| \leq 2$ for all $t \in \mathbb{R}$.

Recall (22) and (23). For each $N \in \mathbb{N}$, we define

$$d_k^{(N)}(\gamma,\gamma') := \sum_{n \in \mathbb{Z} \cap [-N,N]} u_N(\langle \varkappa_{kn}, \gamma - \gamma' \rangle),$$

$$d_f^{(N)}(\gamma,\gamma') := \sum_{k=1}^N c_k \frac{d_k^{(N)}(\gamma,\gamma')}{1 + d_k^{(N)}(\gamma,\gamma')}, \quad \gamma,\gamma' \in \ddot{\Gamma}_f(\widehat{X}).$$
(29)

Clearly, for a fixed $\gamma' \in \ddot{\Gamma}_f(\widehat{X})$, the restriction of $d_f^{(N)}(\cdot, \gamma')$ to $\Gamma_{pf}(\widehat{X})$ belongs to $\mathscr{FC}(\Gamma_{pf}(\widehat{X}))$. Hence, $d_f^{(N)}(\cdot, \gamma') \in D(\mathscr{E}^{\Gamma})$.

As easily seen, for each $\gamma \in \ddot{\Gamma}_f(\widehat{X})$, we have $d_f^{(N)}(\gamma, \gamma') \to d_f(\gamma, \gamma')$ as $N \to \infty$. Hence,

$$d_f^{(N)}(\cdot,\gamma') \to d_f(\cdot,\gamma') \quad \text{in } L^2(\ddot{\Gamma}_f(\widehat{X}),\rho) \text{ as } N \to \infty.$$
(30)

Note that, for $t \ge 0$, $\left(\frac{t}{1+t}\right)' = \frac{1}{(1+t)^2} \le 1$. Hence, by (20)–(22), for each $\gamma \in \Gamma_{pf}(\widehat{X})$ and each $(s, x) \in \gamma$,

$$\begin{aligned} \|\nabla_x d_f^{(N)}(\gamma, \gamma')\|_X &\leq \sum_{k=1}^N c_k \|\nabla_x d_k^{(N)}(\gamma, \gamma')\|_X \\ &\leq 2 \sum_{k=1}^N c_k \sum_{n \in \mathbb{Z} \cap [-N,N]} \|\nabla_x \varkappa_{kn}(x,s)\|_X \\ &= 2 \sum_{k=1}^N c_k \|\nabla \phi_k(x)\|_X \sum_{n \in \mathbb{Z} \cap [-N,N]} \psi_n(s)s \\ &\leq 4\sqrt{d} \sum_{k=1}^\infty c_k \chi_{B(k+1)}(x) \sum_{n \in \mathbb{Z} \cap [-N,N]} \psi_n(s)s \\ &\leq 16\sqrt{d} \sum_{k=1}^\infty c_k \chi_{B(k+1)}(x)s. \end{aligned}$$

Hence, using the Cauchy inequality, we conclude that there exists a constant $C_1 > 0$ such that

$$\|\nabla_x d_f^{(N)}(\gamma, \gamma')\|_X^2 \le C_1 s^2 \sum_{k=1}^\infty c_k \chi_{B(k+1)}(x).$$
(31)

Analogously, using (20)–(22), we get

$$\begin{aligned} \nabla_{s}d_{f}^{(N)}(\gamma,\gamma') &| \leq \sum_{k=1}^{N} c_{k} \left| \nabla_{s}d_{k}^{(N)}(\gamma,\gamma') \right| \\ &\leq 2\sum_{k=1}^{N} c_{k} \sum_{n\in\mathbb{Z}\cap[-N,N]} \left| \frac{\partial}{\partial s} \varkappa_{kn}(x,s) \right| \\ &= 2\sum_{k=1}^{N} c_{k}\phi_{k}(x) \sum_{n\in\mathbb{Z}\cap[-N,N]} \left| \psi_{n}'(s)s + \psi_{n}(s) \right| \\ &\leq 2\sum_{k=1}^{\infty} c_{k}\chi_{B(k+1)}(x) \sum_{n\in\mathbb{Z}} \left(\frac{2}{q^{n}(1-q)}\chi_{[q^{n+1},q^{n}]\cup[q^{n-1},q^{n-2}]}(s)s + \chi_{[q^{n+1},q^{n-2}]}(s) \right) \\ &\leq 2\sum_{k=1}^{\infty} c_{k}\chi_{B(k+1)}(x) \sum_{n\in\mathbb{Z}} \left(\frac{2}{q^{n}(1-q)}\chi_{[q^{n+1},q^{n}]\cup[q^{n-1},q^{n-2}]}(s)q^{n-2} + \chi_{[q^{n+1},q^{n-2}]}(s) \right) \end{aligned}$$

$$\leq 2\sum_{k=1}^{\infty} c_k \chi_{B(k+1)}(x) \left(\frac{8}{q^2(1-q)} + 4\right).$$

Hence, there exists a constant $C_2 > 0$ such that

$$\left|\nabla_s F(\gamma)\right|^2 \le C_2 \sum_{k=1}^{\infty} c_k \chi_{B(k+1)}(x).$$
(32)

We define, for $\gamma \in \Gamma_{pf}(\widehat{X})$,

$$G_2(\gamma) := (C_1 + C_2) \sum_{(s,x)\in\gamma} s \sum_{k=1}^{\infty} c_k \chi_{B(k+1)}(x).$$
(33)

By the monotone convergence theorem,

$$\int_{\tilde{\Gamma}_{f}(\widehat{X})} G_{2} d\rho = (C_{1} + C_{2}) \sum_{k=1}^{\infty} c_{k} \int_{\Gamma_{pf}(\widehat{X})} \sum_{(s,x)\in\gamma} s\chi_{B(k+1)}(x) d\rho(\gamma)$$
$$= (C_{1} + C_{2}) \sum_{k=1}^{\infty} c_{k} \int_{\mathbb{K}(X)} \eta(B(k+1)) d\mu(\eta).$$
(34)

By (13), we have, for each $k \in \mathbb{N}$,

$$\int_{\mathbb{K}(X)} \eta(B(k+1)) \, d\mu(\eta) < \infty$$

So we may set

$$c_k := 2^{-k} \left(1 + \int_{\mathbb{K}(X)} \eta(B(k+1)) \, d\mu(\eta) \right)^{-1}, \quad k \in \mathbb{N}.$$
(35)

Then, by (34), we get $G_2 \in L^1(\ddot{\Gamma}_f(\widehat{X}, \rho))$. Furthermore, by (28), (31)–(33), we get

$$S^{\Gamma}(d_f^{(N)}(\cdot,\gamma')) \le G_2 \quad \text{point-wise on } \Gamma_{pf}(\widehat{X}).$$
 (36)

Using (36) and the dominated convergence theorem, it is not hard to prove that

$$\mathscr{E}^{\Gamma}\left(d_{f}^{(N)}(\cdot,\gamma') - d_{f}^{(M)}(\cdot,\gamma')\right) \to 0 \quad \text{as } N, M \to \infty.$$
(37)

Hence, $(d_f^{(N)}(\cdot,\gamma'))_{N=1}^{\infty}$ is a Cauchy sequence in $(D(\mathscr{E}^{\Gamma}), \|\cdot\|_{D(\mathscr{E}^{\Gamma})})$. Hence, by (30) and (37), $d_f(\cdot,\gamma') \in D(\mathscr{E}^{\Gamma})$. Furthermore, since $d_f^{(N)}(\cdot,\gamma') \to d_f(\cdot,\gamma')$ in the $\|\cdot\|_{D(\mathscr{E}^{\Gamma})}$ norm,

$$S^{\Gamma}(d_f^{(N)}(\cdot,\gamma')) \to S^{\Gamma}(d_f(\cdot,\gamma')) \text{ in } L^1(\ddot{\Gamma}_f(\widehat{X}),\rho) \text{ as } N \to \infty.$$

Hence, by (36), $S^{\Gamma}(d_f(\cdot, \gamma)) \leq G_2 \rho$ -a.e.

By [14, Proposition 4.1] (see also [17, Theorem 3.4]), Proposition 15 and Lemma 17 imply the following proposition.

Proposition 18. The Dirichlet form $(\mathscr{E}^{\Gamma}, D(\mathscr{E}^{\Gamma}))$ on $L^2(\ddot{\Gamma}_f(\widehat{X}), \rho)$ is quasi-regular.

Step 4. We will now construct a corresponding diffusion process on $\ddot{\Gamma}_f(\hat{X})$.

Lemma 19. The Dirichlet form $(\mathscr{E}^{\Gamma}, D(\mathscr{E}^{\Gamma}))$ has local property, i.e., $\mathscr{E}^{\Gamma}(F, G) = 0$ provided $F, G \in D(\mathscr{E}^{\Gamma})$ with $\operatorname{supp}(|F|\rho) \cap \operatorname{supp}(|G|\rho) = \emptyset$.

Proof. Identical to the proof of [14, Proposition 4.12].

As a consequence of Proposition 18, Lemma 19, and [13, Chap. IV, Theorem 3.5, and Chap. V, Theorem 1.11], we obtain

Proposition 20. There exists a conservative diffusion process on the metric space $(\ddot{\Gamma}_f(\hat{X}), d(\cdot, \cdot)),$

$$M^{\Gamma} = (\Omega^{\Gamma}, \mathscr{F}^{\Gamma}, (\mathscr{F}^{\Gamma}_{t})_{t \geq 0}, (\Theta^{\Gamma}_{t})_{t \geq 0}, (\mathfrak{X}^{\Gamma}(t))_{t \geq 0}, (\mathbb{P}^{\Gamma}_{\gamma})_{\gamma \in \ddot{\Gamma}_{f}(\widehat{X})}),$$

which is properly associated with the Dirichlet form $(\mathscr{E}^{\Gamma}, D(\mathscr{E}^{\Gamma}))$. Here $\Omega^{\Gamma} = C([0,\infty) \to \ddot{\Gamma}_{f}(\widehat{X})), \ \mathfrak{X}^{\Gamma}(t)(\omega) = \omega(t), \ t \geq 0, \ \omega \in \Omega^{\Gamma}, \ (\mathscr{F}_{t}^{\Gamma})_{t \geq 0}$ together with \mathscr{F}^{Γ} is the corresponding minimum completed admissible family, and $\Theta_{t}^{\Gamma}, \ t \geq 0$, are the corresponding natural time shifts. This process is up to ρ -equivalence unique.

Step 5. We will now show that the diffusion process from Proposition 20 lives, in fact, on the smaller space $\Gamma_{pf}(\widehat{X})$. This is where we use that the dimension d of the underlying space X is ≥ 2 .

Proposition 21. The set $\ddot{\Gamma}_f(\widehat{X}) \setminus \Gamma_{pf}(\widehat{X})$ is \mathscr{E}^{Γ} -exceptional. Thus, the statement of Proposition 20 remains true if we replace in it $\ddot{\Gamma}_f(\widehat{X})$ with $\Gamma_{pf}(\widehat{X})$.

Proof. The proof of this statement is similar to the proof of [18, Proposition 1 and Corollary 1], see also the proof of [11, Theorem 6.3]. \Box

Step 6. We will now prove that the mapping \mathscr{R} is continuous with respect to the $d(\cdot, \cdot)$ metric.

Proposition 22. The mapping \mathscr{R} acts continuously from the metric space $(\Gamma_{pf}(\widehat{X}), d(\cdot, \cdot))$ into the space $\mathbb{K}(X)$ endowed with the vague topology.

Proof. Let $\{\gamma_i\}_{i=1}^{\infty} \subset \Gamma_{pf}(\widehat{X})$ and $\gamma \in \Gamma_{pf}(\widehat{X})$. Let $d(\gamma_i, \gamma) \to 0$ as $i \to \infty$. We have to prove that $\Re \gamma_i \to \Re \gamma$ vaguely as $i \to \infty$.

So fix any $f \in C_0(X)$ and $\varepsilon > 0$. Choose $k \in \mathbb{N}$ such that $\operatorname{supp}(f) \subset B(k)$. Choose $N \in \mathbb{N}$ such that

$$\sum_{n\in\mathbb{Z},\,|n|\ge N} \langle \varkappa_{kn},\gamma\rangle \le \varepsilon.$$
(38)

Since $d(\gamma_i, \gamma) \to 0$, we have $d_k(\gamma_i, \gamma) \to 0$. Hence, there exists $I \in \mathbb{N}$ such that

$$\sum_{n \in \mathbb{Z}, |n| \ge N} \langle \gamma_i, \varkappa_{kn} \rangle \le 2\varepsilon, \quad i \ge I.$$
(39)

By (20)–(22), (38), and (39),

$$\int_{B(k)\times((0,q^N)\cup(q^{-N},\infty))} s\,d\gamma(x,s) \leq \varepsilon,$$
$$\int_{B(k)\times((0,q^N)\cup(q^{-N},\infty))} s\,d\gamma_i(x,s) \leq 2\varepsilon, \quad i \geq I.$$

Therefore,

$$\int_{B(k)\times((0,q^{N})\cup(q^{-N},\infty))} |f(x)|s \, d\gamma(x,s) \leq \varepsilon ||f||_{\infty},$$

$$\int_{B(k)\times((0,q^{N})\cup(q^{-N},\infty))} |f(x)|s \, d\gamma_{i}(x,s) \leq 2\varepsilon ||f||_{\infty}, \quad i \geq I,$$
(40)

where $||f||_{\infty}$ is the supremum norm of the function f. Fix any $\xi \in C_0(\mathbb{R}_+)$ such that

$$\chi_{[q^N, q^{-N}]} \le \xi \le 1. \tag{41}$$

Since the function $f(x)\xi(s)s$ is from $C_0(\widehat{X})$, by the vague convergence

$$\int_{\widehat{X}} f(x)\xi(s)s\,d\gamma_i(x,s) \to \int_{\widehat{X}} f(x)\xi(s)s\,d\gamma(x,s) \quad \text{as } i \to \infty.$$

Hence, there exists $I_1 \ge I$ such that

$$\left| \int_{\widehat{X}} f(x)\xi(s)s\,d(\gamma_i - \gamma)(x,s) \right| \le \varepsilon, \quad i \ge I_1.$$
(42)

By (40)–(42), for all $i \ge I_1$,

$$\begin{split} \int_{B(k)\times[q^N,q^{-N}]} f(x)s\,d(\gamma_i-\gamma)(x,s) \bigg| &= \bigg| \int_{B(k)\times[q^N,q^{-N}]} f(x)\xi(s)s\,d(\gamma_i-\gamma)(x,s) \bigg| \\ &\leq \bigg| \int_{\widehat{X}} f(x)\xi(s)s\,d(\gamma_i-\gamma)(x,s) \bigg| \\ &+ \bigg| \int_{B(k)\times((0,q^N)\cup(q^{-N},\infty))} f(x)\xi(s)s\,d\gamma_i(x,s) \bigg| \\ &+ \bigg| \int_{B(k)\times((0,q^N)\cup(q^{-N},\infty))} f(x)\xi(s)s\,d\gamma(x,s) \bigg| \end{split}$$

$$\leq \varepsilon (1+3\|f\|_{\infty}). \tag{43}$$

By (40) and (43), for all $i \ge I_1$,

$$\int_X f(x) d(\mathscr{R}\gamma_i - \mathscr{R}\gamma)(x) \bigg| = \bigg| \int_{\widehat{X}} f(x) s d(\gamma_i - \gamma)(x, s) \bigg| \le \varepsilon (1 + 6 \|f\|_{\infty}).$$

Thus, the proposition is proven.

Step 7. Finally, to construct the process $M^{\mathbb{K}}$ on $\mathbb{K}(X)$, we just map the process M^{Γ} from Proposition 20 onto $\mathbb{K}(X)$ by using the bijective mapping $\mathscr{R} : \Gamma_{pf}(\widehat{X}) \to \mathbb{K}(X)$. Proposition 22 ensures that the sample paths of the obtained Markov process are continuous in the vague topology on $\mathbb{K}(X)$.

Acknowledgements

The authors acknowledge the financial support of the SFB 701 "Spectral structures and topological methods in mathematics" (Bielefeld University).

References

- Alberverio, S., Kondratiev, Yu.G., Röckner, M.: Analysis and geometry on configuration spaces. The Gibbsian case. J. Func. Anal. 157 (1998), 242–291.
- [2] Boothby, W.M.: An Introduction to differentiable manifolds and Riemannian geometry. Academic Press, San Diego, 1975.
- [3] Daley, D. J., Vere-Jones, D.: An introduction to the theory of point processes. Vol. II. General theory and structure. Second edition. Springer, New York, 2008.
- [4] Dynkin, E.B.: Markov Processes. Springer-Verlag, Berlin 1965.
- [5] Fukushima, M.: Dirichlet Forms and Symmetric Markov Processes. North-Holland, Amsterdam 1980.
- [6] Hagedorn, D., Kondratiev, Y., Pasurek, T., Röckner, M.: Gibbs states over the cone of discrete measures. J. Funct. Anal. 264 (2013), 2550–2583.
- [7] Hagedorn, D., Kondratiev, Y., Lytvynov, E., Vershik, A.: Laplace operators in gamma analysis, arXiv:1411.0162, to appear in Trends of Mathematics, Birkhäuser.
- [8] Kallenberg, O.: Random measures. Fourth edition. Akademie-Verlag, Berlin; Academic Press, London, 1986.

- [9] Kingman, J.F.C.: Completely random measures. Pacific J. Math. 21 (1967), 59–78.
- [10] Kondratiev, Y., Lytvynov, E., Vershik, A.: Laplace operators on the cone of Radon measures, arXiv:1503.00750
- [11] Kondratiev, Y., Lytvynov, Röckner, M.: Infinite interacting diffusion particles I: Equilibrium process and its scaling limit. Forum Math. 18 (2006), 9–43.
- [12] Kuratowski, K.: Topology. Vol. I. Academic Press, New York–London, Warsaw 1966.
- [13] Ma, Z.-M., Röckner, M.: An Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer-Verlag, Berlin 1992.
- [14] Ma, Z.-M., Röckner, M.: Construction of diffusions on configuration spaces. Osaka J. Math. 37 (2000), 273–314.
- [15] Nguyen, X.X., Zessin, H.: Integral and differentiable characterizations of the Gibbs process. Math. Nachr. 88 (1979), 105–115,
- [16] Putan, D.: Uniqueness of equilibrium states of some models of interacting particle systems. PhD Thesis, Universität Bielefeld, Bielefeld, 2014; available at http://pub.uni-bielefeld.de/publication/2691509
- [17] Röckner, M., Schmuland, B.: Quasi-regular Dirichlet forms: examples and counterexamples. Canad. J. Math. 47 (1995), 165–200.
- [18] Röckner, M., Schmuland, B.: A support property for infinite-dimensional interacting diffusion processes. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 359–364.
- [19] Tsilevich, N., Vershik, A., Yor, M.: An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process. J. Funct. Anal. 185 (2001), 274–296.