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Abstract. Using elliptic regularity results in weighted spaces, stochastic calculus and the the-
ory of non-symmetric Dirichlet forms, we first show weak existence of non-symmetric distorted
Brownian motion for any starting point in some domain E of Rd, where E is explicitly given
as the points of strict positivity of the unique continuous version of the density to its invariant
measure. Non-symmetric distorted Brownian motion is a singular diffusion, i.e. a diffusion that
typically has an unbounded and discontinuous drift. Once having shown weak existence, we ob-
tain from a result of [12] that the constructed weak solution is indeed strong and weakly as well
as pathwise unique up to its explosion time. As a consequence of our approach, we can use the
theory of Dirichlet forms to prove further properties of the solutions. More precisely, we obtain
new non-explosion criteria for them. We finally present concrete existence and non-explosion
results for non-symmetric distorted Brownian motion related to a class of Muckenhoupt weights
and corresponding divergence free perturbations.
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1 Introduction
In this paper we are concerned with the non-symmetric Dirichlet form given by (the closure of)

E( f , g) :=
1
2

∫
Rd
〈∇ f ,∇g〉 dm −

∫
Rd
〈B,∇ f 〉g dm , f , g ∈ C∞0 (Rd) , (1.1)

on L2(Rd,m), m := ρ dx, and the corresponding stochastic differential equation (SDE)

Xt = x + Wt +

∫ t

0

(
∇ρ

2ρ
+ B

)
(Xs) ds , t < ζ , (1.2)

where x ∈ Rd, ζ is the lifetime (=explosion time). Our conditions on ρ and B are formulated as
Hypotheses (H1)-(H3) in Section 2 below.

It is well-known that starting with (1.1) by Dirichlet form theory one can construct a weak
solution to (1.2) for quasi-every starting point x ∈ Rd, and usually there is no analytic character-
ization (in terms of ρ and B) of the set of “allowed” starting points.
In case B ≡ 0, it was however shown in [1] (see also [3],[8], for extensions of this result to other
situations), that (1.2) has a weak solution for every x ∈ {ρ̃ > 0} in the sense of the martingale

1This research was supported by DFG through Grant Ro 1195/10-1 and by NRF-DFG Collaborative
Research program and Basic Science Research Program through the National Research Foundation of Korea
(NRF-2012K2A5A6047864 and NRF-2012R1A1A2006987).
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problem, where ρ̃ is the continuous version of ρ (which exists as a consequence of (H1)) and that
for such starting points the process Xt stays in {ρ̃ > 0} before its lifetime ζ. The identification of
(1.2) with B ≡ 0 for any x ∈ {ρ̃ > 0} in the sense of a weak solution of an SDE related to the
form in (1.1) has been worked out as a part of a general framework in [16, Section 4].

The first aim of this paper is to generalize these results to B . 0, i.e. to the non-symmetric
case (see Remark 2.2). The proof follows ideas from [1], but requires some modifications. For
example, one observation is that the elliptic regularity results in weighted spaces from [1] extend
to the non-symmetric case. The corresponding result is formulated as Theorem 3.6 in Section 3
below.

It is well-known by [12, Theorem 2.1] (see also [9], [21]) that for every x ∈ {ρ̃ > 0} there
exists a strong solution (i.e. adapted to the filtration generated by (Wt)t≥0)) to (1.2), which is
pathwise and weak unique. Hence this solution coincides with our weak solution (which is hence
a strong solution) from Theorem 3.6. Thus we have identified the Dirichlet form associated to
the Markov processes, given by the laws Px, x ∈ {ρ̃ > 0}, of these strong solutions, to be the
closure of (1.1). As a consequence, we can apply the theory of Dirichlet forms to obtain further
properties of the solutions to (1.2) for every starting point in {ρ̃ > 0}.

In this paper, as our second aim, we concentrate on proving non-explosion results for (1.2)
using Dirichlet form theory, which means (cf. Remark 2.13) that the process started in x ∈ {ρ̃ >
0} will neither go to infinity nor hit any point in {ρ̃ = 0} in finite time. Non-explosion criteria
from Dirichlet form theory are of analytic nature and different from the usual ones known from
the theory of SDE (e.g. the one proved in [12], see Remark 4.2 (ii) below), but very useful in
applications.

Finally, we present a number of concrete applications where the density ρ
(
= dm

dx

)
is in certain

Muckenhoupt classes. Our main result here is Theorem 5.5.
The organization of this paper is as follows. After, this introduction in Section 2 we recall

some important elliptic regularity results for the Kolmogorov operator corresponding to (1.2),
i.e. the generator of the Dirichlet form (1.1), under the assumption (H1) on ρ and (H2) on
B. Subsequently, we present their analytic consequences associated to the closure of (1.1). In
Section 3 we construct the weak solutions of (1.2) for every x ∈ {ρ̃ > 0}. In Section 4 we show
that by [12, Theorem 2.1] these solutions are strong, pathwise and weak unique. Section 5 is
devoted to the mentioned applications.

2 Elliptic regularity and construction of a diffusion pro-
cess

For E ⊂ Rd open with Borel σ-algebra B(E), we denote the set of all B(E)-measurable f : E →
R which are bounded, or nonnegative by Bb(E), B+(E) respectively. Lq(E, µ), q ∈ [1,∞] are the
usual Lq-spaces equipped with Lq-norm ‖·‖q with respect to the measure µ on E,Ab : =A∩Bb(E)
for A ⊂ Lq(E, µ), and Lq

loc(E, µ) := { f | f · 1U ∈ Lq(E, µ), ∀U ⊂ E,U relatively compact open},
where 1A denotes the indicator function of a set A. Let ∇ f := (∂1 f , . . . , ∂d f ) and ∆ f :=

∑d
j=1 ∂ j j f

where ∂ j f is the j-th weak partial derivative of f and ∂ j j f := ∂ j(∂ j f ), j = 1, . . . , d. As
usual dx denotes Lebesgue measure on Rd and the Sobolev space H1,q(E, dx), q ≥ 1 is de-
fined to be the set of all functions f ∈ Lq(E, dx) such that ∂ j f ∈ Lq(E, dx), j = 1, . . . , d, and
H1,q

loc (Rd, dx) := { f | f · ϕ ∈ H1,q(Rd, dx), ∀ϕ ∈ C∞0 (Rd)}. Here C∞0 (E) denotes the set of all in-

2



finitely differentiable functions with compact support in E. We also denote the set of continuous
functions on E, the set of continuous bounded functions on E, the set of compactly supported
continuous functions in E by C(E), Cb(E), C0(E), respectively. C∞(E) denotes the space of con-
tinuous functions on E which vanish at infinity. We equip Rd with the Euclidean norm ‖ · ‖ with
corresponding inner product 〈·, ·〉 and write Br(x) := {y ∈ Rd | ‖x − y‖ < r}, x ∈ Rd.

We shall assume (H1)-(H3) below throughout up to including section 3:

(H1) ρ = ξ2, ξ ∈ H1,2
loc (Rd, dx), ρ > 0 dx-a.e. and

‖∇ρ‖

ρ
∈ Lp

loc(R
d,m), m := ρdx,

p := (d + ε) ∨ 2 for some ε > 0.

By (H1) the symmetric positive definite bilinear form

E0( f , g) :=
1
2

∫
Rd
〈∇ f ,∇g〉 dm, f , g ∈ C∞0 (Rd)

is closable in L2(Rd,m) and its closure (E0,D(E0)) is a symmetric, strongly local, regular Dirich-
let form. We further assume

(H2) B : Rd → Rd, ‖B‖ ∈ Lp
loc(R

d,m) where p is the same as in (H1) and∫
Rd
〈B,∇ f 〉 dm = 0, ∀ f ∈ C∞0 (Rd), (2.1)

and

(H3) ∣∣∣∣∣∫
Rd
〈B,∇ f 〉 g ρ dx

∣∣∣∣∣ ≤ c0 E
0
1( f , f )1/2 E0

1(g, g)1/2, ∀ f , g ∈ C∞0 (Rd),

where c0 is some constant (independent of f and g) and E0
α(·, ·) := E0(·, ·) + α(·, ·)L2(Rd ,m),

α > 0.

Next, we consider the non-symmetric bilinear form

E( f , g) :=
1
2

∫
Rd
〈∇ f ,∇g〉 dm −

∫
Rd
〈B,∇ f 〉 g dm, f , g ∈ C∞0 (Rd) (2.2)

in L2(Rd,m). Then by (H1)-(H3) (E,C∞0 (Rd)) is closable in L2(Rd,m) and the closure (E,D(E)) is
a non-symmetric Dirichlet form (cf. [13, II. 2. d)]). Let (Tt)t>0 (resp. (T̂t)t>0) and (Gα)α>0 (resp.
(Ĝα)α>0 ) be the L2(Rd,m)-semigroup (resp. cosemigroup) and resolvent (resp. coresolvent)
associated to (E,D(E)) and (L,D(L)) (resp. (L̂,D(L̂))) be the corresponding generator (resp.
cogenerator) (see [13, Diagram 3, p. 39]). Using properties (H2) and [13, I 4.7] (cf. also [13,
II 2. d)]), it is straightforward to see that (Tt)t>0 as well as (T̂t)t>0 are submarkovian. Here
an operator S is called submarkovian if 0 ≤ f ≤ 1 implies 0 ≤ S f ≤ 1. It is then further
easy to see that (Tt)t>0 (resp. (Gλ)λ>0) restricted to Lr(Rd,m) ∩ L∞(Rd,m) can be extended to
strongly continuous contraction semigroups (resp. strongly continuous contraction resolvents)
on all Lr(Rd,m), r ∈ [1,∞) (see [13, I. 1] for the definition of a strongly continuous contraction
semigroup (resp. resolvent)). We denote the corresponding operator families again by (Tt)t>0 and
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(Gλ)λ>0 and let (Lr,D(Lr)) be the corresponding generator on Lr(Rd,m). Since by (H1), (H2),∥∥∥∥ ∇ρ2ρ

∥∥∥∥, ‖B‖ ∈ Lp
loc(R

d,m), we get C∞0 (Rd) ⊂ D(Lr) for any r ∈ [1, p] and

Lru =
1
2

∆u + 〈
∇ρ

2ρ
+ B,∇u〉, u ∈ C∞0 (Rd), r ∈ [1, p]. (2.3)

Let us first state an elliptic regularity result (cf. [4, Theorem 1 (iii)(b)], [5, Remark 2.15]).
Its consequences in the symmetric case were discussed in [1]. Likewise the Corollaries 2.3, 2.4,
2.6, and Remark 2.7 below can be obtained.

Proposition 2.1. Let E be an open set inRd and A : E → Rd, c : E → R Borel measurable maps.
Suppose µ is a (signed) Radon measure on E and f ∈ L1

loc(E, dx) such that ‖A‖, c ∈ L1
loc(E, µ)

and ∫
Nu(x) µ(dx) =

∫
u(x) f (x) dx, ∀u ∈ C∞0 (E),

where
Nu(x) := ∆u(x) + 〈A(x),∇u(x)〉 + c(x) u(x).

If for some p̃ > d, ‖A‖ ∈ L p̃
loc(E, µ), c ∈ L p̃d/( p̃+d)

loc (E, µ), and f ∈ L p̃d/( p̃+d)
loc (E, dx), then µ = ρdx

with ρ continuous and
ρ ∈ H1,p̃

loc (E, dx)
(
⊂ C1−d/ p̃

loc (E)
)
,

where C1−d/ p̃
loc (E) denotes the set of all locally Hölder continuous functions of order 1 − d/ p̃ on

E. If E0 := E ∩ {ρ > 0} and moreover f , c ∈ L p̃
loc(E0), then for any open ball B ⊂ B ⊂ E0 there

exists cB ∈ (0,∞) (independent of ρ and f ) such that

‖ρ‖H1, p̃(B,dx) ≤ cB

(
‖ρ‖L1(B,dx) + ‖ f ‖L p̃(B,dx)

)
.

Remark 2.2. At first side the assumption that the drift in (1.2) or the first order coefficient in
(2.2) is of type b := ∇ρ

2ρ + B looks rather special. But the Lp
loc(R

d,m) condition makes it very
natural, because the special form of b follows, if one considers the operator

Lu := ∆u + 〈b,∇u〉 , u ∈ C∞0 (Rd) ,

and assumes that if has an infinitesimally (not necessarily probability) invariant measure m, i.e.
m is a nonnegative Radon measure m on Rd, such that b ∈ Lp

loc(R
d,m) and∫

Lu dm = 0 ∀u ∈ C∞0 (Rd) .

Because then it follows by Proposition 2.1 that m = ρdx and that ρ satisfies (H1).
Defining

B := b −
∇ρ

2ρ
,

it satisfies (H2). So, we have the above decomposition in a natural way.

Corollary 2.3. ρ is in H1,p
loc (Rd, dx) and ρ has a continuous dx-version in C1−d/p

loc (Rd).

Proof. By (2.1), (2.3) and integration by parts, we obtain∫
Lu dm = 0, ∀u ∈ C∞0 (Rd).
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Since ‖∇ρ‖
ρ
, ‖B‖ ∈ Lp

loc(R
d,m), the assertion follows by Proposition 2.1 applied with p̃ = p. �

From now on, we shall always consider the continuous dx-version of ρ and denote it also by
ρ.

Corollary 2.4. Let λ > 0. Suppose g ∈ Lr(Rd,m), r ∈ [p,∞). Then

ρ Gλg ∈ H1,p
loc (Rd, dx)

and for any open ball B ⊂ B ⊂ {ρ > 0} there exists cB,λ ∈ (0,∞), independent of g, such that

‖ ρ Gλg ‖H1,p(B,dx) ≤ cB,λ

(
‖Gλg‖L1(B,dm) + ‖g‖Lp(B,dm)

)
. (2.4)

Proof. Let g ∈ C∞0 (Rd). Then we have∫
(λ − L̂)u Gλg ρ dx =

∫
u g ρ dx, ∀u ∈ C∞0 (Rd),

where
L̂u =

1
2

∆u + 〈
∇ρ

2ρ
− B,∇u〉.

Now we apply Proposition 2.1 with µ = − 1
2ρGλgdx and N = −2(λ − L̂) and f = gρ to prove

the assertion for g ∈ C∞0 (Rd). Since C∞0 (Rd) is dense in (Lr(Rd,m), ‖ · ‖Lr (Rd ,m)), r ∈ [1,∞), the
assertion for general g ∈ Lr(Rd,m) follows by continuity and (2.4). �

Remark 2.5. By [13, I. Corollary 2.21], it holds that (Tt)t>0 is analytic on L2(Rd,m). By Stein
interpolation (cf. e.g. [2, Lecture 10, Theorem 10.8]) (Tt)t>0 is also analytic on Lr(Rd,m) for all
r ∈ (2,∞). We would like to thank Hendrik Vogt for pointing this out to us as well as a misprint
in the mentioned Theorem 10.8. There θτ should be defined as τ · θ and not as (1 − τ) · θ.

Corollary 2.6. Let t > 0, r ∈ [p,∞).

(i) Let u ∈ D(Lr). Then
ρ Ttu ∈ H1,p

loc (Rd, dx)

and for any open ball B ⊂ B ⊂ {ρ > 0} there exists cB ∈ (0,∞) (independent of u and t)
such that

‖ρ Ttu‖H1,p(B,dx)

≤ cB

(
‖Ttu‖L1(B,m) + ‖Tt(1 − Lr)u‖Lp(Rd ,m)

)
≤ cB

(
m(B)

r−1
r ‖u‖Lr (Rd ,m) + m(B)

r−p
rp ‖(1 − Lr)u‖Lr (Rd ,m)

)
. (2.5)

(ii) Let f ∈ Lr(Rd,m). Then the above statements still hold with (2.5) replaced by

‖ρ Tt f ‖H1,p(B,dx) ≤ c̃B t−1‖ f ‖Lr (Rd ,m),

where c̃B ∈ (0,∞) (independent of f , t).

Remark 2.7. By (2.5) and Sobolev imbedding, for r ∈ [p,∞), R > 0 the set

{Ttu | t > 0, u ∈ D(Lr), ‖u‖Lr (Rd ,m) + ‖Lru‖Lr (Rd ,m) ≤ R}

is equicontinuous on {ρ > 0}.
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From now on, we shall keep the notation

E := {ρ > 0}.

By Corollaries 2.3, 2.4, 2.6 and Remark 2.7, exactly as in [1, section 3], we obtain the existence
of a transition kernel density pt(·, ·) on the open set E such that

Pt f (x) :=
∫

E
f (y)pt(x, y) m(dy), x ∈ E, t > 0

is a (temporally homogeneous) submarkovian transition function (cf. [6, 1.2]) and an m-version
of Tt f for any f ∈ ∪r≥pLr(E,m). Moreover, letting P0 := id, it holds

Pt f ∈ C(E) ∀ f ∈ ∪r≥pLr(E,m) (2.6)

and
lim
t→0

Pt+s f (x) = Ps f (x) ∀s ≥ 0, x ∈ E, f ∈ C∞0 (Rd). (2.7)

By a 3ε-argument (2.7) extends to C0(Rd). Similarly, since for λ > 0, f ∈ Lp(E,m), Gλ f has a
unique continuous m-version on E by Corollary 2.4 as in [1, Lemma 3.4, Proposition 3.5], we
can find (Rλ)λ>0 with resolvent kernel density rλ(·, ·) defined on E × E such that

Rλ f (x) :=
∫

f (y) rλ(x, y) m(dy), x ∈ E, λ > 0,

satisfies
Rλ f ∈ C(E) and Rλ f = Gλ f m-a.e for any f ∈ Lp(E,m). (2.8)

We further consider

(H4) (E,D(E)) is conservative.

Remark 2.8. Consider the C0-semigroups (Tt)t>0, (T̂t)t>0 of submarkovian contractions on L1(Rd,m).
In particular (Tt)t>0 (and also (T̂t)t>0) can be defined as semigroups on L∞(Rd,m). Then (E,D(E))
is called conservative, if

Tt1 = 1 m-a.e. for some (and hence all) t > 0 (2.9)

Obviously, (2.9) holds e.g. if m(Rd) < ∞ and ‖B‖ ∈ L1(Rd,m). In Section 5 below we shall
present a whole class of examples which do not satisfy these two assumptions, but for which
(2.9), i.e. (H4) holds. Clearly (2.9) holds, if and only if m is (T̂t)-invariant, that is∫

T̂t f dm =

∫
f dm ∀ f ∈ L1(Rd,m) (2.10)

and by [17, Corollary 2.2] (2.10) is equivalent to

(1 − L̂)
(
C∞0 (Rd)

)
⊂ L1(Rd,m) densely. (2.11)

Thus (2.11) is equivalent to (H4).

Following [1, Proposition 3.8], we obtain:

Proposition 2.9. If (H4) holds (additionally to (H1)-(H3)), then:

(i) λRλ1(x) = 1 for all x ∈ E, λ > 0.
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(ii) (Pt)t>0 is strong Feller on E, i.e. Pt(Bb(Rd)) ⊂ Cb(E) for all t > 0.

(iii) Pt1(x) = 1 for all x ∈ E, t > 0.

By [13, V. 2.12 (ii)] (see also [19, Proposition 1]), it follows that (E,D(E)) is strictly quasi-
regular. Actually, in [19, section 4.1], it is shown that this is even true for non-sectorial B,
i.e. when ‖B‖ is merely in L2

loc(R
d,m). In particular, by [13, V.2.13] (see also [19, Theorem 3]

for the non-sectorial case) there exists a Hunt process M̃ = (Ω̃, F̃ , (F̃ )t≥0, (X̃t)t≥0, (P̃x)x∈Rd∪{∆})
with lifetime ζ := inf{t ≥ 0 | X̃t = ∆} and cemetery ∆ such that (E,D(E)) is (strictly properly)
associated with M̃.
Consider the strict capacity CapE of the non-symmetric Dirichlet form (E,D(E)) as defined in
[13, V.2.1] and [19, Definition 1], i.e.

CapE = cap1,Ĝ1ϕ

for some fixed ϕ ∈ L1(Rd,m) ∩ Bb(Rd), 0 < ϕ ≤ 1. Due to the properties of smooth measures
w.r.t. CapE in [19, Section 3] it is possible to consider the work [18] with capϕ (as defined in
[18]) replaced by CapE. In particular [18, Theorem 3.10 and Proposition 4.2] apply w.r.t. the
strict capacity CapE and therefore the paths of M̃ are continuous P̃x-a.s. for strictly E-q.e. x ∈ Rd

on the one-point-compactification Rd
∆

of Rd with ∆ as point at infinity. We may hence assume
that

Ω̃ = {ω = (ω(t))t≥0 ∈ C([0,∞),Rd
∆) | ω(t) = ∆ ∀t ≥ ζ(ω)} (2.12)

and
X̃t(ω) = ω(t), t ≥ 0.

Let Cap be the capacity related to the symmetric Dirichlet form (E0,D(E0)) as defined in [11,
Section 2.1]. Then, it holds Cap({ρ = 0}) = 0 by [10, Theorem 2].

Lemma 2.10. Let N ⊂ Rd. Then

Cap(N) = 0⇒ CapE(N) = 0.

In particular CapE({ρ = 0}) = 0.

Proof. Let N ⊂ Rd be such that Cap(N) = 0. Then by the definition of Cap there exist closed
sets Fk ⊂ R

d \ N, k ≥ 1 such that

lim
k→∞

Cap(Rd \ Fk) = 0.

Therefore, we may assume that Cap(Rd \ Fk) < ∞ for any k ≥ 1. Hence

LRd\Fk
:= {u ∈ D(E0) | u ≥ 1 m-a.e. on Rd \ Fk} , ∅, ∀k ≥ 1.

Then by [11, Lemma 2.1.1.] there exists a unique element eRd\Fk
∈ LRd\Fk

such that

Cap(Rd \ Fk) = E0(eRd\Fk
, eRd\Fk

) and eRd\Fk
= 1 m-a.e on Rd \ Fk.

We denote by P the family of 1-excessive functions w.r.t. E in D(E) and denote by hU the (1-)
reduced function on an open set U ⊂ Rd of a function h in D(E). Then by (H3) and [13, III.
Proposition 1.5] for u ≤ 1, u ∈ P

E1(uRd\Fk
, uRd\Fk

) ≤ E1(uRd\Fk
, eRd\Fk

) ≤ K E1(uRd\Fk
, uRd\Fk

)1/2E1(eRd\Fk
, eRd\Fk

)1/2,
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where K is the sector constant. Therefore,

lim
k→∞

sup
u≤1,
u∈P

E1(uRd\Fk
, uRd\Fk

) = 0.

Since for any fixed ϕ ∈ L1(Rd,m) ∩ Bb(Rd), 0 < ϕ ≤ 1

E1(uRd\Fk
, Ĝ1ϕ) ≤ K E1(uRd\Fk

, uRd\Fk
)1/2E1(Ĝ1ϕ, Ĝ1ϕ)1/2,

we have
CapE(N) ≤ lim

k→∞
sup
u≤1,
u∈P

E1(uRd\Fk
, Ĝ1ϕ) = 0.

�

For a Borel set B ⊂ Rd, we define

σB := inf{t > 0 | Xt ∈ B}, DB := inf{t ≥ 0 | Xt ∈ B}.

Let

X̃E
t (ω) :=

X̃t(ω) 0 ≤ t < DRd\E(ω)

∆ t ∈ [DRd\E(ω),∞], ω ∈ Ω̃.

Then M̃E := (Ω̃, F̃ , (F̃t)t≥0, (X̃E
t )t≥0, (P̃x)x∈E∪{∆}) is again a Hunt Process by [11, Theorem A.2.10]

and its lifetime is ζE := ζ ∧ DRd\E . M̃E is called the part process of M̃ on E and it is associated
with the part (EE ,D(EE)) of (E,D(E)) on E (cf. [14, Theorem 3.5.7]). We denote the L2(E,m)-
semigroup of (EE ,D(EE)) by (T E

t )t>0.

Lemma 2.11. Let (Fk)k≥1 be an increasing sequence of compact subsets of E with ∪k≥1Fk = E
and such that Fk ⊂ F̊k+1, k ≥ 1(here F̊ denotes the interior of F). Then

P̃x(Ω̃0) = 1 for strictly E-q.e. x ∈ E,

where
Ω̃0 := Ω̃ ∩ {ω | ω(0) ∈ E ∪ {∆} and lim

k→∞
σE\Fk (ω) ≥ ζ(ω)}.

Proof. First note that P̃x(ζ = ζE) = 1 for m-a.e. x ∈ E since Cap(Rd \ E) = 0. By [13,
IV. Theorem 5.1 and Proposition 5.30] there exists an increasing sequence of compact subsets
(K)n≥1 of E such that

P̃x( lim
n→∞

σE\Kn ≥ ζ
E) = 1 for m-a.e. x ∈ E.

The last and previous imply that

P̃x( lim
k→∞

σE\Fk ≥ ζ) = 1 for m-a.e. x ∈ E (2.13)

since (F̊k)k≥1 is an open cover of Kn for every n ≥ 1. (2.12) and (2.13) now easily imply the
assertion.

�
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Theorem 2.12. There exists a Hunt process

M = (Ω,F , (Ft)t≥0, (Xt)t≥0, (Px)x∈E∆
)

with state space E, having the transition function (Pt)t≥0 as transition semigroup. In particular
M satisfies the absolute continuity condition, because

T E
t f = Pt f m-a.e. ∀t > 0, f ∈ L2(E,m) ∩ Bb(E).

Moreover M has continuous sample paths in the one point compactification E∆ of E with the
cemetery ∆ as point at infinity.

Proof. Given the transition function (Pt)t≥0 we can construct M with continuous sample paths
in E∆ following the line of arguments in [1] (see also [16, Section 2.1.2]) using in particular
Lemma 2.11 and our further previous preparations. As in [16, Lemma 4.2], we then show that
the (temporally homogeneous) sub-Markovian transition function (Pt)t≥0 on

(
E,B(E)

)
with tran-

sition kernel density pt(·, ·) on E × E satisfies

T E
t f = Tt f = Pt f m-a.e.

for any t > 0 and f ∈ Bb(E) with compact support (i.e. | f |dm has compact support). Thus the
absolute continuity condition is satisfied. �

Remark 2.13. If in addition (H4) holds, one can drop ∆ in Theorem 2.12 and M becomes a
classical (conservative) diffusion with state space E. Indeed, it then holds

Px(ζ = ∞) = 1, ∀x ∈ E.

3 Existence of weak solutions
Lemma 3.1. Assume (H1)-(H3).

(i) Let f ∈
⋃

s∈[p,∞) Ls(m), f ≥ 0, then for all t > 0, x ∈ E,∫ t

0
Ps f (x) ds < ∞,

hence ∫ ∫ t

0
f (Xs) ds dPx < ∞.

(ii) Let u ∈ C∞0 (Rd), λ > 0. Then

Rλ

(
(λ − L)u

)
(x) = u(x) ∀x ∈ E.

(iii) Let u ∈ C∞0 (Rd), t > 0. Then

Ptu(x) − u(x) =

∫ t

0
Ps(Lu)(x) ds ∀x ∈ E.

9



Proof. The proof is the same as the one for [1, Lemma 5.1]. �

Lemma 3.2. For u ∈ C∞0 (Rd)
Lu2 − 2u Lu = ‖∇u‖2.

Proof. This follows immediately from (2.3). �

Theorem 3.3. Let u ∈ C∞0 (Rd) and

Mt :=
(
u(Xt) − u(X0) −

∫ t

0
Lu(Xr) dr

)2

−

∫ t

0
‖∇u‖2(Xr) dr, t ≥ 0.

Then (Mt)t≥0 is an (Ft)t≥0-martingale under Px, ∀x ∈ E.

Proof. By Lemma 3.1 and the Markov property

u(Xt) − u(X0) −
∫ t

0
Lu(Xr) dr, u ∈ C∞0 (Rd), t ≥ 0

is a square integrable (Ft)t≥0-martingale under Px for all x ∈ E. Fix x ∈ E, u ∈ C∞0 (Rd), and set

Mt :=
(
u(Xt) − u(X0) −

∫ t

0
Lu(Xr) dr

)2

−

∫ t

0
‖∇u‖2(Xr) dr, t ≥ 0.

Then since u ∈ D(Lp) (cf. (2.3)), it follows by Lemma 3.1 that (Mt)t≥0 and all integrands below
are integrable w.r.t. Px. Using Lemma 3.2 we get for s ∈ [0, t)

Mt − Ms

=

(
u(Xt) − u(X0) −

∫ t

0
Lu(Xr) dr + u(Xs) − u(X0) −

∫ s

0
Lu(Xr) dr

)
×

(
u(Xt) − u(Xs) −

∫ t

s
Lu(Xr) dr

)
−

∫ t

s
(Lu2 − 2u Lu)(Xr) dr

=

(
u(Xt) + u(Xs) − 2u(X0) − 2

∫ s

0
Lu(Xr) dr −

∫ t

s
Lu(Xr) dr

)
×

(
u(Xt) − u(Xs) −

∫ t

s
Lu(Xr) dr

)
−

∫ t

s
(Lu2 − 2u Lu)(Xr) dr

= u2(Xt) − u2(Xs) − 2u(X0)
(
u(Xt) − u(Xs)

)
−2

(
u(Xt) − u(Xs)

) ∫ s

0
Lu(Xr) dr −

(
u(Xt) − u(Xs)

) ∫ t−s

0
Lu(Xr+s) dr

−
(
u(Xt) + u(Xs)

) ∫ t−s

0
Lu(Xr+s) dr + 2u(X0)

∫ t−s

0
Lu(Xr+s) dr

+2
∫ s

0
Lu(Xr) dr

∫ t−s

0
Lu(Xr+s) dr +

(∫ t−s

0
Lu(Xr+s) dr

)2

−

∫ t

s

(
Lu2 − 2u Lu

)
(Xr) dr.
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Taking conditional expectation, it follows Px-a.s.

Ex[Mt − Ms | Fs] = Pt−su2(Xs) − u2(Xs)

−2u(x)
(
Pt−su(Xs) − u(Xs)

)
− 2

(
Pt−su(Xs) − u(Xs)

) ∫ s

0
Lu(Xr) dr

−2Ex

[
u(Xt)

∫ t−s

0
Lu(Xr+s) dr | Fs

]
+ 2u(x)

∫ t−s

0
Pr(Lu)(Xs) dr

+2
∫ s

0
Lu(Xr) dr

∫ t−s

0
Pr(Lu)(Xs) dr + Ex

[ (∫ t−s

0
Lu(Xr+s) dr

)2

| Fs

]
−

∫ t−s

0
Pr

(
Lu2 − 2u Lu

)
(Xs) dr.

Using Lemma 3.1(iii) this simplifies to

Ex[Mt − Ms | Fs] = −2Ex

[
u(Xt)

∫ t−s

0
Lu(Xr+s) dr | Fs

]
+Ex

[ (∫ t−s

0
Lu(Xr+s) dr

)2

| Fs

]
+ 2

∫ t−s

0
Pr

(
u Lu

)
(Xs) dr.

Note that the first term of the right hand side satisfies

−2Ex

[
u(Xt)

∫ t−s

0
Lu(Xr+s) dr | Fs

]
= −2

∫ t−s

0
Pr

(
Lu Pt−s−ru

)
(Xr) dr

and the second term satisfies

Ex

[ (∫ t−s

0
Lu(Xr+s) dr

)2

| Fs

]
= 2

∫ t−s

0

∫ r′

0
EXs

[
Lu(Xr)Lu(Xr′ )

]
dr dr′

= 2
∫ t−s

0

∫ r′

0
Pr

(
LuPr′−r(Lu)

)
(Xs) dr dr′

= 2
∫ t−s

0
Pr

(
Lu

(
Pt−s−ru − u

))
(Xs) dr

by Fubini’s theorem. Therefore Ex[Mt − Ms | Fs] = 0 Px-a.s. and the assertion follows. �

Let θs : Ω→ Ω, s > 0, be the canonical shift, i.e. θs(ω) = ω(· + s), ω ∈ Ω.

Lemma 3.4. Let (Bk)k≥1 be an increasing sequence of relatively compact open sets in E with
∪k≥1Bk = E. Then for all x ∈ E

Px

(
lim
k→∞

σE\Bk ≥ ζ
)

= 1.

Proof. Let
Λ :=

{
lim
k→∞

σE\Bk ≥ ζ
}
.

Note that by Lemma 2.11 for m-a.e. x ∈ E

Px

(
Λ) = 1.

Then for x ∈ E and s > 0

Px(θ−1
s (Λ)) = Ex[1Λ ◦ θs] = Ex

[
Ex[1Λ ◦ θs | Fs]

]
= Ex

[
EXs [1Λ]

]
=

∫
E

ps(x, y) Ey[1Λ] m(dy) + (1 − Ps(x, E))P∆(Λ) = 1.
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Let x ∈ E. Define

Ωx := {ω ∈ Ω | t 7→ Xt(ω), t ≥ 0 is continuous in E∆ and X0(ω) = x} ∩
⋂
s>0
s∈S

θ−1
s ◦ Λ,

where S is a countable dense set in (0,∞). Fix ω ∈ Ωx. By the continuity of Xt(ω) there is s′ ∈ S
such that Xt(ω) ∈ Bk̄, t ∈ [0, s′], for some k̄ ∈ N. This implies

σE\Bk (ω) = s′ + σE\Bk (θs′ (ω))

for k ≥ k̄ and since ζ(ω) ≥ s′, we get

ζ(ω) = s′ + ζ(θs′ (ω)).

Putting all together and noting that θs′ (ω) ∈ Λ, we obtain

lim
k→∞

σE\Bk (ω) = lim
k→∞

σE\Bk (θs′ (ω)) + s′ ≥ ζ(θs′ (ω)) + s′ = ζ(ω).

Hence Ωx ⊂ Λ. Since Px(Ωx) = 1, the assertion follows. �

Remark 3.5. For an alternative proof of Lemma 3.4, which does not require the absolute conti-
nuity condition, we refer to Lemma 6.1 in Section 6.

Theorem 3.6. Under (H1)-(H3) after enlarging the stochastic basis (Ω,F , (Ft)t≥0,Px) appro-
priately for every x ∈ E, the processM satisfies

Xt = x + Wt +

∫ t

0

(
∇ρ

2ρ
+ B

)
(Xs) ds, t < ζ (3.1)

Px-a.s. for all x ∈ E where W is a standard d-dimensional (Ft)-Brownian motion on E. If
additionally (H4) holds, then we do not need to enlarge the stochastic basis and ζ can be replaced
by∞ (cf. Remark 2.13).

Proof. Let

Mu
t := u(Xt) − u(X0) −

∫ t

0
Lu(Xs) ds, u ∈ C∞0 (E), t ≥ 0.

For x ∈ E, (Mu
t )t≥0 is a continuous (Ft)t≥0-martingale under Px. By Theorem 3.3 Mu

t ∈ L2(Ω,F ,Px)
and its quadratic variation satisfies 〈Mu〉t =

∫ t

0
‖∇u‖2(Xs) ds. Suppose ζ < ∞. Then it is standard

that there is an enlargement (Ω̄, F̄ , P̄x) (since ‖∇u‖ is degenerate) of the underlying probability
space (Ω,F ,Px) and a Brownian motion (Wt)t≥0 on (Ω̄, F̄ , P̄x) such that

Mu
t =

∫ t

0
‖∇u‖(Xs) dWs, t ≥ 0.

The identification of X up to ζ is now obtained by using Lemma 3.4 with an appropriate localiz-
ing sequence as in Lemma 2.11 for which the coordinate projections on E coincide locally with
C∞0 (E)-functions and noting that Wt =

∫ t

0
1E(Xs)dWs on {t < ζ}. If ζ = ∞, then using the same

localization, we obtain that 〈Mui 〉t =
∫ t

0
1E(Xs) ds = t for t < ∞, where ui is the i-th coordinate

projection. Thus Mui is a Brownian motion by Lévy’s characterization and we do not need an
enlargement of stochastic basis. The localization of the drift part is trivial. �
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4 Pathwise uniqueness and strong solutions
We first recall that by [12, Theorem 2.1] under the conditions (H1), (H2) ((H3) is not needed),
for every stochastic basis and given Brownian motion (Wt)t≥0 there exists a strong solution to
(3.1) which is pathwise unique among all solutions satisfying∫ t

0

∥∥∥∥∥∥
(
∇ρ

2ρ
+ B

)
(Xs)

∥∥∥∥∥∥2

ds < ∞ Px-a.s. on {t < ζ} . (4.1)

In addition, one has pathwise uniqueness and weak uniqueness in this class.
In the situation of Theorem 3.6 it follows, however immediately from Lemma 3.4 that (4.1)

holds for the solution there. Hence we obtain the following:

Theorem 4.1. Assume (H1)-(H3). For every x ∈ E the solution in Theorem 3.6 is strong,
pathwise and weak unique. In particular, it is adapted to the filtration (F W

t )t≥0 generated by the
Brownian motion (Wt)t≥0 in (3.1).

Remark 4.2. (i) By Theorem 3.6 and 4.1 we have thus shown that (the closure of) (2.2) is the
Dirichlet form associated to the Markov processes given by the laws of the (strong) solutions to
(3.1). Hence we can use the theory of Dirichlet forms to show further properties of the solutions.
(ii) In [12] also a new non-explosion criterion was proved (hence one obtains (H4)), assuming
that ∇ρ2ρ + B is the (weak) gradient of a function ψ which is a kind of Lyapunov function for (3.1).
The theory of Dirichlet forms provides a number of analytic non-explosion, i.e. conservativeness
criteria (hence implying (H4)) which are completely different from the usual ones for SDEs and
which are checkable in many cases. As stressed in (i) such criteria can now be applied to (3.1).
Even the simple already mentioned case, where m(Rd) < ∞ and ‖B‖ ∈ L1(Rd,m) which entails
(H4), appears to be a new non-explosion condition for (3.1). Further explicit examples where
(3.1) has a non-explosive unique strong solution are given in Section 5 below.

5 Applications to Muckenhoupt Aβ-weights
In this section we present a class of examples of ρ and B satisfying our assumptions (H3) and
(H4). Throughout, we assume (H1) and (H2) to hold.

Lemma 5.1. Suppose

(i) For r > 0(∫
Br (0)
|u|

2N
N−2 ρ dx

) N−2
2N

≤ cr

(∫
B2r (0)

(
‖∇u‖2 + u2

)
ρ dx

)1/2

, ∀u ∈ C∞0 (Rd),

where cr is some constant, N > 2 and

(ii) ‖B‖ ∈ LN
loc(R

d,m) ∩ L∞(Kc,m) for some compact K ⊂ Rd.

Then ∣∣∣∣∣∫
Rd
〈B,∇u〉 v ρ dx

∣∣∣∣∣ ≤ cB,K E
0
1(u, u)1/2 E0

1(v, v)1/2, ∀u, v ∈ C∞0 (Rd),

where cB,K is some constant, i.e. (H3) holds.
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Proof. For r0 > 0 such that K ⊂ Br0 (0)∣∣∣∣∣∫
Rd
〈B,∇u〉 v ρ dx

∣∣∣∣∣ ≤ (∫
Rd
‖B‖2 v2 ρ dx

)1/2 (∫
Rd
‖∇u‖2ρ dx

)1/2

≤

∫
Br0 (0)

‖B‖2 v2 ρ dx +

∫
Br0 (0)c

‖B‖2 v2 ρ dx

1/2

E1(u, u)1/2

≤


∫

Br0 (0)
‖B‖2 v2 ρ dx

1/2

+ ‖B‖∞,Kc‖v‖L2(Rd ,m)

 E1(u, u)1/2

≤


∫

Br0 (0)
‖B‖N ρ dx

1/N ∫
Br0 (0)

v
2N

N−2 ρ dx


N−2
2N

+ ‖B‖∞,Kc‖v‖L2(Rd ,m)

 E1(u, u)1/2

≤ cB,K E
0
1(u, u)1/2 E0

1(v, v)1/2.

The last inequality follows from assumption (i) and ‖ · ‖∞,Kc denotes the L∞(Rd,m)-norm on Kc.
�

Lemma 5.2. Let ρ be a Muckenhoupt Aβ-weight, 1 ≤ β ≤ 2. Then for x ∈ Rd, r > 0, N > 2(∫
Br (x)
|u|

2N
N−2 dm

) N−2
2N

≤ Cx,r

(∫
B2r (x)

(
‖∇u‖2 + u2

)
dm

)1/2

, ∀u ∈ C∞(Rd),

where Cx,r is some constant and N ≥ βd + log2 A, A is the Aβ constant of ρ.

Proof. By the doubling property of Aβ-weights (cf. [20, Proposition 1.2.7] ),

m(B2r(x)) ≤ A 2βd m(Br(x)). (5.1)

Note that Aβ ⊂ A2 if 1 ≤ β ≤ 2. Then by [7, Theorem (1.5)] the scaled Poincaré inequality holds
true, i.e. for x ∈ Rd, r > 0∫

Br (x)
|u − ux,r |

2 dm ≤ cr2
∫

Br (x)
‖∇u‖2 dm, ∀u ∈ C∞(Rd),

where ux,r = 1
m(Br (x))

∫
Br (x)

u dm and c is some constant. Consequently, [15, Theorem 2.1], the
doubling property, and the scaled Poincaré inequality imply the Sobolev inequality, i.e. for
x ∈ Rd, r > 0, N > 2(∫

Br (x)
|u|

2N
N−2 dm

) N−2
2N

≤ cx,r

(∫
Br (x)

(
‖∇u‖2 + u2

)
dm

)1/2

, ∀u ∈ C∞0 (Br(x)),

where cx,r is some constant and N ≥ βd + log2 A. Then using a cutoff function like for instance
gr(y) := 1

r (2r − ‖x − y‖)+, we see that for x ∈ Rd, r > 0(∫
Br (x)
|u|

2N
N−2 dm

) N−2
2N

≤ Cx,r

(∫
B2r (x)

(
‖∇u‖2 + u2

)
dm

)1/2

, ∀u ∈ C∞(Rd),

where Cx,r is some constant and N > 2 as well as N ≥ βd + log2 A. �
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Lemma 5.3. Let ρ be a Muckenhoupt Aβ weight, 1 ≤ β ≤ 2, N > 2 and ‖B‖ ∈ LN
loc(R

d,m) ∩
L∞(Kc,m) for some compact K ⊂ Rd, N ≥ βd + log2 A, where A is the Aβ constant of ρ. Then∣∣∣∣∣∫

Rd
〈B,∇u〉 v ρ dx

∣∣∣∣∣ ≤ cB,K E
0
1(u, u)1/2 E0

1(v, v)1/2, ∀u, v ∈ C∞0 (Rd),

where cB,K is some constant, i.e. (H3) holds.

Proof. This follows from Lemma 5.1 and Lemma 5.2. �

Lemma 5.4. It holds
(1 − L̂)(C∞0 (Rd)) ⊂ L1(Rd,m) densely.

In particular (H4) holds (cf. Remark 2.8).

Proof. Let h ∈ L∞(Rd,m) be arbitrary. We have to show that∫
(1 − L̂) f · h dm = 0 ∀ f ∈ C∞0 (Rd) (5.2)

implies h = 0.
By [17, Theorem 2.1] it follows from (5.2) that h ∈ D(E0)loc := {u | u · χ ∈ D(E0) ∀χ ∈ C∞0 (Rd)}
and

E0
1(u, h) = −

∫
〈B,∇u〉h dm ∀u ∈ D(E0)0 (5.3)

where D(E0)0 := {u ∈ D(E0) | supp(|u|dm) is compact}. Define

3(r) : = m(Br(0)), r > 0

an : =

∫ 2n

n

s
log(3(s))

ds, n ≥ 1

ψn(r) : = 1[0,n](r) −
1
an

∫ r

n

s
log(3(s))

ds · 1[n,2n](r)

un(x) : = ψn(‖x‖).

Then un ∈ D(E0)0 and

∇un(x) = −
1
an

x
log(3(‖x‖))

· 1[n,2n](‖x‖) (5.4)

an ≥

∫ 2n

n

n
log(3(2n))

ds =
n2

log(3(2n))
≥

n2

log(A2βd 3(n))
. (5.5)

The last inequality follows from (5.1). Taking sufficiently large n such that log(A2βd) ≤ log(3(n)),
(5.4) and (5.5) imply

‖∇un(x)‖ ≤
log(A2βd 3(n))

n2

2n
log(3(n))

· 1[n,2n](‖x‖) ≤
4
n
· 1[n,2n](‖x‖). (5.6)

Then

φ(n) : =

∫
Bn(0)

h2 dm ≤
∫

B2n(0)
h2u2

n dm =

∫
B2n(0)

(hu2
n) · h dm

= −

∫
B2n(0)
〈∇(hu2

n),∇h〉 dm −
∫

B2n(0)
〈B,∇(hu2

n)〉h dm
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Since hu2
n ∈ D(E0)0, the last equality follows from (5.3). The last term is equal to

−

∫
B2n(0)
〈B,∇(un · (hun))〉h dm = −

∫
B2n(0)
〈B,∇(un)〉h2un dm −

∫
B2n(0)
〈B,∇(hun)〉hun dm.

Since hun ∈ D(E0)0, the second term is zero by (H3). Therefore

φ(n) = −

∫
B2n(0)
〈∇(hu2

n),∇h〉 dm −
∫

B2n(0)
〈B,∇(un)〉h2un dm

= −

∫
B2n(0)

(
u2

n‖∇h‖2 + 2un〈∇h,∇un〉h
)

dm −
∫

B2n(0)
〈B,∇(un)〉h2un dm

≤

∫
B2n(0)

‖∇un‖
2h2 dm −

∫
B2n(0)
〈B,∇(un)〉h2un dm.

Taking n ≥ 4 so large that K ⊂ Bn(0) and that (5.6) holds

φ(n) ≤

(
4
n

)2 ∫
B2n(0)\Bn(0)

h2 dm +
4
n
‖B‖∞,Kc

∫
B2n(0)\Bn(0)

h2 dm

≤
4
n

(‖B‖∞,Kc + 1)
∫

B2n(0)
h2 dm =

4
n

(‖B‖∞,Kc + 1)φ(2n).

Set C := 4(‖B‖∞,Kc + 1). Thus by iteration of the last inequality and (5.1), we obtain for any
k ≥ 1

φ(n) ≤
Ck

nk2
k(k+1)

2

φ(2kn) ≤
Ck

nk2
k(k+1)

2

‖h‖2∞ 3(2
kn) ≤

Ck

nk2
k(k+1)

2

‖h‖2∞ (A2βd)k
3(n).

Note that 3(n) ≤ cnα for some α > 0, where c > 0 is some constant. Now choose k > α then
φ(n)→ 0 as n→ ∞, hence h = 0. �

Lemma 5.3 and Lemma 5.4 imply the final theorem.

Theorem 5.5. Let ρ and B satisfy the assumptions (H1) and (H2) and the assumptions of Lemma
5.3. Then (H1)-(H4) hold. Consequently, Theorems 3.6 and 4.1 apply with ζ = ∞.

6 Appendix
We present here an alternative proof of Lemma 3.4, which does not require the absolute continu-
ity condition.

Lemma 6.1. Let (Bk)k≥1 be an increasing sequence of relatively compact open sets in E with
∪k≥1Bk = E. Then for all x ∈ E

Px

(
lim
k→∞

σE\Bk ≥ ζ
)

= 1.

Proof. Let (Bk)k≥1 be an increasing sequence of relatively compact open sets in E with ∪k≥1Bk =

E and σ := limk→∞ σE\Bk . By quasi-left-continuity ofM

Px

(
lim
k→∞

XσE\Bk
= Xσ, σ < ∞

)
= Px(σ < ∞), ∀x ∈ E. (6.1)
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Using [11, Lemma A.2.7], it follows for any k ≥ 1 that

Px

(
XσE\Bk

∈ (E \ Bk) ∪ {∆}, σE\Bk < ∞
)

= Px(σE\Bk < ∞), ∀x ∈ E,

hence
Px

(
XσE\Bk

∈ (E \ Bk) ∪ {∆}, σ < ∞
)

= Px(σ < ∞), ∀x ∈ E. (6.2)

From (6.1) and (6.2)

Px

(
lim
k→∞

XσE\Bk
= Xσ, XσE\Bk

∈ (E \ Bk) ∪ {∆}, ∀k ≥ 1, σ < ∞
)

= Px(σ < ∞), ∀x ∈ E.

Let

A :=
{

lim
k→∞

XσE\Bk
= Xσ, XσE\Bk

∈ (E \ Bk) ∪ {∆}, ∀k ≥ 1, σ < ∞
}
, B :=

{
Xσ ∈ {∆}

}
.

Suppose, to show A ⊂ B, that ω ∈ A but ω < B, i.e. there exists x ∈ E such that Xσ(ω)(ω) = x
with ω ∈ A . Since E is open in Rd, we can find a ball Bε(x), ε > 0 such that the closure
Bε(x) ⊂ E. Since (Bk)k≥1 is an open cover of Bε(x) and increasing, we can find k? ∈ N such that
Bk ⊃ Bε(x) for all k ≥ k?. Since ω ∈ A, this implies that XσE\Bk (ω)(ω) < Bε(x), k ≥ k? and so
limk→∞ XσE\Bk (ω)(ω) < Bε(x), which draws a contradiction. Hence

Px

(
Xσ ∈ {∆}, σ < ∞

)
= Px(σ < ∞), ∀x ∈ E,

and so
Px

(
σ ≥ ζ, σ < ∞

)
= Px(σ < ∞), ∀x ∈ E.

Clearly
Px

(
σ ≥ ζ, σ = ∞

)
= Px(σ = ∞), ∀x ∈ E,

thus
Px(σ ≥ ζ) = 1, ∀x ∈ E.

�
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