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1. Introduction

The goal of this paper is to give upper bounds for the total variation, entropy and Kantorovich
distances between two probability solutions %1(x, t) and %2(x, t) to Fokker–Planck–Kolmogorov
equations

∂t%k(x, t) = ∂xi∂xj (a
ij
k (x, t)%k(x, t))− ∂xi(b

i
k(x, t)%k(x, t)), k = 1, 2, (1.1)

with different diffusion matrices and drifts on Rd × [0, T ] with fixed T > 0. In case of equal
initial distributions and identity diffusion matrices, for the entropy of %2 with respect to %1 we
obtain the estimate∫

Rd

log
%2(x, t)
%1(x, t)

%2(x, t) dx ≤
1
2

∫
Rd

|b1(x, t)− b2(x, t)|2 %2(x, t) dx,

and for the total variation norm we obtain the estimate

‖%1( · , t)− %2( · , t)‖2
TV ≤

∫ t

0

∫
Rd

|b1(x, s)− b2(x, s)|2 %2(x, s) dx ds.

In the general case we obtain quite comparable estimates under rather broad assumptions about
our coefficients: the diffusion matrices are locally uniformly elliptic and locally Lipschitzian in
space, the drifts are locally bounded, and either some mild integrability conditions are imposed
or a certain Lyapunov function exists (an advantage of the latter condition is that it is expressed
entirely in terms of the coefficients). In examples we give a number of effectively verified condi-
tions. The principal novelty concerns the case of different diffusion matrices (see comments in
Remark 1.5), but also the simpler case of the same diffusion matrix seems to be new. The main
result is applied to nonlinear Fokker–Planck–Kolmogorov equations. Let us explain precisely
our framework.

Let us consider a time-dependent second order elliptic operator

LA,bu =
d∑

i,j=1

aij∂xi∂xju+
d∑

i=1

bi∂xiu,

where A(x, t) = (aij(x, t))i,j≤d is a positive symmetric matrix (called the diffusion matrix) with
Borel measurable entries and b(x, t) = (bi(x, t))d

i=1 : Rd×[0, T ] → Rd is a Borel measurable map-
ping (called the drift coefficient). Suppose that b is locally bounded and A is locally Lipschitzian
in x and locally strictly positive, i.e.,

1corresponding author. E-mail addresses: vibogach@mail.ru (V. Bogachev), roeckner@math.uni-
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(H) for every ball U ⊂ Rd, there exist numbers λ = λ(U) ≥ 0, α = α(U) > 0 and
m = m(U) > 0 such that

|aij(x, t)− aij(y, t)| ≤ λ|x− y|, α · I ≤ A(x, t) ≤ m · I

for all x, y ∈ U and t ∈ [0, T ].
We study solutions to the Cauchy problem

∂tµ = L∗A,bµ, µ|t=0 = ν, (1.2)

where ν is a Borel probability measure on Rd. A model example is given by the transition
probabilities of a diffusion process, although we do not assume the existence of the associated
diffusion.

We shall consider measures µ(dxdt) = µt(dx) dt on Rd× [0, T ] given by a family of probability
measures (µt)t∈[0,T ] (or with t ∈ (0, T ), which does not matter for our purposes) on Rd, i.e.,
t 7→ µt(B) is measurable for every Borel set B ⊂ Rd and∫

Rd×[0,T ]
f(x, t)µ(dxdt) =

∫ T

0

∫
Rd

f(x, t)µt(dx)dt

for every bounded Borel function f on Rd × [0, T ]. Such a measure is called a solution to the
Cauchy problem (1.2) if, for every function ϕ ∈ C∞0 (Rd), the equality∫

Rd

ϕdµt =
∫

Rd

ϕdν +
∫ t

0

∫
Rd

LA,bϕdµs ds (1.3)

holds for almost all t ∈ (0, T ).
It is known (see [7] or [8]) that the measure µ possesses a continuous positive density % on

Rd × (0, T ) with respect to Lebesgue measure, moreover, for each ball U in Rd, for almost
every t ∈ (0, T ) one has %( · , t) ∈ W p,1(U) for all p ∈ [1,+∞) and the function ‖%( · , t)‖p

Lp(U) +
‖∇%( · , t)‖p

Lp(U) is integrable on every compact interval in (0, T ). Recall that W p,1(U) consists
of all functions that belong to Lp(U) along with their first order Sobolev derivatives. We shall
deal with this version of % (in this case %( · , t) is a probability density for almost every t and is
integrable for all t ∈ (0, T )). Such a version satisfies the classical equation (1.1) understood in
the weak sense.

Suppose now that µ = (µt)t∈(0,T ) and σ = (σt)t∈(0,T ) are two solutions to the Cauchy problem
(1.2) with coefficients Aµ, bµ and Aσ, bσ, respectively, and the same initial condition ν (the case
of different initial conditions is addressed in Remark 1.3 just to simplify the obtained estimates).
The corresponding operators will be denoted by Lµ and Lσ for brevity.

Suppose throughout that

Aµ and Aσ satisfy Condition (H) and bµ and bσ are locally bounded Borel measurable.

Let µ = %µ(x, t) dxdt and σ = %σ(x, t) dxdt. Set

v(x, t) =
%σ(x, t)
%µ(x, t)

, i.e., σ = v · µ.

Let us introduce vector mappings

hµ = (hi
µ)d

i=1, hσ = (hi
σ)d

i=1, hi
µ = biµ −

d∑
j=1

∂xja
ij
µ , hi

σ = biσ −
d∑

j=1

∂xja
ij
σ ,

Φ =
(Aµ −Aσ)∇%σ

%σ
+ (hµ − hσ).

The latter mapping is crucial: the distances between µt and σt will be estimated through the
L2(σ)-norm of A−1/2

µ Φ. Observe that in case of equal diffusion matrices we obtain just the
difference of the drifts: Φ = bµ− bσ. In case of equal drifts and constant diffusion matrices, only
the first term of this mapping appears.
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Let ‖ · ‖TV denote the total variation norm on bounded measures. Recall that, given two
probability measures µ1 and µ2 on Rd such that µ1 = w ·µ2, the entropy H(µ1|µ2) is defined by
the formula

H(µ1|µ2) =
∫
w logw dµ2,

provided that w logw ∈ L1(µ2). If µ1 and µ2 are given by positive densities %1 and %2 such that
%1 log(%1/%2) ∈ L1(Rd), then H(µ1|µ2) is the integral of %1 log(%1/%2).

Let us formulate our main result.

Theorem 1.1. Let |A−1/2
µ Φ| ∈ L2(Rd× [0, T ], σ). Suppose also that at least one of the following

two conditions is fulfilled:
(a) (1 + |x|)−2|aij

µ |, (1 + |x|)−1|bµ| ∈ L1(Rd × [0, T ], µ),
(1 + |x|)−1|Φ| ∈ L1(Rd × [0, T ], σ).

(b) there exist a nonnegative function V ∈ C2(Rd) and a number M ≥ 0 such that

lim
|x|→∞

V (x) = +∞, LAµ,bµV ≤MV,
〈Φ,∇V 〉
1 + V

∈ L1(Rd × [0, T ], σ).

Then

H(σt|µt) =
∫

Rd

v log v dµt ≤
1
2

∫ t

0

∫
Rd

∣∣A−1/2
µ Φ

∣∣2 dσs ds. (1.4)

Corollary 1.2. Under the assumptions of the theorem, for every nonnegative measurable func-
tion ϕ on Rd × [0, T ], we have

‖ϕ(µt − σt)‖2
TV ≤

(
1 + logα(t)

) ∫ t

0

∫
Rd

∣∣∣∣A−1/2
µ (Aµ −Aσ)∇%σ

%σ
+A−1/2

µ (hµ − hσ)
∣∣∣∣2 dσs ds. (1.5)

where
α(t) :=

∫
Rd

eϕ
2(x,t) µt(dx).

In particular, if Aµ = Aσ = A, then

‖ϕ(µt − σt)‖2
TV ≤

(
1 + logα(t)

) ∫ t

0

∫
Rd

∣∣A−1/2(bµ − bσ)
∣∣2 dσs ds,

and if Aµ = Aσ = I, then

‖ϕ(µt − σt)‖2
TV ≤

(
1 + logα(t)

) ∫ t

0

∫
Rd

|bµ − bσ|2 dσs ds,

If bµ = bσ = b and Aµ, Aσ do not depend on x, then

‖ϕ(µt − σt)‖2
TV ≤

(
1 + logα(t)

) ∫ t

0

∫
Rd

∣∣(A1/2
µ A

−1/2
σ −A

−1/2
µ A

1/2
σ )A1/2

σ ∇%σ

∣∣2
%σ

dx ds.

Remark 1.3. In the case of different initial conditions νµ and νσ the same reasoning applies
(which will be noted in the proof below) and gives a bit longer estimates. In place of (1.4) we
obtain ∫

Rd

v log v dµt ≤
1
2

∫ t

0

∫
Rd

∣∣A−1/2
µ Φ

∣∣2 dσs ds+H(νσ|νµ). (1.6)

The extra term with H(νσ|νµ) will be added also to the integral in the right-hand side of (1.5).

The Kantorovich distance Wp(µ1, µ2) of order p ∈ [1,+∞) is defined as the infimum of(∫ ∫
|x− y|pπ(dxdy)

)1/p

over all probability measures π on Rd × Rd with projections µ1 and µ2 on the factors. For
p = 1 this gives the classical Kantorovich distance (sometimes mistakenly called the Wasserstein
distance); see [6] or [37].

It is known that a bound on the entropy yields many other bounds, see, e.g., [24], [37],
and [38], where many additional references can be found. In the case ϕ = 1 we obtain the usual
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total variation distance, hence the classical Pinsker–Csiszár–Kullback inequality (see, e.g., [3,
Theorem 2.12.24])

‖µ− σ‖2
TV ≤ 2H(σ|µ)

can be applied. The estimate in the theorem can be combined with the estimate

Wp(µ1, µ2) ≤ C
[
H(µ1|µ2)1/p + 2−1/(2p)H(µ1|µ2)1/(2p)

]
established in [19], where C is a number that depends on the integral of exp(κ|x|p) against µ2

for any fixed number κ (so that if we fix κ and consider only measures µ2 such that the integral
of exp(κ|x|p) against µ2 does not exceed a fixed number M , then C depends only on κ and M).

Remark 1.4. The theorem and the corollary involve (through Φ) the logarithmic gradient
∇%σ/%σ of the measure µσ (in the case where Aµ and Aσ are different). If the norms of Aµ−Aσ

and A−1
µ are uniformly bounded, then, up to a constant factor, the right-hand side of (1.4) is

estimated by the L2(σ)-norms of |bµ − bσ|, |∇aij
µ − ∇aij

σ |, and |∇%σ|/%σ. Let us recall some
estimates of the L2(σ)-norm of ∇%σ/%σ obtained in [10] (see also [9, Chapter 7]). Suppose that
λ and α in (H1) can be chosen independent of U and that |bσ| ∈ L2(σ). Assume also that the
function Λ(x) := log max(|x|, 1) belongs to L2(σ) (which is true if, for example, 〈bσ(x, t), x〉 ≤
C1|x|2Λ(x) + C2 with some constants C1 and C2 and Λ ∈ L2(ν)). If the initial distribution ν
has finite entropy, i.e., possesses a density %ν such that log %ν ∈ L1(ν), then for every τ < T we
have ∫ τ

0

∫
Rd

|∇%σ(x, t)|2

%σ(x, t)
dx dt ≤ K <∞,

where K is a number that depends on the L2(σ)-norm of |bσ|, the entropy of ν, and the bounds
on the integrals of Λ against σt (see estimate (2.12) in [10] or (7.4.13) in [9, Chapter 7]). More
precisely,∫ τ

0

∫
Rd

|∇%σ|2

%σ
dx dt ≤ α−2

(
‖bσ‖L2(σ) +

√
3λd5/2

)2

+ 2 log 2α−1 + 2α−1

∫
Rd

%ν(x) log %ν(x) dx+ 2α−1(d+ 1)
∫

Rd

%σ(x, τ)Λ(x) dx. (1.7)

If the integrals of Λ(x) against σt over Rd remain bounded as t→ T (which holds, for example,
if 〈bσ(x, t), x〉 ≤ C1|x|2 + C2 with some constants C1 and C2 and Λ ∈ L1(ν)), then (1.7) is true
with τ = T .Therefore, there are efficient conditions in terms of the coefficients to verify that
the right-hand side of our estimate is finite. Thus, in the previous situation we arrive at the
following bound:

‖ϕ(µt − σt)‖TV (1.8)

≤C(t) sup
x,t,i,j

[
|bµ(x, t)− bσ(x, t)|+ |aij

µ (x, t)− aij
σ (x, t)|+ |∇aij

µ (x, t)−∇aij
σ (x, t)|

]
,

where C(t) depends also on d, λ, α, ‖bσ‖L2(σ), ‖Λ‖L1(σ), and ‖ log %ν‖L1(ν).
A modification of (1.7) is given by (2.13) in [10]: for almost all τ ∈ [0, T ] one has∫ τ

0

∫
Rd

∣∣∣A1/2
σ ∇%σ

%σ

∣∣∣2 dσ
≤

∫ τ

0

∫
Rd

|A−1/2hσ|2 dσ + 2
∫

Rd

[%ν(x) log %ν(x)− %σ(x, τ) log %σ(x, τ)] dx.

Remark 1.5. Let us observe that if d = 1, A = 1, ϕ = 1, and there exist diffusion processes
ξ1 and ξ2 with drifts b1 and b2 and initial distribution ν (which is the case, e.g., for bounded
drifts), our estimates agree with the estimates obtained in [25], [26], [27], and [28] for the total
variation distance between the distributions of ξ1 and ξ2 in the space C[0, T ]. Assuming for
simplicity that the drifts b1 and b2 are bounded and do not depend on t, we obtain by the
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Girsanov theorem, that for any fixed t the distributions in C[0, t] of the diffusions governed by
the stochastic equations

dξ1(t) =
√

2dwt − b1(ξ1(t))dt, dξ2(t) =
√

2dwt − b2(ξ2(t))dt

with ξ1(0) and ξ2(0) having distribution η are equivalent to the Wiener measure P and the
corresponding Radon–Nikodym densities are given by

%i(w) = exp
(∫ t

0
bi(w(s))dws −

1
2

∫ t

0
|bi(w(s)|2ds

)
.

This enables one to estimate the L1(P )-norm of the function %1(w) − %2(w), which yields an
estimate on the total variation norm of the measure µ1

t −µ2
t , where µi

t is the distribution of ξi(t).
However, in spite of this explicit expression, the derivation of the desired estimate is not trivial,
and the Hellinger distance and the associated Hellinger processes are employed in the cited
papers. Apparently, this method extends to multidimensional diffusions, but in this way it is
impossible to deal with the case where the diffusion processes have different diffusions matrices,
because in such a case their distributions in the functional space are typically mutually singular,
as happens, e.g., if A1 = I and A2 = 2I (in the one-dimensional case with different analytic A1

and A2, they are always mutually singular, see [4, Section 4.4]).

Remark 1.6. It should be also noted that if we are interested only in Wp-estimates, then a
simpler approach is possible. Let µt dt and σt dt be solutions on [0, T ] × Rd to the continuity
equations

∂tµt + div(bµt) = 0, ∂tσt + div(hσt) = 0

with initial distribution ν. Suppose that b and h are Lipschitzian on Rd with constant λ. Then
µt = ν ◦ x−1

t and σt = ν ◦ y−1
t , where

ẋt(z) = b(xt(z)), x0(z) = z, ẏt(z) = h(yt(z)), y0(z) = z.

We observe that
d

dt

|xt − yt|p

p
≤ |b(xt)− b(yt)| |xt − yt|p−1 + |b(yt)− h(yt)| |xt − yt|p−1

≤
(
λ+

p− 1
p

)
|xt − yt|p +

1
p
|b(yt)− h(yt)|p.

Therefore,

|xt − yt|p ≤
∫ t

0
ecp(t−s)|b(ys)− h(ys)|p ds, cp = pλ+ p− 1.

From the definition of the metric Wp we find that

W p
p (µt, σt) ≤

∫
|xt − yt|p dν ≤

∫ t

0
ecp(t−s)

∫
|b(ys)− h(ys)|p dν ds.

Since σt = ν ◦ y−1
t , we arrive at the inequality

Wp(µt, σt) ≤ C(λ, T )
(∫ t

0

∫
|b(y)− h(y)|p dσ ds

)1/p

,

where C(λ, T ) = ecpT/p.
In a similar manner one can obtain upper bounds for solutions µt dt and σt dt to the Fokker–

Planck–Kolmogorov equation

∂tµt = ∆µt − div(b(x)µt), ∂tσt = ∆σt − div(h(x)σt)

with initial distribution ν. Suppose again that b and h are Lipschitzian with constant λ. Consider
the solutions xt and yt to the stochastic equations

dxt =
√

2dwt + b(xt) dt, dyt =
√

2dwt + h(yt) dt
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with the same initial distribution ν. We observe that d(xt − yt) = (b(xt)− h(yt)) dt. Repeating
the previous reasoning we obtain

W p
p (µt, σt) ≤ E|xt − yt|p ≤ C(λ, T )

∫ t

0

∫
|b(y)− h(y)|p dσt.

Various estimates for transition probabilities of diffusions involving the total variation distance
or Kantorovich-type distances have become popular in the last decade. There are many works
on this topic, see, e.g., [1], [2], [16], [17], [18], [20], [21], [23], [30], and [33]. The principal novelty
of our estimates is that they compare diffusions with different drifts or even different diffusion
matrices, not with different initial distributions.

The proof of the main theorem is given in Section 2; Section 3 contains some additional corol-
laries and examples. In Section 4 some applications to nonlinear Fokker–Planck–Kolmogorov
equations are considered. Also an application to differentiability of solutions with respect to a
parameter is given.

2. Proof of the main result

Informally, our proof is this: we multiply the equation by f = v log v − v, integrate by parts,
apply the Cauchy inequality and discard certain terms in the obtained inequality. However, a
rigorous justification involves some technicalities.

The proof of Theorem 1.1 is based on the lemma below; the corollary then follows from the
next estimate established in [19]: given two probability measures µ and σ = v · µ on Rd and a
Borel function ϕ ≥ 0, we have

‖ϕ(µ− σ)‖2
TV ≤ 2

(
1 + log

(∫
Rd

eϕ
2
dµ

)) ∫
Rd

v log v dµ. (2.1)

It should be noted that a bit less compact, but stronger estimate is proved in [19]:

‖ϕ(µ− σ)‖TV ≤
(

3
2

+ log
∫

Rd

e2ϕ dµ

)(
H(σ, µ)1/2 +

1
2
H(σ, µ)

)
. (2.2)

This estimate can be used in place of (2.1) in the proof of Corollary 1.2, which will result in
longer expressions in the corresponding estimates, but the function α involved in those estimates
will involve 2ϕ in place of‘ϕ2. Note that for ϕ = 1 the bound from [19] gives the extra factor 2
on the right as compared to the Pinsker–Csiszár–Kullback inequality.

Lemma 2.1. (i) Let f ∈ C2
b (0,+∞). Then, for any function ψ ∈ C∞0 (Rd) and any compact

interval [τ, t] ⊂ (0, T ), we have∫
Rd

f(v(x, t))ψ(x)%µ(x, t) dx+
∫ t

τ

∫
Rd

|A1/2
µ ∇v|2f ′′(v)ψ%µ dx

=
∫

Rd

f(v(x, τ))ψ(x) %µ(x, τ)dx+
∫ t

τ

∫
Rd

f(v)LAµ,bµψ%µ dx ds

+
∫ t

τ

∫
Rd

[
〈Φ,∇v〉f ′′(v)ψ + 〈Φ,∇ψ〉f ′(v)

]
v%µ dx ds. (2.3)

(ii) If f ′′ ≥ 0 and ψ ≥ 0, then∫
Rd

f(v(x, t))ψ(x)%µ(x, t) dx+
1
2

∫ t

0

∫
Rd

|A1/2
µ ∇v|2f ′′(v)ψ%µ dx

≤ f(1)
∫

Rd

ψ dν +
∫ t

0

∫
Rd

f(v)LAµ,bµψ%µ dx ds

+
1
2

∫ t

0

∫
Rd

|A−1/2
µ Φ|2f ′′(v)ψv%µ dx ds+

∫ t

0

∫
Rd

〈Φ,∇ψ〉f ′(v)v%µ dx ds. (2.4)
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In particular,∫
Rd

f(v(x, t))ψ(x)%µ(x, t) dx ≤ f(1)
∫

Rd

ψ dν +
∫ t

0

∫
Rd

f(v)LAµ,bµψ%µ dx ds

+
1
2

∫ t

0

∫
Rd

|A−1/2
µ Φ|2f ′′(v)ψv%µ dx ds+

∫ t

0

∫
Rd

〈Φ,∇ψ〉f ′(v)v%µ dx ds. (2.5)

In case of different initial conditions νµ and νσ such that νσ � νµ the first terms in the right-hand

sides of the last two relations will be replaced by
∫

Rd

ψf
(dνσ

dνµ

)
dνµ.

Proof. (i) Suppose first that aij
µ , a

ij
σ , biµ, b

i
σ are infinitely differentiable in x on Rd × (0, T ), Aµ

and Aσ are nondegenerate (but no uniform Lipschitzness and uniform ellipticity up to t = 0
is assumed at this stage). The assumption that we deal with smooth coefficients is employed
in the calculations below and ensures the existence of the regarded integrals. Recall that both
densities %µ and %ν are continuous and positive on the sets of the form {x : |x| ≤ R} × (0, T ),
so that v is also continuous on these sets. Hence v is bounded on suppψ × [τ, t]. Note that

∂t%µ = L∗Aµ,bµ
%µ and ∂t%σ = L∗Aµ,bµ

%σ − div(Φ%σ).

Our assumptions about the coefficients enable us to write L∗Aµ,bµ
ξ directly just as a usual operator

∂xi∂xj (a
ij
µ ξ)− ∂xi(b

i
µξ) with summation over repeated indices. With respect to t both densities

are absolutely continuous.
For any ξ, η ∈ C∞(Rd × (0, T )) and ϕ ∈ C∞(R) we have by direct calculations

L∗Aµ,bµ
(ϕ(ξ)) = ϕ′(ξ)L∗Aµ,bµ

ξ + ϕ′′(ξ)〈Aµ∇ξ,∇ξ〉+ (ξϕ′(ξ)− ϕ(ξ))divhµ,

L∗Aµ,bµ
(ξ · η) = ηL∗Aµ,bµ

ξ + ξL∗Aµ,bµ
η + 2〈Aµ∇ξ,∇η〉+ ξηdivhµ.

Multiplying the equation ∂t%µ = L∗Aµ,bµ
%µ by v and subtracting the obtained relation from the

equation ∂t%σ = L∗Aµ,bµ
%σ − div(Φ%σ), we arrive at the equation

%µ∂tv = %µL
∗
Aµ,bµ

v + 2〈Aµ∇%µ,∇v〉+ %µvdivhµ − div(Φ%σ).

Multiplying this by f ′(v) and taking into account the equalities

∂tf(v) = f ′(v)∂tv, ∇f(v) = f ′(v)∇v,

we obtain that

%µ∂t(f(v)) = %µf
′(v)L∗Aµ,bµ

v + 2〈Aµ∇%µ,∇f(v)〉+ %µvf
′(v)divhµ − f ′(v)div(Φ%σ).

Since
f ′(v)L∗Aµ,bµ

v = L∗Aµ,bµ
f(v)− f ′′(v)〈Aµ∇v,∇v〉 − (vf ′(v)− f(v))divhµ,

we have

%µ∂t(f(v)) = %µL
∗
Aµ,bµ

f(v) + 2〈Aµ∇%µ,∇f(v)〉
+ %µf(v)divhµ − %µf

′′(v)〈Aµ∇v,∇v〉 − f ′(v)div(Φ%σ).

Summing up the last equation and f(v)∂t%µ = f(v)L∗Aµ,bµ
%, we find that

∂t(%µf(v)) = L∗Aµ,bµ
(%µf(v))− %µf

′′(v)〈Aµ∇v,∇v〉 − f ′(v)div(Φ%σ).

Multiplying this equation by the function ψ and integrating, we arrive at the equality∫ t

τ

∫
Rd

∂t(f(v)%µ)ψ dx dt+
∫ t

τ

∫
Rd

%µ〈Aµ∇v,∇v〉f ′′(v)ψ dx dτ

=
∫ t

τ

∫
Rd

ψL∗Aµ,bµ
(%µf(v)) dx ds−

∫ t

τ

∫
Rd

ψf ′(v)div(Φ%σ) dx ds.
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Applying the Newton–Leibniz formula, we obtain∫ t

τ

∫
Rd

∂t(f(v)%µ)ψ dx dt = ∫
Rd

f(v(x, t))%µ(x, t)ψ(x) dx−
∫

Rd

f(v(x, τ))ψ(x)%µ(x, τ) dx.

Since L∗Aµ,bµ
is the adjoint to LAµ,bµ , one has∫ t

τ

∫
Rd

ψL∗Aµ,bµ
(%µf(v)) dx ds =

∫ t

τ

∫
Rd

%µf(v)LAµ,bµψ dx ds.

In addition, one has

−
∫ t

τ

∫
Rd

ψf ′(v)div(Φ%σ) dx ds =
∫ t

τ

∫
Rd

[
〈Φ,∇v〉f ′′(v)%σ + f ′(v)〈Φ,∇ψ〉%σ

]
dx ds.

Therefore, we obtain the following equality:∫
Rd

f(v(x, t))%µ(x, t)ψ(x) dx+
∫ t

τ

∫
Rd

%µ〈Aµ∇v,∇v〉f ′′(v)ψ dx dτ

=
∫

Rd

f(v(x, τ))ψ(x)%µ(x, τ) dx+
∫ t

τ

∫
Rd

%µf(v)LAµ,bµψ dx ds

+
∫ t

τ

∫
Rd

[
〈Φ,∇v〉f ′′(v)%σ + f ′(v)〈Φ,∇ψ〉%σ

]
dx ds.

which is the desired identity. As noted above, in case of different initial conditions the integral
against ν must be replaced by the indicated expression. The general case, where the coefficients
are not smooth, will be justified below.

(ii) We first show (2.4) in the situation of smooth coefficients considered so far in assertion (i)
and assuming, in addition, that ‖%µ( · , τ) − %σ( · , τ)‖L1(Rd) → 0 as τ → 0. Applying in (i) the
inequality

|〈Φ,∇v〉| ≤ 1
2
|A−1/2

µ Φ|2 +
1
2
|A1/2

µ ∇v|2

and taking into account that f ′′ ≥ 0 and ψ ≥ 0, we obtain the inequality similar to (2.4), but
with the integrals over [τ, t] in place of [0, t] and with the integral of f(v(x, τ))ψ(x)%µ(x, τ) in
place of the integral of f(1)ψ against ν. Obviously, the integrals over [τ, t] converge to the
respective integrals over [0, t] if we let τ → 0. So we have to show that

lim
τ→0

∫
Rd

f(v(x, τ))ψ(x)%µ(x, τ) dx = f(1)
∫

Rd

ψ(x) ν(dx). (2.6)

It follows from (1.3) that

lim
τ→0

∫
Rd

ψ(x)%µ(x, τ) dx =
∫

Rd

ψ(x) ν(dx).

We have |f(v)− f(1)| ≤ C|v − 1|, since f ′ is bounded. Hence∫
Rd

|f(v(x, τ))− f(1)|%µ(x, τ) dx ≤ C

∫
Rd

|%σ(x, τ)− %µ(x, τ)| dx→ 0 as τ → 0,

which yields (2.6).
In the general case it suffices to show that our solutions can be obtained as limits of solutions

to the Cauchy problems with coefficients and data of the respective classes in such a way that
the right-sides of (2.4) for these approximations will converge to the right-side of (2.4) for the
original solution.

To this end, let us take an even probability density ω ∈ C∞0 (Rd) with support in the unit ball
such that |∇ω|2/ω ∈ L1(Rd), set ωε(x) = ε−dω(x/ε), ε ∈ (0, 1), and for any locally integrable
function g on Rd set (g)ε := g ∗ ωε. It is readily verified that the measures with densities (%µ)ε
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and (%σ)ε, where the convolution is taken with respect to x, are solutions to the Cauchy problems
corresponding to the operators with smooth coefficients

Aε
µ =

(Aµ%µ)ε

(%µ)ε
, bεµ =

(bµ%µ)ε

(%µ)ε

and initial condition ν ∗ ωε. Indeed, let ϕ ∈ C∞0 (Rd). For every fixed y, by (1.3) we have∫
Rd

ϕ(y + x) %µ(x, t) dx =
∫

Rd

ϕ(y + x) ν(dx)

+
∫ t

0

∫
Rd

(aij
µ (x, s)∂xi∂xjϕ(y + x) + biµ(x, s)∂xiϕ(y + x)) %µ(x, s) dx ds.

Changing variables z = x+ y and integrating in y with respect to ωε(y)dy, we arrive at (1.3) for
(%µ)ε and the new operator with Aε

µ and bεµ, because Aε
µ(%µ)ε = (Aµ%µ)ε and bεµ(%µ)ε = (bµ%µ)ε.

Since the original coefficients are locally bounded, these new coefficients are bounded uni-
formly in ε on every set U × [0, T ], where U is a ball in Rd. In addition, for every fixed ε > 0,
we have (%µ)ε(x, t) → ωε ∗ ν(x) and (%σ)ε(x, t) → ωε ∗ ν(x) as t → 0. Since these functions are
probability densities, we obtain convergence in L1(Rd), which yields that

lim
t→0

∫
Rd

|(%σ)ε(x, t)− (%µ)ε(x, t)| dx→ 0.

Thus, our approximations satisfy the condition under which (2.4) has been verified above in
the case of smooth coefficients. Since identity (2.3) holds for these approximations, it remains
valid for the original solutions, because, as ε → 0, we have (%µ)ε → %µ, ∂xi(%µ)ε → ∂xi%µ in
L2(U × [τ, t]) and the same for σ. Thus, (2.3) is proved completely. In addition, this shows
convergence of the second terms in the right-hand side of (2.4). Convergence of the first terms
is trivial, the only problem is to show convergence of the third terms involving Φ. Let us show
that

lim
ε→0

∫ T

0

∫
U

|(Aε
µ −Aε

σ)∇(%σ)ε|2

(%σ)ε
dx =

∫ T

0

∫
U

|(Aµ −Aσ)∇%σ|2

%σ
dx. (2.7)

For almost every fixed t ∈ (0, T ), we have (%µ)ε(x, t) → %µ(x, t) in W 2,1(U), since we have
%µ(x, t) ∈W 2,1(U). Therefore, we have convergence of the inner integrals in (2.7) for almost all
t ∈ (0, T ). Let us show that the integrals over U admit a majorant integrable on [0, T ].

Writing

|ωε ∗ ((Aµ −Aσ)∇%σ)| =
∣∣∣ωε ∗

((Aµ −Aσ)∇%σ√
%σ

√
%σ

)∣∣∣
and using the Cauchy inequality in the convolution we obtain

|ωε ∗ ((Aµ −Aσ)∇%σ)|2

(%σ)ε
≤ ωε ∗

(
|(Aµ −Aσ)∇%σ|2

%σ

)
.

Therefore, ∫
U

|ωε ∗ ((Aµ −Aσ)∇%σ)(x, t)|2

(%σ)ε(x, t)
dx ≤

∫
U ′

|(Aµ −Aσ)∇%σ(x, t)|2

%σ(x, t)
dx,

where U ′ is the ball with the same center as U and radius increased by 1. On U we have

|(Aε
µ −Aε

σ)∇(%σ)ε|2

(%σ)ε
≤ 2I + 2J + 2K + 2ωε ∗

(
|(Aµ −Aσ)∇%σ|2

%σ

)
,

where

I =
|(Aε

µ −Aµ)∇(%σ)ε|2

(%σ)ε
, J =

|(Aε
σ −Aσ)∇(%σ)ε|2

(%σ)ε
,

K(x, t) =
|ωε ∗ ((Aµ(x, t)−Aµ( · , t)−Aσ(x, t) +Aσ( · , t))∇%σ)(x, t)|2

(%σ)ε(x, t)
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Since ‖Aµ(x + y, t) − Aµ(x, t)‖ ≤ C|y| for all x ∈ U and y with |y| ≤ 1, the terms I and J are
dominated by C2ηε ∗ %σ, where

ηε(x) = ε−dη(x/ε), η =
|∇ω|2

ω
.

Indeed, for all x ∈ U we have
‖Aε

µ(x, t)−Aµ(x, t)‖ ≤ Cε,

and the Cauchy inequality yields

|∇(%σ)ε(x, t)|2 = |∇ωε ∗ %σ(x, t)|2 ≤ ε−2

(∫
Rd

|∇ω(z)|%σ(x− εz, t) dz
)2

≤ ε−2(%σ)ε(x, t)
∫

Rd

|∇ω(z)|2

ω(z)
%σ(x− εz, t) dz.

The same is true for J . The term K is similarly estimated by 4d2C2ηε ∗ %σ + 4d2C2, because∫
Rd

(aij
µ (x, t)− aij

µ (x+ y, t))∂xj%σ(x+ y, t)ωε(y) dy

=
∫

Rd

∂yja
ij
µ (x+ y, t)%σ(x+ y, t)ωε(y) dy

−
∫

Rd

(aij
µ (x, t)− aij

µ (x+ y, t))%σ(x+ y, t)∂yjωε(y) dy,

where the square of the first integral does not exceed C2(%σ)ε and the square of the second
integral does not exceed C2%σ ∗ ηε. Indeed, |aij

µ (x, t) − aij
µ (x + y, t)| ≤ Cε if x ∈ U , |y| ≤ 1,

∂yjωε(y) = ε−1∂yjω(y/ε), and the square of the integral of %σ(x + y, t)|∇ω(y/ε)| with respect
to y is estimated as above.

Therefore, we arrive at the estimate∫
U

|(Aε
µ −Aε

σ)∇(%σ)ε(x, t)|2

(%σ)ε(x, t)
dx ≤ C̃

∫
Rd

|∇ω(z)|2

ω(z)
dz + 2

∫
U ′

|(Aµ −Aσ)∇%σ(x, t)|2

%σ(x, t)
dx,

where C̃ is a constant and the right-hand side is integrable over [0, T ]. Now the Lebesgue
dominated convergence theorem yields (2.7). Moreover, this also yields convergence of the third
terms in (2.4), because there is no problem with the component in Φ corresponding to hµ − hσ.
Convergence of the last terms on the right in (2.4) follows from what we have just proved. �

Proof of Theorem 1.1. We would like to apply the second assertion of the lemma to

f(v) = v log v − v

and ψN such that ψN → 1 and LAµ,bµ
ψN → 0. Then, letting N → ∞ and using (2.5) and the

equality f ′′(v) = 1/v, we arrive at the desired estimate. However, this function f is not of class
C∞b and some additional justification is needed.

Let m, k > 1 and

fm,k(t) =

 −t log k if t ≤ k−1,
t log t− t+ k−1 if k−1 < t < m,
t logm−m+ k−1 if t ≥ m.

We observe that f ′m,k(t) = log
(
(k−1 ∨ t)∧m

)
and f ′′m,k(t) = t−1I{k−1<t<m}, where I{k−1<t<m} is

the indicator function of the set {k−1 < t < m}. In addition,

fm,k(1) = −1 + k−1 and |fm,k(t)| ≤ C(m, k)t

for fixed m, k.
Let us now consider separately cases (a) and (b). Suppose first that (a) is fulfilled. Set

ψN (x) = ψ(x/N), where ψ ∈ C∞0 (Rd), ψ ≥ 0 and ψ(x) = 1 whenever |x| < 1. Let us substitute
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in (2.5) the functions fm,k and ψN for f and ψ, respectively, and let first N → ∞ and then
m, k →∞. We observe that |fm(v)| ≤ C(m, k)v and∣∣∣∫ t

0

∫
Rd

%µfm,k(v)LAµ,bµψN dx ds
∣∣∣ ≤ C(m, k)

∫ t

0

∫
Rd

|LAµ,bµψN | dµs ds.

Since |LAµ,bµψ| ≤ N−2|aij
µ | |∂2

xixj
ψ|+N−1|bµ| |∇ψ|, we have

lim
N→∞

∫ t

0

∫
Rd

%µfm,k(v)LAµ,bµψN dx ds = 0.

In addition,∫ t

0

∫
Rd

〈Φ,∇ψN 〉 log
(
(k−1 ∨ v) ∧m

)
dσs ds

≤ (log k + logm) max |∇ψ|
∫ t

0

∫
Rd

(1 + |x|)−1|Φ| dσs ds.

Finally, note that∫
Rd

fm,k(v)%µ dx ≥ − log k
∫

v<k−1

v% dx+
∫

k−1<v<m
v log v% dx−

∫
k−1<v<m

v%µ dx.

It is clear that the first term on the right tends to zero as k → ∞, since it is dominated by
k−1 log k in absolute value. The second term converges to the integral of I{v<m}v log v%, because
the function v log v is bounded on the set {v < m}. The last term tends to −1 if k,m → ∞.
Recall that fm,k(1) = −1 + k−1. Thus, passing to the limit in N , m and k in (2.5) we obtain
the estimate ∫

Rd

v(x, t) log v(x, t)%µ(x, t) dx ≤ 1
2

∫ t

0

∫
Rd

|A−1/2
µ Φ|2 dσs ds.

Let us now consider case (b). Set ψN (x) = ζ(V (x)/N), where ζ ∈ C∞(R1), ζ ′ ≤ 0, ζ ′′ ≥ 0,
ζ(0) = 1 and ζ(t) = 0 if t > 1. We observe that

LAµ,bµψN = N−1ζ ′(V/N)LAµ,bµV +N−2ζ ′′(V/N)|A−1/2
µ ∇V |2.

Let us substitute in (2.5) the functions fm and ψN for f and ψ, respectively, and let first N →∞
and then m, k →∞.

Note that since %µ and v%µ = %σ are solutions to the respective Cauchy problems, for any
numbers α and β one has∫ t

0

∫
Rd

%µ(f(v)− αv − β)LAµ,bµψ dx ds

=
∫ t

0

∫
Rd

%µf(v)LAµ,bµψ dx ds− α

∫ t

0

∫
Rd

〈Φ,∇ψ〉%σ dx ds

+ β

∫
Rd

ψ(x)%µ(x, t) dx− β

∫
Rd

ψ dν

+ α

∫
Rd

ψ(x)v(x, t)%µ(x, t) dx− α

∫
Rd

ψ dν. (2.8)

Applying (2.8) with α = logm and β = k−1 we have

lim
N→∞

∫ t

0

∫
Rd

%µfm,k(v)LAµ,bµψN dx ds

≤ lim
N→∞

∫ t

0

∫
Rd

%µ

(
fm,k(v)− v logm− k−1

)
LAµ,bµψN dx ds

+ lim
N→∞

∫ t

0

∫
Rd

〈Φ,∇ψN 〉 log
(
(k−1 ∨ v) ∧m

)
dσs ds.

It is readily seen that

fm,k(v)− v logm− k−1 ≤ 0, |fm,k(v)− v logm− k−1| ≤ C(m, k)(1 + v)
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and

%µ(fm,k(v)− (v + k−1) log(m+ k−1))LAµ,bµψN ≤ C(ζ,m, k)MN−1(%µ + v%µ)V.

For every δ ∈ (0, 1) we have

N−1

∫ t

0

∫
V <N

V d(µ+ σ) ≤ δ

∫ t

0

∫
V <δN

1 d(µs + σs) ds+
∫ t

0

∫
δN<V <N

1 d(µs + σs) ds.

Therefore,

lim
N→∞

N−1

∫ t

0

∫
V <N

V d(µs + σs) ds ≤ 2tδ.

Since δ was arbitrary, we obtain that

lim
N→∞

N−1

∫ t

0

∫
V <N

V d(µs + σs) ds = 0

and

lim
N→∞

∫ t

0

∫
Rd

%µ(fm,k(v)− v logm− k−1)LAµ,bµψN dx dt ≤ 0.

Finally, note that 〈Φ,∇ψN 〉 = N−1ζ ′(V/N)〈Φ,∇V 〉 and for every δ ∈ (0, 1)

N−1

∫ t

0

∫
V <N

∣∣〈Φ,∇V 〉∣∣ dσs ds ≤ (N−1 + δ)
∫ t

0

∫
V <δN

∣∣〈Φ,∇V 〉∣∣(1 + V )−1 dσs ds

+ (N−1 + 1)
∫ t

0

∫
δN<V <N

∣∣〈Φ,∇V 〉∣∣(1 + V )−1 dσs ds.

As above, we conclude that

lim
N→∞

∫ t

0

∫
Rd

〈Φ,∇ψN 〉 log
(
(k−1 ∨ v) ∧m

)
dσs ds ≤ 0.

Thus, passing to the limit in N , m and k we obtain the desired bound. �

3. Corollaries and examples

Let us give effective conditions to verify our assumptions (a) or (b).

Corollary 3.1. Let Aµ = Aσ = A be uniformly bounded (and satisfy (H)). Suppose that for
some numbers γ1 > 0 and γ2 > 0 we have

〈bµ(x, t), x〉 ≤ γ1 + γ2|x|2.

Then

‖µt − σt‖2
TV ≤ 2

∫ t

0

∫
Rd

|A−1/2(bµ − bσ)|2 dσs ds.

Moreover, for any p ≥ 1 and K > 0 the following estimate holds:

‖(1 + |x|p)(µt − σt)‖2
TV

≤ 2K−1

(
1 + log

(∫
Rd

eK(1+|x|p)2 µt(dx)
)) ∫ t

0

∫
Rd

|A−1/2(bµ − bσ)|2 dσs ds.

Proof. Condition (b) in Theorem 1.1 is fulfilled with V (x) = |x|2, so we apply Corollary 1.2
with ϕ = 1 to obtain the first estimate. The second one is similar, we take V (x) = 1 + |x|2 and
ϕ(x) =

√
K(1 + |x|p). �

Example 3.2. In case Aµ = Aσ is uniformly bounded, condition (a) is fulfilled if |bµ(x)| ≤
C +C|x| or if |bµ(x)| ≤ C +C|x|m and |x|m−1 is integrable with respect to µ and σ. The latter
can be verified by using Lyapunov functions (see, e.g., [5], [8], and [14]). Also the assumption
that |bµ − bσ|2 is σ-integrable can be verified in these terms. Certainly, the case of bounded bµ
and bσ is covered by both conditions.
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Example 3.3. Let Lµ be the Ornstein–Uhlenbeck operator ∆u(x)− 〈x,∇u(x)〉 and let Lσ be
its perturbation by a first order term generated by a bounded Borel vector field b0 on Rd. Then

‖ϕ(µt − σt)‖2
TV ≤

(
1 + logα(t)

) ∫ t

0

∫
Rd

|b0|2 dσs ds.

In particular, for ϕ = 1 we obtain that

‖µt − σt‖2
TV ≤ 2

∫ t

0

∫
Rd

|b0|2 dσs ds.

This estimate extends to the infinite-dimensional case, which will be considered in a separate
paper along with some generalizations to locally unbounded drifts.

Remark 3.4. If Aµ is uniformly bounded and for some p ≥ 1, K > 0, γ1 > 0 and γ2 > 2pK we
have

〈bµ(x, t), x〉 ≤ γ1 − γ2|x|2p,

then for some C > 0 and all t ∈ [0, T ] one has by Gronwall’s inequality (see, e.g., [35])∫
Rd

eK|x|
2p
µt(dx) ≤ eCt + eCt

∫
Rd

eK|x|
2p
ν(dx).

Corollary 3.5. Let Aµ and Aσ satisfy (H). Suppose that there are numbers λ1, λ2 > 0 such that

λ1 · I ≤ Aµ(x, t) ≤ λ2 · I, λ1 · I ≤ Aσ(x, t) ≤ λ2 · I for all (x, t).

Assume also that |x|m ∈ L1(ν), ν = %0 dx, %0 ln %0 ∈ L1(Rd) and

〈bµ(x, t), x〉 ≤ γ1 + γ2|x|2, |bσ(x, t)| ≤ γ3 + γ4|x|m

for some numbers m, γi ≥ 0. Then

‖µt − σt‖2
TV ≤ C(T ) sup

x,t
‖Aµ −Aσ‖2 + C(T )

∫ t

0

∫
Rd

|A−1/2
µ (hµ − hσ)|2 dσs ds,

where hi
µ − hi

σ = biµ − biσ − ∂xj (a
ij
µ − aij

σ ) and the number C(T ) on the right depends on
T,m, λi, γi,

∫
|x|2m dν, and ‖%0 ln %0‖L1(Rd).

Proof. This follows easily from Corollary 3.1 combined with estimate (1.7) and Gronwall’s in-
equality. �

Remark 3.6. We observe that passing from (2.4) to (2.5) we have merely discarded the non-
negative term with |A1/2

µ ∇v|2. Keeping this term, we obtain the integrability of the function
|A1/2

µ ∇v|2/v with respect to µ (actually, already known from [10]), which means membership of
v in the corresponding weighted Sobolev class.

4. Applications

Suppose now that for every measure µ on Rd×(0, T ) given by a family (µt)t∈(0,T ) of probability
measures on Rd we are given a locally bounded Borel measurable mapping

b(µ, ·, ·) : Rd × [0, T ] → Rd.

Then we can consider the Cauchy problem for the nonlinear Fokker–Planck–Kolmogorov equa-
tion

∂tµ = ∆µ− div(b(µ, x, t)µ), µ|t=0 = ν. (4.1)
By a solution we mean a measure µ given by a family of probability measures (µt)t∈[0,T ] such
that the integral identity (1.3) is fulfilled. The linear case considered above corresponds to a
drift independent of measures. The previous notation bµ indicated only that µ was a solution
for a given drift, but now the drift may depend on the unknown solution, which makes our
equation nonlinear. For example, if in the one-dimensional case b(µ, x, t) = µ, then we obtain
the equation ∂tµ = µ′′ − (µ2)′ with a quadratic nonlinearity. One can also think that a solution
is a measure satisfying a linear equation, but its drift has been preassigned to this measure.
This opens a way of solving the nonlinear equation by means of a fixed point principle: for
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each drift bσ, we solve the linear equation with this drift and obtain its solution µ(σ), which, of
course, in general differs from σ. But in case of coincidence we obtain a solution to the nonlinear
equation. Certainly, nonlinear equations with nonconstant second order coefficients aij(µ, x, t)
can be considered similarly. The deal with A = I just for simplicity.

Below we use the notation Lµu = ∆u+ 〈b(µ),∇u〉.
Let C+[0, T ] denote the set of nonnegative continuous functions on [0, T ]. Suppose that

V ∈ C2(Rd) and V ≥ 1. For α ∈ C+[0, τ0] and τ ∈ (0, T ] we set

Mτ,α(V ) =
{
µ(dxdt) = µt(dx) dt : µt ≥ 0, µt(Rd) = 1, ∫

Rd

V (x)µt(dx) ≤ α(t), t ∈ [0, τ ]
}
.

If V (x) = eK|x|
2p

, then the corresponding set Mτ,α(V ) will be denoted by MK,p
τ,α .

Let ‖µ‖p,τ be the norm defined by

‖µ‖p,τ :=

√∫ τ

0
‖(1 + |x|p)µs‖2

TV ds

on the linear space of signed measures for which it is finite (to see that it is a norm, one can
use the triangle inequality for the total variation norm and the Cauchy inequality or apply the
fact that here we deal with the L2-norm of a mapping with values in a normed space). Note
that MK,p

τ,α is a complete metric space with respect to the metric generated by this norm, which
follows by the completeness of the space L2([0, τ ], X) of L2-mappings with values in a Banach
space X.

For shortening notation, we shall write occasionally b(µ) in place of b(µ, x, t).

Corollary 4.1. Let p ≥ 1, K > 0 and suppose that for every function α ∈ C+[0, T ] there exist
numbers γ1(α) > 0 and γ2(α) > 2pK such that for every τ ∈ (0, T ] and µ ∈MK,p

τ,α one has

〈b(µ, x, t), x〉 ≤ γ1(α)− γ2(α)|x|2p ∀ (x, t) ∈ Rd × [0, τ ].

Suppose also that

|b(µ, x, t)− b(σ, x, t)| ≤ CeK|x|
2p‖(1 + |x|p)(µt − σt)‖TV .

Then, for every probability measure ν on Rd such that eK|x|
2p ∈ L1(ν), there exist τ ∈ (0, T ] and

α ∈ C+[0, T ] such that a solution to the Cauchy problem (4.1) in the class of measures MK,p
τ,α

exists and is unique.

Proof. Let us define a mapping F : MK,p
τ,α →MK,p

τ,α by

µ = F (σ) ⇐⇒ ∂tµ = ∆µ− div(b(σ)µ), µ|t=0 = ν.

We have to find τ and α such that F will take values in MK,p
τ,α . Let

α(t) = e
(
1 +

∫
Rd

eK|x|
2p
ν(dx)

)
.

According to Remark 3.4 we have∫
Rd

eK|x|
2p
µt(dx) ≤ eqt + eqt

∫
Rd

eK|x|
2p
ν(dx),

where q > 0 depends only on γ1(α), γ2(α), p and K. Let τ < 1/q. Then∫
Rd

eK|x|
2p
µt(dx) ≤ α(t) ∀t ∈ [0, τ ]

and F takes values in MK,p
τ,α .

Applying Corollary 1.2 and Remark 3.4 we obtain that

‖(1 + |x|p)(µ1
t − µ2

t )‖2
TV ≤ C̃

∫ t

0

∫
Rd

|b(σ1)− b(σ2)|2 dσ ≤ Ĉ‖σ1 − σ2‖2
p,τ ,
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where Ĉ does not depend on τ , but only on T . Integrating in t over [0, τ ], we find that

‖F (σ1)− F (σ2)‖2
p,τ ≤ τĈ‖σ1 − σ2‖2

p,τ .

For τ < 1/Ĉ the mapping F is contracting, therefore, inMK,p
τ,α there exists a unique solution. �

Note that under different assumptions a solution to a nonlinear Vlasov equation was con-
structed in [22] by employing the contraction mapping theorem for the Kantorovich norm. The
existence of not necessarily unique solutions has been proved in [12] and [29] by using the
Schauder fixed point theorem.

Example 4.2. Let

b(µ, x, t) = β(x, t) +
∫

Rd

K(x, y)µt(dy),

where β : Rd × [0, T ] → Rd and K : Rd × Rd → Rd are Borel measurable locally bounded
mappings such that there exist numbers C > 0, 2p > q > 0, γ1 > 0, γ2 > 2pK for which

|K(x, y)| ≤ C(1 + |x|q)(1 + |y|p), 〈β(x, t), x〉 ≤ γ1 − γ2|x|2p.

Then all conditions of the above corollary are fulfilled.

Corollary 4.3. Suppose that there exists a Lyapunov function V ∈ C2(Rd) such that

lim
|x|→∞

V (x) = +∞

and for every τ ∈ (0, T ] and α ∈ C+[0, T ] the following conditions are fulfilled:
(i) for every µ ∈Mτ,α(V ) there exists a number M(α) such that LµV ≤M(α)V ;
(ii) for every µ and σ in Mτ,α(V ) one has b(µ) ∈ L2(σ) and, in addition, for every ball

U ⊂ Rd there exists a number C(U,α, τ) > 0 such that

sup
µ∈Mτ,α(V )

‖b(µ)‖L∞(U×[0,τ ]) ≤ C(U, τ, α);

(iii) if a sequence of measures {µn} and a measure µ in Mτ,α(V ) are such that

lim
n→∞

∫ τ

0
‖µn

t − µt‖2
TV dt = 0,

then the mappings b(µn) converge to b(µ) in L2(µ,Rd).
Then there exists a number τ ∈ (0, τ0] such that on the interval [0, τ ] the Cauchy problem

(4.1) has a solution.

Proof. Let us consider the mapping F from the proof of the previous corollary and choose as
above τ and α such that F : Mτ,α(V ) → Mτ,α(V ). By assumption, the drift b(σ) is bounded
on each set of the form U × [0, T ] (where U is a ball) uniformly in σ ∈ Mτ,α(V ). Therefore
(see [7]), for every ball U and every compact interval [τ1, τ2] ⊂ (0, τ), there exists a number
C̃(U,α, τ, τ1, τ2) bounding the Hölder norm (in both variables) of the density of the solution
µ = F (σ) on U × [τ1, τ2].

Let us consider the subset Lτ,α(V ) of the set Mτ,α(V ) consisting of measures given by Hölder
continuous densities % such that on every set of the form U× [τ1, τ2] the Hölder norm is bounded
by the number C̃(U,α, τ, τ1, τ2). We observe that the set Lτ,α(V ) is convex and compact in the
normed space of finite measures µ(dxdt) = µt(dx) dt on Rd × [0, T ] with

‖µ‖ =

√∫ τ

0
‖µt‖2

TV dt <∞.

Indeed, each sequence in this set contains a subsequence uniformly convergent on the sets of
the form U × [τ1, τ2] , where U is a ball in Rd and [τ1, τ2] ⊂ (0, T ), because this sequence
has uniformly bounded Hölder norms on such sets. Hence this subsequence converges in the
indicated norm. It remains to note that F maps Lτ,α(V ) into itself and by Corollary 1.2 is
continuous. Therefore, by the Schauder fixed point theorem F has a fixed point, i.e., a solution
to the Cauchy problem. �
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Let MT (V ) denote the set of nonnegative measures µ(dxdt) = µt(dx) dt such that

sup
t∈[0,T ]

∫
Rd

V dµt <∞.

Corollary 4.4. Let V > 1 and W =
√

log V . Suppose that for every measure µ in MT (V )
there exist a positive function Ψµ ∈ C2(Rd) and a number β(µ) such that lim

|x|→∞
Ψµ(x) = +∞,

|∇Ψµ|Ψ−1
µ V −1 is bounded and LµΨµ ≤ β(µ)Ψµ. Suppose also that there exists an increasing

continuous function G on [0,+∞) such that G(0) = 0 and

|b(µ, x, t)− b(σ, x, t)| ≤
√
V (x)G(‖W (µt − σt)‖TV ), ∀µ, σ, x, t.

If we have ∫
0+

du

G2(
√
u)

= +∞,

then the Cauchy problem (4.1) has at most one solution in the class MT (V ).

Proof. According to Theorem 1.1, for any two solutions µ and σ one has

‖W (µt − σt)‖2
TV ≤ C

∫ t

0
G2(‖W (µs − σs)‖TV ) ds.

Hence by Gronwall’s inequality ‖W (µt − σt)‖TV = 0. �

The estimate from Theorem 1.1 can also be used for proving the differentiability of solu-
tions to the Cauchy problem for linear Fokker–Planck–Kolmogorov equations with respect to a
parameter. For a different approach to this, see [32], [36] and the recent paper [15].

Corollary 4.5. Suppose that for every α ∈ [0, 1] there exists a mapping

b(α, · , · ) : Rd × [0, T ] → Rd

such that b is continuously differentiable in α and for every ball U there exists a number C(U)
such that

‖b(α, · , · )‖L∞(U×[0,T ]) + ‖∂αb(α, · , · )‖L∞(U×[0,T ]) ≤ C(U).
Suppose that for every α ∈ [0, 1] there exist numbers γ1(α) and γ2(α) such that

|b(α, x, t)| ≤ γ1(α) + γ2(α)|x| log(1 + |x|).
Let µα be a probability solution to the Cauchy problem (1.2) with b(α, x, t) and A = I. Suppose
that for every α0 ∈ [0, 1]

lim
r→0

∫ T

0

∫
Rd

∣∣∣b(α0 + r, x, t)− b(α0, x, t)
r

− ∂αb(α0, x, t)
∣∣∣2 dµα0

t dt = 0.

Then the density %(α, x, t) of the measure µα is differentiable in α.

Proof. Let us fix α0. For notational simplicity we write b(α) in place of b(α, x, t). Set

δr%(x, t) =
%(α0 + r, x, t)− %(α0, x, t)

r
.

Similarly we define δrb. By Theorem 1.1 we have

‖δr%( · , t)‖2
L1(Rd) ≤ 2

∫ t

0

∫
Rd

|δrb|2 dµα0
s ds.

Therefore, the quantity supt∈[0,T ] ‖δr%( · , t)‖L1(Rd) is uniformly bounded as r → 0. We observe
that δr% satisfies the equation

∂tδr% = ∆δr%− div
(
b(α0 + r)δr%

)
− div

(
δrb%α0

)
.

Since the coefficients b(α0 + r) and δrb%α0 are bounded on every set U × [0, T ] uniformly in
r > 0, according to the estimates from [7], the functions δr% have uniformly bounded Hölder
norms. Hence there exists a sequence rk → 0 for which δrk

% converges to some function w. This
function satisfies the Cauchy problem

∂tw = ∆w − div(bw)− div(%∂α0b), w|t=0 = 0.
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Moreover, w ∈ L∞([0, T ], L1(Rd)). It remains to show that a solution with such properties is
unique. The difference of two solutions satisfies the homogeneous equation

∂tw = ∆w − div(bw).

According to [13], a solution to this equation in the considered class is unique. �
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[11] V.I. Bogachev, M. Röckner, S.V. Shaposhnikov, Estimates of densities of stationary distributions
and transition probabilities of diffusion processes, Teor. Verojatn. i Primen. 52 (2) (2007) 240–270
(in Russian); English transl.: Theory Probab. Appl. 52 (2) (2008) 209–236.
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