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Abstract

This paper is about the structure of all entrance laws (in the sense of Dynkin)
for time-inhomogeneous Ornstein-Uhlenbeck processes with Lévy noise in Hilbert state
spaces. We identify the extremal entrance laws with finite weak first moments through
an explicit formula for their Fourier transforms, generalising corresponding results by
Dynkin for Wiener noise and nuclear state spaces. We then prove that an arbitrary
entrance law with finite weak first moments can be uniquely represented as an integral
over extremals. It is proved that this can be derived from Dynkin’s seminal work
”Sufficient statistics and extreme points” in Ann. Probab. 1978, which contains a
purely measure theoretic generalization of the classical analytic Krein-Milman and
Choquet Theorems. As an application, we obtain an easy uniqueness proof for T -
periodic entrance laws in the general periodic case. A number of further applications
to concrete cases are presented.

Keywords: entrance laws, evolution system of measures, Ornstein-Uhlenbeck processes, Lévy
processes, integral representations

Dedicated to the memory of E. B. Dynkin.

1 Introduction

Let H be a separable Hilbert space with Borel σ-algebra B(H). Consider a Markovian
family of transition probabilities π = (πs,t)s≤t, i.e.,

(i) πs,t(x, ·) is a probability measure on (H,B(H)) for each s ≤ t, x ∈ H.

(ii) πs,t(·, B) belongs to Bb(H) (:= the set of all real-valued bounded measurable functions
on H), for each s ≤ t, B ∈ B(H).
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(iii) πs,t(x,B) =
∫
H
πs,r(x, dy)πr,t(y,B), for each s ≤ r ≤ t, B ∈ B(H).

(iv) πs,s(x,B) = 1B(x), for each x ∈ H, B ∈ B(H).

Typical examples of such families are the transition probabilities of solutions to stochastic
differential equations, whose drift and diffusion coefficients are time-dependent, but not
random.

In this paper, we study entrance laws or evolution systems of measures corresponding to
such transition probabilities introduced by E. B. Dynkin in [6]. They are defined as families
of probability measures (νt)t∈R on H such that for all s ≤ t,∫

H

πs,t(x,B)νs(dx) = νt(B), s ≤ t, s, t ∈ R, B ∈ B(H)

or in short

νsπs,t = νt, s ≤ t.

For example, if π is time homogeneous, i.e., πs,t = π0,t−s, s ≤ t, and has an invariant measure
ν, then νt := ν, t ∈ R, is a particular case of an entrance law.
We denote the set of all probability π-entrance laws (νt)t∈R by K(π). Obviously, K(π) forms
a convex set and generically it consists of more than one element.

In his seminal work [6] E. B. Dynkin proved a purely measure theoretic analogue of the
corresponding well-known analytic results by Choquet or Krein and Milman, which states
that K(π) is a simplex, i.e., each element in K(π) has a unique integral representation in
terms of its extreme points. Therefore, to fully understand the structure of K(π), it suffices
to characterize the set of all extreme points denoted by Ke(π).

We concentrate on an important class of Markovian families of transition
probabilities (πs,t)s≤t, associated with time-inhomogeneous Ornstein-Uhlenbeck processes
with Lévy noise. In the time homogeneous case such Ornstein-Uhlenbeck processes “with
jumps” and their corresponding transition semigroups, called generalized Mehler semigroups,
have been studied intensively, see [4, 5, 10, 11, 12, 13, 15, 16, 17, 20, 22]. In this paper, how-
ever, we look at the more general time-inhomogeneous case:
Let (A(t),D(A(t)))t∈R be a family of linear operators on H with dense domains. Suppose
that the non-autonomous Cauchy problem

dX(t) = A(t)X(t)dt, X(s) = x ∈ D(A(s)), s ≤ t,

is well-posed in the mild sense and has a unique solution given by a strong evolution family
of linear operators (Us,t)s≤t on H, where here and below s, t run through all of R. Recall
that U = (Us,t)s≤t is a strong evolution family of bounded linear operators on H, if each
Us,t ∈ L(H), Ut,t = I for all t ∈ R, Ur,tUs,r = Us,t for all s ≤ r ≤ t and U is strongly
continuous on {(s, t) ∈ R2 | s ≤ t}. Here L(H) denotes the set of all bounded linear
operators on H.
We consider the following type of stochastic differential equations on H:

dX(t) = A(t)X(t)dt+ σ(t)dL(t), s ≤ t,
X(s) = x,

(1)
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where σ : R→ L(H) is strongly measurable and L is an H-valued Lévy process.
Let X(s, t, x), s ≤ t, be the mild solution of equation (1), i.e.

X(s, t, x) = Us,tx+

∫ t

s

Ur,tσ(r)dL(r), s ≤ t, x ∈ H. (2)

This mild solution is called time-inhomogeneous Ornstein-Uhlenbeck process with Lévy
noise. Then, the associated family of transition probabilities π = (πs,t)s≤t is called a time-
inhomogeneous (generalized) Mehler semigroup, which is defined by:

πs,t(x, dy) = P ◦X(s, t, x)−1 (dy) = µs,t(dy − Us,tx), s ≤ t, (3)

where µs,t is the distribution of the stochastic convolution
∫ t
s
Ur,tσ(r)dL(r).

Generalized Mehler semigroups were initially defined by Bogachev, Röckner, and Schmuland
[2] in the case of Wiener noise. This was extended to the non-Gaussian case in [8]. The time
inhomogeneous non-Gaussian case was studied in [9] and further generalized in [16].

The question whether (1) has a solution in the sense of (2) reduces to the question
whether the stochastic integral in (2) makes sense. In this respect we refer to [9], because
in this paper we shall solely concentrate on the Markovian transition probabilities in (3), so
only need the existence of the measures µs,t, s ≤ t.

Let K1(π) be the set of all elements of K(π) with finite first weak moments and let
K(U) denote the set of all κ = (κt)t∈R ⊂ H with Us,tκs = κt for all s ≤ t. Then the
main result of this paper (Theorem 3.8), states, that under wide conditions, there exists a
one-to-one correspondence between K(U) and the set K1

e(π) of all extremal points of K1(π).
Furthermore, we show that the extremal π-entrance laws have explicit characteristic functions
of the form (19) below. Moreover, we show that K1(π) is a simplex (see Theorem 3.8).

In the particular case of time-inhomogeneous Ornstein-Uhlenbeck processes with Wiener
noise, a similar result was obtained by E. B. Dynkin in [7] (see Theorem 5.1 in there),
however, with a family of nuclear spaces replacing our Hilbert space H and assuming that
such nuclear spaces exist satisfying all properties used for the proof. We generalize this result
to time-inhomogeneous Ornstein-Uhlenbeck processes with Lévy noise and implement this
in a Hilbert space setting giving explicit (checkable) wide conditions under which our result
holds.

This paper is organized as follows. In Section 2 we construct the time-
inhomogeneous Mehler semigroups by using their characteristic functions. Section 3 is the
main part of this paper, where the explicit formula for the characteristic functions of the
extremal π-entrance laws is derived. This result is stated in Theorem 3.8. In Section 4, we
will show how Theorem 3.8 can be applied to prove uniqueness of (T -periodic) π-entrance
laws (see Theorem 4.1). Section 5 is devoted to examples. .

2 Definitions, hypotheses and construction

Let us fix a real separable Hilbert space H with inner product 〈·, ·〉 and corresponding norm
‖·‖. For a probability measure µ on (H,B(H)), we recall that its characteristic function is
defined by

µ̂(a) =

∫
H

ei〈a,x〉µ(dx), a ∈ H.
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We recall that by a monotone class argument, every probability measure µ is uniquely de-
termined by its characteristic function µ̂.

We also recall that a function ϕ : H → C is called positive definite if for all n ∈
N, a1, ..., an ∈ H and c1, ..., cn ∈ C,

n∑
i,j=1

ϕ(ai − aj)cicj ≥ 0

and ϕ is called negative definite if ϕ(0) ≥ 0, ϕ(−a) = ϕ(a) for all a ∈ H and for all
n ∈ N, a1, ..., an ∈ H and c1, ..., cn ∈ C with

∑n
i=1 ci = 0, we have

n∑
i,j=1

ϕ(ai − aj)cicj ≤ 0.

The Sazonov topology is the topology on H generated by the set of seminorms a 7→ ‖Sa‖,
a ∈ H, where S ranges over the family of all Hilbert-Schmidt operators on H.

By the Minlos-Sazonov theorem (see e.g. Theorem 2.4, Chapter VI in [18] or Theo-
rem VI.1.1 in [23]), a complex-valued function ϕ on H, is the characteristic function of a
probability measure on (H,B(H)) if and only if

(i) ϕ(0) = 1,
(ii) ϕ is positive definite on H,
(iii) ϕ is Sazonov continuous on H.

Let L+
1 (H) denote the set of all non-negative symmetric trace class operators on H, which

is a Banach space with norm ‖·‖L+1 . By the Lévy-Khinchin formula, a function ϕ : H → C
is the characteristic function of an infinitely divisible probability measure µ (see Definition
4.1 in Chapter IV of [18]) on H if and only if ϕ(a) = exp(−λ(a)), a ∈ H, with

λ(a) = −i〈a, b〉+
1

2
〈a,Ra〉 −

∫
H

(
ei〈a,x〉 − 1− i〈a, x〉

1 + ‖x‖2
)
M(dx), (4)

where b ∈ H, R ∈ L+
1 (H) and M is a Lévy measure on H (see e.g. Theorem 4.10,

Chapter VI in [18]), i.e. M is a measure on (H,B(H)) such that M({0}) = 0 and∫
H

(
1∧‖x‖2

)
M(dx) <∞.

Now, let us recall the construction of a time-inhomogeneous Mehler semigroup by using
its characteristic function. First we should state our hypotheses to be valid for the entire
paper:

(H1) (Us,t)s≤t is a strong evolution family of uniformly bounded linear operators on H.

(H2) σ : R→ L(H) is strongly continuous and bounded in operator norm.

(H3) λ : H → C is a negative definite and continuous function on H with λ(0) = 0 and
λ(a) = λ(−a) for all a ∈ H.
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(H4)′ For all s ≤ t

a 7−→ exp

[
−
∫ t

s

λ(σ∗(r)U∗r,ta)dr

]
, a ∈ H,

is Sazonov continuous, where U∗ denotes the adjoint of U ∈ L(H).

Note that (H3) does not imply the representation (4) for λ, unless we assume that λ is
Sazonov continuous.

(H1)− (H3) imply that, for all s ≤ t, the function in (H4)′ is positive definite (see [1]).
Therefore, by the Minlos-Sazonov Theorem, they are characteristic functions of probability
measures µs,t on H, i.e. we have

µ̂s,t(a) =

∫
H

ei〈a,x〉µs,t(dx) = e−
∫ t
s λ(σ

∗(r)U∗r,ta)dr, a ∈ H. (5)

If (H1)− (H3) hold and λ is itself Sazonov continuous, then (H4)′ holds automatically. This
is easy to see as follows (see [8], [9]). By (4) we have for all a ∈ H

exp

(
−
∫ t
s
λ(σ∗(r)U∗r,ta)dr

)

= exp

{∫ t
s
i〈a, Ur,tσ(r)b〉dr −

∫ t
s

1
2
〈σ∗(r)U∗r,ta,Rσ∗(r)U∗r,ta〉dr

+
∫ t
s

∫
H

(
ei〈a,Ur,tσ(r)x〉 − 1− i〈a,Ur,tσ(r)x〉

1+‖x‖2
)
M(dx)dr

}

= exp

(
i〈a, bs,t〉 −

1

2
〈Rs,ta, a〉+

∫
H

(
ei〈a,x〉 − 1− i〈a, x〉

1 + ‖x‖2
)
Ms,t(dx)

)
, (6)

where

Rs,t =

∫ t

s

Ur,tσ(r)Rσ∗(r)U∗r,tdr

and

bs,t =
∫ t
s
Ur,tσ(r)bdr

+
∫ t
s

∫
H
Ur,tσ(r)x

(
1

1+‖Ur,tσ(r)x‖2 −
1

1+‖x‖2

)
M(dx)dr

are well-defined Bochner integrals with values in L+
1 (H) and H, respectively. In this formula,

Ms,t is a Lévy measure on H, defined by:

Ms,t(B) :=

∫ t

s

M

(
(Ur,tσ(r)) −1(B \ {0})

)
dr, B ∈ B(H). (7)

From representation (7) we immediately deduce by standard arguments that (H4)′ holds
(see e.g. [8]). However, as said before, we do not require that λ is Sazonov, but we only
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assume (H1)− (H3), (H4)′, resp. (H4) below, in the entire paper.

Let πs,t(x, dy) be the translation of µs,t(dy) by Us,tx, namely

πs,t(x, dy) = µs,t(dy − Us,tx), s ≤ t, x ∈ H. (8)

We now show that the family π = (πs,t)s≤t is a Markovian family of transition probabilities.
By construction, all properties are obviously satisfied and only condition (iii) needs to be
checked. By Proposition 2.2 in [16], (iii) is valid for π if and only if

µs,t = (µs,r ◦ U −1
r,t ) ∗ µr,t, s ≤ r ≤ t, (9)

where ∗ is the convolution operator on P(H) (:=the set of all probability measures on
(H,B(H))). In terms of characteristic functions, (9) is equivalent to:

µ̂s,t(a) = µ̂s,r(U
∗
r,ta)µ̂r,t(a), a ∈ H, s ≤ r ≤ t. (10)

But,

µ̂s,r(U
∗
r,ta)µ̂r,t(a) = e−

∫ r
s λ
(
σ∗(`)U∗`,r(U

∗
r,ta)
)
d` e−

∫ t
r λ
(
σ∗(`)U∗`,ta

)
d`

= e−
∫ r
s λ
(
σ∗(`)(Ur,tU`,r)

∗a
)
d` e−

∫ t
r λ
(
σ∗(`)U∗`,ta

)
d`

= e−
∫ r
s λ
(
σ∗(`)U∗`,ta

)
d` e−

∫ t
r λ
(
σ∗(`)U∗`,ta

)
d`

= e−
∫ t
s λ
(
σ∗(`)U∗`,ta

)
d`

= µ̂s,t(a).

Hence, π = (πs,t)s≤t is a Markovian family of transition probabilities and as we mentioned
before, it is called the time-inhomogeneous generalized Mehler semigroup. The characteristic
function of πs,t(x, dy) is for x ∈ H given by∫

ei〈a,y〉πs,t(x, dy) = ei〈a,Us,tx〉−
∫ t
s λ(σ

∗(r)U∗r,ta)dr, a ∈ H. (11)

Remark 2.1. Conditions (H3) and (H4)′ are crucial to ensure that the probability measures
µs,t, s ≤ t, exist, hence that the time-inhomogeneous generalized Mehler semigroup in (8)
exists.

3 Extremal entrance laws

Let ν = (νt)t∈R ⊂P(H) be such that for all t ∈ R, a ∈ H∫
H

|〈a, x〉| νt(dx) <∞, t ∈ R. (12)

Since for each t ∈ R, νt is a probability, hence a finite measure, the uniform boundedness
principle implies that the linear functional a 7→

∫
H
〈a, x〉νt(dx) is continuous on H. Hence,

by the Riesz representation theorem there exists κt ∈ H such that∫
H

〈a, x〉νt(dx) = 〈a, κt〉, a ∈ H, t ∈ R, (13)
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i.e. κt is the mean of νt.
We recall

K(π) :=

{
ν := (νt)t∈R ∈P(H)R

∣∣∣∣ ∫
H

πs,t(x,B)νs(dx) = νt(B), s ≤ t, s, t ∈ R

, B ∈ B(H)

}
and

K(U) :=
{
κ = (κt)t∈R ∈ HR | Us,tκs = κt, s ≤ t, s, t ∈ R

}
.

Remark 3.1. (i) Clearly, by the strong continuity of Us,t, s ≤ t, we have K(U) ⊂ C(R;H).
(ii) Let ν = (νt)t∈R ∈ K(π) and a ∈ H such that there exist tn ∈ R, n ∈ N, tn+1 ≤ tn,
limn→∞ tn = −∞ and ∫

H

|〈a, x〉|νtn(dx) <∞, ∀n ∈ N.

Then obviously ν satisfies (12).
(iii) Obviously,

(νt)t∈R ∈ K(π)⇐⇒ ν̂t(a) = ν̂s(U
∗
s,ta) µ̂s,t(a), ∀s ≤ t, a ∈ H.

We also recall that K1(π) is the set of all ν = (νt)t∈R ∈ K(π) which have finite weak first
moments, i.e. satisfy (12) for all t ∈ R, a ∈ H.
The map ν → κ from K1(π) to HR is denoted by p. This p(ν) is just the mean of ν and is
called the projection of ν in [7].

Note that (H1)− (H3), (H4)′ are still in force. In addition, from now on we also assume
the following hypotheses:

(H4) For all t ∈ R, r 7−→ λ(σ∗(r)U∗r,ta) is Lebesgue integrable on (−∞, t) for all a ∈ H and

a 7−→ exp

[
−
∫ t

−∞
λ(σ∗(r)U∗r,ta)dr

]
, a ∈ H, (14)

is Sazonov continuous for all t ∈ R. Furthermore, the probability measure µ−∞,t defined
by

µ̂−∞,t(a) := e−
∫ t
−∞ λ(σ∗(r)U∗r,ta)dr, a ∈ H,

has finite weak first moments for all t ∈ R.

(H5) λ = λ.

Remark 3.2. (i) Obviously, (H4) is stronger than (H4)′. Conditions (H4) and (H5) are
cruical to ensure that K1(π) is not empty (see Lemma 3.3 and its proof below). Since λ itself
is not assumed to be Sazonov continuous, cases with cylindrical Levy processes in (1) (in
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particular, cylindrical Wiener processes with e.g. λ(a) = ‖a‖2, a ∈ H) are covered provided
Us,t, s ≤ t, are Hilbert-Schmidt (see [11, Section 8] for an example, namely the stochatic
heat equation with cylindrical Levy noise).
(ii) Suppose that λ from (H3) is Sazonov continuous, or equivalently λ has a representation
as in (4). Then obviously (H5) holds if and only if

λ(a) =
1

2
〈a,Ra〉+

∫
H

(1− cos〈a, x〉)M(dx), (15)

for all a ∈ H. Furthermore, M is symmetric in this case.
(iii) Suppose that (H1)−(H3), (H5) hold. Now we formulate additional (checkable) assump-
tions on λ from (H3) and (Us,t)s≤t from (H2), which imply that (H4) holds. So, about λ we
additionally assume:

(λ.1) λ is Sazonov continuous, or equivalently λ has a representation as in (15) with corre-
sponding Lévy measure M .

(λ.2) ∫
{‖·‖>1}

‖x‖ M(dx) <∞.

Furthermore, assume on (Us,t)s≤t from (H1):

(U.1) There exist c, ω ∈ (0,∞) such that

‖Us,t‖L(H) ≤ ce−ω(t−s), ∀s ≤ t.

Then by the same arguments as those implying the representation (6), hence the Sazonov
continuity of the function in (6) with −∞ replacing s, show that the function in (14) has the
representation (6) with −∞ replacing s, and hence is Sazonov continuous.
The only difference is that, we need to check that b−∞,t is well-defined. This, however,
immediately follows from conditions (U.1) and (λ.2), since for all r ≤ t, x ∈ H and Cσ :=
c supr∈R‖σ(r)‖L(H)

‖Ur,tσ(r)x‖ ‖x‖2 + ‖Ur,tσ(r)x‖2

(1 + ‖Ur,tσ(r)x‖2)(1 + ‖x‖2)

≤ ‖Ur,tσ(r)x‖ (1 + e−2ω(t−r)C2
σ)

‖x‖2

1 + ‖x‖2

≤ ‖x‖ e−ω(t−r)Cσ(1 + C2
σ) (‖x‖2 ∧ 1).

Hence by the Minlos-Sazonov Theorem, the measures µ−∞,t, t ∈ R, in (H4) exist.
To obtain that (H4) holds, it remains to show each µ−∞,t has finite weak first moments.

To show this, it suffixes to consider the case R = 0, because if not, we just have to convolute
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with N (0, R), i.e. the centered Gaussian measure with covariance operator R, which has all
strong moments, so the convolution, in particular, will preserve finite weak first moments.

Since for a ∈ H the Lévy measure of µ−∞,t ◦ 〈a, ·〉−1 is M−∞,t ◦ 〈a, ·〉−1 (with M−∞,t
defined as in (7) with s = −∞), it follows by conditions (λ.2) and (U.1) that each µ−∞,t has
finite first weak moments, so (H4) holds. Indeed, by [21], Theorem 25.3, we only need to
check that ∫

{|·|>1}
|s|
(
M−∞,t ◦ 〈a, ·〉−1

)
(ds) <∞.

But by the definition of M−∞,t, the left hand side is equal to∫ t

−∞

∫
{|〈σ∗(r)U∗r,ta,·〉|>1}

∣∣〈σ∗(r)U∗r,ta, x〉∣∣M(dx)dr

≤
∫ t

−∞

∫
{‖·‖≤1}

〈σ∗(r)U∗r,ta, x〉2M(dx)dr

+

∫ t

−∞

∫
{‖·‖>1}

Cσe
−ω(t−r)‖a‖‖x‖M(dx)dr

≤ 1

2ω
C2
σ ‖a‖2

∫
{‖·‖≤1}

‖x‖2M(dx) +
1

ω
Cσ ‖a‖

∫
{‖·‖>1}

‖x‖M(dx),

which is finite by (λ.2).

In Section 5, we shall give explicit examples for λ satisfying (H3), (H5), (λ.1) and (λ.2),
hence (H4).

Lemma 3.3. (µ−∞,t)t∈R ∈ K1(π) with κt = 0 for all t ∈ R.

Proof. Analogous to the proof of (10), and κt = 0 for all t ∈ R, follows, since by (H5) the
Fourier transform µ̂−∞,t is real, hence µ−∞,t is symmetric (i.e. µ−∞,t(dx) = µ−∞,t(−dx) for
all t ∈ R).

Lemma 3.4. We have for all s ≤ t and a ∈ H:

(i) ∫
H

|〈a, y〉| µs,t(dy) <∞ and

∫
H

〈a, y〉 µs,t(dy) = 0.

(ii) ∫
H

|〈a, y〉| πs,t(x, dy) <∞ and

∫
H

〈a, y〉 πs,t(x, dy) = 〈a, Us,tx〉 (16)

for all x ∈ H.
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Proof. (i): For all x ∈ H, we have∫
H

|〈a, y〉| µs,t(dy) ≤
∫
H

|〈a, y + Us,tx〉| µs,t(dy) +

∫
H

|〈a, Us,tx〉| µs,t(dy).

By integrating over x with respect to µ−∞,s and using Lemma 3.3 as well as (H4)′, we get∫
H

|〈a, y〉| µs,t(dy) ≤
∫
H

∫
H

|〈a, y〉| πs,t(x, dy) µ−∞,s(dx) +

∫
H

|〈a, Us,tx〉| µ−∞,s(dx)

=

∫
H

|〈a, y〉| µ−∞,t(dy) +

∫
H

|〈U∗s,ta, x〉| µ−∞,s(dx) <∞

Thus, (i) holds, because each µs,t is symmetric.
(ii) immediately follows from (i).

Proposition 3.5. Assume (H1)− (H5). Then for each ν ∈ K1(π), κ := p(ν) ∈ K(U).

Proof. Let a ∈ H. We need to check that
∫
H
〈a, x〉νt(dx) = 〈a, Us,tκs〉 for all s ≤ t. By the

definition of K(π), we get∫
H

〈a, x〉νt(dx) =

∫
H

(∫
H

〈a, y〉πs,t(x, dy)

)
νs(dx).

Lemma 3.4 implies∫
H

(∫
H

〈a, y〉πs,t(x, dy)

)
νs(dx) =

∫
H

〈a, Us,tx〉νs(dx)

=

∫
H

〈U∗s,ta, x〉νs(dx)

= 〈U∗s,ta, κs〉 = 〈a, Us,tκs〉,

which completes the proof.

As a part of our main result (see Theorem 3.8 below) we shall obtain that K1(π) is a
simplex, i.e. that each element in K1(π) has a unique representation as an integral over its
extreme points K1

e(π). The next result is a first step in this direction and in its proof we
also identify the difficulty why this is not a trivial consequence of E. B. Dynkin’s result in
[6], which as recalled in the introduction, states that K(π) is a simplex.

Proposition 3.6. (i) K1
e(π) ⊂ Ke(π).

(ii) Let A ⊂ H be a countable Q-vector space such that A is dense in H (in the norm
topology). Let H0 := span A be its R-linear span. Define

KH0
e (π) :=

{
ν = (νt)t∈R ∈ Ke(π)

∣∣∣∣ ∫
H

|〈a, x〉| νt(dx) <∞, ∀t ∈ R, a ∈ H0

}
.

Then
(a) KH0

e (π) =
{
ν = (νt)t∈R ∈ Ke(π)

∣∣ ∫
H
|〈a, x〉| ν−n(dx) <∞, ∀n ∈ N, a ∈ A

}
.

(b) Let ν = (νt)t∈R ∈ K1(π). Then ν has a unique representation as an integral

ν =

∫
KH0
e (π)

ν̃ ξν(dν̃)

over KH0
e (π).
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Proof. (i): Let ν ∈ K1
e(π) and ν(1), ν(2) ∈ K(π) with ν(1) 6= ν(2) such that ν = αν(1) + (1 −

α)ν(2) for some α ∈ (0, 1). Then ν(1) ≤ 1
α
ν and ν(2) ≤ 1

1−αν. Hence ν(1), ν(2) ∈ K1(π).

Therefore, ν(1) = ν(2), which means that ν ∈ Ke(π).
(ii): (a) follows by linearity and Remark 3.1 (ii), so let us prove (b). As mentioned before,
by [6], K(π) is a simplex, so each element in K(π) has a unique representation as an integral
over its extreme points Ke(π). More precisely, consider the σ-algebra A on Ke(π), generated
by all maps

Ke(π) 3 (νs)s∈R 7→ νt ∈P(H), t ∈ R,

where P(H) is equipped with the σ-algebra generated by the weak topology. Then for each
ν = (νt)t∈R ∈ K(π), there exists a unique probability measure ξν on (Ke(π),A ) such that

ν =

∫
Ke(π)

ν̃ ξν(dν̃). (17)

Let ν ∈ K1(π). Then for all t ∈ R, a ∈ H

∞ >

∫
H

|〈a, x〉| νt(dx) =

∫
Ke(π)

∫
H

|〈a, x〉| ν̃t(dx) ξν(dν̃),

which yields ∫
H

|〈a, x〉| ν̃t(dx) <∞,

for ξν −a.e. ν̃ ∈ Ke(π). Here initially the ξν-zero set depends on t and a. But specializing to
t = −n, n ∈ N, and a ∈ H0 by assertion (ii) part (a) it can be chosen independent of t ∈ R
and a ∈ H0. Hence

ξν
(
KH0
e (π)

)
= 1

and (17) holds with KH0
e (π) replacing Ke(π), which is the assertion, since the uniqueness

is obvious from the uniqueness of the representation of ν over Ke(π). So, (ii) part (b) is
proved.

Now we are able to prove the main result of this paper. Before, we need to define the
Markov processes associated with π.
For a given ν ∈ K(π), one can construct a unique probability measure Pν on the space
Ω := HR with σ-algebra F := σ(Xt | t ∈ R) such that for all t1 ≤ · · · ≤ tn

Pν
[
Xt1 ∈ dx1, , ..., Xtn ∈ dxn

]
:= πtn−1,tn(xn−1, dxn) · · · πt1,t2(x1, dx2)νt1(dx1),

where Xt : Ω → H is the canonical coordinate process. Obviously, ν 7→ Pν is then convex
and injective, since

Pν ◦X−1t = νt, t ∈ R,

i.e. νt, t ∈ R, are the one dimensional marginals of Pν . Furthermore, this Pν is Markovian,
i.e.,

Pν [Xt ∈ dz | Fs] = πs,t(Xs, dz) ∀t, s ∈ R, t > s, (18)

where Fs := σ(Xr | r ≤ s). Define the convex set M(π) := {Pν | ν ∈ K(π)}.
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Lemma 3.7. Let P ∈M(π). Then P is an extremal point of M(π) if and only if P(Γ ) = 1
or 0 for every Γ ∈ F−∞ :=

⋂
s∈RFs.

Proof. See the proof of Lemma 2.4. in [19].

Theorem 3.8. Let (πs,t)s≤t be the time-inhomogeneous (generalized) Mehler semigroup on
H as above. Assume that (H1)− (H5) hold.
a) Let κ = (κt)t∈R ∈ K(U). Then

νκ(dy) :=
(
µ−∞,t(dy − κt)

)
t∈R ∈ K

1
e(π),

and p(νκ) = κ. Here, µ−∞,t(dy − κt) denotes the image measure of µ−∞,t under the map
H 3 x 7→ x+ κt, t ∈ R.
b) The map

K(U) 3 κ = (κt)t∈R 7−→ νκ ∈ K1
e(π)

is a bijection.
c) K1(π) is a simplex, i.e. each ν ∈ K1(π) has a unique representation as an integral

ν =

∫
K1
e(π)

ν̃ ξν(dν̃)

over its extreme points K1
e(π).

Proof. The following claims (i), (ii) and (iii) together with Proposition 3.6 prove the theo-
rem.

Claim (i) νκ ∈ K1(π).

Proof: Let κ ∈ K(π), t ∈ R. Then∫
H

ei〈a,y〉νκt (dy) = ei〈a,κt〉−
∫ t
−∞ λ(σ∗(r)U∗r,ta)dr, ∀t ∈ R, a ∈ H. (19)

Since µ−∞,t has finite weak first moments, so has νκt . It remains to prove that (νκt )t∈R belongs
to K(π). But for all a ∈ H

̂(νκs πs,t )(a) =

∫
H

(∫
H

ei〈a,y〉πs,t(x, dy)

)
νκs (dx)

=

∫
H

ei〈a,Us,tx〉−
∫ t
s λ
(
σ∗(r)U∗r,ta

)
drνκs (dx)

=

∫
H

ei〈U
∗
s,ta,x〉νκs (dx). e−

∫ t
s λ
(
σ∗(r)U∗r,ta

)
dr

= ei〈U
∗
s,ta,κs〉−

∫ s
−∞ λ

(
σ∗(r)U∗r,s(U

∗
s,ta)
)
dr. e−

∫ t
s λ
(
σ∗(r)U∗r,ta

)
dr

= ei〈a,Us,tκs〉−
∫ s
−∞ λ

(
σ∗(r) (Us,tUr,s)∗a

)
dr−

∫ t
s λ
(
σ∗(r)U∗r,ta

)
dr

= ei〈a,κt〉−
∫ s
−∞ λ

(
σ∗(r)U∗r,ta

)
dr−

∫ t
s λ
(
σ∗(r)U∗r,ta

)
dr

= ei〈a,κt〉−
∫ t
−∞ λ

(
σ∗(r)U∗r,ta

)
dr

= ν̂κt (a).

Hence Claim (i) is proved.
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Claim (ii) Let KH0
e (π) be defined as in Proposition 3.6 and let ν ∈ KH0

e (π). Then ν ∈ K1
e(π).

Define κ := p(ν) (∈ K(U) by Proposition 3.5). Then

ν̂t(a) = ei〈a,κt〉−
∫ t
−∞ λ(σ∗(r)U∗r,ta)dr, ∀a ∈ H, t ∈ R. (20)

In particular, p |K1
e(π)

: K1
e(π)→ K(U) is injective.

Proof: Since injective convex mappings map extreme points to extreme points, Lemma 3.7
implies that Pν is trivial on F−∞. Thus, for every t ∈ R and every measurable function f
on H with Eν |f(Xt)| <∞, we have∫

H
f(y)νt(dy) = Eνf(Xt)

= Eν
[
f(Xt)|F−∞

]
= limn→∞ Eν

[
f(Xt)|F−n

]
= limn→∞

∫
H
f(y)π−n,t(X−n, dy), Pν − a.s..

(21)

Note that in the third line we applied the backwards Martingale convergence theorem to the
process Eν{f(Xt)|F−n}, −n ≤ t, which is a martingale. Furthermore, in the fourth line we
used the Markov property (18) of our process.
Now, (21) and (11), imply for every a ∈ H that Pν − a.s.

ν̂t(a) = lim
n→∞

∫
H

ei〈a,y〉π−n,t(X−n, dy)

= lim
n→∞

ei〈U
∗
−n,ta,X−n〉−

∫ t
−n λ(σ

∗(r)U∗r,ta)dr

= lim
n→∞

ei〈U
∗
−n,ta,X−n〉 e−

∫ t
−∞ λ(σ∗(r)U∗r,ta)dr. (22)

And finally, by applying (16) and (21), because ν ∈ KH0
e (π), we obtain that for all t ∈ R,

a ∈ H0

〈U∗−n,ta,X−n〉 =

∫
H

〈a, y〉π−n,t(X−n, dy)
n→∞−−−→

∫
H

〈a, y〉νt(dy) = 〈a, κt〉, Pν − a.s..

This and (22) imply that ∀t ∈ R, a ∈ H0

ν̂t(a) = ei
∫
H〈a,y〉νt(dy) e−

∫ t
−∞ λ(σ∗(r)U∗r,ta)dr. (23)

We now show that (22) and (23) imply that ν ∈ K1
e(π) and that (20) holds. So, fix t ∈

R, n ∈ N, and let {ei | i ∈ N} ⊂ H0 be an orthonormal basis of H. Define Pn : H → Hn :=
span{e1, · · · , en} and

ν̊nt := νt ◦ P−1n , µ̊n−∞,t := µ−∞,t ◦ P−1n .

We extend these measures on B(Hn) by zero to B(H), i.e. we define for B ∈ B(H)

νnt (B) := ν̊nt (B ∩Hn),

µn−∞,t(B) := µ̊n−∞,t(B ∩Hn).
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Note that then for any f : H → C bounded, B(H)-measurable∫
H

f dνnt =

∫
H

f ◦ Pn dνt

and likewise for µn−∞,t. Then, in particular, we have for all a ∈ H

ν̂nt (a) = ν̂t(Pna), µ̂n−∞,t(a) = µ̂−∞,t(Pna).

Thus (23) implies

ν̂nt (a) = ei〈a,κ
n
t 〉 µ̂n−∞,t(a), ∀a ∈ H, (24)

where

κnt :=

∫
H

y νnt (dy) =

∫
Hn

y ν̊nt (dy) ∈ Hn ⊂ H.

Letting n→∞ in (24), we obtain that for all a ∈ H

F (a) := lim
n→∞

ei〈a,κ
n
t 〉 =

ν̂t(a)

µ̂−∞,t(a)

exists, is positive definite and Sazonov continuous with F (0) = 0. Hence, by the Minlos-
Sazonov Theorem, there exists a probability measure µ on B(H) such that

µ̂(a) = F (a), a ∈ H,

and, thus, by [23], Chap. IV, Proposition 3.3, the sequence of Dirac measures δκnt , n ∈ N,
converges weakly to µ with respect to the weak topology on H. From this, it is easy to show
that, there exists κt ∈ H such that κnt ⇀ κt (i.e. weakly) in H as n → ∞. Indeed, for
a ∈ H, let χ ∈ Cb(R), χN = 1 on [−N,N ], χN = 0 on R \ (−(N + 1), N + 1). Then

lim
n→∞

χN(〈a, κnt 〉) =

∫
H

χN(〈a, y〉) µ(dy).

But the right hand side is strictly positive for N large enough. Hence 〈a, κnt 〉, n ∈ N, is
bounded in R. But since for all f ∈ Cb(R)

lim
n→∞

f(〈a, κnt 〉) =

∫
f(〈a, y〉) µ(dy),

all accumulation points of 〈a, κnt 〉, n ∈ N, must coincide. Consequently,

lim
n→∞
〈a, κnt 〉 exists for all a ∈ H,

as a linear functional in a ∈ H, so by the uniform boundedness principle must be continuous
on H. Hence, there exists κt ∈ H such that κnt ⇀ κt in H as n → ∞. Taking n → ∞ in
(24), we therefore obtain that for all a ∈ H

ν̂t(a) = ei〈a,κt〉 e−
∫ t
−∞ λ(σ∗(r)U∗r,ta)dr,
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i.e.

νt = δκt ∗ µ−∞,t.

So, for all a ∈ H ∫
H

|〈a, y〉| νt(dy) ≤ |〈a, κt〉|+
∫
H

|〈a, y〉| µ−∞,t(dy) <∞

and ∫
H

|〈a, y〉| νt(dy) = 〈a, κt〉,

therefore ν ∈ K1
e(π) and

p(ν) = κ := (κt)t∈R.

By Proposition 3.5, we have that κ ∈ K(U). Hence Claim (ii) is proved.

Claim (iii) Let κ ∈ K(U). Then νκ ∈ K1
e(π). In particular, p |K1

e(π)
: K1

e(π) → K(U) is
onto.

Proof: By Claim (i) we have νκ ∈ K1(π), and thus by Lemma 3.7 and Claim (ii)

νκ =

∫
K1
e(π)

ν̃ ξνκ(dν̃)

=

∫
K1
e(π)

νp(ν̃) ξνκ(dν̃)

=

∫
K(U)

ν κ̃ η(dκ̃),

where η := ξνκ ◦ p−1, i.e. the image measure of ξνκ under p on K(U) ⊂ C(R;H) (see
Remark 3.1 (i)) equipped with the Borel σ-algebra inherited from C(R;H) and where we
have adapted the notation from the proof of Proposition 3.6.
We claim that η = δκ.
Let t ∈ R. Then for all a ∈ H

ei〈a,κt〉 · µ̂−∞,t(a) = ν̂κt (a) =

∫
K(U)

ν̂ κ̃t (a) η(dκ̃) =

∫
K(U)

ei〈a,κ̃t〉µ̂−∞,t(a) η(dκ̃).

Since µ̂−∞,t(a) 6= 0 for any a ∈ H, we deduce that

δ̂κt(a) = ei〈a,κt〉 =

∫
K(U)

ei〈a,κ̃t〉 η(dκ̃) =

∫
H

ei〈a,h〉 (η ◦ pr−1t )(dh) = ̂(η ◦ pr−1t )(a),

where prt : K(U)→ H with prt(κ) = κt for every t ∈ R. Therefore, η is a measure on K(U)
such that δκt = η ◦ pr−1t .
For t1 < · · · < tn, let prt1,··· ,tn : K(U)→ H{t1,··· ,tn} denotes the map (κt)t∈R 7−→ (κt1 , · · · , κtn).
As above it follows that

η ◦ pr−1t1,··· ,tn = δκt1 ⊗ · · · ⊗ δκtn .

Then a monotone class argument implies that η = δκ.
Hence, also Claim (iii) is proved.
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4 An application: uniqueness of the entrance law as-

sociated with T -periodic time-inhomogeneous (gen-

eralized) Mehler semigroups

We recall that U = (Us,t)s≤t is called T -periodic if Us+T,t+T = Us,t for every s ≤ t.

Theorem 4.1. Assume that (H1)−(H5) hold and that U and σ are T -periodic. Furthermore,
suppose there exist c, ω ∈ (0,∞) such that ‖U(s, t)‖L(H) ≤ c e−ω(t−s) for every s ≤ t. Then,
(µ−∞,t)t∈R defined in (H4) is the unique T -periodic π-entrance law in K1(π).

Proof. Let ν ∈ K1(π), ν T -periodic. Then by Proposition 3.6 for all a ∈ H, t ∈ R

ν̂t(a) =

∫
K1
e(π)

ei〈a,κ̃t〉 η(dκ̃) e−
∫ t
−∞ λ(σ∗(r)U∗r,ta)dr

=

∫
H

ei〈a,h〉ηt(dh) µ̂−∞,t(a), (25)

where ηt := η ◦ pr−1t and η, prt are as defined in the proof of Claim (iii) in the proof of
Theorem 3.8. Since νt+T = νt and µ−∞,t+T = µ−∞,t for all t ∈ R, it follows from (25) that

η̂t+T (a) = ν̂t+T (a)
1

̂µ−∞,t+T (a)
= ν̂t(a)

1

µ̂−∞,t(a)
= η̂t(a), ∀a ∈ H.

Hence ηt+T = ηt for all t ∈ R and therefore by (25) for all t ∈ R, a ∈ H and n ∈ N

ν̂t(a) = η̂t+nT (a) µ̂−∞,t(a). (26)

But by definition of ηt, we have for all n ∈ N

η̂t+nT (a) =

∫
K1
e(π)

ei〈a,κ̃t+nT 〉η(dκ̃)

=

∫
K1
e(π)

ei〈a,Ut,t+nT κ̃t〉η(dκ̃)

=

∫
H

ei〈a,Ut−nT,th〉ηt(dh)

by the T -periodicity of (Us,t)s≤t.
Hence by (26) and Lebesque’s dominated convergence theorem for all a ∈ H, t ∈ R

ν̂t(a) = lim
n→∞

∫
H

ei〈a,Ut−nT,th〉ηt(dh) · µ̂−∞,t(a) = µ̂−∞,t(a),

since limn→∞ Ut−nT,th = 0 for all h ∈ H. Therefore, νt = µ−∞,t for all t ∈ R and Theorem
4.1 is proved.

Remark 4.2. For a related result under a different set of assumptions we refer to [9, The-
orem 4.11]. Our proof is, however, considerably shorter than that in [9]. In the special
Gaussian case (i.e. M in (4) is the zero measure) the above theorem was first proved in [3].
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5 Examples

In this section, we are going to present two type of examples. First, we consider strong
evolution families (Us,t)s≤t as in (H1) with bounded generators and a class of functions λ
as in (H3), but being additionally Sazonov continuous. Second, we consider (Us,t)s≤t with
unbounded generators and a concrete λ as in (H3), which merely satisfies (H4). In both
cases, for simplicity we restrict to time homogeneous evolution families, but easy modifica-
tions then also lead to examples in the non-time homogeneous case.
So, let H be a separable real Hilbert space as in the previous section and we fix σ : R→ L(H)
as in (H2). We start with the following lemma, which will be very useful below. The proof
is standard, but we include it for the reader’s convenience.

Lemma 5.1. Let ϑ be a finite positive measure on (H,B(H)) and α ∈ [1, 2] such that∫
H

|〈a, x〉|α ϑ(dx) <∞, ∀a ∈ H.

Then the map

H 3 a 7→
∫
H

|〈a, x〉|α ϑ(dx)

is Sazonov continuous.

Proof. Since α ∈ [1, 2], it obviously suffices to prove Sazonov continuity in a = 0. So, let
ε ∈ (0, 1) and Rε ∈ (0,∞) such that∫

{‖·‖>Rε}
|〈a, x〉|α ϑ(dx) <

ε

2
.

Recall that the covariance operator Sε ∈ L(H) defined by∫
{‖·‖≤Rε}

〈a1, x〉 〈a2, x〉 ϑ(dx) = 〈Sεa1, a2〉, a1, a2 ∈ H,

is symmetric, positive definite and of trace class. Hence, if

a ∈
{
x ∈ H | ‖S

1
2
ε x‖ < (

ε

2
)

2
αϑ(H)

α−2
α

}
,

we have ∫
H

|〈a, x〉|α ϑ(dx) ≤ ϑ(H)
2−α
2

(∫
{‖·‖≤Rε}

〈a, x〉2 ϑ(dx)

)α/2
+
ε

2
< ε.

Since S
1
2
ε is Hilbert-Schmidt, the assertion follows.
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5.1 Bounded generators

Let ω ∈ (0,∞) and for s, t ∈ R, s ≤ t,

Us,t := e−ω(t−s)IH , (27)

where IH denotes the identity map on H. Then obviously (Us,t)s≤t is an evolution family
satisfying (H1) and A(t) := −ω eωtIH , t ∈ R, are the corresponding generators. Furthermore,
clearly (Us,t)s≤t is strictly contractive, i.e. it satisfies condition (U.1) in Remark 3.2 (iii).
We shall now define a class of λ : H → C satisfying (H3), (H5) and (λ.1), (λ.2) in Remark
3.2 (iii), which hence by the latter satisfy (H4) and our main result Theorem 3.8 applies to
such λ and (Us,t)s≤t as in (27).
Let ϑ be as in Lemma 5.1 with α ∈ (1, 2). Define

λ(a) :=

∫
H

|〈a, x〉|α ϑ(dx), a ∈ H. (28)

Since s 7→ |s|α is negative definite, λ is negative definite. Therefore, since it is Sazonov
continuous by Lemma 5.1, hence norm-continuous, it clearly satisfies (H3), (H5) from Section
3 as well as (λ.1) from Remark 3.2 (iii). So, it remains to prove (λ.2).
To this end, we first note that by [14], Proposition 6.4.5 and its proof, we know that∫

H

‖x‖α dϑ(x) <∞

and that the Lévy measure M of λ is given by

M(B) := c−1α

∫
H

∫ ∞
0

1B(tx) t−1−α dt ϑ(dx), B ∈ B(H),

where cα ∈ (0,∞). Hence∫
{‖·‖>1}

‖x‖ M(dx) = c−1α

∫
H

∫ ∞
1
‖x‖

‖x‖ t−αdt ϑ(dx)

= c−1α (1− α)−1
∫
H

‖x‖α ϑ(dx) <∞.

Remark 5.2. (i) We note that for α ∈ (1, 2) and any symmetric, positive definite S ∈ L(H)
of trace class, the function

λ(a) := ‖S
1
2 a‖α, a ∈ H,

is of type (28). Indeed, let N (0,S) be the centered Gaussian measure on (H,B(H)) with
covariance operator S. Then an elementary calculation shows that for some constant cα ∈
(0,∞)

λ(a) = cα

∫
H

|〈a, x〉|α N (0,S)(dx), ∀a ∈ H.

(ii) For our simple evolution family (Us,t)s≤t defined in (27), we obviously have that

K(U) = {R 3 s 7→ e−ωsx | x ∈ H},

i.e. K(U) is isomorphic to all of H.
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5.2 Unbounded generators

Let (A,D(A)) be a self-adjoint operator on H such that for some ω ∈ (0,∞)

〈Ax, x〉 ≤ −ω ‖x‖2, ∀x ∈ H,

and that (−A)−1 is trace class. Let {ei | i ∈ N} be an eigenbasis of A and −λi, λi ∈ (0,∞),
be the corresponding eigenvalues, with λi numbered in increasing order. Hence,

∞∑
i=1

1

λi
<∞. (29)

Example 5.3. Let H := L2
(
(0, 1), dξ

)
with dξ =Lebesgue measure and A = ∆ with D(A) :=

H1
0

(
(0, 1)

)
∩H2

(
(0, 1)

)
, where the latter are the standard Sobolev spaces in L2

(
(0, 1), dξ

)
of

order 1 and 2, respectively, where the subscript zero refers to Dirichlet boundary conditions.

Let

Ut := etA, t > 0.

Then

Us,t := Ut−s = e(t−s)A, s ≤ t, (30)

defines an evolution family satisfying (H1) and (U.1) from Remark 3.2 (iii).
Fix α ∈ (1, 2) and define

λ(a) := ‖a‖α, a ∈ H.

Then obviously λ satisfies (H3) and (H5).
Now we are going to prove that (H4) also holds: Fix t ∈ R. Then, we have by changing
variables

Ψt(a) :=

∫ t

−∞
λ
(
σ∗(r) Ut−ra

)
dr =

∫ ∞
0

λ
(
σ∗(t− r) Ura

)
dr, ∀a ∈ H,

where the last integral is finite, since for a 6= 0 by (H2) it is up to a constant bounded by∫ ∞
0

( ∞∑
i=1

〈Ura, ei〉2
)α/2

dr =

∫ ∞
0

( ∞∑
i=1

〈a, e−λirei〉2
)α/2

dr

= ‖a‖α
∫ ∞
0

e−ωαrdr

= ‖a‖α 1

ωα
.

We are now going to construct a finite measure ϑ on (H,B(H)) such that

Ψt(a) =

∫
H

|〈a, x〉|αϑ(dx), ∀a ∈ H,
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which by Lemma 5.1 implies that Ψt is Sazonov continuous, which implies the first require-
ment in (H4).
Clearly, by (29) also the linear operators Ur = erA, r ∈ (0,∞), are all symmetric, positive
definite and of trace class, hence so are the operators

Sr,t :=
(
ρ(r)

)− 2
α Ur σ(t− s) σ∗(t− s) Ur, r ∈ (0,∞),

where ρ ∈ L1
(
[0,∞), dr

)
is a fixed function, ρ > 0.

Therefore, for r ∈ (0,∞), we can consider N (0,Sr,t), i.e. the centered Gaussian measure on
(H,B(H)) with covariance operator Sr,t. Then, as in Remark 5.2 (i)

‖σ∗(t− r) Ura‖α = cα ρ(r)

∫
H

|〈a, x〉|α N (0,Sr,t)(dx), ∀a ∈ H

for some cα ∈ (0,∞). Now define

ϑ(dx) := cα

∫ ∞
0

ρ(r) N (0,Sr,t)(dx) dr,

which is a finite measure on (H,B(H)) and we have

Ψt(a) =

∫
H

|〈a, x〉|α ϑ(dx), ∀a ∈ H.

Hence, the measure µ−∞,t from (H4) exists. It remains to show that it has weak first
moments.
To this end, we again use [14], Proposition 6.4.5 and its proof, to conclude that, for the Lévy
measure Mt of Ψt, we have ∫

{‖·‖>1}
‖x‖ Mt(dx) <∞. (31)

Let a ∈ H. Then since the Lévy measure of µ−∞,t ◦ 〈a, ·〉−1 is Mt ◦ 〈a, ·〉−1, by [21], Theorem
25.3, we only need to show that∫

{|·|>1}
|s|
(
Mt ◦ 〈a, ·〉−1

)
(ds) <∞. (32)

But the left hand side of (32) is equal to∫
{|〈a,·〉|>1}

|〈a, x〉| Mt(dx)

≤
∫
{‖·‖≤1}

|〈a, x〉|2 Mt(dx) +

∫
{‖·‖≥1}

|〈a, x〉| Mt(dx) <∞,

since Mt is a Lévy measure and because of (31).

Remark 5.4. For U = (Us,t)s≤t defined in (30), the set K(U) seems difficult to describe
explicitly. It is, however, again very big, because e.g. for every i ∈ N

κs := e−λis ei, s ∈ R,

is obviously an element in K(U), and hence all linear combinations thereof.
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