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Abstract
In this paper we obtain restricted Markov uniqueness of the generator and uniqueness of

martingale (probabilistically weak) solutions for the stochastic quantization problem in both
the finite and infinite volume case by clarifying the precise relation between the solutions to the
stochastic quantization problem obtained by the Dirichlet form approach and those obtained in
[DD03] and in [MW15]. We prove that the solution X−Z, where X is obtained by the Dirichlet
form approach in [AR91] and Z is the corresponding O-U process, satisfies the corresponding
shifted equation (see (1.4) below). Moreover, we obtain that the infinite volume p(Φ)2 quantum
field is an invariant measure for the X0 = Y +Z, where Y is the unique solution to the shifted
equation.
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1 Introduction

In this paper we analyze stochastic quantization equations on T2 and on R2: So, let H = L2(T2)
or L2(R2) and consider

dX =(AX− : p(X) :)dt+ dW (t),

X(0) =z,
(1.1)

∗Research supported in part by NSFC (No.11301026, No.11401019), Key Lab of Random Complex Structures
and Data Science, Chinese Academy of Sciences (Grant No. 2008DP173182) and DFG through IRTG 1132 and
CRC 701

†Corresponding author
‡E-mail address: roeckner@math.uni-bielefeld.de(M. Röckner), zhurongchan@126.com(R. C. Zhu), zhuxi-
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where A : D(A) ⊂ H → H is the linear operator

Aϕ = ∆ϕ− ϕ, p(ϕ) =
2N∑
n=1

nanϕ
n−1,

where a2N > 0 and : p(ϕ) : means the renormalization of p(ϕ) whose definition we will give in
Section 3 and Section 4. W is a cylindrical Ft-Wiener process defined on a probability space
(Ω,F , P ) with a normal filtration (Ft)t≥0.

This equation arises in stochastic quantization of Euclidean quantum field theory. Heuris-
tically, (1.1) has an invariant measure ν defined as

ν(dϕ) = ce−2
∫
:q(ϕ):dxµ(dϕ),

where q(ϕ) =
∑2N

n=0 anϕ
n, c is a normalization constant and µ is the Gaussian free field. ν is

called the p(Φ)2-quantum field. There have been many approaches to the problem of giving a
meaning to the above heuristic measure for the two dimensional case and the three dimensional
case (see [GRS75], [GlJ86] and references therein). In [PW81] Parisi and Wu proposed a
program for Euclidean quantum field theory of getting Gibbs states of classical statistical
mechanics as limiting distributions of stochastic processes, especially as solutions to non-linear
stochastic differential equations. Then one can use the stochastic differential equations to study
the properties of the Gibbs states. This procedure is called stochastic field quantization (see
[JLM85]). The p(Φ)2 model is the simplest non-trivial Euclidean quantum field (see [GlJ86]
and the reference therein). The issue of the stochastic quantization of the p(Φ)2 model is to
solve the equation (1.1).

In [AR91] weak solutions to (1.1) have been constructed by using the Dirichlet form approach
in the finite and infinite volume case. However, Markov uniqueness for the corresponding
generator (L,D) has been an open problem for many years. Here D is the ”minimal” domain
contained in the domain of the generator. Consider a measure ν on a Banach space E. The
problem of Markov uniqueness is whether there exists exactly one negative definite self-adjoint
operator Lν on L2(E; ν) which extends (L,D) and is a Dirichlet operator, i.e. Tt := etL

ν

is sub-Markovian. The latter property is equivalent to the quadratic form given by Lν on
L2(E; ν) being a Dirichlet form. Then Markov uniqueness is equivalent to the fact that there
exists exactly one Dirichlet form whose generator extends (L,D). This problem is completely
solved in the finite dimensional case in [RZ94] where Markov uniqueness was obtained under
the most general conditions. The situation is quite different in the infinite dimensional case.
We refer to [ARZ93a], [ARZ93b], [LR98], [KR07], [AKR12] for the best results in this direction
known so far. In these papers Markov uniqueness has been obtained for a modified stochastic
quantization equation

dX =(−∆+ 1)−ε(AX− : p(X) :)dt+ (−∆+ 1)−
ε
2dW (t),

with ε > 0. However, Markov uniqueness for the case that ε = 0 is still an open problem.
In this paper we study Markov uniqueness for the operator associated with the stochastic

quantization problem in both the finite volume case and the infinite volume case and obtain
the restricted Markov uniqueness of the operator, i.e. there exists exactly one quasi-regular
Dirichlet form whose generator extends (L,D) (see Theorem 3.12, Theorem 4.10).
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This problem is also related to the uniqueness of the martingale problem for (L,D), i.e.
whether there exists exactly one (up to ν-equivalence defined in Section 3) strong Markov
process solving the martingale problem for (L,D), and the uniqueness of probabilistically weak
solution to (1.1). In this paper we also obtain that there exists exactly one (up to ν-equivalence
defined in Section 3) martingale solution (probabilistically weak solution) to (1.1) (see Theorem
3.12 and Theorem 4.10).

We obtain Markov uniqueness in the restricted sense and the uniqueness of the martingale
solution to (1.1) by studying the relations between the solutions to the stochastic quantization
problem obtained by the Dirichlet form approach and those obtained in [DD03] and in [MW15].
In fact, (1.1) has been studied by many authors: In [MR99] the stationary solution to (1.1)
has also been considered in their general theory of martinglae solutions for stochastic partial
differential equaitons; In [DD03] Da Prato and Debussche define the Wick powers of solutions
to the stochastic heat equation in the paths space and study a shifted equation instead of
(1.1) in the finite volume case. They split the unknown X into two parts: X = Y1 + Z1,
where Z1(t) =

∫ t
−∞ e(t−s)AdW (s). Observe that Y1 is much smoother than X and that in the

stationary case

: Xk :=
k∑
l=0

C l
kY

l
1 : Zk−l

1 :, (1.2)

with C l
k = k!

l!(k−l)! and : Zk−l
1 : being the Wick product, which motivate them to consider the

following shifted equation:

dY1
dt

=AY1 −
2N∑
k=1

kak

k−1∑
l=0

C l
k−1Y

l
1 : Zk−1−l

1 :

Y1(0) =z − Z1(0),

(1.3)

and obtain local existence and uniqueness of the solution Y1 to (1.3) by a fixed point argument.
By using the invariant measure ν they obtain a global solution to (1.1) by defining X =
Y1+Z starting from almost every starting point. In [MW15] the authors consider the following
equation with N = 2 instead of (1.3):

dY

dt
=AY −

2N∑
k=1

kak

k−1∑
l=0

C l
k−1Y

l : Z̄k−1−l :

Y (0) =0,

(1.4)

where Z̄(t) = etAz +
∫ t
0
e(t−s)AdW (s) and : Z̄k−1−l : will be defined later. We call (1.4) the

shifted equation for short. They obtain global existence and uniqueness of the solution to (1.4)
directly from every starting point both in the finite and infinite volume case. Actually, (1.3) is
equivalent to (1.4). For the solution Y1 to (1.3), defining Y (t) := Y1(t) + etAZ1(0) − etAz, we
can easily check that Y is a solution to (1.4) by using the binomial formula (3.1) below.

It is natural to ask whether the unique solution obtained by the methods in [DD03] and
[MW15] satisfies the original equation (1.1) and has ν as an invariant measure. Furthermore,
it is a priori far from being clear what is the relation between the solutions obtained by the
Dirichlet form approach and the solution obtained in [DD03] and in [MW15]. In this paper
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we study this problem and we prove that X − Z̄, where X is obtained by the Dirichlet form
approach in [AR91] and Z̄(t) =

∫ t
0
e(t−s)AdW (s)+ etAz, also satisfies the shifted equation (1.4).

We emphasize that it is not obvious that X − Z̄ satisfies the shifted equation (1.4) since (1.2)
only holds in the stationary case and we do not know whether the marginal distribution of the
solution is absolutely continuous with respect to ν. However, by using Dirichlet form theory
we can solve this problem and obtain the desired results (see Theorem 3.9 and Theorem 4.8).

Moreover, we obtain that the p(Φ)2 quantum field ν is an invariant measure for the process
X0 = Y + Z̄, where Y is the unique solution to the shifted equation (1.4). As a consequence, we
deduce uniqueness of martingale solutions (probabilistically weak solution) to (1.1) and Markov
uniqueness for the corresponding generator in the restricted sense in both the finite and infinite
volume case (see Theorem 3.12 and Theorem 4.10). We also emphasize that the p(Φ)2 field is
not absolutely continuous with respect to Gaussian measure in the infinite volume case. This
makes it more difficulty to analyze the support of ν. Here we use [GlJ86] and techniques from
Dirichlet form theory to solve this problem (see Theorem 4.7).

We also want to mention that recently there has arisen a renewed interest in SPDEs related
to such problems, particularly in connection with Hairer’s theory of regularity structures [Hai14]
and related work by Imkeller, Gubinelli, Perkowski in [GIP13]. By using these theories one can
obtain local existence and uniqueness of solution to (1.1) in the three dimensional case (see
[Hai14, CC13]). In a forthcoming paper we also prove ergodicity of the solution to (1.4) in the
finite volume case. To the best of our knowledge, this is still an open problem in the periodic
case (i.e. on the torus). In the infinte volume case this has been studied in [AKR97].

This paper is organized as follows: In Section 2 we collect some results related to Besov
and weighted Besov spaces. In Section 3 we consider the finite volume case and prove that
the solution obtained by Dirichlet form theory satisfies the shifted equation. Moreover, we
obtain Markov uniqueness in the restricted sense and uniqueness of the martingale solutions
(probabilistically weak solution) to (1.1). In Section 4 we prove that all the results also hold
in the infinite volume case.

2 Preliminary

In the following we recall the definitions of Besov spaces. For a general introduction to the the-
ory we refer to [BCD11, Tri78, Tri06]. First we introduce the following notations. Throughout
the paper, we use the notation a . b if there exists a constant c > 0 such that a ≤ cb, and
we write a w b if a . b and b . a. The space of real valued infinitely differentiable functions
of compact support is denoted by D(Rd) or D. The space of Schwartz functions is denoted
by S(Rd). Its dual, the space of tempered distributions, is denoted by S ′(Rd). The Fourier
transform and the inverse Fourier transform are denoted by F and F−1, respectively.

Let χ, θ ∈ D be nonnegative radial functions on Rd, such that
i. the support of χ is contained in a ball and the support of θ is contained in an annulus;
ii. χ(z) +

∑
j≥0 θ(2

−jz) = 1 for all z ∈ Rd.
iii. supp(χ)∩ supp(θ(2−j·)) = ∅ for j ≥ 1 and suppθ(2−i·)∩ suppθ(2−j·) = ∅ for |i− j| > 1.
We call such (χ, θ) dyadic partition of unity, and for the existence of dyadic partitions of

unity we refer to [BCD11, Proposition 2.10]. The Littlewood-Paley blocks are now defined as

∆−1u = F−1(χFu) ∆ju = F−1(θ(2−j·)Fu).
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Besov spaces
For α ∈ R, p, q ∈ [1,∞], u ∈ D we define

∥u∥Bα
p,q

:= (
∑
j≥−1

(2jα∥∆ju∥Lp)q)1/q,

with the usual interpretation as l∞ norm in case q = ∞. The Besov space Bα
p,q consists of

the completion of D with respect to this norm and the Hölder-Besov space Cα is given by
Cα(Rd) = Bα

∞,∞(Rd). For p, q ∈ [1,∞),

Bα
p,q(Rd) = {u ∈ S ′(Rd) : ∥u∥Bα

p,q
<∞}.

Cα(Rd)  {u ∈ S ′(Rd) : ∥u∥Cα(Rd) <∞}.

We point out that everything above and everything that follows can be applied to distributions
on the torus (see [S85, SW71]). More precisely, let S ′(Td) be the space of distributions on Td.
Besov spaces on the torus with general indices p, q ∈ [1,∞] are defined as the completion of D
with respect to the norm

∥u∥Bα
p,q(Td) := (

∑
j≥−1

(2jα∥∆ju∥Lp(Td))
q)1/q,

and the Hölder-Besov space Cα is given by Cα = Bα
∞,∞(Td). We write ∥·∥α instead of ∥·∥Bα

∞,∞(Td)

in the following for simplicity. For p, q ∈ [1,∞)

Bα
p,q(Td) = {u ∈ S ′(Td) : ∥u∥Bα

p,q(Td) <∞}.

Cα  {u ∈ S ′(Td) : ∥u∥α <∞}. (2.1)

Here we choose Besov spaces as completions of smooth functions with compact support,
which ensures that the Besov spaces are separable which has a lot of advantages for our analysis
below.

Weighted Besov spaces
In the following we recall the definitions and some properties of weighted Besov spaces,

which are used for analyzing the regularity of the distributions in the infinite volume case. For
a general introduction to these theories we refer to [Tri06].

For σ ∈ R we let w(x) = (1 + |x|2)−σ/2, x ∈ Rd. For α ∈ R, p, q ∈ [1,∞], we define the
weighted Besov norm for u ∈ D,

∥u∥B̂α,σ
p,q

:= (
∑
j≥−1

(2jα∥∆ju∥Lp(wdx))
q)1/q,

with the usual interpretation as l∞ norm in case q = ∞ and ∥f∥L∞(wdx) = ∥wf∥L∞(dx). The

Besov space B̂α,σp,q (Rd) consists of the completion of D with respect to this norm. For p, q ∈
[1,∞),

B̂α,σp,q (Rd) = {u ∈ S ′(Rd) : ∥u∥B̂α,σ
p,q

<∞}.
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By [Tri83, Theorem 9.2.1] we can view functions on the torus Td as periodic functions on Rd
and have that for α ∈ R, σ > 0, f ∈ Cα

∥f∥α w ∥f∥B̂α,σ
∞,∞

. (2.2)

Wavelet analysis
We will also use wavelet analysis to determine the regularity of a distribution in a Besov

space. In the following we briefly summarize wavelet analysis below and we refer to work of
Meyer [Mey92], Daubechies [Dau88] and [Tri06] for more details on wavelet analysis. For every
r > 0, there exists a compactly supported function φ ∈ Cr(R) such that:

1. We have ⟨φ(·), φ(· − k)⟩ = δk,0 for every k ∈ Z;
2. There exist ãk, k ∈ Z with only finitely many non-zero values, and such that φ(x) =∑
k∈Z ãkφ(2x− k) for every x ∈ R;
3. For every polynomial P of degree at most r and for every x ∈ R,

∑
k∈Z

∫
P (y)φ(y −

k)dyφ(x− k) = P (x).
Given such a function φ, we define for every x ∈ Rd the recentered and rescaled function

φnx as follows
φnx(y) := Πd

i=12
n
2φ(2n(yi − xi)).

Observe that this rescaling preserves the L2-norm. We let Vn be the subspace of L2(Rd) gener-
ated by {φnx : x ∈ Λn}, where

Λn := {(2nk1, ..., 2nkd) : ki ∈ Z}.

An important property of wavelets is the existence of a finite set Ψ of compactly supported
functions in Cr such that, for every n ≥ 0, the orthogonal complement of Vn inside Vn+1 is
given by the linear span of all the ψnx , x ∈ Λn, ψ ∈ Ψ. For every n ≥ 0

{φnx, x ∈ Λn} ∪ {ψmx : m ≥ n, ψ ∈ Ψ, x ∈ Λm},

forms an orthonormal basis of L2(Rd). This wavelet analysis allows one to identify a countable
collection of conditions that determine the regularity of a distribution.

Setting Ψ⋆ = Ψ ∪ {φ}, by [Tri06, Theorem 6.15] we know that for p ∈ (1,∞), α ∈ R,
f ∈ B̂α,σp,p

∥f∥pB̂α,σ
p,p

.
∞∑
n=0

2n(α−d/p+1)p
∑
ψ∈Ψ⋆

∑
x∈Λn

|⟨f, ψnx⟩|pw(x), (2.3)

and

∥f∥pB̂α,σ
∞,∞

.
∞∑
n=0

2n(α+1)p
∑
ψ∈Ψ⋆

∑
x∈Λn

|⟨f, ψnx⟩|pw(x)p. (2.4)

Estimates on the torus
In this part we give estimates on the torus for later use. Set Λ = (−A) 1

2 . For s ≥ 0, p ∈
[1,+∞] we use Hs

p to denote the subspace of Lp(Td), consisting of all f which can be written
in the form f = Λ−sg, g ∈ Lp(Td) and the Hs

p norm of f is defined to be the Lp norm of g, i.e.
∥f∥Hs

p
:= ∥Λsf∥Lp(Td).

6



To study (1.1) in the finite volume case, we will need several important properties of Besov
spaces on the torus and we recall the following Besov embedding theorems on the torus first
(c.f. [Tri78, Theorem 4.6.1], [GIP13, Lemma 41]):

Lemma 2.1 (i) Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞, and let α ∈ R. Then Bα
p1,q1

(Td)
is continuously embedded in B

α−d(1/p1−1/p2)
p2,q2 (Td).

(ii) Let s ≥ 0, 1 < p <∞, ϵ > 0. Then Hs+ϵ
p ⊂ Bs

p,1(Td) ⊂ Bs
1,1(Td).

(iii) Let 1 ≤ p1 ≤ p2 < ∞ and let α ∈ R. Then Hα
p1

is continuously embedded in

H
α−d(1/p1−1/p2)
p2 .
Here ⊂ means that the embedding is continuous and dense.

We recall the following Schauder estimates, i.e. the smoothing effect of the heat flow, for
later use.

Lemma 2.2 ([GIP13, Lemma 47]) (i) Let u ∈ Bα
p,q(Td) for some α ∈ R, p, q ∈ [1,∞]. Then

for every δ ≥ 0
∥etAu∥Bα+δ

p,q (Td) . t−δ/2∥u∥Bα
p,q(Td).

(ii) Let α ≤ β ∈ R. Then
∥(1− etA)u∥α . t

β−α
2 ∥u∥β.

One can extend the multiplication on suitable Besov spaces and also have the duality prop-
erties of Besov spaces from [Tri78, Chapter 4]:

Lemma 2.3 (i) The bilinear map (u; v) 7→ uv extends to a continuous map from Cα ×Cβ to
Cα∧β if and only if α+ β > 0.

(ii) Let α ∈ (0, 1), p, q ∈ [1,∞], p′ and q′ be their conjugate exponents, respectively. Then
the mapping (u; v) 7→

∫
uvdx extends to a continuous bilinear form on Bα

p,q(Td)×B−α
p′,q′(Td).

We recall the following interpolation inequality and multiplicative inequality for the elements
in Hs

p , which is required for the a-priori estimate in the proof of Theorem 3.10: (cf. [Tri78,
Theorem 4.3.1], [Re95, Lemma A.4], [RZZ15a, Lemma 2.1]):

Lemma 2.4 (i) Suppose that s ∈ (0, 1) and p ∈ (1,∞). Then for u ∈ H1
p

∥u∥Hs
p
. ∥u∥1−s

Lp(Td)
∥u∥sH1

p
.

(ii) Suppose that s > 0 and p ∈ (1,∞). If u, v ∈ C∞(T2) then

∥Λs(uv)∥Lp(Td) . ∥u∥Lp1(Td)∥Λsv∥Lp2 (Td) + ∥v∥Lp3 (Td)∥Λsu∥Lp4 (Td),

with pi ∈ (1,∞], i = 1, ..., 4 such that

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

Estimates on the whole space
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We also collect some important properties for the weighted Besov spaces from [MW15] and
[Tri06], which are parallel to those for Besov spaces on the torus. The Schauder estimate takes
the following form:

Lemma 2.5 ([MW15, Propositions 3.11, 3.12]) (i) Let u ∈ B̂α,σp,q for some α ∈ R, p, q ∈ [1,∞].
Then we have for every δ ≥ 0

∥etAu∥B̂α+δ,σ
p,q

. t−δ/2∥u∥B̂α,σ
p,q
.

(ii) Let α ≤ β ∈ R be such that β − α ≤ 2, σ > 0 and p, q ∈ [1,∞]. Then for u ∈ B̂β,σp,q

∥(1− etA)u∥B̂α,σ
p,q

. t
β−α
2 ∥u∥B̂β,σ

p,q
.

The multiplicative structure and Besov embedding theorems can be written as follows:

Lemma 2.6 ([MW15, Corollary 3.19, Corollary 3.21]) (1) For α > 0, p1, p2, p, q ∈ [1,∞], 1
p1
+

1
p2

= 1
p
, the bilinear map (u; v) 7→ uv extends to a continuous map from B̂α,σp1,q × B̂α,σp2,q to B̂α,σp,q .

(2) For α < 0, α + β > 0, p1, p2, p, q ∈ [1,∞], 1
p1

+ 1
p2

= 1
p
, the bilinear map (u; v) 7→ uv

extends to a continuous map from B̂α,σp1,q × B̂β,σp2,q to B̂α,σp,q .
(3) (Besov embedding [Tri06, Chapter 6]) Let α1 ≤ α2, 1 ≤ p1 ≤ p2 ≤ ∞, and 1 ≤ q1 ≤

q2 ≤ ∞. Then
B̂α2,σ
p1,q1

⊂ B̂α1,σ
p1,q1

; B̂α1,σ
p1,q1

⊂ B̂α1,σ
p1,q2

.

If σ > d, then
B̂α1,σ
p2,q1

⊂ B̂α1,σ
p1,q1

.

Here ⊂ means that the embedding is continuous and dense.

3 Finite volume case

In this section we consider (1.1) on the torus T2.

3.1 Wick power

In the following we define the Wick powers. First we define Wick powers on L2(S ′(T2), µ) with
µ = N(0, 1

2
(−∆+ 1)−1) := N(0, C).

Wick powers on L2(S ′(T2), µ)
In fact µ is a measure supported on S ′(T2). We have the well-known (Wiener-Itô) chaos

decomposition

L2(S ′(T2), µ) =
⊕
n≥0

Hn.

Now we define the Wick powers by using approximations: for ϕ ∈ S ′(T2) define

ϕε := ρε ∗ ϕ,
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with ρε an approximate delta function on R2 given by

ρε(x) = ε−2ρ(
x

ε
) ∈ D,

∫
ρ = 1.

Here the convolution means that we view ϕ as a periodic distribution in S ′(R2) and do convo-
lution on R2. For every n ∈ N we set

: ϕnε :C := cn/2ε Pn(c
−1/2
ε ϕε),

where Pn, n = 0, 1, ..., are the Hermite polynomials defined by the formula

Pn(x) =

[n/2]∑
j=0

(−1)j
n!

(n− 2j)!j!2j
xn−2j,

and cε =
∫
ϕ2
εµ(dϕ) =

1
2

∫ ∫
Ḡ(x− y)ρε(y)dyρε(x)dx = ∥K̄ε∥2L2(R×T2). Then

: ϕnε :C∈ Hn.

Here and in the following Ḡ is the Green function associated with −A on T2 and K̄(t, x) is the
heat kernel associated with A on T2 and K̄ε = K̄ ∗ ρε, where ∗ means convolution in space and
we view K̄ as a periodic function on R2.

For Hermite polynomial Pn we have that for s, t ∈ R

Pn(s+ t) =
n∑

m=0

Cm
n Pm(s)t

n−m, (3.1)

where Cm
n = n!

m!(n−m)!
.

A direct calculation yields the following:

Lemma 3.1 Let α < 0, n ∈ N and p > 1. : ϕnε :C converges to some element in
Lp(S ′(T2), µ; Cα). This limit is called the n-th Wick power of ϕ with respect to the covari-
ance C and denoted by : ϕn :C .

Proof In fact, for every p > 1, ε1, ε2 > 0, m ∈ N by (2.2) and (2.4) we have that∫
∥ : ϕmε1 :C − : ϕmε2 :C ∥2pα µ(dϕ)

.
∑
ψ∈Ψ⋆

∑
n≥0

∑
x∈Λn

22αpn+2np

∫
|⟨: ϕmε1 :C − : ϕmε2 :C , ψ

n
x⟩|2pµ(dϕ)w(x)2p

.
∑
ψ∈Ψ⋆

∑
n≥0

∑
x∈Λn

22αpn+2npw(x)2p(

∫
|⟨: ϕmε1 :C − : ϕmε2 :C , ψ

n
x⟩|2µ(dϕ))p,

where σ > 0 in w(x) and in the last inequality we used the hypercontractivity of the Gaussian
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measure. Moreover, we obtain that∫
|⟨: ϕmε1 :C − : ϕmε2 :C , ψ

n
x⟩|2µ(dϕ)

.
∫ ∫

|ψnx(y)ψnx(ȳ)|
∣∣∣∣(∫ ϕε1(y)ϕε1(ȳ)µ(dϕ))

m − 2(

∫
ϕε1(y)ϕε2(ȳ)µ(dϕ))

m

+ (

∫
ϕε2(y)ϕε2(ȳ)µ(dϕ))

m

∣∣∣∣dydȳ
.
∫ ∫

|ψnx(y)ψnx(ȳ)|
∣∣∣∣(∫ ∫

ρε1(y − x1)ρε1(ȳ − x2)Ḡ(x1 − x2)dx1dx2)
m

− 2(

∫ ∫
ρε1(y − x1)ρε2(ȳ − x2)Ḡ(x1 − x2)dx1dx2)

m

+ (

∫ ∫
ρε2(y − x1)ρε2(ȳ − x2)Ḡ(x1 − x2)dx1dx2)

m

∣∣∣∣dydȳ
.(εκ1 + εκ2)

∫ ∫
|ψnx(y)ψnx(ȳ)||y − ȳ|−δdydȳ . (εκ1 + εκ2)2

−2n+nδ,

where δ > κ > 0, 2α+ δ < 0. Here in the third inequality we have used Lemma 10.17 in [Hai14]
and |Ḡ(x)| . − log |x|. Thus the results follow from a direct calculation. �

Remark We can also use the approximations from [DD03] to define the Wick powers. We
can prove that these two approximations converge to the same limit. This follows from the fact
that under µ, ϕ =d

∫
T2

∫ t
−∞ K̄(t− s, · − y)ξ(ds, dy) and for every φ ∈ S(T2),

⟨: ϕn :, φ⟩ =d

∫
[(−∞,t]×T2]n

⟨φ,
n∏
j=1

K̄(t− rj, · − yj)⟩ξ(dr1, dy1)...ξ(drn, dyn)

Here =d means having the same distribution and ξ is space-time white noise.

Wick powers on a fixed probability space
Now we follow the idea from [DD03] and [MW15] to define the Wick powers of the solutions

to the stochastic heat equation in the paths space. We fix a probability space (Ω,F , P ) and
W is a cylindrical Wiener process on L2(T2). We also have the well-known (Wiener-Itô) chaos
decomposition

L2(Ω,F , P ) =
⊕
n≥0

H′
n.

In the following we set Z(t) =
∫ t
0
e(t−s)AdW (s), and we can also define Wick powers of Z(t) with

respect to different covariances by approximations: Let Zε(t, x) =
∫ t
0
⟨K̄ε(t−s, x−·), dW (s)⟩ =

ρε ∗ Z. Here ⟨·, ·⟩ means inner product in L2(T2). Let Ct :=
1
2
(−A)−1(I − e2tA). For every

n ∈ N we set
: Zn

ε (t) :Ct := (cε,t)
n
2Pn((cε,t)

− 1
2Zε(t)) ∈ H′

n,

where Pn, n = 0, 1, ..., are the Hermite polynomials and cε,t = ∥1[0,t]K̄ε∥2L2(R×T2).

In the following we prove that : Zn
ε (t) :Ct is a Cauchy sequence in C([0, T ]; Cα) and define

the Wick powers of Z as the limit. To prove this we have to use the following result from [ZZ15,
Lemma 4.1], the proof of which is a modification of the proof of [Hai14, Lemma 10.18].
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Lemma 3.2 For a smooth function K : R+ ×R2\{0} 7→ R satisfying |K(t, y)| . (t+ |y|2)ζ/2
with ζ ∈ (−3, 0), then

|(K ∗ ρε)(t, y)| . t−
δ
2 (t+ |y|2)

ζ+δ
2 ,

for 0 < δ < 1, ζ + δ > −2, and moreover, if K satisfies |DK(t, y)| . (t+ |y|2) ζ−1
2 , then

|(K ∗ ρε)(t, y)−K(t, y)| . (t−
δ
2 εζ−ζ̄ |y|ζ̄+δ) ∧ t

ζ
2 ,

for ζ̄ + δ > −2, ζ > ζ̄.

Using Lemma 3.2 we obtain the Wick powers of Z(t).

Lemma 3.3 For α < 0, n ∈ N, p > 1, : Zn
ε (t) :Ct converges in L

p(Ω, C([0, T ]; Cα)). The limit
is called Wick power of Z(t) with respect to the covariance Ct and denoted by : Zn(t) :Ct .

Proof We first prove that Zε ∈ C([0, T ]; Cα) P -almost-surely. By the factorization method in
[D04] we have that for κ ∈ (0, 1)

Zε(t) =
sin(πκ)

π

∫ t

0

(t− s)κ−1⟨K̄ε(t− s, x− ·), U(s)⟩ds,

where

U(s, y) =

∫ s

0

(s− r)−κ⟨K̄(s− r, y − ·), dW (r)⟩.

A similar argument as in the proof of Lemma 2.7 in [D04] implies that it suffices to prove that
for p > 1/(2κ),

E∥U∥L2p(0,T ;Cα) <∞. (3.2)

In fact, by (2.2) and (2.4) we have that

E∥U(s)∥2pα .
∑
ψ∈Ψ⋆

∑
n≥0

∑
x∈Λn

E22αpn+2np|⟨U(s), ψnx⟩|2pw(x)2p

.
∑
ψ∈Ψ⋆

∑
n≥0

∑
x∈Λn

22αpn+2np(E|⟨U(s), ψnx⟩|2)pw(x)2p.

Here σ > 0 in w(x) and we used Gaussian hypercontractivity in the second inequality. Moreover
we obtain that

E|⟨U(s), ψnx⟩|2 ≤
∫ ∫

|ψnx(y)ψnx(ȳ)|
∫ s

0

(s− r)−2κK̄ ∗ K̄(s− r, y − ȳ)drdydȳ

.
∫ ∫

|ψnx(y)ψnx(ȳ)|
∫ s

0

(s− r)κ−1|y − ȳ|−8κdrdydȳ

.2−2n+8nκsκ,

where we used [Hai14, Lemma 10.17] to deduce that |K̄∗K̄(s−r, y−ȳ)| . |s−r|3κ−1|y−ȳ|−8κ in
the second inequality. Thus (3.2) follows by choosing κ small enough and a direct calculation.
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Now we prove that for m ∈ N, : Zm
ε : is a Cauchy sequence. For every p > 1, by (2.2) and (2.4)

we have that for t1, t2 ≥ 0

E∥(: Zm
ε1

:Ct1
− : Zm

ε2
:Ct1

)(t1, ·)− (: Zm
ε1

:Ct2
− : Zm

ε2
:Ct2

)(t2, ·)∥2pα
≤

∑
ψ∈Ψ⋆

∑
n≥0

∑
x∈Λn

E22αpn+2np|⟨(: Zm
ε1

:Ct1
− : Zm

ε2
:Ct1

)(t1, ·)− (: Zm
ε1

:Ct2
− : Zm

ε2
:Ct2

)(t2, ·), ψnx⟩|2pw(x)2p

.
∑
ψ∈Ψ⋆

∑
n≥0

∑
x∈Λn

22αpn+2np(E|⟨(: Zm
ε1

:Ct1
− : Zm

ε2
:Ct1

)(t1, ·)− (: Zm
ε1

:Ct2
− : Zm

ε2
:Ct2

)(t2, ·), ψnx⟩|2)pw(x)2p,

where we used Gaussian hypercontractivity in the second inequality. For convenience we use ξ to
denote space-time white noise given by

∫
ϕ(s, y)ξ(ds, dy) =

∫
R+⟨ϕ, dW (s)⟩ for ϕ ∈ L2(R+×T2).

Then we obtain that for k = 1, 2 and j = 1, 2

: Zm
εk
(tj) :Ctj

=

∫
Πm
i=1K̄εk(tj − si, y − yi)1si∈[0,tj ]ξ(dη1)...ξ(dηm),

where ηa = (sa, ya), and
∫
f(η1...n)ξ(dη1)...ξ(dηm) denotes a generic element of the n-th chaos

of ξ for η1...n = η1...ηn. Moreover, for t1 ≤ t2 to estimate

E|⟨(: Zm
ε1

:Ct1
− : Zm

ε2
:Ct1

)(t1, ·)− (: Zm
ε1

:Ct2
− : Zm

ε2
:Ct2

)(t2, ·), ψnx⟩|2,

it suffices to calculate∫
|⟨Πm

i=1K̄ε1(t1 − si, · − yi)1si∈[0,t1] − Πm
i=1K̄ε2(t1 − si, · − yi)1si∈[0,t1]

− [Πm
i=1K̄ε1(t2 − si, · − yi)1si∈[0,t2] − Πm

i=1K̄ε2(t2 − si, · − yi)1si∈[0,t2]], ψ
n
x⟩|2dη1...m,

which is bounded by

2

∫
|⟨(Πm

i=1K̄ε1(t1 − si, · − yi)− Πm
i=1K̄ε1(t2 − si, · − yi))1si∈[0,t1]

− (Πm
i=1K̄ε2(t1 − si, · − yi)− Πm

i=1K̄ε2(t2 − si, · − yi))1si∈[0,t1], ψ
n
x⟩|2dη1...m

+ 2

∫
|⟨[Πm

i=1K̄ε1(t2 − si, · − yi)1si∈[t1,t2] − Πm
i=1K̄ε2(t2 − si, · − yi)1si∈[t1,t2]], ψ

n
x⟩|2dη1...m.

Then by Lemma 3.2 and [Hai14, Lemma 10.18] we have that for every δ > 0

|K̄ε1(t1 − si, y − yi)− K̄ε1(t2 − si, y − yi)|

.|t1 − t2|δ(|t2 − si|−
1
2
+ δ

2 + |t1 − si|−
1
2
+ δ

2 )|y − yi|−1−3δ,

and
|K̄ε1(t1 − si, y − yi)− K̄ε2(t1 − si, y − yi)|

.(ε2δ1 + ε2δ2 )|t1 − si|−
1
2
+ δ

2 |y − yi|−1−3δ,

which combined with the interpolation and [Hai14, Lemma 10.14] imply that for every δ > 0

E|⟨(: Zm
ε1

:Ct1
− : Zm

ε2
:Ct1

)(t1, ·)− (: Zm
ε1

:Ct2
− : Zm

ε2
:Ct2

)(t2, ·), ψnx⟩|2

.(ε2δ1 + ε2δ2 )|t2 − t1|δ
∫ ∫

|ψn(y)ψn(ȳ)||y − ȳ|−8δdydȳ

.(ε2δ1 + ε2δ2 )|t2 − t1|δ2−2n+8nδ.
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Then the above estimates yield that

E∥(: Zm
ε1

:Ct1
− : Zm

ε2
:Ct1

)(t1, ·)− (: Zm
ε1

:Ct2
− : Zm

ε2
:Ct2

)(t2, ·)∥2pα
.

∑
ψ∈Ψ⋆

∑
n≥0

22αnp+2np+2n(ε2δ1 + ε2δ2 )p|t2 − t1|δp2−2np+8npδ.

Thus the results follow from Kolmogorov’s continuity test (in time) if we choose δ > 0 small
enough and p sufficiently large. �

By this lemma we can define the Wick powers with respect to another covariance : Zn(t) :C .
For t > 0, define

: Zn
ε (t) :C := c

n
2
ε Pn(c

− 1
2

ε Zε(t)).

Lemma 3.4 For α < 0, p > 1, n ∈ N, : Zn
ε :C converges in Lp(Ω, C((0, T ]; Cα)). Here

C((0, T ]; Cα) is equipped with the norm supt∈[0,T ] t
ρ/2∥ · ∥α for ρ > 0. The limit is called Wick

powers of Z(t) with respect to the covariance C and denoted by : Zn(t) :C . Moreover, for t > 0

: Zn(t) :C=

[n/2]∑
l=0

clt
n!

(n− 2l)!l!2l
: Zn−2l(t) :Ct ,

where ct := limε→0(cε,t − cε) locally uniformly for t ∈ (0, T ].

Proof By Lemma 3.3 it follows that for every n ∈ N, p > 1,

: Zn
ε (t) :Ct→: Zn(t) :Ct in Lp(Ω, C([0, T ]; Cα)).

By the definition of cε,t and cε we also have that for every ρ > 0, t > 0 and ε > 0

|cε,t − cε| . t−ρ/2,

where the constant we omit is independent of ε, and

ct := lim
ε→0

(cε,t − cε) = −
∫ ∞

t

∫
T2

K̄(r, x)2dxdr.

Moreover, the definition of Pn yields that

: Zn
ε (t) :C=

[n/2]∑
l=0

(cε,t − cε)
l n!

(n− 2l)!l!2l
: Zn−2l

ε (t) :Ct ,

which implies the result by letting ε→ 0. �
Now following the technique in [MW15] we combine the initial value part with the Wick

powers by using (3.1). We set V (t) = etAz, Vε = ρε ∗ V , z ∈ Cα for α < 0 and

Z̄(t) = Z(t) + V (t), Z̄ε(t) = Zε(t) + Vε(t),

: Z̄n(t) :C=
n∑
k=0

Ck
nV (t)n−k : Zk(t) :C , : Z̄n

ε (t) :C=
n∑
k=0

Ck
nVε(t)

n−k : Zk
ε (t) :C .

13



By Lemma 2.2 we know that V ∈ C([0, T ], Cα) and V ∈ C((0, T ], Cβ) for β > α with the norm

supt∈[0,T ] t
β−α
2 ∥ · ∥β. Moreover,

sup
t∈[0,T ]

t
β−α
2 ∥V (t)∥β . ∥z∥α, sup

t∈[0,T ]
t
β−α+κ

2 ∥Vε(t)− V (t)∥β . ∥z∥α

for β > α, κ > 0. Then by Lemmas 2.3 and 3.4 we have the following results:

Lemma 3.5 Let α < 0, z ∈ Cα, p > 1. Define Z̄ and : Z̄n :C as above. Then for n ∈ N
: Z̄n

ε :C converges to : Z̄n :C in Lp(Ω, C((0, T ]; Cα)). Here the norm for C((0, T ]; Cα) is

sup
t∈[0,T ]

t
(β−α)n+ρ

2 ∥ · ∥α

for some β > −α > 0, ρ > 0.

Proof By Lemma 2.3 we have

∥ : Z̄n
ε :C − : Z̄n :C ∥α .

n∑
k=0

[∥V k
ε ∥β∥ : Zn−k

ε :C − : Zn−k :C ∥α + ∥V k
ε − V k∥β∥ : Zn−k :C ∥α],

which implies the results easily. �
Relations between two different Wick powers
First we introduce the following probability measure. Set : q(ϕ) :=

∑2N
n=0 an : ϕn :C ,

: p(ϕ) :=
∑2N

n=1 nan : ϕn−1 :C and we assume that an ∈ R and a2N > 0. Let

ν = c exp (−2

∫
T2

: q(ϕ) : dx)µ,

where c is a normalization constant. Then by [GlJ86, Sect. 8.6] for every p ∈ [1,∞), φ(ϕ) :=
exp (−2

∫
T2 : q(ϕ) : dx) ∈ Lp(S ′(T2), µ). The following result states the relations between two

different Wick powers.

Lemma 3.6 Let ϕ be a measurable map from (Ω,F , P ) to C([0, T ], B−γ
2,2 ) with γ > 2,

P ◦ ϕ(t)−1 = ν for every t ∈ [0, T ] and let Z̄(t) be defined as above. Assume in addition that
y = ϕ− Z̄ ∈ C([0, T ]; Cβ) P -a.s. for some β > −α > 0. Then for every t > 0, n ∈ N

: ϕn(t) :C=
n∑
k=0

Ck
ny

n−k(t) : Z̄k(t) :C P − a.s..

Proof By Lemma 3.5 it follows that for every k ∈ N, p > 1

: Z̄k
ε :C→: Z̄k :C in Lp(Ω, C((0, T ]; Cα)), as ε→ 0.

Since yε = ϕε − Z̄ε = ρε ∗ y and y ∈ C([0, T ]; Cβ) P -a.s., it is obvious that yε → y in
C([0, T ]; Cβ−κ) P -a.s. for every κ > 0 with β − κ + α > 0, which combined with Lemma
2.3 implies that for k ∈ N, k ≤ n,

yn−kε : Z̄k
ε :C→P yn−k : Z̄k :C in C((0, T ]; Cα), as ε→ 0.
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Here →P means convergence in probability. Since exp (−
∫
T2 : q(ϕ) : dx) ∈ Lp(S ′(T2), µ) for

every p ≥ 1, by Hölder’s inequality and Lemma 3.1 we get that for t > 0 and p > 1

: ϕnε (t) :C→: ϕn(t) :C in Lp(Ω, Cα), as ε→ 0.

Moreover, by (3.1) we have

: ϕnε :C=: (yε + Z̄ε)
n :C= cn/2ε Pn(c

−1/2
ε (yε + Z̄ε))

=
n∑
k=0

Ck
nc
n/2
ε Pk(c

−1/2
ε Z̄ε)(c

−1/2
ε yε)

n−k

=
n∑
k=0

Ck
n : Z̄k

ε :C y
n−k
ε ,

which implies the result by letting ε→ 0. �
In the following, we only use Wick powers : · :C and we write : · : for simplicity.

3.2 Relations between the two solutions: starting with solutions
given by Dirichlet forms

As mentioned in the introduction, weak solutions to (1.1) have been constructed in [AR91]
by Dirichlet forms. In this subsection we prove that the solutions constructed in [AR91] also
satisfy the shifted equation (1.4). First we recall some basic results related to Dirichlet forms
from [AR91].

Solutions given by Dirichlet forms
Let H = L2(T2) and let −∆ + I be the generator of the following quadratic form on

H : (u, v) 7→
∫
T2⟨∇u,∇v⟩Rddx +

∫
T2 uvdx with u, v ∈ {g ∈ L2(T2)|∇g ∈ L2(T2)} (where ∇ is

in the sense of distributions). Let {ek|k ∈ Z2} ⊂ C∞(T2) be the (orthonormal) eigenbasis of
−∆+ I in H and {λk|k ∈ Z2} ⊂ (0,∞) the corresponding eigenvalues. Define for s ∈ R,

Hs := {u ∈ S ′(T2)|
∑
k∈Z2

λskS′⟨u, ek⟩2S <∞},

equipped with the inner product

⟨u, v⟩Hs :=
∑
k∈Z2

λskS′⟨u, ek⟩SS′⟨v, ek⟩S .

If for s ≥ 0 Hs⟨·, ·⟩H−s denotes the dualization between Hs and its dual space H−s, then it
follows that

Hs⟨u, v⟩H−s = ⟨u, v⟩H , u ∈ Hs, v ∈ H.

Let E = H−1−ϵ, E∗ = H1+ϵ for some ϵ > 0. We denote their Borel σ-algebras by B(E),B(E∗)
respectively. Define

FC∞
b = {u : u(z) = f(E∗⟨l1, z⟩E, E∗⟨l2, z⟩E, ..., E∗⟨lm, z⟩E), z ∈ E, l1, l2, ..., lm ∈ E∗,m ∈ N, f ∈ C∞

b (Rm)}.
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Define for u ∈ FC∞
b and l ∈ H,

∂u

∂l
(z) :=

d

ds
u(z + sl)|s=0, z ∈ E,

that is, by the chain rule,

∂u

∂l
(z) =

m∑
j=1

∂jf(E∗⟨l1, z⟩E, E∗⟨l2, z⟩E, ..., E∗⟨lm, z⟩E)⟨lj, l⟩H .

Let Du denote the H-derivative of u ∈ FC∞
b , i.e. the map from E to H such that

⟨Du(z), l⟩ = ∂u

∂l
(z) for all l ∈ H, z ∈ E.

By [AR91] we easily deduce that the form

E(u, v) := 1

2

∫
E

⟨Du,Dv⟩Hdν;u, v ∈ FC∞
b

is closable and its closure (E , D(E)) is a quasi-regular Dirichlet form on L2(E; ν) in the sense
of [MR92]. By [AR91, Theorem 3.6] we know that there exists a (Markov) diffusion process
M = (Ω,F ,Mt, (X(t))t≥0, (P

z)z∈E) on E properly associated with (E , D(E)), i.e. for u ∈
L2(E; ν) ∩ Bb(E), the transition semigroup Ptu(z) := Ez[u(X(t))] is E-quasi-continuous for all
t > 0 and is a ν-version of Ttu, where Tt is the semigroup associated with (E , D(E)). Here for
the notion of E-quasi-continuity we refer to [MR92, ChapterIII, Definition 3.2].

By [GlJ86, (9.1.32)] we have the following:

Theorem3.7 For each l smooth, we have that the partial log derivative βl of ν is given by

βl(z) = −2
2N∑
n=1

nan : zn−1 : (l) + 2Hs⟨∆l − l, z⟩H−s ,

where : zn : (l) denotes the dualization between : zn : and l.

Now we want to extend the definition of βl to the whole space E. By [R86, Theorem
3.1] l →: zn : (l) can be extended to a continuous map from H to L2(E, µ). So, by [AR91,
Proposition 6.9], there exists a B(H−1−ϵ)/B(H−1−ϵ) measurable map : zn :: H−1−ϵ → H−1−ϵ

such that : zn : (l) =H−1−ϵ ⟨: zn :, l⟩H1+ϵ ν-a.e. for some ϵ > 0. By [AR91, Theorem 6.10] we
have the following Fukushima decomposition for X(t) under P z.

Theorem 3.8 There exist a map W : Ω → C([0,∞);E) and a properly E-exceptional set
S ⊂ E, i.e. ν(S) = 0 and P z[X(t) ∈ E \S, ∀t ≥ 0] = 1 for z ∈ E\S, such that ∀z ∈ E\S under
P z, W is an Mt- cylindrical Wiener process and the sample paths of the associated process
M = (Ω,F , (X(t))t≥0, (P

z)z∈E) on E satisfy the following: for l ∈ H2+s, s > 0

E∗⟨l, X(t)−X(0)⟩E =

∫ t

0

⟨l, dW (r)⟩+
∫ t

0

[
H−s−2⟨−

2N∑
n=1

nan : X(r)n−1 :, l⟩H2+s

+Hs ⟨∆l − l, X(r)⟩H−s

]
dr ∀t ≥ 0 P z−a.s..

(3.3)

16



Moreover, ν is an invariant measure forM in the sense that
∫
Ptudν =

∫
udν for u ∈ L2(E; ν)∩

Bb(E).

Relations between the two solutions
In the following we discuss the relations between M constructed above and the shifted

equation (1.4). In fact, by Lemma 2.1 we have that Cα ⊂ E for α ∈ (−1, 0), Cα ∈ B(E) and
ν(Cα) = 1. For W constructed in Theorem 3.8 define Z̄(t) :=

∫ t
0
e(t−s)AdW (s) + etAX(0).

Theorem 3.9 Let α ∈ (− 1
2N−1

, 0), −α < β < α + 2. There exists a properly E-exceptional
set S2 ⊂ E in the sense of Theorem 3.8 such that for every z ∈ Cα \S2 under P

z, Y := X− Z̄ ∈
C([0, T ]; Cβ) is a solution to the following equation:

Y (t) = −
∫ t

0

e(t−s)A
2N∑
k=1

kak

k−1∑
l=0

C l
k−1Y (s)l : Z̄(s)k−1−l : ds. (3.4)

Moreover,
P z[X(t) ∈ Cα \ S2,∀t ≥ 0] = 1 for z ∈ Cα \ S2.

Proof Recall that : p(ϕ) :=
∑2N

n=1 nan : ϕn−1 :. Now for z ∈ E \ S under P z we have that

X(t) = −
∫ t

0

e(t−τ)A : p(X(τ)) : dτ + Z̄(t).

Since ν is an invariant measure for X, by Lemmas 2.1 and 3.1 we conclude that for every T ≥ 0,
p > 1, δ > 0, with α + 2δ < 0, and p0 > 1 large enough∫

Ez

∫ T

0

∥ : p(X(τ)) : ∥pαdτν(dz) .
∫
Ez

∫ T

0

∥ : p(X(τ)) : ∥p
Bα+δ

p0,p0

dτν(dz)

=T

∫
∥ : p(ϕ) : ∥p

Bα+δ
p0,p0

ν(dϕ) . T

∫
∥ : p(ϕ) : ∥pα+2δν(dϕ) <∞,

which implies that there exists a properly E-exceptional set S1 ⊃ S such that for z ∈ E \ S1

P z-a.s.

: p(X(·)) :∈ Lp(0, T ; Cα), Ez

∫ T

0

∥ : p(X(τ)) : ∥pαdτ <∞, ∀p > 1.

Here we used Lemma 2.1 to deduce the first result. The second, however, does not imply the
first directly because of (2.1). Lemma 2.2 implies that for −α < β < α + 2∫ t

0

e(t−τ)A : p(X(τ)) : dτ ∈ C([0,∞); Cβ) P z − a.s..

Now we conclude that for z ∈ E \ S1

X − Z̄ ∈ C([0,∞); Cβ) P z − a.s..

Since P ν ◦X(t)−1 = ν, by Lemma 3.6 we conclude that under P ν , by Fubini’s theorem Y :=
X− Z̄ satisfies (3.4) and for ν-a.e. z ∈ E under P z, Y := X− Z̄ satisfies (3.4). In the following
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we prove that the results hold under P z for z outside a properly E-exceptional set. First we
have Z̄ ∈ C([0,∞); Cα) P ν-a.s., which combined with X − Z̄ ∈ C([0,∞); Cβ) implies

P ν [X ∈ C([0,∞), Cα)] = 1.

Define Z(t) =
∫ t
0
e(t−s)AdW (s) and we obtain that

Ȳ (s, t0) :=X(s+ t0)− Z(s+ t0)− esA(X(t0)− Z(t0))

=

∫ t0+s

t0

e(t0+s−τ)A : p(X(τ)) : dτ ∈ C([0,∞)2; Cβ) P ν − a.s..

Moreover, for s > 0, t0 ≥ 0, define

: [Z(s+ t0) + esA(X(t0)− Z(t0))]
k ::=

k∑
l=0

C l
k(e

sA(X(t0)− Z(t0)))
l : Z(s+ t0)

k−l :,

where we used that esA(X(t0)− Z(t0)) ∈ Cβ P ν-a.s. to make the right hand side of the above
equality meaningful. Similar arguments as in the proof of Lemma 3.6 imply that ∀s > 0, t0 ≥ 0

P ν(: p(X(s+ t0)) :=
2N∑
k=1

kak

k−1∑
l=0

C l
k−1Ȳ (s, t0)

l : [Z(s+ t0) + esA(X(t0)− Z(t0))]
k−1−l :,

X ∈ C([0,∞), Cα), Ȳ ∈ C([0,∞)2; Cβ)) = 1,

where we used : [Z(s+ t0) + esA(X(t0)− Z(t0))]
k :∈ Cα. In the following we use It,t0 to denote

the equality∫ t

0

: p(X(s+ t0)) : ds =
2N∑
k=1

kak

k−1∑
l=0

∫ t

0

C l
k−1Ȳ (s, t0)

l : [Z(s+ t0)+e
sA(X(t0)−Z(t0))]k−1−l : ds.

Then using Fubini’s theorem we know that

P ν(It,t0 holds ∀t ≥ 0, a.e.t0 ≥ 0, X ∈ C([0,∞); Cα), Ȳ ∈ C([0,∞)2; Cβ)) = 1.

Here we used X ∈ C([0,∞); Cα) for −α(2N − 1) < 1 to make the right hand side of It,t0
meaningful. It is obvious that the right hand side of the first equality is continuous with respect
to t0. Since

∫ t
0
: p(X(s + t0)) : ds =

∫ t+t0
t0

: p(X(s)) : ds we know that
∫ t
0
: p(X(s + t0)) : ds is

also continuous with respect to t0 and we obtain that

P ν(It,t0 holds ∀t, t0 ≥ 0, X ∈ C([0,∞); Cα), Ȳ ∈ C([0,∞)2; Cβ)) = 1.

This implies that there exists a properly E-exceptional set S2 ⊃ S1 such that for z ∈ Cα \ S2

under P z

P z(X ∈ C([0,∞); Cα), It,t0 holds ∀t, t0 ≥ 0) = 1.

Indeed, define
Ω0 :={ω : X ∈ C([0,∞); Cα), It,t0 holds ∀t, t0 ≥ 0},
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and let Θt : Ω → Ω, t > 0, be the canonical shift, i.e. Θt(ω) = ω(· + t), ω ∈ Ω. Then it is easy
to check that

Θ−1
t Ω0 ⊃ Ω0, t ∈ R+,

and
Ω0 =

∩
t>0,t∈Q

Θ−1
t Ω0.

On the other hand, by the Markov property we know that

P z(Θ−1
t Ω0) = Pt(1Ω0)(z),

which by [MR92, Chapter IV Theorem 3.5] is E-quasi-continuous in the sense of [MR92, Chapter
III Definition 3.2] on E. It follows that for every t > 0

P z(Θ−1
t Ω0) = 1 q.e.z ∈ E,

which yields that
P z(Ω0) = 1 q.e.z ∈ E.

Here q.e. means that there exists a properly E-exceptional set such that outside this exceptional
set the result follows. Now Y satisfies (3.4) P z-a.s. for z ∈ Cα\S2. Moreover, for z ∈ Cα\S2

Y ∈ C([0,∞); Cβ), Z̄ ∈ C([0,∞); Cα) P z-a.s., which implies that

P z[X(t) ∈ Cα \ S2,∀t ≥ 0] = 1 for z ∈ Cα \ S2.

�

3.3 Relations between two solutions: starting with solutions to the
shifted equation

Now we fix a stochastic basis (Ω,F , {Ft}t∈[0,∞), P ) and on it a cylindrical Wiener process W

in L2(T2). Define Z̄(t) =
∫ t
0
e(t−s)AdW (s) + etAz as in Section 3.2 with z ∈ Cα for α < 0. Now

we consider the following equation:

Y (t) = etAy −
∫ t

0

e(t−s)A
2N∑
k=1

kak

k−1∑
l=0

C l
k−1Y (s)l : Z̄(s)k−1−l : ds. (3.5)

When N = 2, global existence and uniqueness of the solutions to (3.5) have been obtained in
[MW15]. Now we consider general N ∈ N and have the following existence and uniqueness
results. Moreover, by using solutions given by Dirichlet form theory we also obtain that ν is
an invariant measure of the solution to X̄ = Y0 + Z̄, where Y0 is the unique solution to (3.5)
with y = 0.

Theorem 3.10 Fix α, β such that 0 < −α < β < α + 2 and β,−α sufficiently small. For
y ∈ Lp(T2), with p even, large enough, there exists a unique solution to (3.5) in C((0, T ]; Cβ)
equipped with the norm supt∈[0,T ] t

β
2
+ 1

p∥ · ∥β.
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Moreover, ν is an invariant measure of the solution to X̄ = Y0 + Z̄, where Y0 is the unique
solution to (3.5) with y = 0.

Proof First we prove local existence and uniqueness of solutions: for y ∈ Lp(T2) and a.s.
ω ∈ Ω there exists T ∗(z, ω) and a unique solution to (3.5) such that

Y (ω) ∈ C((0, T ∗(z, ω)], Cβ).

In fact, we use a fixed point argument in the space

LT := C((0, T ], Cβ)

equipped with the norm supt∈[0,T ] t
β
2
+ 1

p∥ · ∥β. By Lemma 3.5 we have that : Z̄n
ε : converges to

: Z̄n : in C((0, T ]; Cα) in probability, with the norm supt∈[0,T ] t
(β−α)n+ρ

2 ∥ : Z̄n(t) : ∥α < ∞ for
β > −α > 0, ρ > 0. For the above α, β, ρ, we introduce the following notation

∥Z̄∥L :=
2N−1∑
l=0

sup
τ∈[0,T ]

τ
(β−α)l+ρ

2 ∥ : Z̄ l(τ) : ∥α.

By Lemmas 2.2, 2.3 we obtain that for Y ∈ LT∫ ·

0

e(·−τ)A
2N∑
k=1

kak

k−1∑
l=0

C l
k−1Y

l(τ) : Z̄k−1−l(τ) : dτ ∈ LT

and

sup
t∈[0,T ]

tβ/2+1/p

∥∥∥∥∫ t

0

e(t−τ)A
2N∑
k=1

kak

k−1∑
l=0

C l
k−1Y

l(τ) : Z̄k−1−l(τ) : dτ

∥∥∥∥
β

. sup
t∈[0,T ]

tβ/2+1/p

2N∑
k=1

∫ t

0

(t− τ)
α−β
2

k−1∑
l=0

∥Y (τ)∥lβ∥ : Z̄k−1−l(τ) : ∥αdτ

. sup
t∈[0,T ]

tβ/2+1/p

2N∑
k=1

∫ t

0

(t− τ)
α−β
2 (

k−1∑
l=1

τ−(β
2
+ 1

p
)l− (β−α)(k−1−l)+ρ

2 ∥Y ∥lLT
+ τ−

(β−α)(k−1)+ρ
2 )∥Z∥Ldτ

.T (α−β)N+1+β
2
+ 1

p
− ρ

2 ∨ T 1+α−β−ρ
2

−(β
2
+ 1

p
)(2N−2)(∥Y ∥2NLT

+ 1),
(3.6)

with β,−α > 0 small enough and p > 0 large enough. Here we used Lemmas 2.2 and 2.3 in
the first inequality and used Lemma 3.5 in the second inequality and used ∥Z̄∥L < ∞ P -a.s.
in the last inequality. Moreover, by Lemmas 2.1 and 2.2 we have

∥etAy∥β . t−(β
2
+ 1

p
)∥y∥Lp(T2).

Similarly we obtain that the iteration mapping is a strict contraction in a bounded ball LT
with T > 0 small enough, which implies the local existence and uniqueness of solutions. A
similar argument as (3.6) also implies that the local solution is continuous with respect to
(Z̄, : Z̄2 :, ..., : Z̄2N−1 :).
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In the following we give an a-priori estimate on the Lp norm of Y : Let Yε be the solution
to (3.5) with Z̄ replaced by Z̄ε, where Z̄ε is defined in Section 3.1. Since Z̄ε is smooth we know
that Yε is smooth and we can choose Y p−1

ε as a test function. Then we have

1

p
(∥Yε(t)∥pLp − ∥Yε(0)∥pLp)

=

∫ t

0

[−(p− 1)⟨∇Yε(s), Y p−2
ε (s)∇Yε(s)⟩ − ∥Yε(s)∥pLp − ⟨

2N∑
k=1

ak

k−1∑
l=0

C l
k−1Y

l
ε (s) : Z̄

k−1−l
ε (s) :, Yε(s)

p−1⟩]ds.

Without loss of generality, suppose that a2N = 1
2N

. Then

1

p
(∥Yε(t)∥pLp − ∥Yε(0)∥pLp) +

∫ t

0

[(p− 1)⟨∇Yε(s), Yε(s)p−2∇Yε(s)⟩+ ∥Yε(s)p+2N−2∥L1 ]ds

= −
∫ t

0

[∥Yε(s)∥pLp + ⟨Ψ(Yε(s), Z̄ε(s)), Yε(s)
p−1⟩]ds.

Here Ψ(Yε(s), Z̄ε(s)) =
∑2N

k=1 kak
∑k−1

l=0 C
l
k−1Y

l
ε (s) : Z̄

k−1−l
ε (s) : −Y 2N−1

ε (s). Now it is sufficient
to control each term in ⟨Ψ(Yε(s), Z̄ε(s)), Yε(s)

p−1⟩ separately. We only consider ⟨Yε(s)2N−2Z̄ε(s), Yε(s)
p−1⟩.

The other terms can be estimated similarly. We have

⟨Yε(s)2N−2Z̄ε(s), Yε(s)
p−1⟩ = ⟨Yε(s)2N+p−3, Z̄ε(s)⟩.

In the following we omit ε if there’s no confusion. Then Lemma 2.3 implies the following duality

|⟨Y (s)2N+p−3, Z̄(s)⟩| . ∥Y (s)2N+p−3∥B−α
1,1
∥Z̄(s)∥α.

Moreover, we have

∥Y (s)2N+p−3∥B−α
1,1

. ∥Λβ0Y (s)2N+p−3∥Lp0 . ∥Λβ0Y
p
2
+N− 3

2∥Lp1∥Y
p
2
+N− 3

2∥Lq1 ,

with Λ = (−∆+ I)1/2, β0 > −α > 0, p0 > 1, 1
p1
+ 1

q1
= 1

p0
, where we used Lemma 2.1 in the first

inequality and Lemma 2.4 (ii) in the second inequality. Now we estimate each term separately:
Lemmas 2.1 (iii) and 2.4 (i) imply that

∥Λβ0Y
p
2
+N− 3

2∥Lp1 . ∥Λβ1Y
p
2
+N− 3

2∥Lp2 . ∥ΛY
p
2
+N− 3

2∥β1Lp2∥Y
p
2
+N− 3

2∥1−β1Lp2 ,

where β1 = β0 +
2
p2

− 2
p1
, 1 < p2 < p1 < 2. For ∥ΛY p

2
+N− 3

2∥Lp2 we have

∥ΛY
p
2
+N− 3

2∥Lp2 .∥Y
p
2
+N− 5

2∇Y ∥Lp2 . ∥Y p−2|∇Y |2∥
1
2

L1∥Y
p2(2N−3)

2−p2 ∥
1
p2

− 1
2

L1 ,

where we used Hölder’s inequality in the last inequality. Furthermore, we have

∥Y
p
2
+N− 3

2∥Lp2 . ∥Y
p
2
+N− 3

2∥Lq1 . ∥Y p+2N−2∥
p
2+N− 3

2
p+2N−2

L1 ,

with 2 < q1 <
p+2N−2
p
2
+N− 3

2

. Choose p large enough (depending only on N) such that

4N + p− 5

2(p+ 2N − 2)
<

1

p2
<

1

2(N − 1)
+

1

p1
<

1

2(N − 1)
+

p
2
+N − 1

2

p+ 2N − 2
. (3.7)
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The first inequality implies that p2(2N−3)
2−p2 ≤ p+2N−2 and the second comes from β1 = β0+

2
p2
− 2
p1

and β1−β0 < 1
N−1

we used below and the third follows from the bound for q1 . Thus combining
the above estimates we obtain that

|⟨Y (s)2N+p−3, Z̄(s)⟩| . ∥Z̄(s)∥α∥Y p+2N−2∥
β1

N− 3
2

p+2N−2
+(2−β1)

p
2+N− 3

2
p+2N−2

L1 ∥Y p−2|∇Y |2∥
β1
2

L1 .

By (3.7) we know that for β0 small enough, β1(N − 1) < 1, which implies that

β1
N − 3

2

p+ 2N − 2
+ (2− β1)

p
2
+N − 3

2

p+ 2N − 2
+
β1
2
< 1,

Then we have that there exists γ > 1 such that

|⟨Y (s)2N+p−3, Z̄(s)⟩| . ∥Z̄(s)∥γα + (ε∥Y p+2N−2∥L1 + ε∥Y p−2|∇Y |2∥L1).

We can do similar calculations for the other terms in Ψ(Y (s), Z̄(s)). Then we deduce that there

exist 0 < ρ1 =
γ1(2N−1)(β−α)+γ1ρ

2
< 1, γ1 > 1 such that

|⟨Ψ(Y (s), Z̄(s)), Y (s)p−1⟩|
.s−ρ1 |Z̄|γ1L + ε(∥Y ∥p+2N−2

Lp+2N−2 + ∥Y p−2|∇Y |2∥L1).

Here ρ1 can be chosen less than 1 since β−α > 0 can be chosen small enough. Hence Gronwall’s
inequality yields a uniform estimate

sup
t∈[0,T ]

∥Yε(t)∥pLp . CT + ∥Y (0)∥pLp .

Since all the constants above are independent of ε, we can extend the local solution to the
unique global solution to (3.5) in C((0, T ], Cβ).

Moreover, consider X̄ = Y0 + Z̄, where Y0 is the unique solution to (3.5) with y = 0. By
Theorem 3.9 and the uniqueness of the solution to (3.5) we know that X̄ has the same law as
the solution X in Theorem 3.8, which combined with ν(Cα) = 1 implies that ν is an invariant
measure of X̄. �

In the following we start from the transition semigroup of X̄: Let pt be the transition
semigroup (of sub-probability kernels) associated with X̄. Since ν(Cα) = 1, pt can be extended
to a kernel on E by setting

pt(z, dy) = δz(dy),

for z ∈ E\Cα, where δz denotes the Dirac measure in z. By Theorem 3.10 we have∫
ptfν(dx) =

∫
fν(dx),

for f ∈ L2(E; ν) and
ptf →t→0 f,

for f ∈ Cb(Cα). By [MR92, Chapter II, Subsection 4a] (pt)t>0 uniquely determines a strongly
continuous contraction semigroup (T 1

t )t>0 of operators on L
2(E; ν). By the pathwise uniqueness

of the solution to (3.5) we obtain that ptf(z) = Ptf(z) for all f ∈ Bb(E), t > 0 and z ∈ Cα\S2,
which implies that pt and hence T 1

t is ν-symmetric. Here Pt is the transition semigroup properly
associated with Dirichlet form (E , D(E)) defined in Section 3.2. Then there exists a Dirichlet
form (E1, D(E1)) associated with T 1

t . Moreover, (E1, D(E1)) = (E , D(E)), where (E , D(E)) is the
Dirichlet form obtained in Section 3.2. Hence for (E1, D(E1)) the results in Theorem 3.8 hold.
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3.4 Markov uniqueness in the restricted sense

In this subsection we prove Markov uniqueness in the restricted sense and the uniqueness of
the martingale (probabilistically weak) solutions to (1.1) if the solution has ν as an invariant
measure.

By [MR92, Chap. 4, Sect. 4b] it follows that there is a point separating countable Q-vector
space D ⊂ FC∞

b such that D ⊂ D(L(E)). Let Eq.r. be the set of all quasi-regular Dirichlet
forms (Ẽ , D(Ẽ)) (cf. [MR92]) on L2(E; ν) such that D ⊂ D(L(Ẽ)) and Ẽ = E on D ×D. Here
for a Dirichlet form (Ẽ , D(Ẽ)) we denote its generator by (L(Ẽ), D(L(Ẽ))).

In the following we consider the martingale problem in the sense of [AR95] and probabilis-
tically weak solutions to (1.1):

Definition 3.11 (i) A ν-special standard process M = (Ω,F , (Mt), Xt, (P
z)) in the sense of

[MR92, Chapter IV] with state space E is said to solve the martingale problem for (L(E), D) if
for all u ∈ D, u(X(t))− u(X(0))−

∫ t
0
L(E)u(X(s))ds, t ≥ 0, is an (Mt)-martingale under P ν .

(ii) A ν-special standard process M = (Ω,F , (Mt), Xt, (P
z)) with state space E is called a

probabilistically weak solution to (1.1) if there exists a map W : Ω → C([0,∞);E) such that
for ν-a.e. z under P z, W is an Mt- cylindrical Wiener process and the sample paths of the
associated process satisfy (3.3) for all l ∈ H2+s, s > 0.

Remark If M is a probabilistically weak solution to (1.1), we can easily check that it also
solves the martingale problem. Conversely, if M solves the martingale problem, then it is easy
to check that

βk(t) =: ⟨ek, X(t)−X(0)⟩−
∫ t

0

[
H−s−2⟨−

2N∑
n=1

nan : X(r)n−1 :, ek⟩H2+s+Hs⟨∆ek−ek, X(r)⟩H−s

]
dr

is a Brownian Motion. Here {ek} is the orthonormal basis defined in Section 3.2. Moreover,
W =

∑
βkek is a cylindrical Wiener process on (Ω,F , P ν) and (X,W ) satisfies (3.3) for l ∈

H2+s, s > 0. That is to say, these two definitions are equivalent to each other.

To explain the uniqueness result below we also introduce the following concept:
Two strong Markov processes M and M ′ with state space E and transition semigroups

(pt)t>0 and (p′t)t>0 are called ν-equivalent if there exists S ∈ B(E) such that (i) ν(E\S) = 0,
(ii) P z[X(t) ∈ S, ∀t ≥ 0] = P ′z[X ′(t) ∈ S, ∀t ≥ 0] = 1, z ∈ S, (iii) ptf(z) = p′tf(z) for all
f ∈ Bb(E), t > 0 and z ∈ S.

Combining Theorem 3.9 and Theorem 3.10, we obtain Markov uniqueness in the restricted
sense for (L(E), D) (see part (iii)) and the uniqueness of martingale (probabilistically weak)
solutions to (1.1) if solution has ν as an invariant measure (see part (i)):

Theorem 3.12 (i) There exists (up to ν-equivalence) exactly one probabilistically weak
solutionM to (1.1) satisfying P z(X ∈ C([0,∞);E)) = 1 for ν-a.e. and having ν as an invariant
measure, i.e. for the transition semigroup (pt)t≥0,

∫
ptfdν =

∫
fdν for f ∈ L2(E; ν).

(ii) There exists (up to ν-equivalence) exactly one ν-special standard process M with state
space E solving the martingale problem for (L(E), D) and satisfying P z(X ∈ C([0,∞);E)) = 1
for ν-a.e. and having ν as an invariant measure.
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(iii) ♯Eq.r. = 1. Moreover, there exists (up to ν-equivalence) exactly one ν-special standard
processM with state space E associated with a Dirichlet form (E , D(E)) solving the martingale
problem for (L(E), D).

Proof For (i), suppose that M1 is a probabilistically weak solution to (1.1) and let p1t be the
transition semigroup (of sub-probability kernels) associated with M1. Since ν is an invariant
measure and

p1tf →t→0 f,

for f ∈ FC∞
b , by [MR92, Chapter II, Subsection 4a] (p1t )t>0 uniquely determines a strongly

continuous contraction semigroup (T 1
t )t>0 of operators on L2(E; ν). By the proof of Theorem

3.9 we know that the solution to (3.3) having ν as an invariant measure minus Z̄ also satisfies
(3.4) under P ν . Moreover, by the pathwise uniqueness of solutions to (3.4) we obtain that
p1tf(z) = Ptf(z) ν-a.e. for all f ∈ Bb(E), t > 0, which implies that p1t is associated with the
Dirichlet form (E , D(E)) obtained in Section 3.2. Here Pt is the semigroup properly associated
with (E , D(E)) obtained in Section 3.2. Since M1 is a ν-special standard process and has
continuous paths, by [MR92, Chapter 4, Theorem 1.15, Theorem 5.1]M1 is properly associated
with (E , D(E)). Then by [MR92, Chapter 4, Theorem 6.4] M1 is ν-equivalent to M obtained
in Section 3.2, which implies (i) easily.

(ii) follows from the first result and the above Remark.
The second result in (iii) follows from the first result and [AR95, Theorem 3.4]. We only

prove the first. Since for every (Ẽ , D(Ẽ)) ∈ Eq.r. there exists a unique Markov process M̃
associated with (Ẽ , D(Ẽ)) and Theorem 3.8 holds for M̃ , by Theorems 3.9 and 3.10 we know
that for the semigroup p̃t associated with M̃ we have p̃tf = Ptf ν-a.e. for f ∈ Bb(E), which
implies that p̃t is a ν-version of the semigroup Tt associated with (E , D(E)). Then by [MR92,
Chapter I] we know that (E , D(E)) = (Ẽ , D(Ẽ)). Now (iii) follows. �

3.5 Stationary solution

Now we consider the stationary case. In this case, we can obtain a probabilistically strong
solution to (3.3). Take two different stationary solutions X1, X2 to (3.3) with the same initial
condition η ∈ Cα, α < 0, −α small enough, having the distribution ν. We have

Xi(t) = etAη −
∫ t

0

e(t−τ)A : p(Xi(τ)) : dτ + Z(t),

where Z is the stochastic convolution

Z(t) =

∫ t

0

e(t−s)AdW (s).

By a similar argument as the proof of Theorem 3.9 and using Lemma 3.1 we have that for every
p > 1

E

∫ T

0

∥ : p(Xi(τ)) : ∥pαdτ = T

∫
∥ : p(ϕ) : ∥pαν(dϕ) <∞.

Then Lemma 2.2 implies that for α < 0, −α < β < α + 2∫ t

0

e(t−τ)A : p(Xi(τ)) : dτ ∈ C([0, T ]; Cβ) P − a.s..
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Thus by Lemma 2.2 we conclude that

Xi − Z ∈ C((0, T ]; Cβ) P − a.s.,

where C((0, T ]; Cβ) is equipped with the norm supt∈[0,T ] t
β−α
2 ∥ ·∥β. Moreover, similar arguments

as in the proof of Theorem 3.9 yield that if α < 0 with −α small enough, Xi − Z is a solution
to the following equation

Y (t) = etAη +

∫ t

0

e(t−s)A
2N∑
k=1

kak

k−1∑
l=0

C l
k−1Y (s)l : Z(s)k−1−l : ds. (3.8)

Here the Wick powers of Z are defined as in Lemma 3.4.
Now by similar calculations as in (3.6) we obtain local uniqueness of the solution to (3.8),

which implies that
X1 − Z = X2 − Z on [0, T ] P − a.s..

Then the pathwise uniqueness holds for the stationary solution to (3.3). Now by the existence
of the stationary martingale solution ( cf. [MR99]) and the Yamada-Watanabe Theorem in
[Kur07] we obtain:

Theorem 3.13 For any initial condition X(0) ∈ Cα with distribution ν and α < 0, −α
small enough, there exists a unique probabilistically strong solution X to (3.3) such that X is
a stationary process, i.e. for every probability space (Ω,F , {Ft}t∈[0,T ], P ) with an Ft-Wiener
process W , there exists an Ft-adapted stationary process X : [0, T ] × Ω → E such that for
P − a.e. ω ∈ Ω X satisfies (3.3). Moreover, for 0 < β < α + 2

X − Z ∈ C((0, T ]; Cβ) P − a.s..

4 Infinite volume case

In this section, we analyze the stochastic quantization equations in infinite volume. The proof
is similar as for the finite volume case. However, the invariant measure ν0 defined below is
more singular and the analysis becomes considerably harder. For simplicity we choose N = 2.
The general case can be proved similarly. Recall that S ′(R2) is the space of tempered Schwartz
distributions on R2 and S(R2) the associated test function space equipped with the usual
topology. In this section we use weighted Besov space B̂α,σp,p and we fix σ > 2.

4.1 Wick powers

Let µ0 be the mean zero Gaussian measure on (S ′(R2),B(S ′(R2))) with covariance∫
S⟨k1, z⟩S′S⟨k2, z⟩S′µ0(dz) =

∫ ∫
1

2
G(x− y)k1(x)k2(y)dxdy =: ⟨k1, k2⟩H1 ,

where G denotes the Green function of the operator −A on R2.

Wick powers on L2(S ′(R2), µ0)
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Let H1 be the real Hilbert space obtained by completing S(R2) w.r.t, the norm associated
with the inner product ⟨·, ·⟩H1 . Now for n ∈ N, let S−n denote the Hilbert subspace of S ′(R2)
which is the dual of Sn defined as the completion of S(R2) w.r.t the norm

∥k∥Sn := [
∑
|m|≤n

∫
R2

(1 + |x|2)n|( ∂
m1

∂xm1
1

,
∂m2

∂xm2
2

)k(x)|2dx]1/2.

For h ∈ H1 we define Xh ∈ L2(S ′(R2), µ0) by Xh := limn→∞ S⟨kn, ·⟩S′ in L2(S ′(R2), µ0) where
kn is any sequence in S(R2) such that kn → h in H1. We have the well-known (Wiener-Itô)
chaos decomposition

L2(S ′(R2), µ0) =
⊕
n≥0

Hn.

For h ∈ L2(R2, dx) and n ∈ N, define : zn : (h) to be the unique element in Hn such that∫
: zn : (h) :

n∏
j=1

Xkj :n dµ0 = n!

∫
R2

n∏
j=1

(

∫
R2

G(x− yj)kj(yj)dyj)h(x)dx

where k1, ..., kn ∈ S(R2) and : :n means orthogonal projection onto Hn (see [S74, V.1] for
existence of : zn : (h)).

From now on we define for h ∈ L2(R2, dx)

: P (z) : (h) :=
1

2
: z4 : (h).

We have that exp(− : P (z) : (h)) ∈ Lp(S ′(R2), µ0) for all p ∈ [1,∞) if h ≥ 0 (cf. [AR91,
Section 7]), hence the following probability measures (called space-time cut-off quantum fields)
are well-defined for Λ ∈ B(R2),Λ bounded,

νΛ :=
exp (− : P (z) : (1Λ))∫
exp (− : P (z) : (1Λ))dµ0

µ0.

It has been proven that the weak limit

lim
Λ→R2

νΛ =: ν0

exists as a probability measure on (S ′(R2),B(S ′(R2))) having moments of all orders (see [GlJ86]
and also [AR91, Section 7]). In particular, it follows by [AR89, Proposition 3.7] that ν0(S−n) = 1
for n ∈ N large enough. We emphasize that ν0 is not absolutely continuous with respect to
µ0 (c.f.[AR91]). By [AR91, Section 7], if n is large enough, there exists a B(S−n)/B(S−n)-
measurable map : ϕ3 :: S−n → S−n such that S−n⟨: ϕ3 :, l⟩Sn =: ϕ3 : (l) ν0-a.e. for each l with
compact support and

∫
∥ : ϕ3 : ∥2S−n

dν0 <∞.
For ϕ ∈ S ′(R2) define

ϕε := ρε ∗ ϕ
with ρε an approximate delta function,

ρε(x) = ε−2ρ(
x

ε
) ∈ D,

∫
ρ = 1,
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and for every n ∈ N we set
: ϕnε :C= cn/2ε Pn(c

−1/2
ε ϕε),

with cε =
∫
ϕ2
εµ0(dϕ) =

1
2

∫ ∫
G(x−y)ρε(y)dyρε(x)dx = ∥Kε∥2L2(R×R2). Here and in the following

K(t, x − y) is the heat kernel associated with A on R2 and Kε = K ∗ ρε, where ∗ means
convolution in space. By [GlJ86] we know that for every smooth funcion g with compact
support, ⟨: ϕ3

ε :C , g⟩ converges to ⟨: ϕ3 :, g⟩ in L2(S ′(R2), ν0).
Now we give estimates on the measure ν0 for later use.

Lemma 4.1 Let α0 < −3
2
, σ > 2, p > 1, p ∈ N, then∫

∥ : ϕ3 : ∥2pB̂α0,σ
2p,2p

ν0(dϕ) <∞.

Proof By (2.3) we have∫
∥ : ϕ3 : ∥2pB̂α0,σ

2p,2p

ν0(dϕ)

.
∫ ( ∞∑

n=0

22n(α0−1/p+1)p
∑
ψ∈Ψ⋆

∑
x∈Λn

|⟨: ϕ3 :, ψnx⟩|2pw(x)
)
ν0(dϕ)

.
∞∑
n=0

22n(α0−1/p+1)p
∑
ψ∈Ψ⋆

∑
x∈Λn

∫
⟨: ϕ3 :, ψnx⟩2pw(x)ν0(dϕ)

≤C(p)
∞∑
n=0

22n(α0−1/p+1)p
∑
ψ∈Ψ⋆

∑
x∈Λn

∥ψnx∥
2p
L4w(x).

Here we used [GlJ86, Corollary 12.2.4] in the last inequality. Recall that the L4-norm of ψnx is
of order 2n/2 and that Ψ is a finite set. Thus we obtain that the last term is of order

∞∑
n=0

22n(α0+
3
2
)p

∫
R2

w(x)dx.

Hence the sums over n and x converge for α0 < −3
2
. �

Wick powers on a fixed probability space
Now we fix a stochastic basis (Ω,F , (Ft)t∈[0,∞), P ) and on it a cylindrical Wiener process

W in L2(R2). We have the well-known (Wiener-Itô) chaos decomposition

L2(Ω,F , P ) =
⊕
n≥0

H′
n.

Now for Z(t) =
∫ t
0
e(t−s)AdW (s), we can also define Wick powers with respect to different

covariances by approximations: Let Zε(t, y) =
∫ ∫ t

0
⟨Kε(t − s, y − x), dW (s)⟩ = ρε ∗ Z. Here

⟨·, ·⟩ means inner product in L2(R2). Let Ct :=
1
2
(−A)−1(I − e2tA). For every n ∈ N we set

: Zn
ε (t) :Ct= (cε,t)

n
2Pn((cε,t)

− 1
2Zε(t)) ∈ H′

n,
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where Pn, n = 0, 1, ..., are the Hermite polynomials and cε,t = ∥Kε1[0,t]∥2L2(R×R2).

By similar arguments as in the proof of Lemma 3.3 and using (2.3) we have:

Lemma 4.2 For every α < 0 and every p > 1, n = 2, 3, : Zn
ε :Ct converges in L

p(Ω, C([0, T ]; B̂α,σ2p,2p)).
This limit is called Wick power of Z(t) with respect to the covariance Ct and denoted by
: Zn(t) :Ct .

By this lemma and a similar argument as in the proof of Lemma 3.4 we can also define
: Zn(t) :C .

Lemma 4.3 For every α < 0 and every p > 1, n = 2, 3, : Zn
ε :C= (cε)

n
2Pn((cε)

− 1
2Zε) converges

in Lp(Ω, C((0, T ]; B̂α,σp,p )). Here C((0, T ]; B̂α,σp,p ) is equipped with the norm supt∈[0,T ] t
ρ∥ · ∥B̂α,σ

p,p
for

ρ > 0. This limit is called Wick power of Z(t) with respect to the covariance C and denoted
by : Zn(t) :C . Moreover, for t > 0

: Zn(t) :C=

[n/2]∑
l=0

clt
n!

(n− 2l)!l!2l
: Zn−2l(t) :Ct ,

where ct := limε→0(cε,t − cε) = −
∫∞
t

∫
K(r, x)2dxdr, cε = ∥Kε∥2L2(R×R2).

Now we combine the initial value part with the Wick power by using (3.1). In the following
we fix p0 > 3. For z ∈ B̂α,σ3p0,∞ with α < 0, σ > 2 we set V (t) = eAtz, Vε = ρε ∗ V , and

Z̄(t) = Z(t) + V (t), Z̄ε(t) = Zε(t) + Vε(t),

: Z̄2(t) :C=: Z(t)2 :C +V (t)2 + 2Z(t)V (t),

: Z̄3(t) :C=: Z(t)3 :C +V (t)3 + 3Z(t)V 2(t) + 3 : Z(t)2 :C V (t).

: Z̄n
ε :C is defined as : Z̄n :C with Z, V replaced by Zε, Vε, respectively. By Lemma 2.5 we

know that V ∈ C([0, T ]; B̂α,σ3p0,∞) and V ∈ C((0, T ]; B̂β,σ3p0,∞) for β > α equipped with the norm

supt∈[0,T ] t
β−α
2 ∥ · ∥B̂β,σ

3p0,∞
. Moreover,

sup
t∈[0,T ]

t
β−α
2 ∥V (t)∥B̂β,σ

3p0,∞
. ∥z∥B̂α,σ

3p0,∞
.

By Lemma 2.6 we obtain that for α < 0, n = 1, 2, 3, σ > 2, p > 1, : Z̄n :C∈ Lp(Ω, C((0, T ]; B̂α,σp0,∞))

and that : Z̄n
ε :C converges to : Z̄n :C in Lp(Ω, C((0, T ]; B̂α,σp0,∞)). Here C((0, T ]; B̂α,σp0,∞) is

equipped with the norm supt∈[0,T ] t
(β−α)n+ρ

2 ∥ · ∥B̂α,σ
p0,∞

with β > −α > 0, ρ > 0.

Relations between two different Wick powers

Lemma 4.4 Let ϕ be a measurable map from (Ω,F , P ) to C([0, T ],S−n) for some n > 0
large enough, P ◦ ϕ(t)−1 = ν0 for every t ∈ [0, T ] and let Z̄ be defined as above. Assume in
addition that y = ϕ− Z̄ ∈ C([0, T ]; B̂β,σp0,∞) P -a.s. for some β with β > −α > 0. Then for every
t > 0

: ϕ3(t) :=
3∑

k=0

Ck
3 y

3−k(t) : Z̄k(t) :C P − a.s..
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Proof By [GlJ86, Theorem 12.2.1] it follows that for every compactly supported smooth func-
tion g and t ≥ 0

⟨: ϕε(t)3 :C , g⟩ → ⟨: ϕ(t)3 :, g⟩ in L2(Ω, P ).

Since yε = ϕε − Z̄ε = ρε ∗ y, it is obvious that yε(t) → y(t) in B̂β−κ,σp0,∞ P -a.s. for κ > 0, β − κ >
−α > 0, which combined with Lemmas 2.6 and 4.3 implies that for k ∈ N, k ≤ 3

⟨y3−kε (t) : Z̄k
ε :C , g⟩ → ⟨y3−k(t) : Z̄k :C , g⟩ in probability .

Moreover, by (3.1) and similar arguments as the proof of Lemma 3.6 we have

: ϕε(t)
3 :C=

3∑
k=0

Ck
3 : Z̄k

ε (t) :C y
3−k
ε (t),

which implies

⟨: ϕ(t)3 :C , g⟩ =
3∑

k=0

Ck
3 ⟨y3−k(t) : Z̄k(t) :C , g⟩ P − a.s..

by letting ε→ 0. Now the results follow because the test function space is separable. �
In the following, we only use Wick powers : · :C and we write : · : for simplicity.

4.2 Relations between the two solutions

Solutions given by Dirichlet forms

Now choose H = L2(R2) and E = S−n for some n large enough, which can be chosen from
Theorem 4.5 below. We define the Dirichlet form as in [AR91]. Define

FC∞
b = {u : u(z) = f(E∗⟨l1, z⟩E, E∗⟨l2, z⟩E, ..., E∗⟨lm, z⟩E), z ∈ E, l1, l2, ..., lm ∈ E∗,m ∈ N, f ∈ C∞

b (Rm)},

where E∗ denotes the dual space of E. Define for u ∈ FC∞
b and l ∈ H,

∂u

∂l
(z) :=

d

ds
u(z + sl)|s=0, z ∈ E,

that is, by the chain rule,

∂u

∂l
(z) =

m∑
j=1

∂jf(E∗⟨l1, z⟩E, E∗⟨l2, z⟩E, ..., E∗⟨lm, z⟩E)⟨lj, l⟩H .

Let Du denote the H-derivative of u ∈ FC∞
b , i.e. the map from E to H such that

⟨Du(z), l⟩ = ∂u

∂l
(z) for all l ∈ H, z ∈ E.

By [AR91] we easily deduce that the form

E(u, v) := 1

2

∫
E

⟨Du,Dv⟩Hdν0;u, v ∈ FC∞
b
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is closable and its closure (E , D(E)) is a quasi-regular Dirichlet form on L2(E; ν0) in the sense
of [MR92]. By [AR91, Theorem 3.6] we know that there exists a (Markov) diffusion process
M = (Ω,F , (X(t))t≥0, (P

z)z∈E) on E properly associated with (E , D(E)).
By [AR91, Theorem 7.11] we have the following:

Theorem 4.5 For each l smooth and compactly supported, the partial log derivative of ν0
is given by

βl(z) = −2⟨: z3 :, l⟩+ 2Sn⟨∆l − l, z⟩S−n .

If n is large enough there exists a B(S−n)/B(S−n)-measurable map β : S−n → S−n such that

S−n⟨β, l⟩Sn = βl ν0-a.e. for each l with compact support and
∫
∥β∥2S−n

dν0 <∞.

Moreover, by [AR91, Theorem 6.1] we obtain the following results:

Theorem 4.6 There exist a map W : Ω → C([0,∞);E) and a properly E-exceptional set
S ⊂ E, i.e. ν0(S) = 0 and P z[X(t) ∈ E \S,∀t ≥ 0] = 1 for z ∈ E\S, such that ∀z ∈ E\S under
P z, W is an Mt- cylindrical Wiener process and the sample paths of the associated process
M = (Ω,F , (X(t))t≥0, (P

z)z∈E) on E satisfy the following: for l ∈ Sn with compact support

E∗⟨l, X(t)−X(0)⟩E =

∫ t

0

⟨l, dW (r)⟩+
∫ t

0

(−S−n⟨: X(r)3 :, l⟩Sn

+Sn ⟨∆l − l, X(r)⟩S−n)dr ∀t ≥ 0 P z−a.s..

(4.1)

Moreover, ν0 is an invariant measure for X in the sense that
∫
ptudν =

∫
udν for u ∈ L2(E; ν)∩

Bb(E), where pt is the transition semigroup for M .

Relations between the two solutions
In the following we discuss the relations between M constructed above and the shifted

equation. For W constructed in Theorem 4.6, define Z̄(t) :=
∫ t
0
e(t−s)AdW (s) + etAX(0). First

we prove the following property for ν0 by using Theorem 4.6. .

Theorem 4.7 For every α < 0, σ > 2, p ≥ 1 we have

ν0(B̂α,σp,∞) = 1.

Proof By using [GlJ86, Corollary 12.2.4], we have that for α1 < −1/2, p > 1

ν0(B̂α1,σ
2p,2p) = 1.

Indeed, by (2.3), [GlJ86, Corollary 12.2.4] and similar calculation as the proof of Lemma 4.1
we have ∫

∥ϕ∥2pB̂α1,σ
2p,2p

ν0(dϕ) ≤ C(p)
∞∑
n=0

22n(α1−1/p+1)p
∑
ψ∈Ψ⋆

∑
x∈Λn

∥ψnx∥
2p

L4/3w(x).

Recall that the L4/3-norm of ψnx is of order 2−n/2 and that Ψ is a finite set. Thus we obtain
that the sums over n and x converge for α1 < −1

2
.

Then by Theorem 4.6 we have that for z ∈ B̂α1,σ
p,∞ ∩ (E \ S) with p > 1 under P z

X(t) = −
∫ t

0

e(t−τ)A : X(τ)3 : dτ + Z̄(t).
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By a similar calculation as in the proof of Lemma 3.3 and using (2.3), it follows that for every
α < 0, p > 1, t > 0, ∫ t

0

e(t−s)AdW (s) ∈ B̂α,σp,∞ P ν0 − a.s..

Moreover, by Lemma 2.5 for t > 0

∥etAz∥B̂α,σ
p,∞

. t−
(α−α1)

2 ∥z∥B̂α1,σ
p,∞

,

which implies that for every t > 0, α < 0,

Z̄(t) ∈ B̂α,σp,∞ P ν0 − a.s..

Since ν0 is an invariant measure forM , by Lemma 4.1 we conclude that for every α0 < −3
2
, T >

0, p > 1,

Eν0

∫ T

0

∥ : X(τ)3 : ∥pB̂α0,σ
p,p

dτ = T

∫
∥ : ϕ3 : ∥pB̂α0,σ

p,p
ν0(dϕ) <∞.

Then by Lemma 2.5 we have that for p > 2
2−(α−α0)

Eν0 sup
t∈[0,T ]

∥
∫ t

0

e(t−τ)A : X(τ)3 : dτ∥B̂α,σ
p,p

. Eν0 sup
t∈[0,T ]

∫ t

0

(t− τ)−
α−α0

2 ∥ : X(τ)3 : ∥B̂α0,σ
p,p

dτ

.
(
Eν0

∫ T

0

∥ : X(τ)3 : ∥pB̂α0,σ
p,p

dτ

) 1
p

<∞
.

Here in the last inequality we used Hölder’s inequality. Thus, by Lemma 2.6 for every t > 0
X(t) ∈ B̂α,σp,∞ P ν0-a.s., which implies the result since P ν0 ◦X(t)−1 = ν0. �

Now we prove that X − Z̄ satisfies the shifted equation.

Theorem 4.8 Let α ∈ (−1
3
, 0) and p0 > 3. There exists a properly E-exceptional set S2 ⊃ S

in the sense of Theorem 4.6 such that for z ∈ B̂α,σ3p0,∞ ∩ (E \ S2), Y := X − Z̄ ∈ C([0,∞); B̂β,σp,p )
P z-a.s. for every β ∈ (0, 1

2
), p > 1, is a solution to the following equation:

Y (t) = −
∫ t

0

e(t−s)A
3∑
l=0

C l
3Y (s)l : Z̄3−l(s) : ds. (4.2)

Moreover,

P z[X(t) ∈ B̂α,σ3p0,∞ ∩ (E \ S2),∀t ≥ 0] = 1 for z ∈ B̂α,σ3p0,∞ ∩ (E \ S2). (4.3)

Proof By Theorem 4.6 we have that for z ∈ E \ S

X(t) = −
∫ t

0

e(t−τ)A : X(τ)3 : dτ + Z̄(t) P z − a.s..

Since ν0 is an invariant measure for X, by Lemma 4.1 we conclude that for every α0 < −3
2
,

p > 1, ∫
Ez

∫ T

0

∥ : X(τ)3 : ∥pB̂α0,σ
p,p

dτν0(dz) = T

∫
∥ : ϕ3 : ∥pB̂α0,σ

p,p
ν0(dϕ) <∞,
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which implies that there exists a properly E-exceptional set S1 ⊃ S such that for z ∈ E \ S1

Ez

∫ T

0

∥ : X(τ)3 : ∥pB̂α0,σ
p,p

dτ <∞.

By Lemma 2.5 we know that for 0 < β < α0 + 2 and for z ∈ E\S1, p > 1,∫ ·

0

e(·−τ)A : X(τ)3 : dτ ∈ C([0,∞); B̂β,σp,p ) P z − a.s..

Then we conclude that for every z ∈ E \ S1, p > 1

X − Z̄ ∈ C([0,∞); B̂β,σp,p ) P z − a.s..

By Theorem 4.7 and the fact that
∫ ·
0
e(·−s)AdW (s) ∈ C([0,∞); B̂α,σ3p0,∞) P ν0-a.s. for α ∈ (−1

3
, 0),

we obtain that
Z̄ ∈ C([0,∞); B̂α,σ3p0,∞) P ν0 − a.s..

Thus, Lemma 4.4 and similar arguments as in the proof of Theorem 3.9 imply that

P ν0 [X ∈ C([0,∞), B̂α,σ3p0,∞), X − Z̄ ∈ C([0,∞), B̂β,σp,p ),∫ t

0

: X(s)3 : ds =

∫ t

0

3∑
l=0

C l
3(X(s)− Z̄(s))l : Z̄(s)3−l : ds,∀t ≥ 0] = 1,

which combined with similar arguments as in the proof of Theorem 3.9 implies that there exists
a properly E-exceptional set S2 ⊃ S such that for z ∈ B̂α,σ3p0,∞ ∩ (E \ S2)

P z[X ∈ C([0,∞), B̂α,σ3p0,∞), X − Z̄ ∈ C([0,∞), B̂β,σp,p ),∫ t

0

: X(s)3 : ds =

∫ t

0

3∑
l=0

C l
3(X(s)− Z̄(s))l : Z̄(s)3−l : ds,∀t ≥ 0] = 1.

Now we can conclude the first result. (4.3) follows from the above equality and S2 is a properly
E-exceptional set. �

Now we deduce the uniqueness of the solution to (4.2) and that ν0 is an invariant measure
of the solution X̄ = Y0 + Z̄, where Y0 is the unique solution to (4.2).

Theorem 4.9 For 0 < β < 1
2
, σ > 2, p sufficiently large, there exists a unique solution to

(4.2) in C([0, T ]; B̂β,σp,∞).
Moreover, ν0 is an invariant measure of the solution X̄ = Y0 + Z̄, where Y0 is the unique

solution to (4.2).

Proof The first result follows from [MW15, Theorem 9.5] and the second follows from Theorem
4.7 and similar arguments as in the proof of Theorem 3.10. �

Similarly as in Section 3.3 we start from the transition semigroup of X̄ and can prove that
the Dirichlet form associated with this transition semigroup is (E , D(E)) defined in Section 4.2.
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4.3 Markov uniqueness in the restricted sense

All the definitions introduced in Section 3.4 can be transferred here. Combining Theorem 4.8
and Theorem 4.9, we obtain uniqueness of martingale problem for (L(E), D) in the infinite
volume case and the uniqueness of probabilistically weak solutions to (1.1) if solution has ν0 as
an invariant measure:

Theorem 4.10 (i) There exists (up to ν0-equivalence) exactly one ν0-special standard process
M with state space E which satisfies (4.1) P z-a.s. and P z(X ∈ C([0,∞);E)) = 1 for ν0-
a.e. z ∈ E and has ν0 as an invariant measure, i.e. for the transition semigroup (pt)t≥0,∫
ptfdν0 =

∫
fdν0 for f ∈ L2(E; ν0).

(ii) There exists (up to ν0-equivalence) exactly one ν0-special standard processM with state
space E solving the martingale problem for (L(E), D) and satisfying P z(X ∈ C([0,∞);E)) = 1
for ν0-a.e. and having ν0 as an invariant measure.

(iii) ♯Eq.r. = 1. Moreover, there exists (up to ν0-equivalence) exactly one ν-special standard
processM with state space E associated with a Dirichlet form (E , D(E)) solving the martingale
problem for (L(E), D).

Proof It follows essentially from the same argument as the proof of Theorem 3.12 and (4.3).
�
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[AR89] S. Albeverio, M. Röckner, Classical Dirichlet forms on topological vector spaces - Con-
struction of an associated diffusion process. Probab. Th. Ret. Fields. 83, 405-434 (1989)
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