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Abstract

Based on an integration by parts formula for closed and convex
subsets Γ of a separable real Hilbert space H with respect to a Gaus-
sian measure, we first construct and identify the infinite dimensional
analogue of the obliquely reflected Ornstein-Uhlenbeck process (per-
turbed by a bounded drift B) by means of a Skorokhod type decom-
position. The variable oblique reflection at a reflection point of the
boundary ∂Γ is uniquely described through a reflection angle and a di-
rection in the tangent space (more precisely through an element of the
orthogonal complement of the normal vector) at the reflection point.
In case of normal reflection at the boundary of a regular convex set
and under some monotonicity condition on B, we prove the existence
and uniqueness of a strong solution to the corresponding SDE. Sub-
sequently, we consider an increasing sequence (Γαk

)k∈Z of closed and
convex subsets of H and the skew reflection problem at the bound-
aries of this sequence. We present concrete examples and obtain as a
special case the infinite dimensional analogue of the p-skew reflected
Ornstein-Uhlenbeck process.
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1 Introduction

The construction and the analysis of stochastic differential equations with
reflection on a closed subset Γ of a finite dimensional state space is mean-
while a well-established topic and one can say that there are at least two
approaches to it. The first approach is probabilistic, which can be realized
by local time calculus (see e.g. [26, chapter VI], [23], [12]), by solving the
Skorokhod problem ([13], [7], [6], [8]), or by penalization methods ([14], [22]).
In particular, the approach is realized through “direct” stochastic calculus.
The second approach is an indirect analytic one and uses as a main ingredi-
ent an integration by parts (hereafter IBP) formula on Γ, such as the weak

1This research was supported by DFG through Grant Ro 1195/10-1 and by NRF-
DFG Collaborative Research program through the National Research Foundation of Korea
NRF-2012K2A5A6047864.
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Gauss Theorem for regular domains Γ. The connection to the correspond-
ing diffusion can be made by associating the infinitesimal generator of the
diffusion with adequate boundary conditions through the IBP formula to a
bilinear form, a so-called (generalized) Dirichlet form. Then, one uses the
corresponding machinery (see [15], [5], [11], [17], [29], [20], [31] and refer-
ences therein). The approach is indirect because one has to establish the
connection between an analytic boundary term, a surface measure on the
boundary ∂Γ that appears in the IBP formula, and a local time, i.e. the
reflection term that appears in the stochastic differential equation (hereafter
SDE) of the diffusion. This connection is established through Revuz’s corre-
spondence and originates from [25] (cf. [11, Theorem 5.1.4] and [26, Chapter
X]).
While direct stochastic calculus is often dimension dependent and is the
most powerful in dimension one, the indirect approach is dimension inde-
pendent and only relies on an integration by parts formula. In particular,
the Revuz correspondence has been shown to be also valid on infinite di-
mensional state spaces (see [17, VI. Theorem 2.4], and [30, Theorem 3.1]).
In this paper, we will use the theory of Dirichlet forms and the observation
that a concrete IBP formula on an infinite dimensional space (namely (2.4)
below) together with the Revuz correspondence will lead to the explicit iden-
tification of weak solutions to infinite dimensional analogues of well-known
reflected SDEs, like oblique and skew reflection (see [12], [7]).
An IBP formula on a closed subset of an infinite dimensional linear space
first appears in [34] (see also [35]). There it was shown that the solution of
some SPDE on L2((0, 1), dξ) with reflection, which is forced to stay positive
by penalization (see [19]), admits a corresponding IBP formula with respect
to the 3d-Bessel bridge ν, and ν has closed and convex support on the non-
negative functions in L2((0, 1), dξ). In [28] the notion of BV functions in
a Gelfand triple is defined, which is an extension of the definition of BV
functions in a Hilbert space in [1] (see also [9], [10] in case of the abstract
Wiener space). In [28] they consider the Dirichlet form determined by

Eρ(u, v) =
1

2

∫
H
〈Du,Dv〉ρ(z)µ(dz), u, v ∈ C1

b (supp(ρdµ)) (1.1)

where H is a Hilbert space, D the Fréchet derivative, ρ a strictly positive and
integrable BV function, µ a Gaussian measure in H, and obtain a Skorokhod
representation for the associated process (a reflected Ornstein-Uhlenbeck
(OU) process), if ρ = IΓ and Γ is a closed and convex set. For a nice
convex set with non-empty interior, as in (0 4) of Subsection 3.1 below, the
corresponding generator of the Dirichlet form is identified and hence an IBP
formula is derived in [3], [4]. In this case IΓ ∈ BV (H,H) (cf. Lemma 3.7(ii)
and for the definition of BV (H,H) see Section 2). In [28] the generalized
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weak Gauss Theorem reads as∫
Γ
D∗G(z)µ(dz) = −

∫
∂Γ

H1〈G(z), ηΓ〉H∗1 ‖∂Γ‖(dz)

where (H1, H,H
∗
1 ) is a Gelfand triple of Hilbert spaces, ηΓ : H → H∗1 the

“exterior normal” to ∂Γ, ‖∂Γ‖ a finite positive measure, i.e. the “surface
measure” on ∂Γ (for the precise definitions see explanations around (2.4)).
A concrete situation, where the generalized weak Gauss Theorem holds and
where IΓ ∈ BV (H,H1) \ BV (H,H) (for the definition of BV (H,H1) see
Section 2), is analyzed in [28, Section 6] (see Example 4.5(ii) below).
The organization, contents and the main results of this paper are as follows.
In Section 2 we introduce the general setting and the framework of BV-
functions in a Gelfand triple from [28]. Then, we choose Eρ as a reference
Dirichlet form, where we suppose that ρ satisfies either (H1a) or (H1b) and
that there exists a local (possibly non-symmetric) Dirichlet form E which
is equivalent to Eρ in the sense of (H2). In case of (H1a), E will turn out
to be the Dirichlet form of the (countably) skew reflected OU-process and
in case of (H1b), E will turn out to be the Dirichlet form of the obliquely
reflected OU-process. Assumption (H2) guarantees that the Eρ-smooth mea-
sures and E-smooth measures are the same (see Remark 2.2(i)) and that Eρ
and E share important common properties (see Theorem 2.1). Proposition
2.3 constitutes a necessary tool to identify M [l] and N [l] in the Fukushima
decomposition (2.3) related to E , i.e. Proposition 2.3 will serve later for
the identification of Skorokhod type decompositions in case of an explicitly
specified E . A further necessary tool is the fundamental formula (2.6) of
Subsection 2.1. It follows in a straightforward manner from the IBP for-
mula (2.4) and is the main analytic tool in [28] to obtain weak existence of
the normally reflected OU-process. The fundamental formula (2.6) is used
as a basis to derive the IBP formulas in case of oblique and skew reflection.
These are given in Propositions 3.4 and 4.2 and are fundamental for our
main results.
In Section 3, we introduce the basic setting for oblique reflection on a convex
and closed subset Γ of H, such that IΓ ∈ BV (H,H). We fix a fully antisym-
metric dispersion matrix Ă = (ăij)i,j≥1 satisfying (0 1)-(0 3) (see beginning
of Section 3). Here, we need the boundedness of Γ in order to guarantee the

boundedness of the antisymmetric part of the logarithmic derivative βµ,Ă of
µ with respect to Ă (cf. Remark 3.1). Subsequently, the Dirichlet form EΓ,Ā,
where Ā := Ă + Id is introduced. EΓ,Ā := E is sectorial and coincides with
EΓ := E IΓ on the diagonal, thus satisfies (H2) (see Lemma 3.2), and serves in
a first step to obtain via the IBP formulas Lemma 3.3 and Proposition 3.4,

the obliquely reflected OU-process with drift βµ,Ă in Proposition 3.5. We

then use a Girsanov transformation in infinite dimensions to remove βµ,Ă in
Proposition 3.5 and by this, we obtain the obliquely reflected OU-process
with bounded drift B in Theorem 3.7, which is the first main result of this
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paper. In Subsection 3.1, we consider a (bounded) regular convex set given
by (0 4). Then it is known that IΓ ∈ BV (H,H) and so Theorem 3.7 can
be concretely reformulated as Theorem 3.9 under this setting. In Remark
3.10 the solution of Theorem 3.7 is characterized as an obliquely reflected
process. In Subsection 3.2, we consider the normally reflected case, i.e.
Ă ≡ 0, so we may drop the assumption on boundedness of Γ (see Remark
3.1). Noting that we construct the weak solution in Theorem 3.9 without
the restrictive assumption of positive µ-divergence on B as in [28, (5.15)],
we obtain Theorem 3.14 just assuming B to be uniformly bounded and to
satisfy the monotonicity condition of Theorem 3.13. This generalizes [28,
Theorem 5.19].
In Section 4 under the conditions (S1)-(S3) and the corresponding definition
of ρ as a step function of countably many sets which are differences of closed
and convex sets, we obtain the IBP formula of Proposition 4.2. Then with
the help of Lemma 4.1, we are able to identify the countably skew reflected
OU-process in Theorem 4.4 which is the second main result of this paper,
where the occurring local times are normalized according to the interpre-
tation of Remark 4.3. We present concrete examples where Theorem 4.4
can be applied in Examples 4.5. Finally, in Remark 4.6, we mention the
related paper [2], which is to our knowledge the sole other work about skew
reflection in infinite dimensions.

2 Framework and preliminaries

Let H be separable real Hilbert space with inner product 〈·, ·〉, norm | · | and
Borel σ-algebra B(H).
Let A : D(A) ⊂ H → H be a linear self-adjoint operator on H such that
A ≥ δ Id, i.e. 〈Ax, x〉 ≥ δ|x|2 for any x ∈ D(A) and some δ > 0. We further
suppose that A−1 is of trace class. In particular there exists an orthonormal
basis {ej , j ∈ N} of H consisting of eigenfunctions for A with corresponding
real eigenvalues αj , j ∈ N, i.e.

Aej = αjej , ∀j ∈ N .

Consequently, αj ≥ δ for any j ∈ N.
We denote by µ the Gaussian measure on H with mean zero and covariance
operator

Q :=
1

2
A−1 .

Since A is strictly positive, µ is nondegenerate and has full support on
(H,B(H)). The corresponding Lp-spaces, p ∈ [1,∞], with the usual norms
‖ · ‖p are denoted by Lp(H;µ). We denote by Dϕ : H → H∗(≡ H) the
Fréchet derivative of ϕ : H → R and let C1

b (H) be the set of all bounded
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(Fréchet) differentiable functions that have bounded (Fréchet) derivatives.
For K ⊂ H define

C1
b (K) :=

{
f : K → R | ∃g ∈ C1

b (H) with f = g on K
}
.

Moreover, if ϕ is Fréchet differentiable, we write

∂jϕ := 〈Dϕ, ej〉 , j ≥ 1 .

Next, we want to introduce the bounded variation functions in a Gelfand
triple from [28]. For this, we let as in [10]

A 1
2
(x) :=

∫ x

0
(log(1 + s))

1
2 ds, x ≥ 0

and

L(logL)
1
2 (H,µ) :=

{
f : H → R |f is B(H)-measurable and A 1

2
(|f |) ∈ L1(H,µ)

}
.

It is well-known that L(logL)
1
2 (H,µ) is a Banach space with norm

‖f‖
L(logL)

1
2

= inf

α > 0
∣∣∣ ∫
H

A 1
2

(
|f |
α

)
dµ ≤ 1

 .

Let (cj)j∈N be a sequence in [1,∞) and let

H1 :=

x ∈ H ∣∣∣ ∑
j≥1

c2
j 〈x, ej〉2 <∞


with inner product

〈x, y〉H1 :=
∑
j≥1

c2
j 〈x, ej〉〈y, ej〉 .

Then (H, 〈·, ·〉H1) is a Hilbert space such that H1 ⊂ H continuously and
densely. Identifying H with its dual H∗, we obtain continuous and dense
embeddings

H1 ⊂ H(≡ H∗) ⊂ H∗1 .

In particular H1〈 · , · 〉H∗1 coincides with 〈·, ·〉 when restricted to H1×H and
(H1, H,H

∗
1 ) is a Gelfand triple. Define a family of H- valued functions on

H by

(C1
b )D(A)∩H1

:=

{
G

∣∣∣∣∣ G(z) =

m∑
j=1

gj(z)l
j , z ∈ H,

gj ∈ C1
b (H), lj ∈ D(A) ∩H1

}
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and let D∗ be the adjoint of D : C1
b (H) ⊂ L2(H;µ) → L2(H,H;µ) with

domain

Dom(D∗) :=

{
G ∈ L2(H,H;µ) | C1

b (H) 3 u→
∫
H

〈G,Du〉 dµ

is continuous with respect to ‖ · ‖2

}
.

We have (C1
b )D(A)∩H1

⊂ Dom(D∗) and for anyG ∈ (C1
b )D(A)∩H1

, f ∈ C1
b (H)∫

H

D∗G(z)f(z)µ(dz) =

∫
H

〈G(z), Df(z)〉µ(dz) (2.1)

For ρ ∈ L(logL)
1
2 (H,µ) set

V (ρ) := sup
G∈(C1

b )D(A)∩H1
,|G|H1

≤1

∫
H

D∗G(z)ρ(z) µ(dz) .

Then

ρ ∈ BV (H,H1) :=
{
ρ ∈ L(logL)

1
2 (H,µ) and V (ρ) <∞

}
is called a BV function in the Gelfand triple (H1, H,H

∗
1 ). Since D(A)∩H1 ⊂

D(A) and | · | ≤ | · |H1 it follows that BV (H,H) ⊂ BV (H,H1). From now on
we will assume that ρ : H → R is a B(H)-measurable function that satisfies
either

1

c0
≤ ρ ≤ c0 µ− a.e. for some constant c0 > 1 (H1a)

or
ρ = IΓ where Γ ⊂ H is closed and convex. (H1b)

Here IA, A ⊂ H, denotes the indicator function of A. The first case will
later correspond to (countably) skew reflection and the second to oblique
reflection.
Throughout, we set

F := supp(ρ dµ) .

Then from [28, Remark 4.1], we know that

Eρ(u, v) :=
1

2

∫
H

〈Du,Dv〉ρ dµ , u, v ∈ C1
b (F ) ,

is closable in L2(F ; ρ dµ) and we denote the closure by (Eρ, D(Eρ)).
Next, we suppose from now on that there exists a local (possibly non-
symmetric) Dirichlet form (E , D(E)) in the sense of [17], such that for some
constant c0 > 1

1

c0
E(u, u) ≤ Eρ(u, u) ≤ c0E(u, u) , ∀u ∈ C1

b (F ) , (H2)
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and that (E , D(E)) is given as the closure of (E , C1
b (F )) on L2(F ; ρdµ). Then

the following holds:

Theorem 2.1. (i) (E , D(E)) and (Eρ, D(Eρ)) are quasi-regular local Dirich-
let forms in the sense of [17, IV. Definition 3.1] and the E-nests and
Eρ-nests coincide.

(ii) (E , D(E)) is recurrent, hence conservative.

(iii) There exists a diffusion M = (Ω,M, (Mt)t≥0, (Xt)t≥0, (Pz)z∈F ) asso-
ciated to (E , D(E)) and M has infinite life time.

Proof. (i) This follows from [27] and [17, III. Definition 2.1] since the
Dirichlet norms of (E , D(E)) and (Eρ, D(Eρ)) are equivalent and so the
E-nests and Eρ-nests as well as the E-exceptional and Eρ-exceptional
sets coincide.

(ii) This follows immediately from the fact that E(1, 1) = 0.

(iii) This follows from [17, IV. Theorem 1.5] and the conservativeness of
(E , D(E)).

�

For the following notions and facts up to (2.3) below, we refer to [17,
Section VI.2].
LetA+ denote the set of all positive continuous additive functionals (PCAF’s
for short) of M as in Theorem 2.1 (iii) and set A := A+−A+, i.e. the set of
all the CAF’s of finite variation. Denote by Ex the expectation with respect
to Px.
By virtue of the Revuz correspondence each E-smooth measure ν (ν ∈
S for short) on (F,B(F )) is associated to a unique (Ct)t≥0 ∈ A+ such that

lim
t↘0

1

t

∫
F

Ex

[∫ t

0
f(Xs)dCs

]
ρ(x)µ(dx) =

∫
F

f dν (2.2)

for any positive B(F )-measurable function f : F → R and conversely any
(Ct)t≥0 ∈ A+ defines a unique ν ∈ S such that (2.2) holds. In this case, we
write ν = νC and C = Cν .
Likewise every (Ct)t≥0 ∈ A corresponds to a unique ν ∈ S − S which is
given by ν = νC1 − νC2 in case Ct = C1

t − C2
t , t ≥ 0, and each ν ∈ S − S

corresponds to a unique (Ct)t≥0 ∈ A which is given by Ct = C1
t −C2

t , t ≥ 0,
in case ν = νC1 − νC2 .

Remark 2.2. (i) Note that by Theorem 2.1 (i) the class of Eρ-smooth
measures coincides with the class of E-smooth measures S. Thus for
any Eρ-smooth measure ν there exists a unique (Ct)t≥0 ∈ A+ with
ν = νC , i.e. (2.2) holds.
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(ii) From (2.2) and the uniqueness of the Revuz correspondence we directly
see that if ν ∈ S is associated to (Ct)t≥0 ∈ A+ and if g is ν-integrable,
then (∫ t

0
g(Xs)dCs

)
t≥0

is associated to gdν .

For each l ∈ H the function l(z) := 〈l, z〉 belongs to D(E) = D(Eρ)
since l(·) ∈ L2(Γ, ρdµ). Therefore the AF 〈l,Xt − X0〉 admits a unique

decomposition into a martingale AF (M
[l]
t )t≥0 of finite energy (in short

M [l] ∈ M̊) and a CAF (N
[l]
t )t≥0 of zero energy (in short N [l] ∈ Nc) such

that for E-q.e. z ∈ F

〈l,Xt −X0〉 = M
[l]
t +N

[l]
t , t ≥ 0, Pz − a.s. (2.3)

The following identication of N [l] can be derived as in the finite dimensional
case (cf. the more general Theorem 2.2 in [28] and [31, Theorem 4.5] where
Proposition 2.3(1) is even shown in the non-sectorial case).

Proposition 2.3. (1) Suppose that ν = ν1 − ν2, νi ∈ S and finite, i =
1, 2, and

−E(l(·), v) =

∫
Γ

v(z)ν (dz) ∀v ∈ C1
b (F ) .

Then

(i)
∫
F

Ex[N
[l]
t ]ρ(x) µ(dx) <∞, ∀t ≥ 0

(ii) N
[l]
t = Cν1

t − C
ν2
t

(2) The quadratic variation of M [l] satisfies

〈M [l]〉t = t|l|2 , t ≥ 0 .

2.1 The integration by parts formula for ρ = IΓ

In this subsection, we fix according to (H1b)

ρ = IΓ ,

where Γ ⊂ H is closed and convex and suppose that

ρ ∈ BV (H,H1).

For short we denote the quasi-regular Dirichlet form (E IΓ , D(E IΓ)) of Theo-
rem 2.1 (i) by (EΓ, D(EΓ)). Then the following is known from [28, Theorem
3.1 and 4.2, Remark 4.1]:

There exists a (unique) positive finite measure ‖∂Γ‖ on (Γ,B(Γ)) where
B(Γ) is the trace σ-algebra of B(H) on Γ and a B(H)-measurable map
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ηΓ : H → H∗1 (unique ‖∂Γ‖-a.e. on ∂Γ) such that |ηΓ(z)|H∗1 = 1 ‖∂Γ‖-a.e.
z ∈ ∂Γ, ‖∂Γ‖(Γ) = V (IΓ) and for any G ∈ (C1

b )D(A)∩H1∫
Γ

D∗G(z) µ(dz) = −
∫
∂Γ

H1〈 G(z) , ηΓ(z) 〉H∗1 ‖∂Γ‖ (dz). (2.4)

Furthermore, ‖∂Γ‖ is EΓ-smooth and supported by ∂Γ.
The process associated with (EΓ, D(EΓ)) which is the normally reflected
infinite dimensional Ornstein-Uhlenbeck (OU for short) process has been
studied in [28]. Here on the basis of (2.4), we intend to construct an obliquely
reflected and (countably) skew reflected OU-process. In order to do so, we
will extensively use the integration by parts formula (2.6) below that involves
a generalized Gauss formula:
Indeed for g ∈ C1

b (H) and l ∈ D(A) ∩H1, we get from (2.1) and the well-
known formula for the logarithmic derivative of µ that

D∗(g · l)(z) = −〈l,Dg(z)〉+ 2g(z)〈Al, z〉 , z ∈ H (2.5)

and inserting (2.5) into (2.4) gives

−EΓ(l(·), g) = −1

2

∫
Γ

〈l,Dg(z)〉 µ(dz) (2.6)

= −
∫
Γ

g(z)〈Al, z〉 µ(dz)−
∫
∂Γ

g(z) H1〈 l , ηΓ(z) 〉H∗1
‖∂Γ‖

2
(dz)

3 The obliquely reflected OU-process

In this section, we fix ρ = IΓ as in Subsection 2.1 and assume additionally

Γ is bounded and IΓ ∈ BV (H,H) .

Let L∞(H) := L(H,H) denote the space of bounded linear operators on H
and let ‖ · ‖ denote the operator norm. Let Ă : Γ→ L∞(H) be a map such
that

sup
x∈Γ
‖Ă(x)‖Fro <∞ , (01)

where
‖Ă(z)‖2Fro :=

∑
i,j≥1

|ăij(z)|2, z ∈ Γ ,

and ăij : Γ→ R , i, j ≥ 1, are the uniquely determined functions such that

Ă(·)ej =
∑
i≥1

ăij(·)ei for any j ≥ 1 .
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Note that ‖Ă(·)‖ ≤ ‖Ă(·)‖Fro everywhere on H, thus

‖Ă(·)‖L∞(Γ;µ) ≤ sup
x∈Γ
‖Ă(x)‖Fro .

We suppose that Ă = (ăij)i,j≥1 is fully antisymmetric, that is

ăij = −ăji for any i, j ≥ 1 . (02)

We further assume

(i) ăij ∈ C1
b (Γ) for any i, j ≥ 1 . (0 3)

(ii) βµ,Ă :=
∑
j≥1

βµ,Ăej with

βµ,Ăej :=
∑
i≥1

(
ăij
2
βµei +

∂iăij
2

)
· ej , j ≥ 1,

and
βµei := −2 〈Aei, · 〉 , i ≥ 1,

satisfies

µ- ess sup
x∈Γ

∑
j≥1

∑
i≥1

∣∣∣∣ ăij(x)

2
βµei(x) +

∂iăij(x)

2

∣∣∣∣
2

<∞ ,

i.e.
βµ,Ă ∈ L∞(Γ, H;µ) .

Remark 3.1. Since the components βµei , i ≥ 1, are linear in x ∈ Γ, it may

be impossible to obtain βµ,Ă ∈ L∞(Γ, H;µ) if Γ is unbounded. That is the
sole reason why we assume Γ to be bounded at the beginning of Section 3.

Define

EΓ,Ă(u, v) :=
1

2

∫
Γ

〈Ă(Du), Dv〉 dµ , u, v ∈ C1
b (Γ),

and for
Ā := Ă+ Id,

Id being the identity operator on H, let

EΓ,Ā(u, v) :=
1

2

∫
Γ

〈Ā(Du), Dv〉 dµ, u, v ∈ C1
b (Γ) .
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Then it is easy to see that for any u, v ∈ C1
b (Γ)

EΓ,Ă(u, u) = 0, hence EΓ,Ā(u, u) = EΓ(u, u) ,

and ∣∣∣EΓ,Ā(u, v)
∣∣∣ ≤ (‖Ă(·)‖L∞(Γ;µ) + 1

)(
EΓ,Ā(u, u)

) 1
2
(
EΓ,Ā(v, v)

) 1
2

These observations lead to the following:

Lemma 3.2. (EΓ,Ā, C1
b (F )) is closable in L2(F ;µ) and the closure (EΓ,Ā, D(EΓ,Ā))

is a quasi-regular local conservative (non-symmetric) Dirichlet form on L2(F ;µ)
whose norm is equal to the norm of (EΓ, D(EΓ)), i.e.

‖u‖D(EΓ) = ‖u‖D(EΓ,Ā) , ∀u ∈ D(EΓ) = D(EΓ,Ā)

where for any Dirichlet form (E , D(E)) on some L2-space with inner product
(·, ·)L2, we set

Eα(u, v) := E(u, v) + α(u, v)L2 , u, v ∈ D(E), α > 0 ,

and
‖u‖D(E) := E1(u, u)

1
2 .

Proof. The sole property of (EΓ,Ā, D(EΓ,Ā)) that is not evident from the
definitions is the submarkov property. But this follows directly from the
fact that

EΓ,Ā(u ∧ α, u− u ∧ α) ≥ 0 ∀u ∈ C1
b (F ), α > 0,

by [17, I. Theorem 4.4] and denseness of C1
b (F ). �

In view of Lemma 3.2, (EΓ,Ā, D(EΓ,Ā)) satisfies the assumptions of (E , D(E))
with respect to (EΓ, D(EΓ)) := (Eρ, D(Eρ)) in Section 2. We may therefore
set

(E , D(E)) := (EΓ,Ā, D(EΓ,Ā)) .

Lemma 3.3. Let l ∈ D(A) and g ∈ C1
b (H). Then

−EΓ,Ă(l(·), g) =

∫
∂Γ

〈l, ĂηΓ〉g
‖∂Γ‖

2
+

∫
Γ

〈l, βµ,Ă〉g dµ , (3.1)

where ĂηΓ =
∑
i,j≥1

ăij〈ej , ηΓ〉 ei.

11



Proof. We have

EΓ,Ă(l(·), g) =
1

2

∫
Γ

〈Ă(z)l,Dg(z)〉 µ(dz)

and
Ă(z)l =

∑
i,j≥1

ăij(z)〈l, ej〉ei .

Thus by Lebesgue

EΓ,Ă(l(·), g) =
∑
i,j≥1

1

2

∫
Γ

ăij(z)〈l, ej〉 ∂ig(z)µ(dz) .

Noting that
ăij〈l, ej〉∂ig = ∂i(ăij〈l, ej〉g)− 〈l, ej〉g∂iăij

and that ăij〈l, ej〉g ∈ C1
b (F ) we get from (2.6)

EΓ,Ă(l(·), g) =
∑
i,j≥1

1

2

∫
Γ

∂i(ăij〈l, ej〉g) dµ− 1

2

∫
Γ

〈l, ej〉g∂iăij dµ


=
∑
i,j≥1

∫
Γ

ăijg〈l, ej〉 〈Aei, z〉 µ(dz)− 1

2

∫
Γ

〈l, ej〉g∂iăij dµ


+
∑
i,j≥1

∫
∂Γ

ăijg〈l, ej〉 〈 ei , ηΓ(z) 〉‖∂Γ‖
2

(dz)

= −
∫
∂Γ

〈l, ĂηΓ〉g
‖∂Γ‖

2
(dz)

+

∫
Γ

〈∑
j≥1

∑
i≥1

(
ăij
〈Aei, z〉 · 2

2
− ∂iăij

2

)
· ej

 , l

〉
g µ(dz) .

�

Combining Lemma 3.3 and (2.6), we get:

Proposition 3.4. Let l ∈ D(A) and g ∈ C1
b (H). Then

−EΓ,Ā(l(·), g) =

∫
Γ

g〈l, βµ,Ă〉 dµ−
∫
Γ

g(z)〈Al, z〉µ(dz)

+

∫
∂Γ

g 〈l, Ā∗νΓ〉
‖∂Γ‖

2
,

where Ā∗ := Ă∗ + Id, νΓ := −ηΓ is the inward normal and Ā∗, Ă∗ denotes
the transposed matrix of Ā, Ă.
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Proposition 3.4 now leads to the following intermediate result:

Proposition 3.5. There exists an EΓ-exceptional set N ⊂ F such that for
all z ∈ F \N , under Pz there exists an Mt-cylindrical Wiener process W z,
such that the sample paths of M from Theorem 2.1(iii) on F satisfy the
following:
for l ∈ D(A)

〈l,Xt −X0〉 =

∫ t

0
〈l,dW z

s 〉+

∫ t

0
〈l, βµ,Ă(Xs)〉ds (3.2)

−
∫ t

0
〈Al,Xs〉ds+

1

2

∫ t

0
〈l, Ā∗νΓ(Xs)〉 dL∂Γ

s , t ≥ 0 Pz − a.s.

Here (L∂Γ
t )t≥0 ∈ A+ is uniquely associated to ‖∂Γ‖ via the Revuz correspon-

dence and for all z ∈ F \N∫ t

0
I∂Γ (Xs)dL

∂Γ
s = L∂Γ

t , t ≥ 0 Pz − a.s. (3.3)

and Ā∗νΓ(x) := Ā∗(x)(νΓ(x)) , x ∈ Γ.

Proof. By [28, Theorem 4.3], we know that ‖∂Γ‖ is EΓ-smooth, hence EΓ,Ă-
smooth according to Remark 2.2 (i) and so by the Revuz correspondence
there exists a unique (L∂Γ

t )t≥0 ∈ A+ associated with ‖∂Γ‖. Surely L∂Γ has
property (3.3) by Remark 2.2 (ii) and since supp (‖∂Γ‖) ⊂ ∂Γ.
Let (ej)j≥1, be the orthonormal basis introduced at the beginning of Section
2. Define for k ≥ 1

W z
k (t) := 〈ek, Xt − z〉 −

∫ t

0
〈ek, βµ,Ă(Xs)〉ds (3.4)

+

∫ t

0
〈Aek, Xs〉ds−

1

2

∫ t

0
〈ek, Ā∗νΓ(Xs)〉 dL∂Γ

s

By Propositions 3.4 and 2.3 and Remark 2.2, we obtain

N
[ek]
t =

∫ t

0
〈ek, βµ,Ă(Xs)〉ds−

∫ t

0
〈Aek, Xs〉ds (3.5)

+
1

2

∫ t

0
〈ek, Ā∗νΓ(Xs)〉 dL∂Γ

s

Consequently, using (3.4), (3.5) and the uniqueness of decomposition (2.3),
we see that

W z
k (t) = M

[ek]
t , t ≥ 0 Pz − a.s. for EΓ-q.e. z ∈ F,

where the EΓ-exceptional set, say N , can be chosen not to depend on k ≥ 1
by standard arguments. By direct calculations, we obtain

ν〈M [ei],M [ej ]〉 = δijIΓdµ = νδij ·t .

13



Then using the uniqueness of the Revuz correspondence, we see that

〈M [ei],M [ej ]〉t = δij · t .

Thus for z ∈ F \ N , W z
k is an Mt-Wiener process under Pz and so (3.2)

holds with W z being an Mt-cylindrical Wiener process given by

W z(t) = (W z
k (t)ek)k≥1 .

�

Next, we want to replace βµ,Ă in (3.2) by an arbitrary

B ∈ L∞(Γ, H;µ) . (3.6)

For this fix T > 0. Then by general Dirichlet form theory∫ T

0
|B(Xs)|2ds ≤ T · ‖ |B(·)| ‖2L∞(Γ;µ) <∞ Pz − a.s. (3.7)

for EΓ-q.e. z ∈ F and we may assume that (3.7) holds for all z ∈ F \N , N
as in Proposition 3.5.
Consider theMt-cylindrical Wiener processW z, z ∈ F\N , from Proposition
3.5 and define for z ∈ F \N

Zzt :=

∫ t

0

〈
(B − βµ,Ă)(Xs),dW

z
s

〉
(3.8)

:=
∑
k≥1

∫ t

0
〈ek, (B − βµ,Ă)(Xs)〉dW z

k (s), t ∈ [0, T ].

Then Zz is well-defined, more precisely the righthand side of (3.8) converges
Pz-a.s. uniformly on [0, T ] for all z ∈ F \N . Indeed by Doob’s inequality

Ez

 sup
t∈[0,T ]

∣∣∣∣∣
n∑

k=m

∫ t

0
〈ek, (B − βµ,Ă)(Xs)〉dW z

k (s)

∣∣∣∣∣
2


≤ 4Ez

∣∣∣∣∣
n∑

k=m

∫ T

0
〈ek, (B − βµ,Ă)(Xs)〉dW z

k (s)

∣∣∣∣∣
2


= 4

n∑
k,l=m

Ez

[∫ T

0
〈ek, (B − βµ,Ă)(Xs)〉dW z

k (s) ·
∫ T

0
〈el, (B − βµ,Ă)(Xs)〉dW z

l (s)

]

= 4

n∑
k=m

Ez

[∫ T

0

(
〈ek, (B − βµ,Ă)(Xs)〉

)2
ds

]
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which converges to 0 for any z ∈ F \N as m,n→∞ by (3.7). Similarly, we
can show that for any (Mt)-stopping time τ ≤ T , we have

Ez
[
(Zzτ )2

]
= Ez

[∫ τ

0

∣∣∣(B − βµ,Ă)(Xs)
∣∣∣2 ds

]
, z ∈ F \N.

Thus

〈Zz〉t =

∫ t

0

∣∣∣(B − βµ,Ă)(Xs)
∣∣∣2 ds, t ∈ [0, T ] , (3.9)

Pz-a.s. for any z ∈ \N . Now define

dP̃z := eZ
z
T−

1
2
〈Zz〉T dPz, z ∈ F \N (3.10)

on (Ω,M). Then the following holds:

Proposition 3.6. Let z ∈ F \N . Then P̃z is a probability measure. Con-
sequently,

W̃ z
k (t) := W z

k (t)−
∫ t

0
〈ek, (B − βµ,Ă)(Xs)〉ds t ∈ [0, T ], k ≥ 1 ,

are independent real-valued Brownian motions on (Ω,M, (M)t≥0, P̃z) start-
ing from 0 , i.e.

W̃ z
t := (W̃ z

k (t)ek)k≥1 , t ∈ [0, T ] ,

is an Mt-cylindrical Wiener process.

Proof. The proof is completely standard (cf. [16, Proposition I.0.5]) and
follows from the classical Girsanov theorem and Lévy’s characterization the-
orem (see e.g. [26, IV. (3.6) Theorem, VIII. (1.7) Theorem]) once we know
that P̃z is a probability measure. But this is immediate from Novikov’s
criterion (cf. [26, VIII. (1.6) Corollary]), since by (3.7)

Ez

[
e

1
2
〈Zz〉T

]
≤ e

T
2
‖ |(B−βµ,Ă)(·)| ‖2

L∞(Γ,µ) <∞ .

�

Collecting the results achieved so far in this section, we obtain the fol-
lowing:

Theorem 3.7. Let T > 0, B as in (3.6), W̃ z as in Proposition 3.6,
(L∂Γ

t )t≥0, N and all other notions as in Proposition 3.5 and z ∈ F \ N .
Then the following holds for the sample paths of M from Theorem 2.1(iii)
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on F:
for l ∈ D(A)

〈l,Xt −X0〉 =

∫ t

0
〈l,dW̃ z

s 〉+

∫ t

0
〈l, B(Xs)〉ds (3.11)

−
∫ t

0
〈Al,Xs〉ds+

1

2

∫ t

0
〈l, Ā∗νΓ(Xs)〉 dL∂Γ

s , t ∈ [0, T ], P̃z − a.s.

and ∫ t

0
I∂Γ(Xs)dL

∂Γ
s = L∂Γ

t , t ≥ 0, P̃z − a.s. (3.12)

Proof. The assertions follow directly from Propositions 3.5 and 3.6 and the
equivalence of Pz and P̃z , z ∈ F \N . �

3.1 Oblique reflection on a regular convex set

In this subsection, we assume according to [3, Hypothesis 1.1 (ii)] that

(0 4) There exists a convex C∞-function g : H → R with g(0) = Dg(0) = 0
such that 〈D2g(x)h, h〉 ≥ γ|h|2 ∀h ∈ H for some γ > 0, i.e. D2g is
strictly positive definite and that

Γ = {x ∈ H |g(x) ≤ 1} , ∂Γ = {x ∈ H| g(x) = 1} ,

D2g is bounded on Γ and |Q
1
2Dg|−1 ∈

⋂
p>1

Lp(H;µ).

Then the following holds:

Lemma 3.8. (i) Γ is convex and closed and there exists δ > 0 with
|Dg(x)| ≤ δ, ∀x ∈ Γ.

(ii) IΓ ∈ BV (H,H).

(iii) ηΓ = Dg
|Dg| is the exterior normal to Γ, i.e. for x ∈ ∂Γ

〈ηΓ(x), y − x〉 ≤ 0, ∀y ∈ Γ,

and |ηΓ(x)| = 1. Moreover

‖∂Γ‖(dx) =
Dg(x)

|Q
1
2Dg(x)|

µ∂Γ(dx) ,

where µ∂Γ is the surface measure induced by µ (cf. [3, 4, 18]).

(iv) Γ has nonempty interior.

Proof. (i) Follows from [3, Lemma 1.2].
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(ii) See [28, Theorem 5.3].

(iii) See [28, Theorems 5.3 and 5.4 and Remark 5.5].

(iv) This follows, since D2g is strictly positive definite by assumption.
�

By Lemma 3.2, IΓ satisfies the conditions that were postulated at the
beginning of Section 3. It follows thus from Theorem 3.7:

Theorem 3.9. Assume (0 1) − (0 4), Γ bounded, and (3.6). Let T > 0.
Then there exist an EΓ-exceptional set N ⊂ F such that ∀z ∈ F \N , under
P̃z there exists an Mt-cylindrical Wiener process W̃ z such that the sample
paths of M from Theorem 2.1(iii) satisfy the following:
for l ∈ D(A)

〈l,Xt −X0〉 =

∫ t

0
〈l,dW̃ z

s 〉+

∫ t

0
〈l, B(Xs)〉ds (3.13)

−
∫ t

0
〈Al,Xs〉ds+

1

2

∫ t

0
〈l, Ā∗νΓ(Xs)〉dL∂Γ

s , t ∈ [0, T ], P̃z-a.s.

and ∫ t

0
I∂Γ(Xs)dL

∂Γ
s = L∂Γ

t , t ≥ 0, P̃z-a.s. (3.14)

Remark 3.10. Since νΓ(x) ∈ H, for any x ∈ ∂Γ the reflection term in
(3.13) may be interpreted as variable oblique reflection. First note that the
angle between Ā∗νΓ(x) and νΓ(x) is necessarily acute, since

〈Ā∗νΓ(x), νΓ(x)〉 = 〈νΓ(x), νΓ(x)〉 = 1 > 0.

Thus the reflection angle θ(x) at x ∈ ∂Γ may be defined as the difference of
π
2 and the angle between Ā∗νΓ(x) and νΓ(x), i.e.

θ(x) := arcsin

(〈
Ā∗νΓ(x), νΓ(x)

〉
|Ā∗νΓ(x)|

)
= arcsin

(
1

|Ā∗νΓ(x)|

)
∈
(

0,
π

2

]
,

and a direction F (x) of Ā∗νΓ(x) may be defined as follows:
for any x ∈ ∂Γ there exist (zk(x))k≥1 ⊂ H such that

{νΓ(x), z1(x), z2(x), . . . }

forms an orthonormal basis of H. Then

F (x) :=
∑
k≥1

〈Ā∗νΓ(x), zk(x)〉zk(x) , x ∈ ∂Γ .
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Lemma 3.11. The variable oblique reflection in (3.13) is uniquely deter-
mined through

(θ(x), F (x)) , x ∈ ∂Γ ,

where the reflection angle θ(x) and the direction F (x) at x ∈ ∂Γ are given
as in Remark 3.10.

Proof. Let x ∈ ∂Γ. We have to show that a vector v(x) ∈ H is uniquely
determined through

(i) 〈v(x), νΓ(x)〉 > 0,

(ii) the values 〈v(x), zk(x)〉 , k ∈ Z, and

(iii) the value arcsin
(

1
|v(x)|

)
= θ(x).

We have

v(x) = 〈v(x), νΓ(x)〉νΓ(x) +
∑
k≥1

〈v(x), zk(x)〉zk(x) .

Thus by (ii), it is enough to determine 〈v(x), νΓ(x)〉.
By Parseval’s identity

|v(x)|2 = |〈v(x), νΓ(x)〉|2 +
∑
k≥1

|〈v(x), zk(x)〉|2 ,

and by (iii), we have

|v(x)| = 1

sin(θ(x))
.

Thus by (i)

〈v(x), νΓ(x)〉 =

√√√√( 1

sin(θ(x))

)2

−
∑
k≥1

|〈v(x), zk(x)〉|2

which concludes the proof. �

3.2 Uniqueness in the case of normal reflection

In this subsection, we assume that Ă ≡ 0 and that (0 4) is satisfied. Accord-
ing to Remark 3.1, we may hence drop the assumption that Γ is bounded.
We consider the following stochastic inclusion in H,{

dXt = (AXt +B(Xt) +NΓ(Xt)) dt 3 dWt

X0 = x,
(3.15)
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where B : Γ→ H is an everywhere uniformly bounded vector field, i.e.

sup
x∈Γ
|B(x)| <∞ , (3.16)

Wt is a cylindrical Wiener process in H on a filtered probability space
(Ω,F , (Ft)t≥0, P ) and NΓ(x) is the normal cone to Γ at x ∈ Γ, i.e.

NΓ(x) := {z ∈ H|〈z, y − x〉 ≤ 0 ∀y ∈ Γ} .

Definition 3.12. A pair of H×R-valued and (Ft)-adapted processes (Xt, Lt),
t ∈ [0, T ], is called a solution of (3.15) if the following conditions hold:

(i) Xt ∈ Γ, for all t ∈ [0, T ] P-a.s.,

(ii) L is an increasing process with

I∂Γ(Xs)dLs = dLs P-a.s.,

and for any l ∈ D(A), we have

〈l,Xt − x〉 =

∫ t

0
〈l,dWs〉 −

∫ t

0
〈Al,Xs〉ds−

∫ t

0
〈l, B(Xs)〉ds

− 1

2

∫ t

0
〈l, ηΓ(Xs)〉dLs , ∀t ∈ [0, T ] , P-a.s.,

where ηΓ is the exterior normal to Γ (see Lemma 3.8(iii)).

Theorem 3.13. Suppose that (0 4) is satisfied and that B satisfies addition-
ally to the uniform boundedness in (3.16), the monotonicity condition

〈B(u)−B(v), u− v〉 ≥ −α|u− v|2

for all u, v ∈ Γ, for some α ∈ [0,∞) independent of u, v. Then the stochastic
inclusion (3.15) admits at most one solution in the sense of Definition 3.12.

Proof. The proof is exactly the same as in [28, Theorem 5.18]. �

Noting that we could construct a weak solution to (3.13) without the
restrictive assumption of positive µ-divergence on B as in [28, (5.15)], we
obtain the following generalization of [28, Theorem 5.19].

Theorem 3.14. Let T > 0. There exist a Borel set M ⊂ H with µ(Γ∩M) =
µ(Γ) such that for every x ∈ M , (3.15) has a pathwise unique continuous
strong solution in the sense that for every probability space (Ω,F , (Ft), P )
with an Ft-Wiener process W , there exists a unique pair of Ft-adapted
process (X,L) satisfying Definition 3.12 and P (X0 = x) = 1. Moreover
Xt ∈M for all t ∈ [0, T ] P-a.s.

Proof. The assertion follows exactly as in the proof of [28, Theorem 5.19].
�
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4 The (countably) skew reflected OU-process

In this section, we will fix ρ according to (H1a).
We consider an increasing sequence of closed and convex subsets (Γαk)k∈Z
(i.e. Γαk ⊂ Γαk+1

∀k ∈ Z) of H such that

IΓαk ∈ BV (H,H1) ∀k ∈ Z (S1)

lim
k→−∞

µ(Γαk) = 0 and lim
k→∞

µ(Γαk) = µ(H) (S2)

and a sequence (γk)k∈Z ⊂ (0,∞) such that

1

c0
≤ γk ≤ c0 ∀k ∈ Z for some constant c0 > 1, (S3)

∃ γ̄ := lim
k→∞

γk and

∑
k∈Z
|γk+1 − γk| ‖∂Γαk‖ (∂Γαk) <∞ . (4.1)

Then set
ρ :=

∑
k∈Z

γk+1IΓαk+1
\Γαk .

By (S2) and (S3) we have

1

c0
≤ ρ ≤ c0 µ-a.e. on H, (4.2)

hence (H1a) is satisfied. Moreover (H2) holds by setting

(E , D(E)) := (Eρ, D(Eρ)) .

Let M = (Ω,M, (Mt)t≥0, (Xt)t≥0, (Pz)z∈H) be the conservative diffusion of
Theorem 2.1(iii) that is associated with (E , D(E).

Now, we can show the following:

Lemma 4.1. (i) For each k ∈ Z, ‖∂Γαk‖ is E-smooth. There exists hence

a unique (L
∂Γαk
t )t≥0 ∈ A+ associated to ‖∂Γαk‖ via the Revuz corre-

spondence.

(ii)
∑
k∈Z

γk+1−γk
2 ‖∂Γαk‖ is the difference of finite E-smooth measures and

uniquely associated via the Revuz correspondence to

(∑
k∈Z

(γk+1−γk)
2 L

∂Γαk
t

)
t≥0

which converges locally uniformly in t ≥ 0.
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Proof. (i) Let k ∈ Z. By [28, Theorem 3.1(ii) and Remark 4.1] ‖∂Γαk‖ is
smooth with respect to the closure on L2(H, (IΓαk + IH)dµ) of

1

2

∫
H

〈Du,Du〉(IΓαk + IH)dµ , u, v ∈ C1
b (H) .

But then ‖∂Γαk‖ is also smooth with respect to E (see Theorem 2.1(i)
and its proof).

(ii) By (4.1) and (i),
∑
k∈Z

γk+1−γk
2 ‖∂Γαk‖ is the difference of finite E-smooth

measures and hence associated via the Revuz correspondence to a
unique (Ct)t≥0 = (C1

t − C2
t )t≥0, with (C1

t )t≥0, (C
2
t )t≥0 ∈ A+. Con-

sidering C1 and C2 separately, we may assume that (Ct)t≥0 ∈ A+.
Separating the supports of (‖∂Γαk‖)k∈Z we may even suppose that
γk+1 − γk ≥ 0 ∀k ∈ Z. Then since

ν n∑
k=−n

γk+1−γk
2

L∂Γαk
=

n∑
k=−n

γk+1 − γk
2

‖∂Γαk‖

≤
∑
k∈Z

γk+1 − γk
2

‖∂Γαk‖ = νC ,

it follows from general Dirichlet form theory, that for any n ≥ 0 and
t ≥ 0

Pz

(
n∑

k=−n

γk+1 − γk
2

L
∂Γαk
t ≤ Ct

)
= 1 for E-q.e. x ∈ H.

Hence by the Weierstrass M -test

(∑
k∈Z

γk+1−γk
2 L

∂Γαk
t

)
t≥0

converges

Pz-a.s. locally uniformly in t ≥ 0 for E-q.e. z ∈ H.

Thus

(∑
k∈Z

γk+1−γk
2 L

∂Γαk
t

)
t≥0

is a PCAF of M and it is easy to see

that its Revuz measure coincides with
∑

k∈Z
γk+1−γk

2 ‖∂Γαk‖.
�

For the identification of the SDE corresponding to M, we now need to
specify an integration by parts formula for E = Eρ.

Proposition 4.2. Let l ∈ D(A) ∩H1 and g ∈ C1
b (H). Then

−E(l(·), g) = −
∫
H

g〈Al, z〉ρµ(dz)+
∑
k∈Z

∫
∂Γ

g H1〈l, ηΓαk
〉H∗1 (γk+1−γk)

‖∂Γαk‖
2

.
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Proof. We may rewritte −ρ as

lim
n→∞

(
γ−n+1IΓα−n +

n∑
k=−n+1

(γk+1 − γk)IΓαk − γn+1IΓαn+1

)

and then noting that

lim
n→∞

1

2

∫
〈l,Dg〉γ−n+1IΓα−ndµ = 0 = lim

n→∞

∫
g〈Al, z〉γ−n+1IΓα−nµ(dz)

and

lim
n→∞

1

2

∫
〈l,Dg〉γn+1IΓαn+1

dµ =
1

2

∫
H

〈l,Dg〉γ̄dµ =

∫
H

g〈Al, z〉γ̄µ(dz) ,

by (S2) and (S3), using (4.1) we get by (2.6)

− E(l(·), g) = lim
n→∞

(
n∑

k=−n+1

1

2

∫
〈l,Dg〉(γk+1 − γk)IΓαkdµ

)
− 1

2

∫
H

〈l,Dg〉γ̄dµ

= lim
n→∞

(
n∑

k=−n+1

∫
∂Γαk

g H1〈l, ηΓαk
〉H∗1 (γk+1 − γk)

‖∂Γαk‖
2

+

∫
g〈Al, z〉γ−n+1IΓα−nµ(dz)

+

n∑
k=−n+1

∫
g〈Al, z〉(γk+1 − γk)IΓαkµ(dz)−

∫
g〈Al, z〉γn+1IΓαn+1

µ(dz)

)

=
∑
k∈Z

∫
∂Γαk

g H1〈l, ηΓαk
〉H∗1 (γk+1 − γk)

‖∂Γαk‖
2

−
∫
H

g〈Al, z〉ρµ(dz) .

�

Remark 4.3. An increasing process satisfying (3.3) can only be unique up
to a constant. This constant has usually to be fixed in dimension one in
order to describe local times uniquely. In Dirichlet form theory of energy
forms the drift is given as the logarithmic derivative

Dρ

2ρ

and in dimension one in order to fix symmetric local times (cf. [26]) one has
to choose the symmetric version of ρ at the boundary in the denominator
(see for instance [21, (19)] and the following explanations). Therefore,

γk+1 − γk
2 · 1

2(γk+1 + γk)
‖∂Γαk‖ =

γk+1 − γk
γk+1 + γk

‖∂Γαk‖ , k ∈ Z, (4.3)
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which represents the “symmetric version” of the non-absolutely continuous
part of the logarithmic derivative in the sense that 1

2(γk+1 + γk) represents
the “symmetric value” of ρ at the boundary ∂Γαk , should represent the sym-
metric local time. We therefore set

L
∂Γαk
t (X) :=

γk+1 + γk
2

L
∂Γαk
t , t ≥ 0, k ∈ Z, (4.4)

where (L
∂Γαk
t )t≥0 ∈ A+ is uniquely associated via the Revuz correspondence

to ‖∂Γαk‖. It then follows that the measures in (4.3) are uniquely associated
to (

γk+1 − γk
γk+1 + γk

L
∂Γαk
t (X)

)
t≥0

, k ∈ Z.

Finally, setting

pk :=
γk+1

γk+1 + γk
, k ∈ Z, (4.5)

we get

pk − (1− pk) = 2pk − 1 =
γk+1 − γk
γk+1 + γk

, k ∈ Z.

Note that in finite dimensions (see for instance [33, 24]) pk and 1 − pk
represent the probabilities of permeability through ∂Γαk depending on from
which side of ∂Γαk the process approaches ∂Γαk . Here, we do not intend
to develop rigourously such an interpretation. However, since (E , D(E)) is
recurrent and irreducible, we know indeed that the recurrent conservative
diffusion M passes infinitely often through each membrane ∂Γαk as long as
the interior of Γαk is non-empty. This can be shown similarly to the finite
dimensional case (cf. [32, Section 6]).

Now, using the standard identification method that we used in Proposi-
tion 3.5, we obtain from Lemma 4.1, Proposition 4.2 and Remark 4.3.

Theorem 4.4. There exists an E-exceptional set N ⊂ F , such that for all
z ∈ H \ N , under Pz there exists an Mt-cylindrical Wiener process W z,
such that the sample paths of M from Theorem 2.1(iii) on H satisfy:
for all l ∈ D(A) ∩H1

〈l,Xt −X0〉 =

∫ t

0
〈l,dW z

s 〉 −
∫ t

0
〈Al,Xs〉ds (4.6)

+
∑
k∈Z

(2pk − 1)

∫ t

0
H1〈l, ηΓαk

(Xs)〉H∗1 dL
∂Γαk
s (X), t ≥ 0, Pz-a.s.

where (pk)k∈Z ⊂ (0, 1),
(
L∂Γαk (X)

)
k∈Z are specified in Remark 4.3. More-

over, it holds for any k ∈ Z∫ t

0
I∂Γαk

(Xs)dL
∂Γαk
s (X) = L

∂Γαk
t (X), t ≥ 0 Pz-a.s.

23



In particular, if IΓαk ∈ BV (H,H), k ∈ Z, then above we can replace H1 by
H and H1〈·, ·〉H∗1 by 〈·, ·〉.

Examples 4.5. (i) Let Γ ⊂ H be closed and convex such that IΓ ∈
BV (H,H1) (for concrete examples of such Γ see (ii) or (0 4)). For
k ∈ Z set

Γαk :=


∅ if k ≤ −1,

Γ if k = 0,

H if k ≥ 1,

and

γk :=

{
1−p
p if k ≤ 0,

1 if k ≥ 1.

where p ∈ (0, 1) is fixed.
Then ρ = 1−p

p IΓ +IH\Γ, (S1)-(S3) are satisfied, and (pk)k∈Z as in (4.5)
satisfies

pk =


1
2 if k ≤ −1,

p if k = 0,
1
2 if k ≥ 1.

Therefore in this case (4.6) takes the form

〈l,Xt −X0〉 =

∫ t

0
〈l,dW z

s 〉 −
∫ t

0
〈Al,Xs〉ds (4.7)

+ (2p− 1)

∫ t

0
H1〈l, ηΓ(Xs)〉H∗1 dL∂Γ

s (X) , t ≥ 0, Pz-a.s.

(4.7) can be seen as the infinite dimensional analogue of the p-skew
reflected OU-process, i.e. the process which is associated to the closure
of

1

2

∫
R

f ′(x)g′(x)

(
1− p
p

I(−∞,b) + I(b,∞)

)
e−βx

2
dx , f, g ∈ C∞0 (R),

on L2(R, e−βx2
dx), where p, β, b ∈ R, p ∈ (0, 1), β > 0, are arbitrary,

but fixed parameters (see for instance [32]).

(ii) Let H = L2(0, 1), Γα := {f ∈ H|f ≥ −α}, α ∈ R, α > 0. Then obvi-

ously Γα is closed and convex. Let further A = −1
2

d2

dr2 with Dirichlet

boundary conditions. In this case ej =
√

2 sin(jπr), j ∈ N, is the cor-
responding eigenbasis. Defining

cj := (j · π)
1
2

+ε , j ∈ N,
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where ε ∈ (0, 3
2 ], we obtain that (H1, H,H

∗
1 ) as defined in Section 2

is a Gelfand triple (cf. [28, Section 6]). Moreover, by [28, Theorem
6.2, Remark 6.3] IΓα ∈ BV (H,H1) \BV (H,H) for any α > 0. Now
choose sequences (αk)k∈Z, (γk)k∈Z ⊂ (0,∞) such that the conditions
(S1)-(S3) are satisfied and apply Theorem 4.4 to obtain a concrete
example of a countably skewed OU-process.

Remark 4.6. By [28, Theorems 6.4 and 6.5] it is also possible to treat the
case α = 0 in Example 4.5(ii). For instance, letting (αk)k∈Z, (γk)k∈Z ⊂
(0,∞) and p be as in Example 4.5(i) and choosing Γ = Γα0 = Γ0 := {f ∈
H|f ≥ 0}. This may be treated in forthcoming work. An attempt to describe
the stochastic dynamics of a p-skew OU-process under different aspects, for
instance using finite-dimensional approximations and Mosco convergence, is
undertaken in [2].
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[17] Z. M. Ma, M. Röckner, Introduction to the Theory of (nonsymmetric)
Dirichlet Forms, Universitext, Springer, Berlin 1992.

[18] P. Malliavin, Stochastic Analysis, Grundlehren der Mathematischen
Wissenschaften 313, Springer, Berlin (1997).

[19] D. Nualart, E. Pardoux, White noise driven quasilinear SPDEs with
reflection, Probab. Theory Related Fields 93 (1992), no. 1, 77-89.

[20] Y. Oshima, Semi-Dirichlet Forms and Markov Processes, Walter de
Gruyter 2013.

[21] Y. Ouknine, F. Russo, G. Trutnau, On countably skewed Brownian
motion with accumulation point, Electron. J. Probab. 20 (2015), no.
82, 1-27.

[22] E. Pardoux, R.J. Williams, Symmetric reflected diffusions, Ann. Inst.
H. Poincare Probab. Statist. 30 (1994), no. 1, 13-62.

26



[23] G. Peskir, A change-of-variable formula with local time on surfaces,
Seminaire de Probabilites XL, 69-96, Lecture Notes in Math., 1899,
Springer, Berlin, 2007.

[24] J. M. Ramirez, Multi-skewed Brownian motion and diffusion in layered
media, Proc. Amer. Math. Soc. 139 (2011), no. 10, 37393752.

[25] D. Revuz, Mesures associées aux fonctionnelles additives de Markov. I,
Trans. Amer. Math. Soc. 148 1970 501-531.

[26] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion,
Springer-Verlag Berlin Heidelberg, 1999.
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