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1 Introduction of the model

We are concerned here with equations of the form
dX(t) = div[sgn(∇X(t))]dt+ 1

2div[bT b∇X(t))]dt+ 〈b∇X(t), dβ(t)〉RN in (0, T )×O,
X(t) = 0 on (0, T )× ∂O,
X(0) = x in O.

(1.1)

Here, O ⊂ Rd, d ∈ N∗, is a bounded open domain with the boundary ∂O of class C3; the multivalued

function sgn is given by

sgn(x) =

{
x
|x| , for x 6= 0,{

ξ ∈ Rd : |ξ| ≤ 1
}
, for x = 0.

Further, N ∈ N∗, bi : Rd → Rd, 1 ≤ i ≤ N, and

b =


b1

b2

...

bN

 ∈ RN×d;
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and β = (β1, β2, ..., βN ) denotes an N−dimensional Brownian motion on a filtered probability space

(Ω,F , {Ft}t≥0 ,P). Here, bT stands for the transpose of the matrix b. Finally, the initial data x ∈ L2(O).

To illustrate this problem let us consider the following partial differential equation

∂tX(t) = div[sgn(∇X(t))] + v · ∇X(t), in [0,∞)×O, (1.2)

which arises, e.g., in material science, see [16]. The function X can be interpreted as a density of a

substance diffusing in a continuum, moving with a velocity v. Usually, it is difficult to determine v

precisely, so, one should consider random velocity field v, given as:

v(t, ξ) =

N∑
i=1

bi(ξ)
dβi(t)

dt
.

(For further details, see [9] and the references therein). Plugging this velocity into (1.2), we arrive to the

following Stratonovich equation

dX(t) = div[sgn(∇X(t))]dt+

N∑
i=1

[bi(t) · ∇X(t)] ◦ dβi(t), in [0,∞)×O, (1.3)

that is our Itô equation (1.1). So, for modelling the flux of a diffusing material, one should perturb

the continuity equation by a gradient Stratonovich noise, as above ( see [13, 14, 15]). Similar kind of

equations as (1.1), with multiplicative gradient-type noise, have been considered for example in [20], for

modelling turbulence in the Navier-Stokes equations, or in [22], for the Magnetohydrodynamic equations.

Besides this, such equations arise in image processing techniques in [23, 24], where the authors show

that considering gradient dependent noise, the numerical simulation results prove that the solution of this

model improve the solution obtained by the TV regularization. Other examples, and moreover, further

details on the complexity of the present subject can be found in [19]. Finally, it should be emphasized

that this paper solves an open problem addressed in [5, 6].

Due to its high singularity, equation (1.1) does not have a solution in the standard sense for all

L2(O)−initial solutions, i.e., as an Itô integral equation. That is why, we shall reformulate it in the

framework of stochastic variational inequalities (see Definition 2.1 below). In this paper, we prove the

existence and uniqueness of variational solutions to (1.1) (see Theorem 2.1 below). In the literature, there

are some results of this type for similar models, namely, for the non-linear diffusion equation

∂tX(t) = div[sgn(∇X(t))],

perturbed by an additive continuous noise dW (t), in [3]; and perturbed by a multiplicative noiseX(t)dW (t),

in [2]. A recent work [10] is dealing with a similar equation as (1.1), but with Neumann boundary con-

ditions, whereas we consider Dirichlet boundary conditions. Also, their approach is different from ours.

Moreover, in addition we also show here the positivity of the solutions and the finite time extinction (see

Theorems 3.1, 3.2 and 3.3, respectively), while in [10], these two important subjects are not treated.

To achieve our goal, we further develop the ideas in [2]. But, there are some important differences,

since, unlike [2], here we have a gradient-type multiplicative noise. We approximate equation (1.1) by

equation (3.8) below (namely, we replace the multi-valued function sgn with its Yosida approximation),

and show the existence and uniqueness for it. To this end, by scaling Yλ = e−
∑

i βiBiXλ, we rewrite it

equivalently as the random deterministic equation (3.9). As mentioned in [2], this equivalent reformulation

of (3.8) is crucial for the uniqueness part. Besides this, in the present case, it turns out that it is also

crucial for obtaining the mandatory H2(O)-regularity of the approximation solution. Roughly speaking,
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in order to be able to prove such a strong regularity, we assume that the groups generated by Bi (defined

in (B3) below) commute with Jε, that is exactly hypothesis (H∆) below. This leads to the next approach:

firstly to show the H2− regularity of the scaled variable Yλ, then, after showing the equivalence, deduce

the H2−regularity for Xλ. In Example 2.1 below we give nontrivial examples of bi, i = 1, ..., N such

that hypothesis (H∆) holds. We stress that, in our case, our results are stronger than the corresponding

ones in [2], in the situation considered there, because, here we obtain pathwise existence and uniqueness

(see Definition 2.1 and Theorem 2.1 below). This is a consequence of the fact that the Itô’s formula

for the L2−norm of the solution of the approximation equation (3.8), Xλ, does not contain a stochastic

part (due to the skew-adjointness of the operators Bi, i = 1, ..., N, see (3.11) below) and the uniform

pathwise convergence of Xλ in (3.23) below. Besides this, here we obtain the extinction in finite time of

the solutions with probability one (stronger than in [2], where the authors prove this only with positive

probability), see Theorem 3.2 and 3.3 below. Finally, we also prove a result concerning the positivity of

the solutions, see Theorem 3.1 below.

2 Preliminaries

For every 1 ≤ p ≤ ∞, by Lp(O), we denote the space of all Lebesgue p−integrable functions on O with

the norm | · |p. The scalar product in L2(O) is denoted by 〈·, ·〉. W 1,p(O) denotes the standard Sobolev

space {u ∈ Lp(O); ∇u ∈ Lp(O)} with the corresponding norm

‖u‖1,p :=

(∫
O
|∇u|pdξ

) 1
p

+ |u|p,

where dξ denotes the Lebesgue measure on O. W 1,p
0 (O) denotes the space

{
u ∈W 1,p(O); u = 0 on ∂O

}
.

We set H1
0 (O) = W 1,2

0 (O), ‖ · ‖1 = ‖ · ‖1,2 and H2(O) =
{
u ∈ H1(O); D2

iju ∈ L2(O), 1 ≤ i, j ≤ d
}
, with

its usual norm ‖ · ‖H2(O). H−1(O) with the norm ‖ · ‖−1 denotes the dual of H1
0 (O). By BV (O) we

denote the space of functions u of bounded variation on O.

We set A = −∆,D(A) = H1
0 (O) ∩ H2(O), that is, the Laplace operator associated to Dirichlet

boundary conditions. Then, we consider an eigenbasis of L2(O), denoted by {ek}k∈N∗ , ek ∈ H2(O) ∩
H1

0 (O). Finally, for each ε > 0 we set

Jε = (1 + εA)−1, Aε = AJε =
1

ε
(I − Jε), (2.1)

namely, the resolvent and the Yosida approximation of the Laplace operator, respectively.

Next, we introduce B, the set of all functions b of the form b = (b1, ..., bd), bi : Rd → R, i = 1, ..., d,

such that

(H1) bi ∈ C2(O), i = 1, ..., d;

(H2) div b = 0;

(H3) b is tangent to the boundary ∂O, of the domain O.

Now, let any b ∈ B. We associate to it the operators B : H1
0 (O)→ L2(O), defined as

Bv := b · ∇v, ∀v ∈ H1
0 (O); (2.2)

and B2 : H1
0 (O)→ L2(O)

B2u = −B∗Bu, ∀u ∈ H1
0 (O),
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where B∗ is the adjoint of B in L2(O). In the following, we shall see that the domain of B∗ contains

H1
0 (O) and we have B∗u = −Bu, ∀u ∈ H1

0 (O). Consequently, the above notation is meaningful.

We know from [9], p. 439 to p. 443, that, for b ∈ B, the linear operator B has the following properties:

(B1) There exists a positive constant c1(b), such that

‖B‖L(H1
0 (O),L2(O)) ≤ c1(b).

(B2) The adjoint of B in L2(O) is equal to −B; so, for all u ∈ H1
0 (O) it follows that 〈Bu, u〉 = 0 and〈

u,B2u
〉

= −〈Bu,Bu〉 (which will be frequently used in the sequel).

(B3) The operator B is the infinitesimal generator of a contraction C0−group in L2(O), which we denote

by esB , s ∈ R.

We include here a sketch of the proof for this point, since we will refer to it latter. The operator

B is m-dissipative, indeed, by the skew-adjointness, B is dissipative; and for all f ∈ L2(O) the

equation u−Bu = f has the solution

u(ξ) =

∫ ∞
0

e−sf(ζ(s, ξ))dξ, ∀ξ ∈ O, (2.3)

where s→ ζ(s, ξ) is the differential flow defined by the equation

d

ds
ζ = b(ζ), s ≥ 0; ζ(0) = ξ. (2.4)

(By assumptions (H1) and (H3), it follows that s → ζ(s, ξ) is well-defined on [0,∞), is of class

C2−in ξ and preserves O.) Hence, B generates a C0−group, (esB)s∈R, on L2(O), which is given by

(esBf)(ξ) = f(ζ(s, ξ)), ∀f ∈ L2(O), s ∈ R.

(B4) Let any s ∈ R, then, we have:

esBy ≥ 0 for y ≥ 0,

(esBy)(esBy+) = (esBy+)2

and

∇(eβ(t)By) · ∇(eβ(t)By+) = |∇(eβ(t)By+|2,

for all y ∈ H1
0 (O), where y+ stands for the positive part of y, and β is, this time, some one-

dimensional Brownian motion.

This is indeed so. By the definition of the group in (B3), we have for all ξ ∈ O

esBy = y(ζ(s, ξ)) ≥ 0 if y ≥ 0,

(esBy)(esBy+) = y(ζ(s, ξ))y+(ζ(s, ξ)) = (y+(ζ(s, ξ))2 = [esBy+]2,

and
∇(eβ(t)By) · ∇(eβ(t)By+) = ∇(y(ζ(β(t), ξ)) · ∇y+(ζ(β(t), ξ))

= |∇y+(ζ(β(t), ξ))|2 = |∇(eβ(t)By+|2.

(B5) esB(H1
0 (O)) ⊂ H1

0 (O), and the restriction of esB to H1
0 (O) is a C0−group in H1

0 (O); besides this,

esB(H2(O)) ⊂ H2(O) (this is true from the definition of the group and because ζ is of class C2(O)).
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(B6) There exist constants M(b) > 0, α(b), independent of s, such that

‖esB‖L(H1
0 (O)) ≤M(b)eα(b)|s|, ∀s ∈ R.

(B7) We have 〈
esBu, v

〉
=
〈
u, e−sBv

〉
, ∀u, v ∈ H1

0 (O),

|esBu|2 = |u|2,∀u ∈ L2(O),

and
1

M(b)eα(b)|s| |∇u|2 ≤ |∇(esBu)|2, ∀u ∈ H1
0 (O), ∀s ∈ R.

The first one follows by the fact that the adjoint of esB is e−sB , since B∗ = −B; the second one

follows by the fact that the Jacobian of ζ is equal to one and the definition of the group esB , while

the last one can be deduced by equivalently writing

|∇u|2 = |∇[e−sB(esBu)]|2 ≤M(b)eα(b)|s||∇(esBu)|2,

and using (B6).

Now, let b1, ..., bN be N functions from B. We assume two more hypotheses on them

(H∆) ∆esBiu = esBi∆u, ∀u ∈ H2(O) ∩H1
0 (O), ∀i = 1, 2, ..., N, ∀ε > 0.

Since esBi preserves H2(O) ∩ H1
0 (O), (H∆) implies Jεe

sBiu = esBiJεu for all u ∈ H1
0 (O), ∀i =

1, 2, ..., N, ∀ε > 0. Here, Bi, i = 1, ..., N, are the associated operators of bi, i = 1, ..., N as in (2.2);

while esBi , i = 1, ..., N are the C0−groups generated by them, defined as in (B3).

And

(HC) esBiesBj = esBjesBi , ∀i, j = 1, ..., N,

that is, the groups esBi , i = 1, ..., N, commute, and so

esB1esB2 ...esBN = es
∑N

i=1 Bi .

Before moving on, let us give some examples of such bi that obey all the above hypotheses.

Example 2.1. Let Λ1, ...,ΛN be N skew-symmetric, mutually commuting matrices from Md(R), i.e.

ΛTi = −Λi and ΛiΛj = ΛjΛi, for i, j = 1, ..., N.

Assume that 〈Λiξ, ν(ξ)〉Rd = 0, ∀ξ ∈ ∂O, for all i = 1, 2, ..., N ; where ν is the unit outward normal of the

boundary ∂O.

We claim that bi(ξ) := Λiξ, ξ ∈ Rd, i = 1, ..., N, satisfy our assumptions. Indeed, (H1) and (H3)

are obvious, while (H2) follows by noticing that being skew-symmetric, the matrices Λi have the trace

TrΛi = 0, i = 1, ..., N. Furthermore, the solution ζi to the equation

d

ds
ζi(s) = bi(ζi(s)), ζ(0) = ξ;

is given by ζi(s)ξ = esΛiξ, i = 1, ..., N. It is easy to see that, for all s ∈ R, ζi(s) are linear maps from O
to O, invertible, (ζi(s))

−1 = e−sΛi , and (ζi(s))
T = (esΛi)T = esΛ

T
i = e−sΛi = (ζi(s))

−1. Therefore, ζi(s)
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are orthogonal linear transformations of O, and so we have the invariance of the Laplacean, namely for

f ∈ H2(O) ∩H1
0 (O),

∆(f(ζi(s)ξ)) = ∆f(ζi(s)ξ), ∀ξ ∈ O,

or, equivalently

∆esBif = esBi∆f,

that is exactly (H∆). Finally, the mutual commutativity of Λi, i = 1, ..., N, immediately implies (HC).

Before ending with this example, let us mention that Λ1 =

(
0 1

−1 0

)
, Λ2 =

(
0 −1

1 0

)
and

O :=
{

(ξ1, ξ2) ∈ R2 : ξ2
1 + ξ2

2 < R2
}

for some R > 0, satisfy the above conditions; thus, b1(ξ) =

(
ξ2

−ξ1

)

and b2(ξ) =

(
−ξ2
ξ1

)
obey (H1)-(H3) together with (H∆) and (HC), on this particular O.

Next, for latter purpose, let us consider the function v : RN → R, v(x) := e
∑N

i=1 xiBiϕ, where

ϕ ∈ H1
0 (O) ∩ L∞(O). By Itô’s formula applied to v(β(t)), we get

e
∑N

i=1 βi(t)Biϕ =ϕ+
1

2

∫ t

0

e
∑N

i=1 βi(s)Bi

N∑
i=1

B2
i ϕds+

∫ t

0

e
∑N

i=1 βi(s)Bi

N∑
i=1

Biϕdβi(s). (2.5)

Finally, we introduce the map φ : D(φ) = BV (O) ∩ L2(O)→ R, as follows

φ(u) = ‖Du‖+

∫
∂O
|γ0(u)|dHd−1, ∀u ∈ BV (O) ∩ L2(O) (2.6)

and put φ(u) = +∞ if u ∈ L2(O) \BV (O). Here,

‖Du‖ = sup

{∫
O
u divϕdξ : ϕ ∈ C∞0 (O;Rd), |ϕ|∞ ≤ 1

}
,

γ0(u) is the trace of u on the boundary and dHd−1 is the Hausdorff measure. Then, we define its

subdifferential

∂φ(u) =
{
η ∈ L2(O) : φ(u)− φ(v) ≤ 〈η, u− v〉 , ∀v ∈ D(φ)

}
.

Arguing likewise in [2], we may rewrite equation (1.1) in the following equivalent form

dX(t) + ∂φ(X(t))dt 3 1

2

N∑
i=1

B2
i (t)X(t)dt+

N∑
i=1

Bi(t)X(t)dβi(t), t ≥ 0; X(0) = x. (2.7)

Based on the above reformulation of the equation, we may give the definition of a stochastic variational

solution for (2.7), equivalently for (1.1).

Definition 2.1. Let x ∈ L2(O). A stochastic process X : [0, T ]× Ω→ L2(O) is said to be a variational

solution to (1.1) if the following conditions hold:

(i) X is (Ft)− adapted, has P−a.s. continuous sample paths in L2(O) and X(0) = x;

(ii) X ∈ L2([0, T ]; L2(O)), φ(X) ∈ L1([0, T ]; L2(O)) P− a.s.;

(iii) for each (Ft)−progressively measurable process G ∈ L2([0, T ]; L2(O)) P−a.s. and each (Ft)−
adapted L2(O)-valued process Z with P−a.s. continuous sample paths such that Z ∈ L2([0, T ]; H1

0 (O))

P−a.s. and solving the equation

Z(t)− Z(0) +

∫ t

0

G(s)ds =
1

2

∫ t

0

N∑
i=1

B2
i Z(s)ds+

∫ t

0

N∑
i=1

BiZ(s)dβi(s), t ∈ [0, T ], (2.8)
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we have
1

2
|X(t)− Z(t)|22 +

∫ t

0

φ(X(s))ds ≤ 1

2
|x− Z(0)|22

+

∫ t

0

φ(Z(s))ds+

∫ t

0

〈G(s), X(s)− Z(s)〉 ds P− a.s., t ∈ [0, T ].

(2.9)

Here, φ is defined in (2.6), 〈·, ·〉 is the duality pairing with pivot space L2(O). (Notice that equation

(2.8) has a unique solution for a given initial solution in L2(O), see [9].)

The relation between (1.1) and (2.9) becomes clearer if one applies (formally) the Itô’s formula to
1
2 |X − Z|

2
2 and take into account the skew-adjointness of Bi, i = 1, ..., N (see (3.11) for details).

The main existence result is stated in the theorem below.

Theorem 2.1. Let O be a bounded and convex open subset of Rd with smooth boundary, bi ∈ B, i =

1, ..., N, such that hypotheses (H∆) and (HC) hold true; and T > 0. For each x ∈ L2(O) there is a

unique variational solution X to equation (1.1), such that, for all p ≥ 2

sup
t∈[0,T ]

|X(t)|p2 ≤ |x|
p
2 P− a.s.. (2.10)

Furthermore, if x, x∗ ∈ L2(O) and X,X∗ are the corresponding variational solutions with initial condi-

tions x, x∗, respectively, then

sup
t∈[0,T ]

|X(t)−X∗(t)|22 ≤ |x− x∗|22 P− a.s.. (2.11)

3 The equivalent random partial differential equation

The trick to prove Theorem 2.1 is to rewrite equivalently equation (1.1) as a random differential equation,

namely the following one
∂tY (t) = e−

∑N
i=1 βi(t)Bidiv(sgn(∇(e

∑N
i=1 βi(t)BiY (t)))) P− a.s. in (0, T )×O,

Y = 0 on (0, T )× ∂O,
Y (0, ξ) = x(ξ), ξ ∈ O,

(3.1)

by the substitution Y (t) = e−
∑N

i=1 βi(t)BiX(t). This idea is due to [9], which was also used in [1]. There

equations of similar form as (1.1) are treated, the main difference is that, in our case the corresponding

leading operator is of high singularity, which is not the case in [9, 1]. Therefore, the equivalence and all

the other existence and uniqueness results must be reconsidered and proved in the new framework. More

exactly, we shall apply the technique in [2].

In order to rigorously show the equivalence between (1.1) and (3.1), the definition of the solution of

the equation (3.1) must be given in the sense of a variational inequality, this time a deterministic one,

however with random terms. More exactly,

Definition 3.1. Let x ∈ L2(O). A stochastic process Y : [0, T ]× Ω→ L2(O) is said to be a variational

solution to (3.1) if the following conditions hold:

(i) Y is (Ft)− adapted, has P−a.s. continuous sample paths in L2(O) and Y (0) = x;

(ii) e
∑N

i=1 βiBiY ∈ L2([0, T ]; L2(O)), φ(e
∑N

i=1 βiBiY ) ∈ L1([0, T ]; L2(O)) P−a.s.;
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(iii) for each (Ft)−progressively measurable process G ∈ L2([0, T ]; L2(O)) P−a.s., and Z(0) ∈ L2(O)

P−a.s., denote by

Z(t) = Z(0)−
∫ t

0

e−
∑N

i=1 βi(s)BiG(s)ds. (3.2)

(So, Z(t) is an (Ft)− adapted L2(O)-valued process, with P−a.s. continuous sample paths such

that e
∑N

i=1 βiBiZ ∈ L2([0, T ]; H1
0 (O)) P−a.s..) We have

1

2
|e

∑N
i=1 βi(t)Bi(Y (t)− Z(t))|22 +

∫ t

0

φ(e
∑N

i=1 βi(s)BiY (s))ds ≤ 1

2
|x− Z(0)|22

+

∫ t

0

φ(e
∑N

i=1 βi(s)BiZ(s))ds+

∫ t

0

〈
G(s), e

∑N
i=1 βi(s)Bi(Y (s)− Z(s))

〉
ds P− a.s., t ∈ [0, T ].

(3.3)

Here, φ is defined in (2.6), 〈·, ·〉 is the duality pairing with pivot space L2(O).

Remark 3.1. As before, the relation between (3.3) and (3.1) is evident once one applies (formally) the

Itô’s formula to 1
2 |Y (t)− Z(t)|22, and takes into account that, by (B7),

|Y (t)− Z(t)|22 = |e
∑N

i=1 βi(t)Bi(Y (t)− Z(t))|22.

Now we claim the equivalence between the two equations

Proposition 3.1. X : [0, T ] × Ω → L2(O) is a variational solution to equation (1.1) if and only if

Y := e−
∑N

i=1 βiBiX is a variational solution to (3.1).

The above proposition follows from Proposition 3.2 (ii) below. In the sequel, it will be important to

distinguish between the space L2(O) of square integrable functions on O, and L2(O) the corresponding

dξ−classes.

Proposition 3.2. Let G ∈ L2([0, T ]; L2(O)) P−a.s. be (Ft)−progressively measurable and Z(0) ∈
L2(Ω,F0; L2(O)). Let G0 be a (dt⊗dξ⊗P)− version of G such that (t, ω)→ G0(t, ξ,Ω) is (Ft)−progressively

measurable and in L2([0, t]×Ω) for every ξ ∈ O. Furthermore, let Z0 be a (dξ⊗P)−version of Z(0) such

that ω → Z0(ξ, ω) is F0−measurable for all ξ ∈ O.

(i) Define

Z(t) :=e
∑N

i=1 βi(t)BiZ0

− e
∑N

i=1 βi(t)Bi

∫ t

0

e−
∑N

i=1 βi(s)BiG0(s)ds, t ∈ [0, T ].
(3.4)

Then, Z is solution to the stochastic differential equation

dZ(t) = −G0(t)dt+
1

2

N∑
i=1

B2
i (t)Z(t)dt+

N∑
i=1

Bi(t)Z(t)dβi(t), t ∈ [0, T ]; Z(0) = Z0, (3.5)

which is B([0, t])⊗B(O)⊗Ft−measurable for each t ∈ [0, T ]. (Here B(O) is the Borel set associated

to the set O).

Furthermore, the map t→ Z(t) ∈ L2(O) is P−a.s. continuous. Hence, Z(t) is the unique solution

to (2.8).

(ii) An (Ft)− adapted P-a.s. continuous L2(O)-valued process (Z(t))t∈[0,T ] is a solution to the stochastic

equation (2.8) if and only if (e−
∑N

i=1 βi(t)BiZ(t)))t∈[0,T ] is a solution to the deterministic equation

(3.2) for P−a.e. given ω ∈ Ω.
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Proof. Item (ii) is a direct consequence of (i); that is why we only prove (i).

Via (3.4) we get that

d

dt
(e−

∑N
i=1 βi(t)BiZ(t)) = −e−

∑N
i=1 βi(t)BiG0(t), t ∈ [0, T ]. (3.6)

Next, consider a symmetric mollifier ρε, ε > 0, (that is, ρε(ξ − η) = ρε(η − ξ)) and, given a function u,

denote by uε its convolution with it. Notice that we have

〈uε, v〉 = 〈u, vε〉 , ∀u, v ∈ L2(O).

Further, let any ϕ ∈ H1
0 (O), we then have〈

(e−
∑N

i=1 βi(t)BiZ(t))ε, ϕ
〉

=
〈
Z(t), e

∑N
i=1 βi(t)Biϕε

〉
,

and so 〈(
d

dt
(e−

∑N
i=1 βi(t)BiZ(t))

)
ε

, ϕ

〉
=
〈
dZ(t), e

∑N
i=1 βi(t)Biϕε

〉
+
〈
Z(t), d(e

∑N
i=1 βi(t)Biϕε)

〉
+

∫
O
dZ(t) · d(e

∑N
i=1 βi(t)Biϕε)dξ,

where the above product · is the formal Itô’s product between two stochastic differentials. Taking into

account that Z is a semi-martingale, we may denote by dZ(t) =: µ(t)dt+
∑N
i=1 σi(t)dβi(t), then, recalling

relation (2.5), the above equality implies that〈(
d

dt
(e−

∑N
i=1 βi(t)BiZ(t))

)
ε

, ϕ

〉
=
〈

(e−
∑N

i=1 βi(t)BidZ(t))ε, ϕ
〉

+

〈
Z(t),

1

2
e
∑N

i=1 βi(t)Bi

N∑
i=1

B2
i ϕε

〉
+

〈
Z(t), e

∑N
i=1 βi(t)Bi

N∑
i=1

Biϕεdβi(t)

〉

+

N∑
i=1

〈
σi(t), e

∑N
i=1 βi(t)BiBiϕε

〉
,

that yields 〈(
d

dt
(e−

∑N
i=1 βi(t)BiZ(t)

)
ε

, ϕ

〉
=
〈

(e−
∑N

i=1 βi(t)BidZ(t))ε, ϕ
〉

〈
1

2

[
N∑
i=1

B2
i e
−

∑N
i=1 βi(t)BiZ(t)

]
ε

, ϕ

〉

−
N∑
j=1

〈(
Bje

−
∑N

i=1 βi(t)BiZ(t)
)
ε
dβj(t), ϕ

〉

−
N∑
j=1

〈(
Bje

−
∑N

i=1 βi(t)Biσj(t)
)
ε
, ϕ
〉
, ∀ϕ ∈ H1

0 (O).

Here we have frequently used the fact that Bi, i = 1, ..., N, are skew-adjoint.

Since the mollified functions are continuous in ξ, taking εn = 1
n and letting n→∞, we arrive to

d

dt
(e−

∑N
i=1 βi(t)BiZ(t)) = e−

∑N
i=1 βi(t)BidZ(t) +

1

2

N∑
i=1

B2
i e
−

∑N
i=1 βi(t)BiZ(t)

−
N∑
j=1

Bje
−

∑N
i=1 βi(t)BiZ(t)dβj(t)−

N∑
j=1

Bje
−

∑N
i=1 βi(t)Biσj(t), t ∈ [0, T ],P⊗ dξ − a.s.,
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where using relation (3.6), we arrive to the fact that Z satisfies the following stochastic differential

equation

dZ(t) = −G0(t)dt+
1

2

N∑
i=1

B2
i (t)Z(t)dt+

N∑
i=1

Bi(t)Z(t)dβi(t), t ∈ [0, T ], P⊗ dξ − a.s.,

which means that Z indeed satisfies (3.5).

Finally, let any b ∈ B, B the associated operator as in (2.2), and β an one-dimensional Brownian

motion. Moreover, let Z1(t), Z2(t) ∈ L2(O) such that Z1 = Z2, in the sense that they belong to the

same dξ-class. Let any i ∈ N∗ and ei the i−th vector from the eigenbasis of the Laplacean considered in

the Preliminaries. Then, P−a.s., for every t ∈ [0, T ], we have〈
ei,

∫ t

0

BZ1(s)dβ(s)

〉
=

∫ t

0

〈
ei, BZ

1(s)
〉
dβ(s)

= −
∫ t

0

〈
Bei, Z

1(s)
〉
dβ(s) = −

∫ t

0

〈
Bei, Z

2(s)
〉
dβ(s)

=

∫ t

0

〈
ei, BZ

2(s)
〉
dβ(s) =

〈
ei,

∫ t

0

BZ2(s)dβ(s)

〉 ,

relying on the stochastic Fubini theorem and the skew-adjointness of B. The above means that, P−a.s.,∫ t
0
BZ1(s)dβ(s) =

∫ t
0
BZ2(s)dβ(s). The same can be said for the integral

∫ t
0
B2Z1(s)ds related to∫ t

0
B2Z2(s)ds. In conclusion, the above Z is the unique solution to (3.5).

3.1 Proof of the main existence and uniqueness result

Proof of Theorem 2.1

Existence. As in [2] the approach is based on the construction of approximating schemes for both

equations (1.1) and (3.1). To this end, let λ ∈ (0, 1] be fixed, and introduce the Yosida approximation,

ψλ(u), of the function ψ(u) = sgn(u), u ∈ Rd, that is

ψλ(u) =

{
1
λu , if |u| ≤ λ,
u
|u| , if |u| > λ.

(3.7)

For latter purpose, we also introduce the Moreau-Yosida approximation of the function u → |u|, that is

jλ(u) = infv

{
|u−v|2

2λ + |v|
}

and recall that we have ∇jλ = ψλ, ∀λ > 0 (see, for instance, [7]). Finally,

denote by ψ̃λ(u) = ψλ(u) + λu, ∀u ∈ Rd.
Now, we approximate (1.1) by

dXλ(t) = divψ̃λ(∇Xλ(t))dt+ 1
2

∑N
i=1B

2
iXλ(t))dt+

∑N
i=1BiXλ(t)dβi(t) in (0, T )×O,

Xλ = 0 on (0, T )× ∂O,
Xλ(0) = x in O,

(3.8)

and the corresponding rescaled equation (3.1) by
d
dtYλ(t) = e−

∑N
i=1 βi(t)Bidivψ̃λ(∇(e

∑N
i=1 βi(t)BiYλ(t))) in (0, T )×O,

Yλ = 0 on (0, T )× ∂O,
Yλ(0) = x in O.

(3.9)

The proposition below is concerned on the existence of solutions for (3.8) and (3.9), respectively,

as-well on the equivalence between them.
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Proposition 3.3. (i) For each λ ∈ (0, 1] and each x ∈ L2(O), there is a unique function Xλ, which

satisfies: Xλ(0) = x, is P−a.s. continuous in L2(O) and (Ft)−adapted such that

Xλ ∈ L2([0, T ]; H1
0 (O)) P− a.s.,

Xλ(t) = x+

∫ t

0

div ψ̃λ(∇Xλ(s))ds+
1

2

∫ t

0

N∑
i=1

B2
iXλ(s)ds

+

∫ t

0

N∑
i=1

BiXλ(s)dβi(s), t ∈ [0, T ], P− a.s..

(3.10)

Furthermore, we have

1

2
|Xλ(t)|22 =

1

2
|x|22 −

∫ t

0

〈
ψ̃λ(∇Xλ(s)),∇Xλ(s)

〉
ds, ∀t ∈ [0, T ] P− a.s.. (3.11)

In particular, we have

|Xλ(t)|2 ≤ |x|2 P− a.s., ∀t ∈ [0, T ]; (3.12)

and, if x, x∗ ∈ L2(O) and Xλ, X
∗
λ are the corresponding solutions with initial conditions x, x∗,

respectively, then

|Xλ(t)−X∗λ(t)|2 ≤ |x− x∗|2 P− a.s., ∀t ∈ [0, T ]. (3.13)

(ii) If x ∈ H1
0 (O), then P−a.s. equation (3.9) has a unique solution such that

Yλ ∈ C([0, T ]; H1
0 (O)) ∩ L∞([0, T ]; H1

0 (O)) ∩ L2([0, T ]; H2(O)). (3.14)

(iii) Xλ = e
∑N

i=1 βi(t)BiYλ is an (Ft)−adapted process with P−a.s. continuous paths which is the

unique solution of (3.8), and we have P−a.s. Xλ ∈ C([0, T ]; H1
0 (O)) ∩ L2([0, T ]; H2(O)) ∩

L∞([0, T ]; H1
0 (O)). More exactly, we have[

N∏
i=1

1

M(bi)eα(bi)|βi(t)|
‖Xλ(t)‖1

]
+ 2λ

∫ t

0

|∆Xλ(s)|22 ≤ ‖x‖21, ∀t ∈ [0, T ] P− a.s.. (3.15)

Proof. (i) Let us consider the operator Aλ : H1
0 (O)→ H−1(O) defined by

〈Aλy, ϕ〉 =

∫
O
ψ̃λ(∇y) · ∇ϕ dξ, ∀φ ∈ H1

0 (O). (3.16)

Hence, equation (3.8) can be rewritten as

dXλ(t) +AλXλ(t)dt =
1

2

N∑
i=1

B2
iXλ(t)dt+

N∑
i=1

BiXλ(t)dβi(t), t ∈ [0, T ]; Xλ(0) = x, (3.17)

It is shown, for example, in [7] that Aλ is demi continuous and it satisfies

‖Aλy‖−1 ≤ λ‖y‖1 +

(∫
O
dξ

) 1
2

, ∀y ∈ H1
0 (O),

and

〈Aλy1 −Aλy2, y1 − y2〉 ≥ λ‖y1 − y2‖21,∀y1, y2 ∈ H1
0 (O).
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Then, using similar arguments as in [6], one may deduce that the equation (3.17) (equivalently,

(3.8)) has a unique solution, Xλ, satisfying the Itô integral equation in (3.10).

Now applying Itô’s formula in (3.10) to the L2−norm 1
2 |Xλ(t)|22, we get

1

2
|Xλ(t)|22 =

1

2
|x|22 −

∫ t

0

〈AλXλ(s), Xλ(s)〉 ds+

∫ t

0

N∑
i=1

〈Xλ(s), BiXλ(s)〉 dβi(s)

+
1

2

∫ t

0

N∑
i=1

(〈
B2
iXλ(s), Xλ(s)

〉
+ |BiXλ(s)|22

)
ds

(where using the skew-adjointness of Bi, see (B2))

=
1

2
|x|22 −

∫ t

0

〈AλXλ(s), Xλ(s)〉 ds

(where using the monotonicity of Aλ)

≤ 1

2
|x|22,

from where relations (3.11) and (3.12) follow immediately. Similarly, one may show (3.13) as-well.

(ii) Let us denote by Γ = Γ(t, ω) : H1
0 (O)→ H−1(O), the operator defined as

〈Γ(t, ω)y, ϕ〉 =
〈
ψ̃λ(∇e

∑N
i=1 βi(t)Biy),∇(e

∑N
i=1 βi(t)Biϕ)

〉
, ∀y, ϕ ∈ H1

0 (O).

Then, equation (3.9) can be rewritten as

d

dt
Yλ(t) + Γ(t)Yλ(t) = 0.

It is easy to check that for all t ∈ [0, T ], ω ∈ Ω, Γ(t, ω) is demi-continuous, and

〈Γ(t, ω)y1 − Γ(t, ω)y2, y1 − y2〉 ≥ λ‖y1 − y2‖21, ∀y1, y2 ∈ H1
0 (O).

So, immediately one may deduce the existence and uniqueness of a solution for (3.9).

The rest of this item follows by the next two lemmas.

Lemma 3.1. Let x ∈ H1
0 (O). The solution Yλ to (3.9) belongs to L∞([0, T ];H1

0 (O))∩L2([0, T ];H2(O))

and

ess sup
t∈[0,T ]

‖Yλ(t)‖21 + 2λ

∫ T

0

|∆Yλ(t)|22dt ≤ ‖x‖21, λ ∈ (0, 1], P− a.s.. (3.18)

Proof. Recall the operator Aε introduced in (2.1) and denote by A
1
2
ε its square root operator. By

hypothesis (H∆), we have〈
e−

∑N
i=1 βi(t)Bidiv ψλ(∇(e

∑N
i=1 βi(t)Biu,Aεu

〉
=
〈

div ψλ(∇(e
∑N

i=1 βi(t)Biu), Aεe
∑N

i=1 βi(t)Bi(t)u
〉

+
1

ε

〈
div ψλ(∇(e

∑N
i=1 βi(t)Biu), e

∑N
i=1 βi(t)BiJεu− Jεe

∑N
i=1 βi(t)Biu

〉
=
〈

div ψλ(∇(e
∑N

i=1 βi(t)Biu), Aεe
∑N

i=1 βi(t)Bi(t)u
〉
≥ 0

(3.19)

by similar arguments as relation (5.19) from [2]. Besides this, we know that

〈Au,Aεu〉 ≥ |Aεu|22, ∀u ∈ H1
0 (O). (3.20)
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Now, multiplying scalarly, in L2(O), equation (3.9) by AεYλ, use relations (3.19) and (3.20), we

obtain
1

2
|A

1
2
ε Yλ(t)|22 + λ

∫ t

0

|AεYλ(s)|22ds ≤
1

2
|A

1
2
ε x|22, t ∈ [0, T ].

Letting ε→ 0 we arrive to the conclusion of the lemma.

Lemma 3.2. Let x ∈ H1
0 (O). Then, the solution Yλ to (3.9) belongs to C([0, T ];H1

0 (O)), P−a.s..

Proof. Since ∆ commutes with esBi for all s ∈ R and i = 1, ..., N , we may rewrite equation (3.9) as

d

dt
Yλ(t) = λ∆Yλ(t) + f(t) in (0, T )×O, (3.21)

where f(t) := e−
∑N

i=1 βi(t)Bidivψλ(∇(e
∑N

i=1 βi(t)BiYλ(t))). Next, taking into account that, for y ∈
H1

0 (O) ∩H2(O),

divψλ(∇y) =

{
1
λ∆y on {|∇y| ≤ λ}

∆y
|∇y| −

∇y·∇|∇y|
|∇y|2 on {|∇y| > λ} ,

and that esBi preserves H1
0 (O) ∩ H2(O) for all s ∈ R, i = 1, ..., N , by Lemma 3.1 we have that

f ∈ L2(0, T ; L2(O)), P − a.s.. Then, classical theory on the heat equation leads to the wanted

conclusion.

(iii) Let ϕ ∈ H1
0 (O) ∩ L∞(O). We have

e
∑N

i=1 βi(t)BiYλ(t) =

∞∑
j=1

〈Yλ(t), ej〉 e
∑N

i=1 βi(t)Biej (3.22)

(Here, (ej)j∈N∗ is the eigenbases of the Laplacian considered in the Preliminaries section.) By (3.9)

and (2.5) it yields

〈Yλ(t), ej〉 e
∑N

i=1 βi(t)Biej = 〈x, ej〉 ej

+

∫ t

0

〈
e−

∑N
i=1 βi(s)Bidivψ̃λ(∇(e

∑N
i=1 βi(s)BiYλ(s))), ej

〉
e
∑N

i=1 βi(s)Biejds

+
1

2

∫ t

0

〈Yλ(s), ej〉 e
∑N

i=1 βi(s)Bi

(
N∑
i=1

B2
i ej

)
ds+

∫ t

0

〈Yλ(s), ej〉 e
∑N

i=1 βi(s)Bi

(
N∑
i=1

Biej

)
dβi(s),

for all j ∈ N, by using the stochastic Fubini Theorem. Next, we sum the above equation from j = 1

to ∞, to obtain

e
∑N

i=1 βi(t)BiYλ(t) =x+

∫ t

0

divψ̃λ(∇e
∑N

i=1 βi(s)BiYλ(s)ds+
1

2

N∑
j=1

∫ t

0

B2
j e

∑N
i=1 βi(s)BiYλ(s)ds

+

N∑
j=1

Bje
∑N

i=1 βi(s)BiYλ(s)dβj(s),

which leads to the fact that Xλ = e
∑N

i=1 βiBiYλ solves (3.8).

We notice that we were able to interchange the sums with the integrals because e−
∑N

i=1 βiBidivψ̃λ(∇e
∑N

i=1 βiBiYλ)

belongs to L2([0, T ];L2(O)) by Lemma 3.1.
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Now, by (3.18), we have

‖e−
∑N

i=1 βi(t)BiXλ(t)‖21 + 2λ

∫ t

0

|∆(e−
∑N

i=1 βi(s)BiXλ(s)|22 ≤ ‖x‖1, ∀t ∈ [0, T ],

where using (B7) and the commutativity between ∆ and the group esBi , s ∈ R, i = 1, ..., N ,

relation (3.15) follows immediately.

Continuation of the proof of Theorem 2.1. By the density of H1
0 (O) in L2(O), it is enough to

prove the existence for initial conditions x ∈ H1
0 (O).

We shall show that the sequence (Xλ)λ is Cauchy in C([0, T ];L2(O)) P−a.s., from where it will follow

that there is X such that

lim
λ→0

[
sup
t∈[0,T ]

|Xλ(t)−X(t)|22

]
= 0 P− a.s.. (3.23)

By Itô’s formula in (3.8) (see relation (3.11)), we have

|Xλ(t)|22 = |x|22 + 2

∫ t

0

〈
divψ̃λ(∇Xλ(s)), Xλ(s)

〉
ds

where, using the fact that ψ̃λ(u) · u ≥ jλ(u) + λ|u|2, ∀u ∈ Rd, it yields that

|Xλ(t)|22 + 2

∫ t

0

∫
O
jλ(∇Xλ(s))dξds+ 2λ

∫ t

0

|∇Xλ(s)|22ds ≤ |x|22, ∀λ > 0, t ∈ [0, T ]. (3.24)

Let λ, ε ∈ (0, 1], and Xλ, Xε the corresponding solutions to (3.8). By Itô’s formula (similarly as in

(3.11)), it follows that,

1

2
d|Xλ(t)−Xε(t)|22 + 〈ψλ(∇Xλ(t))− ψε(∇Xε(t)),∇Xλ(t)−∇Xε(t)〉 dt

+ 〈λ∇Xλ(t)− ε∇Xε(t),∇(Xλ(t)−Xε(t))〉 dt = 0, t ∈ [0, T ].

Taking into account that, by the definition of ψλ, we have (for details, see [2], p. 817, lines 11 to 16)

(ψλ(u)− ψε(v)) · (u− v) ≥ −(λ+ ε),

and
〈λ∇Xλ(t)− ε∇Xε(t),∇(Xλ(t)−Xε(t))〉

≥ −
(
λ2|∆Xλ(t)|22 + ε2|∆Xε(t)|22

)
− 1

2
|Xλ(t)−Xε(t)|22,

we deduce that

|Xλ(t)−Xε(t)|22 ≤ C
∫ t

0

|Xλ(s)−Xε(s)|22ds+ 2(λ+ ε)t

∫
O
dξ

+ 2λ2

∫ t

0

|∆Xλ(s)|22ds+ 2ε2
∫ t

0

|∆Xε(s)|22ds, t ∈ [0, T ].

Hence, via Gronwall’s lemma and (3.15), for some constant C > 0, we have

sup
0≤s≤t

|Xλ(s)−Xε(s)|22 ≤ C(λ+ ε) P− a.s.,

that is, the sequence {Xλ}λ is Cauchy in C([0, T ];L2(O)) P− a.s., and so, relation (3.23) holds.

14



Recalling that φ is lower-semicontinuous in L1(O) (see (2.6)), we have by (3.23) and Fatou’s lemma

that

lim inf
λ→0

∫ t

0

φ(Xλ(s))ds ≥
∫ t

0

φ(X(s))ds, ∀t ∈ [0, T ]. (3.25)

We know that

|jλ(∇u)− |∇u|| ≤ 1

2
λ, (3.26)

that yields ∣∣∣∣∫ t

0

∫
O
jλ(∇Xλ(s))dξds−

∫ t

0

φ(Xλ(s))ds

∣∣∣∣ ≤ cλ. (3.27)

Hence, via (3.25), we get∫ t

0

φ(X(s))ds ≤ lim inf
λ→0

∫ t

0

∫
O
jλ(∇(Xλ(s)))dξds <∞. (3.28)

We point out that by (3.13) and (3.23), relation (2.11) follows immediately; while, Fatou’s lemma

together with relations (3.23) and (3.12) imply (2.10).

It remains to prove (2.9). To this end, for all processes Z as in Definition 2.1 (iii), by Itô’s formula,

we get
1

2
|Xλ(t)− Z(t)|22 +

∫ t

0

∫
O
jλ(∇Xλ(s))dξds ≤ 1

2
|x− Z(0)|22

+

∫ t

0

∫
O
jλ(∇Z(s))dξds+

∫ t

0

〈G(s), Xλ(s)− Z(s)〉 ds, t ∈ [0, T ].

(3.29)

We let λ tend to zero and use relations (3.26), (3.28) and (3.23) to see that (2.9) holds true.

Uniqueness. Let x∗ ∈ L2(O) and x ∈ H1
0 (O). Let X∗ be a variational solution to (1.1), with

X∗(0) = x∗; and X be the solution constructed in the existence part, with X(0) = x. Set Y ∗ :=

e−
∑N

i=1 βiBiX∗ and Y := e−
∑N

i=1 βiBiX. Moreover, set Y ελ := Jε(Yλ), where Yλ is the solution to (3.9).

By Lemma 3.1, (B6) and [2, Remark 8.2], it follows that

|∇e
∑N

i=1 βi(t)BiY ελ (t)|22 =|∇Jε(e
∑N

i=1 βi(t)BiYλ(t))|22 ≤ |∇e
∑N

i=1 βi(t)BiYλ(t)|22

≤
N∏
i=1

M(bi)e
α(bi)|βi(t)||∇Yλ(t)|2 ≤ C‖x‖21

N∏
i=1

M(bi)e
α(bi)|βi(t)|.

So, integrating over [0, T ], we see that e
∑N

i=1 βiBiY ελ ∈ L2([0, T ]; H1
0 (O)) P−a.s.. Besides this, it is also

a P−a.s. continuous (Ft)−adapted process in L2(O). We take in (3.2), Z̃ = Y ελ and

G = Gελ = −Jε(divψ̃λ(∇(e
∑N

i=1 βiBiYλ))),

so function Y ελ satisfies (3.2). It yields by (3.3) that

1

2
|e

∑N
i=1 βi(t)Bi(Y ∗(t)− Y ελ (t))|22 +

∫ t

0

φ(e
∑N

i=1 βi(s)BiY ∗(s))ds

≤ 1

2
|x∗ − x|22 +

∫ t

0

φ(e
∑N

i=1 βi(s)BiY ελ (s))ds

+

∫ t

0

〈
e
∑N

i=1 βi(s)Bi(Y ∗(s)− Y ελ (s)), Gελ

〉
ds.

(3.30)

We estimate now the term
〈
e
∑N

i=1 βiBi(Y ∗ − Y ελ ), Gελ

〉
, by using the Green’s formula, we get〈

e
∑N

i=1 βiBi(Y ∗ − Y ελ ), Gελ

〉
=
〈
∇Jε(e

∑N
i=1 βiBiY ∗)−∇(e

∑N
i=1 βiBiYλ), ψλ(∇(e

∑N
i=1 βiBiYλ)) + λ∇(e

∑N
i=1 βiBiYλ)

〉
+
〈
ζελ, ψλ(∇(e

∑N
i=1 βiBiYλ)) + λ∇(e

∑N
i=1 βiBiYλ)

〉
,
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where,

ζελ = ∇(e
∑N

i=1 βiBiYλ)−∇Jε(e
∑N

i=1 βiBiY ελ ).

Since

ψλ(u) · (u− v) ≥ jλ(u)− jλ(v), ∀u, v ∈ Rd,

we deduce that〈
e
∑N

i=1 βiBi(Y ∗ − Y ελ ), Gελ

〉
≤ φλ(Jε(e

∑N
i=1 βiBiY ∗))− φλ(e

∑N
i=1 βiBiYλ)− λ|∇(e

∑N
i=1 βiBiYλ)|22

− λ
〈

∆(e
∑N

i=1 βiBiYλ), Jε(e
∑N

i=1 βiBiY ∗)
〉

+
〈
ψλ(∇(e

∑N
i=1 βiBiYλ)) + λ∇(e

∑N
i=1 βiBiYλ), ζελ

〉
,

where

φλ(z) =

∫
O
jλ(∇z)dξ, ∀z ∈ H1

0 (O).

Substituting this in (3.30) we get that

1

2
|e

∑N
i=1 βi(t)Bi(Y ∗(t)− Y ελ (t))|22 +

∫ t

0

φ(e
∑N

i=1 βi(s)BiY ∗(s))ds

+

∫ t

0

φλ(e
∑N

i=1 βi(s)BiYλ(s))ds+ λ

∫ t

0

|∇(e
∑N

i=1 βi(s)BiYλ(s))|22ds

≤ 1

2
|x∗ − x|22 +

∫ t

0

φ(e
∑N

i=1 βi(s)BiY ελ (s))ds

+

∫ t

0

φλ(Jε(e
∑N

i=1 βi(s)BiY ∗(s)))ds

− λ
∫ t

0

〈
∆(e

∑N
i=1 βi(s)BiYλ(s)), Jε(e

∑N
i=1 βiBiY ∗(s))

〉
ds

+

∫ t

0

[〈
ψλ(∇(e

∑N
i=1 βi(s)BiYλ(s))) + λ∇(e

∑N
i=1 βi(s)BiYλ(s)), ζελ(s)

〉]
ds

(3.31)

Since,

|jλ(∇u)− |∇u|| ≤ 1

2
λ, ∀u ∈ H1

0 (O),

we easily see that we have

|φ(e
∑N

i=1 βi(s)BiYλ(s))− φλ(e
∑N

i=1 βi(s)BiYλ(s))| ≤ Cλ, ∀s ∈ [0, T ], (3.32)

and ∫ T

0

|φλ(Jε(e
∑N

i=1 βi(s)BiY ∗(s)))− φ(Jε(e
∑N

i=1 βi(s)BiY ∗(s)))|ds ≤ Cλ. (3.33)

Using (3.32) and (3.33) in (3.31), it yields

1

2
|e

∑N
i=1 βi(t)Bi(Y ∗(t)− Y ελ (t))|22 +

∫ t

0

φ(e
∑N

i=1 βi(s)BiY ∗(s))ds+ λ

∫ t

0

|∇e
∑N

i=1 βi(s)BiYλ(s)|22ds

≤ 1

2
|x∗ − x|22 +

∫ t

0

φ(Jε(e
∑N

i=1 βi(s)BiY ∗(s)))ds

+

∫ t

0

[
φ(e

∑N
i=1 βi(s)BiY ελ (s))− φ(e

∑N
i=1 βi(s)BiYλ(s))

]
ds

− λ
∫ t

0

〈
∆(e

∑N
i=1 βi(s)BiYλ(s)), Jε(e

∑N
i=1 βi(s)BiY ∗(s))

〉
ds

+ Cλ,ε

(∫ t

0

|ζελ(s)|22ds
) 1

2

,

(3.34)
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where

Cλ,ε =

((∫ T

0

|ψ̃λ(∇e
∑N

i=1 βi(s)BiYλ(s)|22ds

)) 1
2

.

By [2, Corrolary 8.1], we know that∫ t

0

φ(Jε(e
∑N

i=1 βi(s)BiY ∗(s)))ds ≤
∫ t

0

φ(e
∑N

i=1 βi(s)BiY ∗(s))ds, ∀ε > 0,

thus, letting ε→ 0 in (3.34) yields

|e
∑N

i=1 βi(t)Bi(Y ∗(t)− Yλ(t))|22 ≤ |x∗ − x|22 − λE
∫ t

0

〈
∆(e

∑N
i=1 βi(s)BiYλ(s)), e

∑N
i=1 βi(s)BiY ∗(s)

〉
ds,

(3.35)

because : limε→0

∫ T
0
|ζελ(s)|22ds = 0, supε∈(0,1) Cλ,ε <∞, by Lemma 3.1 e

∑N
i=1 βiBiYλ ∈ L2([0, T ]; H2(O)) P−

a.s., and e
∑N

i=1 βiBiY ∗ ∈ L2([0, T ];L2(O)) P− a.s..

By Lemma 3.1, by the commutativity of ∆ with esBi , for all s ∈ R, i = 1, ..., N , and (B7), we have

that

lim
λ→0

λ

∫ t

0

〈
∆(e

∑N
i=1 βi(s)BiYλ(s)), e

∑N
i=1 βiBi(s)Y ∗(s)

〉
ds = lim

λ→0
λ

∫ t

0

〈∆Yλ(s)), Y ∗(s)〉 ds = 0.

Hence, letting λ→ 0 in (3.35), it follows that

|X∗(t)−X(t)|22 ≤ |x∗ − x|22, t ∈ [0, T ] P− a.s.,

completing so the proof of the theorem, by letting x→ x∗ in L2(O).

3.2 Positivity of solution

We stress that physical models of non-linear diffusion are concerned with non-negative solutions to the

equation (1.1). Hence, the next result is of most importance.

Theorem 3.1. In Theorem 2.1 assume in addition that x ≥ 0, almost everywhere in O. Then,

X(t, ξ) ≥ 0 almost everywhere in (0, T )×O × Ω.

Proof. It is evident that it is enough to show that the solution Xλ to (3.8) is almost everywhere non-

negative on [0, T ]×O × Ω. To this end, by (B4) and the relation Xλ = e
∑N

i=1 βiBiYλ, it suffices to show

that the solution Yλ to (3.9) stays non-negative. Let us denote by Zλ = −Yλ. Since −ψ̃λ(u) = ψ̃λ(−u),

it follows that Zλ satisfies

d

dt
Zλ(t) = e−

∑N
i=1 βiBidivψ̃λ(∇(e

∑N
i=1 βiBiZλ(t)))dt in (0, T )×O; Zλ(0) = −x.

Scalarly multiplying the above equation by Z+
λ , yields, using again (B4)

1

2

d

dt
|Z+
λ (t)|22 +

∫
O
ψ̃λ(∇(e

∑N
i=1 βiBiZ+

λ (t))) · ∇(e
∑N

i=1 βiBiZ+
λ (t)) = 0,

where using the monotonicity of ψ̃λ, we get

d

dt
|Z+
λ (t)|22 ≤ 0, t ∈ [0, T ],

hence, Z+
λ (t) ≡ 0 −a.s., since Z+

λ (0) = (−x)+ = 0. In consequence, Y −λ (t) ≡ 0 −a.s, and the conclusion

of the theorem follows immediately.
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3.3 Finite time extinction and further properties of the positive solution

Next, we are concerned with the problem of extinction in finite time of the solution, which is of funda-

mental nature for these kind of equations. We notice that, in the case of additive noise of the form XdW ,

this problem has been solved in [12]. Unfortunately, that result cannot be applied to our case, where the

drift term contains space derivatives of the solution. However, we can obtain the following results.

Theorem 3.2. Let 1 ≤ d ≤ 2. Let X be as in Theorem 2.1, with initial condition x ∈ L2(O); and let

τ := inf {t ≥ 0 : |X(t)|2 = 0}. Then we have

P[τ <∞] = 1. (3.36)

Proof. Recall that, applying Itô’s formula in (3.10) to |Xλ(t)|22, we have

d|Xλ(t)|22 + 2
〈
ψ̃λ(∇Xλ(t)),∇Xλ(t)

〉
= 0, ∀t ≥ 0. (3.37)

Hence, for ε ∈ (0, 1), we have, via (3.37), that

(|Xλ(t)|22 + ε)
1
2 +

∫ t

0

(|Xλ(s)|22 + ε)−
1
2

〈
ψ̃λ(∇Xλ(s)),∇Xλ(s)

〉
ds = (|x|22 + ε)

1
2 , ∀t ≥ 0. (3.38)

Recall that ψ̃λ(u) · u ≥ |u| − λ, ∀u ∈ Rd, we deduce that〈
ψ̃λ(∇Xλ(t)),∇Xλ(t)

〉
≥
∫
O
|∇Xλ(t)|dξ − λ

∫
O
dξ

≥ ρ|Xλ(t)|2 − λ
∫
O
dξ,

(3.39)

by the Sobolev embedding for 1 ≤ d ≤ 2

|∇y|1 ≥ ρ|y| d
d−1

, ∀y ∈W 1,1
0 (O).

So, plugging (3.39) into (3.38) we arrive to

(|Xλ(t)|22 + ε)
1
2 + ρ

∫ t

0

(|Xλ(s)|22 + ε)−
1
2 |Xλ(s)|2ds− λ

∫
O
dξ

∫ t

0

(|Xλ(s)|22 + ε)−
1
2 ds ≤ (|x|22 + ε)

1
2 , ∀t ≥ 0.

(3.40)

Taking expectation in (3.40), we see that by (3.23), Fatou’s lemma and (3.12), we may let first λ → 0,

then let ε→ 0, to get that

E|X(t)|2 + ρ

∫ t

0

P[|X(s)|2 > 0]ds ≤ |x|2, t > 0, (3.41)

since ∫ t

0

P[|X(s)|2 > 0]ds = sup
ε>0

∫ t

0

E[|X(s)|2(|X(s)2 + ε)−1]ds.

Noticing that P[|X(s)|2 > 0] = P[τ > s], it yields by (3.41) that

P[τ > t] ≤ 1

ρt
|x|2, (3.42)

that immediately leads to (3.36), as claimed.

For the case d = 3, we take x ∈ L3(O) such that x ≥ 0; and obtain a similar result as in Theorem

3.2, but for positive solutions. Firstly, let us show the next lemma.
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Lemma 3.3. Let d = 3. For each λ ∈ (0, 1], let Xλ be as in Proposition 3.3, with initial condition

x ∈ L3(O), x ≥ 0. Then, we have

|Xλ(t)|33 + 6

∫ t

s

(∫
O
Xλ(r)ψ̃λ(∇Xλ(r)) · ∇Xλ(r)dξ

)
dr = |Xλ(s)|33 P− a.s., ∀0 ≤ s ≤ t ≤ T. (3.43)

In particular, it follows that

|Xλ(t)|33 ≤ |Xλ(s)|33, ∀0 ≤ s ≤ t ≤ T. (3.44)

Proof. For K ∈ N, K > ‖x‖1, let us define the (Ft)−stopping time

θK := inf {t ≥ 0 : ‖Xλ(t)‖1 > K} .

By interpolation, we immediately see that

E
∫ θK

0

‖Xλ(s)‖31,3ds ≤ CE
∫ θK

0

‖Xλ(s)‖2H2(O)|Xλ(s)|3ds ≤ CKE
∫ T

0

‖Xλ(s)‖2H2(O)ds <∞,

using the Sobolev embedding, in d = 3, H1(O) ⊂ L3(O) and Proposition 3.3 (iii). Hence, we may apply

Theorem 2.1 in [17] for

ft := ψ̃λ(∇Xλ(t))(≤ 1 + λ|∇Xλ(t)|)

f0
t :=

1

2

N∑
i=1

B2
iXλ(t)

git := BiXλ(t)

p = 3,

keeping also in mind that the solution is positive, we get the following Itô’s formula for the L3(O)−norm

P−a.s.

|Xλ(t ∧ θK)|33 =|Xλ(s ∧ θK)|33 + 3

N∑
i=1

∫ t∧θK

s∧θK

(∫
O
X2
λ(r)BiXλ(r)dξ

)
dβi(r)

− 6

∫ t∧θK

s∧θK

(∫
O
Xλ(r)ψ̃λ(∇Xλ(r)) · ∇Xλ(r)dξ

)
dr

+ 3

N∑
i=1

∫ t∧θK

s∧θK

(
1

2

∫
O
X2
λ(r)B2

iXλ(r) +Xλ(r)|BiXλ(r)|2dξ
)
dr, 0 ≤ s ≤ t ≤ T.

(3.45)

Taking advantage of the skew-adjointness ofBi, i = 1, ..., N, simple computations show that
∫ t∧θK
s∧θK

∫
OX

2
λBiXλ =

0 and
∫ t∧θK
s∧θK

∫
O

1
2X

2
λB

2
iXλ + Xλ|BiXλ|2 = 0. This is indeed so. Firstly, we notice that, by the Holder

inequality and the Sobolev embeddings, we have∫ t∧θK

s∧θK

∫
O
|∇(X2

λ)|2dξ ≤ C
∫ t∧θK

s∧θK
|Xλ|24|∇Xλ|24 ≤ C

∫ t∧θK

s∧θK
|∇Xλ|22|∆Xλ|22 < CK2

∫ T

0

|∆Xλ|22 <∞

by (3.15); and∫ t∧θK

s∧θK

∫
O
|∇(X3

λ)|2dξ ≤ C
∫ t∧θK

s∧θK
|Xλ|46|∇Xλ|26 ≤ C

∫ t∧θK

s∧θK
|∇Xλ|42|∆Xλ|22 < CK4

∫ T

0

|∆Xλ|22 <∞

again by (3.15). Then, ∫ t∧θK

s∧θK

∫
O
X2
λBiXλ =

1

3

∫ t∧θK

s∧θK

∫
O
BiX

3
λ = 0,
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and ∫ t∧θK

s∧θK

∫
O
X2
λB

2
iXλ = −

∫ t∧θK

s∧θK

∫
O
BiX

2
λBiXλ = −

∫ t∧θK

s∧θK
2

∫
O
Xλ|BiXλ|2.

Consequently, by (3.45) and the monotonicity of ψ̃λ, it follows that

|Xλ(t ∧ θK)|33 ≤ |x|33, ∀t ∈ [0, T ].

Thus, we may letK →∞ in (3.45) to get relation (3.43), as wanted. Relation (3.44) is an easy consequence

of (3.43) and the monotonicity of ψ̃λ.

Now we can state the finite time extinction result for the d = 3 case.

Theorem 3.3. Let d = 3. Let X be as in Theorem 2.1, with initial condition x ∈ L3(O), x ≥ 0; and let

τ := inf {t ≥ 0 : |X(t)|3 = 0}. Then we have

P[τ <∞] = 1. (3.46)

Proof. First, let us notice that by (3.15), for x ∈ H1
0 (O), it follows by Fatou’s lemma that for some

constant C > 0, independent of x, we have

E

[
sup
t∈[0,T ]

‖X(t)‖21

]
≤ C‖x‖1. (3.47)

Then, by interpolation, we get

E[ sup
t∈[0,T ]

|Xλ(t)−X(t)|23] ≤ C

(
E[ sup
t∈[0,T ]

|Xλ(t)−X(t)|22]

) 1
2

‖x‖1,

from where, via (3.23), we deduce that

lim
λ→0

E

[
sup
t∈[0,T ]

|Xλ(t)−X(t)|23

]
= 0. (3.48)

Now, let ε ∈ (0, 1). By (3.43), we get

3

√
|Xλ(t)|33 + ε+ 2

∫ t

0

1
3
√

(|Xλ(s)|33 + ε)2

∫
O
Xλ(s)ψ̃λ(∇Xλ(s)) · ∇Xλ(s)dξds = 3

√
|x|33 + ε, t > 0. (3.49)

Notice that ψ̃λ(u) · u ≥ |u| − λ. Hence, we have∫
O

2Xλψ̃λ(∇Xλ) · ∇Xλdξ ≥
∫
O

2Xλ(|∇Xλ| − λ)dξ

=

∫
O
|∇(X2

λ)|dξ − 2λ

∫
O
Xλdξ

≥ ρ|Xλ|23 − 2λ|Xλ|1,

where we have used the embedding ρ|y| 3
2
≤ ‖y‖1,1, ∀y ∈W 1,1

0 (O). This plugged in (3.49) yields

3

√
|Xλ(t)|33 + ε+6ρ

∫ t

0

1
3
√

(|Xλ(s)|33 + ε)2
|Xλ(s)|23ds

≤ 3

√
|x|33 + ε+ 12λ

∫ t

0

1
3
√

(|Xλ(s)|33 + ε)2
|Xλ(s)|1ds, t > 0.

(3.50)

By (3.44) and (3.48) we see that |X(t)|3 is an L1− limit of supermartingales, hence itself a supermartin-

gale. Then, making use of relation (3.48), again, and arguing as in the proof of Theorem 3.2, we let

λ→ 0, then ε→ 0 in (3.50), to get that P[τ > t] ≤ |x|36ρt , which implies (3.46) as wanted.
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