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Abstract. We prove the existence and uniqueness of probabilistically
strong solutions to stochastic porous media equations driven by time-
dependent multiplicative noise on a general measure space (E, B(E), µ),
and the Laplacian replaced by a self-adjoint operator L. In the case of
Lipschitz nonlinearities Ψ, we in particular generalize previous results
for open E ⊂ Rd and L=Laplacian to fractional Laplacians. We also
generalize known results on general measure spaces, where we succeeded
in dropping the transience assumption on L, in extending the set of
allowed initial data and in avoiding the restriction to superlinear behavior
of Ψ at infinity for L2(µ)-initial data.
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1 Introduction

In this paper, we consider stochastic porous media equations (SPMEs) of the following type:

{
dX(t)− LΨ(X(t))dt = B(t,X(t))dW (t), in [0, T ]× E,

X(0) = x on E (with x ∈ F ∗
1,2 or L2(µ)),

(1.1)

where L is the self-adjoint generator of a sub-Markovian strongly continuous contraction
semigroup (Pt)t≥0 on L2(µ) := L2(E, B(E), µ), and (E, B(E), µ) is a σ-finite measure space.
Ψ(·) :R→R is a monotonically nondecreasing Lipschitz continuous function, B is a progres-
sively measurable process in the space of Hilbert-Schmidt operator from L2(µ) to F ∗

1,2, W (t)
is an L2(µ)-valued cylindrical Ft-adapted Wiener process on a probability space (Ω, F ,P)
with normal filtration (Ft)t≥0. For the definition of the Hilbert space F ∗

1,2 and the precise
conditions on B we refer to the next section.

In the special case when E = Rd, L is equal to the Laplace operator ∆ and B is time-
independent linear multiplicative, equation (1.1) was recently analyzed in [3]. The aim of
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this paper is to prove analogous results as in [3] for the general case. The above framework
is inspired by the work of Fukushima and Kaneko [5] (see also [7]).

The main motivation for this generality is that we would like to cover fractional powers
of the Laplacian, i.e., L = −(−∆)α, α ∈ (0, 1), generalized Schrödinger operators, i.e.,
L=∆ + 2∇ρ

ρ
· ∇, and Laplacians on fractals (see Section 4 below).

Recently, there has been much work on stochastic versions of the porous media equations.
Based on the variational approach and monotonicity assumptions on the coefficients, [15]
presents a generalization of Krylov-Rozovskii’s result [10] on the existence and uniqueness
of solutions to monotone stochastic differential equations, which applies to a large class
of stochastic porous media equations. It should be said that in [15] (see also [16]), Ψ is
assumed to be continuous such that rΨ(r)→∞ as r→∞. In this paper we show that for
Lipschitz continuous Ψ this condition can be dropped for initial data in L2(µ), extending
the corresponding result from [3] to general operators L as above. We would also like to
emphasize that in contrast to [15, 16], in this paper, we do not assume that L is the generator
of a transient Dirichlet form on L2(E, B(E), µ). In our case we can drop the transience
assumption. In particular, in contrast to [15] (and [16]), we do not need any restriction on d
when E = Rd and L = −(−∆)α, α ∈ (0, 1]. For more references on stochastic porous media
equations we refer to [2]. In addition, we work in the state space F ∗

1,2 which is larger than
the state space F ∗

e considered in [15], hence we can allow more general initial conditions (as
done in [16] under assumptions much stronger than transience).

Section 4 of [3] deals with the case where Ψ is a maximal monotone multivalued function
with at most polynomial growth. However, due to the multiplier problem, the existence is
obtained for d ≥ 3 only. We plan to extend also this result to our more general equation
(1.1). This will be the subject of our future work.

The paper is organized as follows: in Section 2, we recall some notions concerning sub-
Markovian semi-groups and introduce a suitable Gelfand triple. Section 3 is devoted to verify
the existence and uniqueness of strong solutions to (1.1). Note that the Riesz isomorphism
1 − L, through which we identify H := F ∗

1,2 and H∗ := F1,2, plays an essential role in the
proof. In Section 4, we will apply our results to a number of examples.

2 Preliminaries

First of all, let us recall some basic definitions and spaces which will be used throughout the
paper (see [5, 6, 7]).

Let (E, B(E), µ) be a σ-finite measure space. Let {Pt}t≥0 be a strongly continuous
sub-Markovian semigroup on L2(µ) with self-adjoint generator (L,D(L)).

The gamma-transform Vr(r > 0) of {Pt}t≥0 is defined by

Vr = Γ(
r

2
)−1

∫ ∞

0

s
r
2
−1e−sPsds.

In this paper, we consider the Hilbert space (F1,2, ‖ · ‖F1,2) defined by

F1,2 = V1(L
2(µ)), with norm ‖u‖F1,2 = |f |2 for u = V1f, f ∈ L2(µ),

where the norm | · |2 is defined as |f |2 = (
∫

E
|f |2dµ)

1
2 . Clearly, F1,2 ⊂ L2(µ) continuously

and densely. In particular,

V1 = (1− L)−
1
2 , so that ‖u‖F1,2 = |V −1

1 u|2 = |(1− L)
1
2 u|2.
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The dual space of F1,2 is denoted by F ∗
1,2.

In the following, we concentrate on finding a suitable Gelfand triple V ⊂ H ≡ H∗ ⊂ V ∗

with H := F ∗
1,2. Let F1,2〈·, ·〉F ∗1,2

denote the duality between F1,2 and F ∗
1,2, define (1 − L) :

F1,2 → F ∗
1,2 as follows, given u ∈ F1,2,

F ∗1,2
〈(1− L)u, v〉F1,2 :=

∫

E

(1− L)
1
2 u · (1− L)

1
2 v dµ for all v ∈ F1,2. (2.1)

To show that (1−L) : F1,2 → F ∗
1,2 is well-defined, we have to prove that the right-hand side

of (2.1) defines a linear continuous function on v ∈ F1,2 with respect to ‖ · ‖F1,2 . But for
u ∈ F1,2, we have for all v ∈ F1,2,

∣∣
F ∗1,2
〈(1− L)u, v〉F1,2

∣∣ =
∣∣∣
∫

E

(1− L)
1
2 u · (1− L)

1
2 v dµ

∣∣∣

=
∣∣∣
〈
(1− L)

1
2 u, (1− L)

1
2 v

〉
2

∣∣∣
≤ |(1− L)

1
2 u|2 · |(1− L)

1
2 v〉|2

= ‖u‖F1,2 · ‖v‖F1,2 .

This implies
‖(1− L)u‖F ∗1,2

≤ ‖u‖F1,2 .

Now we would like to identify F ∗
1,2 with its dual F1,2 via the corresponding Riesz isomorphism

R : F ∗
1,2 → F1,2 defined by Rx = 〈x, ·〉F ∗1,2

, x ∈ F ∗
1,2.

Lemma 2.1 The map (1− L) : F1,2 → F ∗
1,2 is an isometric isomorphism. In particular,

〈
(1− L)u, (1− L)v

〉
F ∗1,2

= 〈u, v〉F1,2 for all u, v ∈ F1,2. (2.2)

Furthermore, (1 − L)−1 : F ∗
1,2 → F1,2 is the Riesz isomorphism for F ∗

1,2, i.e., for every
u ∈ F ∗

1,2,

〈u, ·〉F ∗1,2
=F1,2〈(1− L)−1u, ·〉F ∗1,2

. (2.3)

Proof For all u, v ∈ F1,2, by (2.1) we know

F ∗1,2
〈(1− L)u, v〉F1,2 = 〈(1− L)

1
2 u, (1− L)

1
2 v〉2 = 〈u, v〉F1,2 ,

i.e., (1− L) : F1,2 → F ∗
1,2 is the Riesz isomorphism for F1,2.

In particular, for all u, v ∈ F1,2, since the Riesz isomorphism is isometric,

〈(1− L)u, (1− L)v〉F ∗1,2
= 〈u, v〉F1,2 . (2.4)

Furthermore, for all u, v ∈ F ∗
1,2,

〈u, v〉F ∗1,2
= 〈(1− L)−1u, (1− L)−1v〉F1,2 =F1,2〈(1− L)−1u, v〉F ∗1,2

.

¤
In this sense, we identify F ∗

1,2 with F1,2 via the Riesz map (1 − L)−1 : F ∗
1,2 → F1,2, thus

F ∗
1,2 ≡ F1,2. Note that L2(µ) can be considered as a subset of F ∗

1,2, since for u ∈ L2(µ), the
map

v 7−→ 〈u, v〉2, v ∈ F1,2,
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belongs to F ∗
1,2. Here 〈·, ·〉2 denotes the usual inner product on L2(µ). Obviously, in this

sense L2(µ) ⊂ F ∗
1,2 continuously and densely. Consequently, we get a Gelfand triple with

V := L2(µ), H := F ∗
1,2,

V = L2(µ) ⊂ F ∗
1,2 ⊂ (L2(µ))∗,

which satisfies

V ∗〈u, v〉V = 〈u, v〉H , for all u ∈ H, v ∈ V. (2.5)

Lemma 2.2 The map
1− L : F1,2 → F ∗

1,2

extends to a linear isometry
1− L : L2(µ) → (L2(µ))∗,

and for all u, v ∈ L2(µ),

(L2(µ))∗〈(1− L)u, v〉L2(µ) =

∫

E

u · v dµ. (2.6)

Proof Let u ∈ F1,2. Since (1 − L)u ∈ F ∗
1,2, from (2.3) and (2.5) we obtain that for all

v ∈ L2(µ),

(L2(µ))∗〈(1− L)u, v〉L2(µ) = 〈(1− L)u, v〉F ∗1,2
=F1,2 〈u, v〉F ∗1,2

= 〈u, v〉2, (2.7)

the last equality holds since F1,2 ⊂ L2(µ) ⊂ F ∗
1,2 densely and continuously. Therefore,

|(1− L)u|(L2(µ))∗ ≤ |u|2.

In this sense, 1− L extends to a continuous linear map

1− L : L2(µ) → (L2(µ))∗

such that (2.7) holds for all u ∈ L2(µ), i.e., (2.6) is proved.

So, applying it to u ∈ L2(µ) and

v := |u|−1
2 u ∈ L2(µ),

by (2.7) we obtain that

V ∗〈(1− L)u, v〉V = 〈u, v〉2 = 〈u, |u|−1
2 u〉2 = |u|2,

and |v|2 = 1, so |(1− L)u|V ∗ = |u|V and the assertion is completely proved. ¤
Thoughout the paper, let L2([0, T ]×Ω; L2(µ)) denote the space of all L2(µ)-valued square-

integrable functions on [0, T ]× Ω, and C([0, T ]; F ∗
1,2) the space of all continuous F ∗

1,2-valued
functions on [0, T ]. For two Hilbert spaces H1 and H2, the space of Hilbert-Schmidt operators
from H1 to H2 is denoted by L2(H1, H2). For simplicity, the positive constants c, C, C1 and
C2 used in this paper may change from line to line. We would like to refer [2] for more
background information and results on SPMEs.
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3 The Main Result

Consider (1.1) under the following conditions:

(H1) Ψ(·) : R→R is a monotonically nondecreasing Lipschitz function with Ψ(0) = 0.

(H2) For every t > 0, B : [0, T ]× L2(µ)× Ω → L2(L
2(µ), F ∗

1,2) is progressively measurable
such that
(i) there exists C1 ∈ [0,∞) satisfying

‖B(·, u)−B(·, v)‖2
L2(L2(µ),F ∗1,2) ≤ C1‖u− v‖2

F ∗1,2
for all u, v ∈ L2(µ) on [0, T ]× Ω;

(ii) there exists C2 ∈ (0,∞) satisfiying

‖B(·, u)‖2
L2(L2(µ),F ∗1,2) ≤ C2‖u‖2

F ∗1,2
for all u ∈ L2(µ) on [0, T ]× Ω.

Definition 3.1 Let x ∈ F ∗
1,2. A continuous (Ft)t≥0-adapted process X : [0, T ] → F ∗

1,2 is
called strong solution to (1.1) if the following conditions are satisfied:

X ∈ L2([0, T ]× Ω; L2(µ)) ∩ L2(Ω; C([0, T ]; F ∗
1,2)), (3.1)

∫ •

0

Ψ(X(s))ds ∈ C([0, T ]; F1,2), P-a.s., (3.2)

X(t)− L

∫ t

0

Ψ(X(s))ds = x +

∫ t

0

B(s,X(s))dW (s), ∀t ∈ [0, T ], P-a.s.. (3.3)

Theorem 3.1 Suppose (H1) and (H2) are satisfied. Then, for each x ∈ L2(µ), there is a
unique strong solution X to (1.1) and exists C ∈ [0,∞) satisfying

E
[

sup
t∈[0,T ]

|X(t)|22
]
≤ 2|x|22eCT .

Assume further that
Ψ(r)r ≥ cr2, ∀ r ∈ R, (3.4)

where c ∈ (0,∞). Then, there is a unique strong solution X to (1.1) for all x ∈ F ∗
1,2.

For the proof of the above theorem, we firstly consider the approximating equations for
(1.1): {

dXν(t) + (ν − L)Ψ(Xν(t))dt = B(t,Xν(t))dW (t), in (0, T )× E,

Xν(0) = x on E,
(3.5)

where ν ∈ (0, 1). And we have the following results for (3.5).

Lemma 3.1 Suppose (H1) and (H2) are satisfied. Then, for each x ∈ L2(µ), there is
a unique (Ft)t≥0-adapted solution to (3.5), denoted by Xν, i.e., in particular it has the
following properties,

Xν ∈ L2
(
[0, T ]× Ω; L2(µ)

) ∩ L2
(
Ω; C([0, T ]; F ∗

1,2)
)
, (3.6)

Xν(t) + (ν − L)

∫ t

0

Ψ(Xν(s))ds = x +

∫ t

0

B(s,Xν(s))dW (s), ∀t ∈ [0, T ], P− a.s.. (3.7)

Furthermore, there exists C ∈ (0,∞) such that for all ν ∈ (0, 1),

E
[

sup
t∈[0,T ]

|Xν(t)|22
]
≤ 2|x|22eCT . (3.8)

In addition, if (3.4) is satisfied, there is a unique solution Xν to (3.5) satisfying (3.6) and
(3.7) for all x ∈ F ∗

1,2.
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Proof We proceed it in two steps.

Step 1: Assume x ∈ F ∗
1,2 and that (3.4) is satisfied. Set V := L2(µ), H := F ∗

1,2, Au :=
(L− ν)Ψ(u) for u ∈ V . The space F ∗

1,2 is equipped with the equivalent norm

‖η‖F ∗1,2,ν
:= 〈η, (ν − L)−1η〉 1

2 , η ∈ F ∗
1,2.

Under the Gelfand triple V ⊂ H ⊂ V ∗, we shall prove the existence and uniqueness of the
solution to (3.5) by using [12, Theorem 4.2.4] (or [14, Section 4.2]).

In the following, we shall verify the four conditions of the existence and uniqueness
theorem in [12, 14].

(i) (Hemicontinuity)
Let u, v, w ∈ V = L2(µ). We have to show for λ ∈ R, |λ| ≤ 1,

lim
λ→0

V ∗〈A(u + λv), w〉V −V ∗〈Au,w〉V = 0.

By Lemma 2.2

V ∗〈A(u + λv), w〉V
= V ∗〈(L− ν)Ψ(u + λv), w〉V
= −V ∗〈(1− L)Ψ(u + λv), w〉V + (1− ν)V ∗

〈
(1− L)(1− L)−1Ψ(u + λv), w

〉
V

= −〈Ψ(u + λv), w〉2 + (1− ν)〈(1− L)−1Ψ(u + λv), w〉2
= −

∫

E

Ψ(u + λv) · wdµ + (1− ν)

∫

E

(1− L)−1Ψ(u + λv) · wdµ.

By the Lipschitz continuity of Ψ and denoting k := LipΨ, the first integrand in the right-
hand side of the above equality is bounded by

|Ψ(u + λv)| · |w| ≤ k(|u|+ |v|) · |w|,
which by Hölder’s inequality is in L1(µ). Since (1− L)−1 is a contraction, in order to prove
the convergence of (1− L)−1Ψ(u + λv) · w in L1(µ), it is sufficient to show the convergence
of Ψ(u + λv) in L2(µ), which is obvious because Ψ is Lipschitz and

|Ψ(u + λv)| ≤ k(|u|+ |v|).

(ii) (Weak Monotonicity)
Let u, v ∈ V = L2(µ), then by Lemma 2.2 and (2.5)

2V ∗〈Au− Av, u− v〉V + ‖B(·, u)−B(·, v)‖2
L2(L2(µ),F ∗1,2)

= 2V ∗
〈
(L− ν)(Ψ(u)−Ψ(v)), u− v

〉
V

+ ‖B(·, u)−B(·, v)‖2
L2(L2(µ),F ∗1,2)

= −2V ∗〈(1− L)(Ψ(u)−Ψ(v)), u− v〉V
+ 2(1− ν)V ∗

〈
Ψ(u)−Ψ(v), u− v

〉
V

+ ‖B(·, u)−B(·, v)‖2
L2(L2(µ),F ∗1,2)

= −2〈(Ψ(u)−Ψ(v)), u− v〉2
+ 2(1− ν)

〈
Ψ(u)−Ψ(v), u− v

〉
F ∗1,2

+ ‖B(·, u)−B(·, v)‖2
L2(L2(µ),F ∗1,2). (3.9)

Set α̃ := (LipΨ + 1)−1. By assumption (H1) on Ψ, we know that

(
Ψ(r)−Ψ(r′)

)
(r − r′) ≥ α̃|Ψ(r)−Ψ(r′)|2, ∀r, r′ ∈ R. (3.10)
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Since L2(µ) ⊂ F ∗
1,2 continuously, by Young’s inequality

〈
Ψ(u)−Ψ(v), u− v

〉
F ∗1,2

≤ ‖Ψ(u)−Ψ(v)‖F ∗1,2
· ‖u− v‖F ∗1,2

≤ |Ψ(u)−Ψ(v)|2 · ‖u− v‖F ∗1,2

≤ α̃

1− ν
|Ψ(u)−Ψ(v)|22 +

1− ν

α̃
‖u− v‖2

F ∗1,2
. (3.11)

By (H2) (ii), and taking (3.10), (3.11) into account, (3.9) is dominated by

−2α̃|Ψ(u)−Ψ(v)|22 + 2α̃|Ψ(u)−Ψ(v)|22 +
2(1− ν)2

α̃
‖u− v‖2

F ∗1,2
+ C1‖u− v‖2

F ∗1,2

=
[2(1− ν)2

α̃
+ C1

]
· ‖u− v‖2

F ∗1,2
.

Hence weak monotonicity holds.

(iii) (Coercivity)
Let u ∈ L2(µ). By Lemma 2.2 and (2.5)

2V ∗〈Au, u〉V + ‖B(·, u)‖2
L2(L2(µ),F ∗1,2)

= −2V ∗
〈
(1− L)Ψ(u), u

〉
V

+ 2(1− ν)V ∗〈Ψ(u), u〉V + ‖B(·, u)‖2
L2(L2(µ),F ∗1,2)

= −2〈Ψ(u), u〉2 + 2(1− ν)〈Ψ(u), u〉F ∗1,2
+ ‖B(·, u)‖2

L2(L2(µ),F ∗1,2). (3.12)

By (3.4)

−2〈Ψ(u), u〉2 = −2

∫

E

Ψ(u) · udµ ≤ −2c|u|22. (3.13)

Since L2(µ) ⊂ F ∗
1,2 continuously, by Young’s inequality for ε ∈ (0, 1)

〈
Ψ(u), u

〉
F ∗1,2

≤ ‖Ψ(u)‖F ∗1,2
· ‖u‖F ∗1,2

≤ |Ψ(u)|2 · ‖u‖F ∗1,2

≤ ε2k2|u|22 +
1

ε2
‖u‖2

F ∗1,2
. (3.14)

By (H2) (ii), and taking (3.13) and (3.14) into account, (3.12) is dominated by

[− 2c + 2ε2k2(1− ν)
] · |u|22 +

[2(1− ν)

ε2
+ C2

]
· ‖u‖2

F ∗1,2
.

Choosing ε small enough, −2c+2ε2k2(1−ν) becomes negative, which implies the coercivity.

(iv) (Boundedness)
Let u ∈ L2(µ). Since

|Au|V ∗ = |(L− ν)Ψ(u)|V ∗ = sup
|v|2=1

V ∗〈(L− ν)Ψ(u), v〉V ,

by Lemma 2.2 and since (1− L)−1 is a contraction, we deduce

V ∗〈(L− ν)Ψ(u), v〉V
= −V ∗〈(1− L)Ψ(u), v〉V + (1− ν)V ∗

〈
(1− L)(1− L)−1Ψ(u), v

〉
V

= −〈Ψ(u), v〉2 + (1− ν)〈(1− L)−1Ψ(u), v〉2
≤ |Ψ(u)|2 · |v|2 + (1− ν)|Ψ(u)|2 · |v|2.
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So

|Au|V ∗ ≤ 2|Ψ(u)|2 ≤ 2k|u|2.

Hence the boundedness holds.

By [12, Theorem 4.2.4], there exists a unique solution to (3.5), denoted by Xν , which
takes values in F ∗

1,2 and satisfies (3.6) and (3.7).

Step 2: If Ψ does not satisfy (3.4) and x ∈ L2(µ), the above (i), (ii) and (iv) still hold,
but (iii) not in general. In this case, we will approximate Ψ by Ψ + λI, λ ∈ (0, 1).

Consider the approximating equation:

{
Xν

λ(t) + (ν − L)
(
Ψ(Xν

λ(t)) + λXν
λ(t)

)
dt = B(t,Xν

λ(t))dW (t), in [0, T ]× E,

Xν
λ(0) = x ∈ F ∗

1,2 on E.
(3.15)

By [12, Theorem 4.2.4], it is easy to prove that there is a solution Xν
λ to (3.15) which

satisfies Xν
λ ∈ L2

(
[0, T ]× Ω; L2(µ)

) ∩ L2
(
Ω; C([0, T ]; F ∗

1,2)
)
,

Xν
λ(t) + (ν − L)

∫ t

0

Ψ(Xν
λ(t)) + λXν

λ(t)ds = x +

∫ t

0

B(s,Xν
λ(s))dW (s), P− a.s.

and

E
[

sup
t∈[0,T ]

‖Xν
λ(t)‖2

F ∗1,2

]
< ∞. (3.16)

In the following, we want to prove that Xν
λ converges to the solutions of (3.5) as λ → 0.

From now on, we assume the initial value x ∈ L2(µ).

Claim 3.1

E
[

sup
t∈[0,T ]

|Xν
λ(t)|22

]
+ 4λνE

∫ t

0

‖Xν
λ(s)‖2

F1,2
ds ≤ 2|x|22eCT , for all ν, λ ∈ (0, 1),

and Xν
λ has continuous sample path in L2(µ), P-a.s..

Proof Rewrite (3.15), for t ∈ [0, T ],

Xν
λ(t) = x +

∫ t

0

(L− ν)
(
Ψ(Xν

λ(s)) + λXν
λ(s)

)
ds +

∫ t

0

B(s,Xν
λ(s))dW (s). (3.17)

For α > ν, applying the operator (α − L)−
1
2 : F ∗

1,2 → L2(µ) to both sides of the above
equation, we get

(α− L)−
1
2 Xν

λ(t)

= (α− L)−
1
2 x +

∫ t

0

(L− ν)(α− L)−
1
2

(
Ψ(Xν

λ(s)) + λXν
λ(s)

)
ds

+

∫ t

0

(α− L)−
1
2 B(s,Xν

λ(s))dW (s).

8



Applying Itô’s formula ([12, Theorem 4.2.5]) with H = L2(µ), we obtain, for t ∈ [0, T ],

∣∣(α− L)−
1
2 Xν

λ(t)
∣∣2
2

=
∣∣(α− L)−

1
2 x

∣∣2
2
+ 2

∫ t

0
F ∗1,2

〈
(L− ν)(α− L)−

1
2 Ψ(Xν

λ(s)), (α− L)−
1
2 Xν

λ(s)
〉

F1,2
ds

+2λ

∫ t

0
F ∗1,2

〈
(L− ν)(α− L)−

1
2 Xν

λ(s), (α− L)−
1
2 Xν

λ(s)
〉

F1,2
ds

+

∫ t

0

∥∥(α− L)−
1
2 B(s,Xν

λ(s))
∥∥2

L2(F ∗1,2,L2(µ))
ds

+2

∫ t

0

〈
(α− L)−

1
2 Xν

λ(s), (α− L)−
1
2 B(s,Xν

λ(s))dW (s)
〉

2
. (3.18)

Set P := (α− ν)(α− L)−1. For f ∈ L2(µ), we have

(P − I)f =
[
(α− L)−

1
2 (α− ν)(α− L)−

1
2 − (α− L)−

1
2 (α− L)(α− L)−

1
2

]
f

=
[
(α− L)−

1
2 (L− ν)(α− L)−

1
2

]
f.

Let gα denote the Green function of α− L. For f ∈ L2(µ), we have

Pf = (α− ν)

∫

E

f(x)gα(·, x)dµ.

Applying [16, Lemma 5.1] with f := Xν
λ(s) and g := Ψ(Xν

λ(s)), one obtains

2

∫ t

0
F ∗1,2

〈
(L− ν)(α− L)−

1
2 Ψ(Xν

λ(s)), (α− L)−
1
2 Xν

λ(s)
〉
F1,2ds

= 2

∫ t

0

〈Ψ(Xν
λ(s)), (P − I)Xν

λ(s)〉2ds

= −1

2

∫

E

∫

E

[
Ψ(f(ξ̃))−Ψ(f(ξ))

][
f(ξ̃)− f(ξ)

]
gα(ξ, ξ̃)dξ̃dξ

−
∫

E

(1− P1(ξ))f(ξ) ·Ψ(f(ξ))dξ.

Since Ψ is monotone, Ψ(0) = 0 and P1 ≤ 1, we have

2

∫ t

0

〈Ψ(Xν
λ(s)), (P − I)Xν

λ(s)〉2ds ≤ 0. (3.19)

For the second integral on the right hand side of (3.18), since (1−L)−1 is a contraction, one
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has

2λ

∫ t

0
F ∗1,2

〈
(L− ν)(α− L)−

1
2 Xν

λ(s), (α− L)−
1
2 Xν

λ(s)
〉

F1,2
ds

= −2λ

∫ t

0
F ∗1,2

〈
(1− L)(α− L)−

1
2 Xν

λ(s), (α− L)−
1
2 Xν

λ(s)
〉

F1,2
ds

+(1− ν)2λ

∫ t

0
F ∗1,2

〈
(1− L)(1− L)−1(α− L)−

1
2 Xν

λ(s), (α− L)−
1
2 Xν

λ(s)
〉

F1,2
ds

= −2λ

∫ t

0

‖(α− L)−
1
2 Xν

λ(s)‖2
F1,2

ds

+(1− ν)2λ

∫ t

0

〈
(1− L)−1(α− L)−

1
2 Xν

λ(s), (α− L)−
1
2 Xν

λ(s)
〉

F1,2
ds

≤ −2λ

∫ t

0

‖(α− L)−
1
2 Xν

λ(s)‖2
F1,2

ds + (1− ν)2λ

∫ t

0

‖(α− L)−
1
2 Xν

λ(s)‖2
F1,2

ds

= −2λν

∫ t

0

‖(α− L)−
1
2 Xν

λ(s)‖2
F1,2

ds. (3.20)

Multiplying both sides of (3.18) by α, (3.19) and (3.20) yield that, for all t ∈ [0, T ],

∣∣√α(α− L)−
1
2 Xν

λ(s)
∣∣2
2
+ 2λν

∫ t

0

‖√α(α− L)−
1
2 Xν

λ(s)‖2
F1,2

ds

≤
∣∣√α(α− L)−

1
2 x

∣∣2
2
+

∫ t

0

∥∥√α(α− L)−
1
2 B(s,Xν

λ(s))
∥∥2

L2(F ∗1,2,L2(µ))
ds

+2

∫ t

0

〈√
α(α− L)−

1
2 Xν

λ(s),
√

α(α− L)−
1
2 B(s,Xν

λ(s))dW (s)
〉

2
. (3.21)

Since
√

α(α− L)−
1
2 is a contraction operator on L2(µ), (H2)(ii) implies

∫ t

0

∥∥√α(α− L)−
1
2 B(s,Xν

λ(s))
∥∥2

L2(F ∗1,2,L2(µ))
ds

≤
∫ t

0

‖B(s,Xν
λ(s))‖2

L2(L2(µ),F ∗1,2)ds

≤ C2

∫ t

0

‖X(s)‖2
F ∗1,2

ds.

Using the BDG inequality, we obtain

E
[

sup
s∈[0,t]

|√α(α− L)−
1
2 Xν

λ(s)|22
]

+ 2λνE
∫ t

0

‖√α(α− L)−
1
2 Xν

λ(s)‖2
F1,2

ds

≤
∣∣√α(α− L)−

1
2 x

∣∣2
2
+ C2E

∫ t

0

‖Xν
λ(s)‖2

F ∗1,2
ds

+6E
[∫ t

0

|√α(α− L)−
1
2 Xν

λ(s)|22 · |
√

α(α− L)−
1
2 B(s,Xν

λ(s))|2L2(F ∗1,2,L2(µ))ds

] 1
2

.(3.22)

The last term of the right hand side of the above inequality can be estimated by

6E

[
sup

s∈[0,t]

|√α(α− L)−
1
2 Xν

λ(s)|22 ·
∫ t

0

|√α(α− L)−
1
2 B(s,Xν

λ(s))|2L2(F ∗1,2,L2(µ))ds

] 1
2

≤ 1

2
E

[
sup

s∈[0,t]

|√α(α− L)−
1
2 Xν

λ(s)|22
]

+ CE
∫ t

0

‖Xν
λ(s)‖2

F ∗1,2
ds. (3.23)

10



Since L2(µ) is continuously embedded into F ∗
1,2, by (3.21)-(3.23), we obtain that, for t ∈ [0, T ],

E

[
sup

s∈[0,t]

|√α(α− L)−
1
2 Xν

λ(s)|22
]

+ 2λνE
∫ t

0

‖√α(α− L)−
1
2 Xν

λ(s)‖2
F1,2

ds

≤
∣∣√α(α− L)−

1
2 x

∣∣2
2
+ C1E

∫ t

0

|Xν
λ(s)|22ds

+
1

2
E

[
sup

s∈[0,t]

|√α(α− L)−
1
2 Xν

λ(t)|22
]

+ C2E
∫ t

0

|Xν
λ(s)|22ds. (3.24)

Note that the first summand of the left hand side of the above inequality is finite by (3.16),

since |√α(α− L)−
1
2 · |2 is equivalent to ‖ · ‖F ∗1,2

. (3.24) shows that

E

[
sup

s∈[0,t]

|√α(α− L)−
1
2 Xν

λ(s)|22
]

+ 4λνE
∫ t

0

‖√α(α− L)−
1
2 Xν

λ(s)‖2
F1,2

ds

≤ 2|√α(α− L)−
1
2 x|22 + CE

∫ t

0

|Xν
λ(s)|22ds. (3.25)

Note that the left hand side of (3.25) is an increasing function with respect to α and
√

α(α−
L)−

1
2 is a contraction operator on L2(µ). Letting α →∞, the monotone convergence theorem

implies

E

[
sup

s∈[0,T ]

|Xν
λ(s)|22

]
+ 4λνE

∫ t

0

‖Xν
λ(s)‖2

F1,2
ds ≤ 2|x|22 + CE

∫ t

0

|Xν
λ(s)|22ds.

Then Gronwall’s inequality yields

E
[

sup
s∈[0,T ]

|Xν
λ(s)|22

]
+ 4λνE

∫ t

0

‖Xν
λ(s)‖2

F1,2
ds ≤ 2|x|22eCT .

Furthermore, the continuity of Xν
λ on L2(µ) follows from [9, Theorem 2.1]. ¤

Claim 3.2 {Xν
λ}λ∈(0,1) converges to an element Xν ∈ L2([0, T ]× Ω; L2(µ)) as λ → 0.

Proof By Itô’s formula we get that, for λ, λ′ ∈ (0, 1) and t ∈ [0, T ],

‖Xν
λ(t)−Xν

λ′(t)‖2
F ∗1,2,ν

+2

∫ t

0

〈
Ψ(Xν

λ(s)−Ψ(Xν
λ′(s) + λXν

λ(s)− λ′Xν
λ′(s), X

ν
λ(s)−Xν

λ′(s))
〉

2
ds

=

∫ t

0

∥∥B(s,Xν
λ(s))−B(s,Xν

λ′(s))
∥∥2

L2(L2(µ),F ∗1,2,ν)
ds

+2

∫ t

0

〈
Xν

λ(s)−Xν
λ′(s),

(
B(s,Xν

λ(s))−B(s,Xν
λ′(s))

)
dW (s)

〉
F ∗1,2,ν

. (3.26)

(3.10) implies that for the second term on the left hand side in (3.26) we have

2

∫ t

0

〈
Ψ(Xν

λ(s))−Ψ(Xν
λ′(s)) + λXν

λ(s)− λ′Xν
λ′(s), X

ν
λ(s)−Xν

λ′(s)
〉

2
ds

≥ 2α̃

∫ t

0

∣∣Ψ(Xν
λ(s))−Ψ(Xν

λ′(s))
∣∣2
2
ds

+2

∫ t

0

〈
λXν

λ(s)− λ′Xν
λ′(s), X

ν
λ(s)−Xν

λ′(s)
〉

2
. (3.27)
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The assumption (H2)(i) yields

∫ t

0

∥∥B(s,Xν
λ(s))−B(s,Xν

λ′(s))
∥∥2

L2(L2(µ),F ∗1,2,ν)
ds ≤ C1

∫ t

0

‖Xν
λ(s)−Xν

λ′(s)‖2
F ∗1,2,ν

. (3.28)

Using the BDG inequality and Young’s inequality, for t ∈ [0, T ], (3.26)-(3.28) imply

E
[

sup
s∈[0,t]

∥∥Xν
λ(s)−Xν

λ′(s)
∥∥2

F ∗1,2,ν

]
+ 2α̃E

∫ t

0

∣∣Ψ(Xν
λ(s))−Ψ(Xν

λ′(s))
∣∣2
2
ds

≤ C1E
∫ t

0

‖Xν
λ(s)−Xν

λ′(s)‖2
F ∗1,2,ν

ds

−2E
∫ t

0

〈
λXν

λ(s)− λ′Xν
λ′(s), X

ν
λ(s)−Xν

λ′(s)
〉

2
ds

+2E
[ ∫ t

0

‖Xν
λ(s)−Xν

λ′(s)‖2
F ∗1,2,ν

· ‖B(s,Xν
λ(s))−B(s,Xν

λ′(s))‖2
F ∗1,2,ν

ds
] 1

2

≤ 1

2
E

[
sup

s∈[0,t]

‖Xν
λ(s)−Xν

λ′(s)‖2
F ∗1,2,ν

]
+ CE

∫ t

0

‖Xν
λ(s)−Xν

λ′(s)‖2
F ∗1,2,ν

ds

+4(λ + λ′)E
∫ t

0

(|Xν
λ(s)|22 + |Xν

λ′(s)|22
)
ds. (3.29)

Since x ∈ L2(µ), Gronwall’s lemma and Claim 3.1 imply for some constant C ∈ (0,∞)
independent of λ, λ′ (and ν),

E
[

sup
s∈[0,T ]

‖Xν
λ(s)−Xν

λ′(s)‖2
F ∗1,2

]
+ E

∫ T

0

∣∣Ψ(Xν
λ(s))−Ψ(Xν

λ′(s))
∣∣2
2
ds ≤ C(λ + λ′). (3.30)

(3.30) implies that there exists an Ft-adapted continuous F ∗
1,2-valued process {Xν(t)}t∈[0,T ]

such that Xν ∈ L2(Ω; C([0, T ], F ∗
1,2)). This together with Claim 3.1 implies that Xν ∈

L2([0, T ]× Ω; L2(µ)). ¤

Claim 3.3 Xν satisfies (3.7).

Proof From Claim 3.2, we know that

Xν
λ → Xν and

∫ •

0

B(s,Xν
λ(s))dW (s) →

∫ •

0

B(s,Xν(s))dW (s), λ → 0 (3.31)

in L2(Ω; C([0, T ], F ∗
1,2)). (3.17), (3.31) yield that

∫ •

0

(
Ψ(Xν

λ(s) + λXν
λ(t))

)
ds, λ > 0,

converge to some element in L2(Ω; C([0, T ], F1,2)) as λ → 0. In addition, by Claim 3.1, we
have that, as λ → 0,

∫ •

0

(Ψ(Xν
λ(s)) + λXν

λ(s))ds →
∫ •

0

Ψ(Xν(s))ds

in L2(Ω; L2([0, T ]; L2(µ))). This and (3.31) imply the claim. ¤
By lower semi-continuity, (3.8) follows immediately from Claim 3.1. Hence the proof of

Lemma 3.1 is complete. ¤
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Based on Lemma 3.1, we shall now give the proof of our main result Theorem 3.1. The
idea is to prove that {Xν}ν∈(0,1) converges to the solution of (1.1) as ν → 0. The method
that we use here is similar to that in Lemma 3.1.

Proof of Theorem 3.1

First, we rewrite (3.5) as

dXν(t) + (1− L)Ψ(Xν(t))dt = (1− ν)Ψ(Xν(t))dt + B(t,Xν(t))dW (t).

For the function ϕ(x) = 1
2
‖x‖2

F ∗1,2
with x ∈ F ∗

1,2, Itô’s formula yields

1

2
E‖Xν(t)‖2

F ∗1,2
+

∫ t

0

〈Ψ(Xν(s)), Xν(s)〉2ds

=
1

2
‖x‖2

F ∗1,2
+ (1− ν)E

∫ t

0

〈Ψ(Xν(s)), Xν(s)〉F ∗1,2
ds

+
1

2
E

∫ t

0

‖B(s,Xν(s))‖2
L2(L2(µ),F ∗1,2)ds. (3.32)

The condition (H1) implies

Ψ(r)r ≥ α̃ · |Ψ(r)|2, r ∈ R. (3.33)

By (3.32) and (3.33), we have

1

2
E‖Xν(t)‖2

F ∗1,2
+ α̃ · E

∫ t

0

|Ψ(Xν(s))|22ds

≤ 1

2
‖x‖2

F ∗1,2
+ E

∫ t

0

‖Ψ(Xν(s))‖F ∗1,2
· ‖Xν(s)‖F ∗1,2

ds

+
1

2
C2E

∫ t

0

‖Xν(s)‖2
F ∗1,2

ds.

Since L2(µ) is continuously embedded into F ∗
1,2, Young’s inequality and the Gronwall’s in-

equality yield that there exists a constant C ∈ (0,∞) such that, for t ∈ [0, T ] and ν ∈ (0, 1),

E‖Xν(t)‖2
F ∗1,2

≤ C‖x‖2
F ∗1,2

. (3.34)

In the following, we will prove the convergence of {Xν}ν∈(0,1). Applying Itô’s formula to
‖Xν(t)−Xν′(t)‖2

F ∗1,2
, we get that, for all t ∈ [0, T ],

‖Xν(t)−Xν′(t)‖2
F ∗1,2

+ 2

∫ t

0

〈
(Ψ(Xν(s))−Ψ(Xν′(s)), Xν(s)−Xν′(s)

〉
2
ds

= 2

∫ t

0

〈
Ψ(Xν(s))−Ψ(Xν′(s)), Xν(s)−Xν′(s)

〉
F ∗1,2

ds

−2

∫ t

0

〈
νΨ(Xν(s))− ν ′Ψ(Xν′(s)), Xν(s)−Xν′(s)

〉
F ∗1,2

ds

+2

∫ t

0

‖B(s,Xν(s))−B(s,Xν′(s)‖2
L2(L2(µ),F ∗1,2)

+2

∫ t

0

〈
Xν(s)−Xν′(s), (B(s,Xν(s))−B(s,Xν′(s)))dW (s)

〉
F ∗1,2

ds. (3.35)
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The second term on the right hand side of (3.35) can be dominated by

−2

∫ t

0

〈
νΨ(Xν(s))− ν ′Ψ(Xν′(s)), Xν(s)−Xν′(s)

〉
F ∗1,2

ds

≤ 2C

∫ t

0

(ν|Ψ(Xν(s))|2 + ν ′|Ψ(Xν′(s))|2) · ‖Xν(s)−Xν′(s)‖F ∗1,2
ds. (3.36)

By assumption (H1) on Ψ and (3.33), we obtain

2

∫ t

0

〈
(Ψ(Xν(s))−Ψ(Xν′(s)), Xν(s)−Xν′(s)

〉
2
ds

= 2

∫ t

0

∫

E

(
Ψ(Xν(s))−Ψ(Xν′(s))

) · (Xν(s)−Xν′(s))dµds

≥ 2

∫ t

0

∫

E

α̃|Ψ(Xν(s))−Ψ(Xν′(s))|2dµds

= 2α̃

∫ t

0

|Ψ(Xν(s))−Ψ(Xν′(s))|22ds. (3.37)

(3.35)-(3.37) imply

‖Xν(t)−Xν′(t)‖2
F ∗1,2

+ 2α̃

∫ t

0

|Ψ(Xν(s))−Ψ(Xν′(s))|22ds

≤ C1

∫ t

0

|Ψ(Xν(s))−Ψ(Xν′(s))|2 · ‖Xν(s)−Xν′(s)‖F ∗1,2
ds

+C2

∫ t

0

(ν|Ψ(Xν(s))|2 + ν ′|Ψ(Xν′(s))|2) · ‖Xν(s)−Xν′(s)‖F ∗1,2
ds

+C3

∫ t

0

‖Xν(s)−Xν′(s)‖2
F ∗1,2

ds

+2

∫ t

0

〈
Xν(s)−Xν′(s),

(
B(s,Xν(s))−B(s,Xν′(s))

)
dW (s)

〉
F ∗1,2

ds.

Taking expectation of both sides of the above inequality and using Young’s and the BDG
inequalities, we obtain, for all t ∈ [0, T ],

E
[

sup
s∈[0,t]

‖Xν(s)−Xν′(s)‖2
F ∗1,2

]
+ 2α̃E

∫ t

0

|Ψ(Xν(s))−Ψ(Xν′(s))|22ds

≤ 1

2
E

[
sup

s∈[0,t]

‖Xν(s)−Xν′(s)‖2
F ∗1,2

]
+ α̃E

∫ t

0

|Ψ(Xν(s))−Ψ(Xν′(s))|22ds

+C1E
∫ t

0

‖Xν(s)−Xν′(s)‖F ∗1,2
ds + C2E

∫ t

0

(
ν|Ψ(Xν(s))|22 + ν ′|Ψ(Xν′(s))|22

)
ds.

This yields

E
[

sup
s∈[0,t]

‖Xν(s)−Xν′(s)‖2
F ∗1,2

]
+ 2α̃E

∫ t

0

|Ψ(Xν(s))−Ψ(Xν′(s))|22ds

≤ C1E
∫ t

0

‖Xν(s)−Xν′(s)‖F ∗1,2
ds

+C2(ν + ν ′)E
∫ t

0

(|Ψ(Xν(s))|22) + |Ψ(Xν′(s))|22
)
ds. (3.38)
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Note that if the initial value x ∈ F ∗
1,2 and (3.4) is satisfied, we have (3.34). If x ∈ L2(µ),

we have (3.8). Hence, Gronwall’s inequality and Young’s inequality yield that there exists a
positive constant C ∈ (0,∞) which is independent of ν, ν ′ such that

E
[

sup
s∈[0,T ]

‖Xν(s)−Xν′(s)‖2
F ∗1,2

]
+ E

∫ T

0

∣∣Ψ(Xν(s))−Ψ(Xν′(s))
∣∣2
2
ds

≤ C(ν + ν ′).

Hence, there exists an Ft-adapted continuous F ∗
1,2-valued process X = (Xt)t∈[0,T ] such that

X ∈ L2(Ω; C([0, T ], F ∗
1,2)) ∩ L2([0, T ]× Ω; L2(µ)).

The remaining part of the proof is similar to that in Claim 3.3. Consequently, Theorem
3.1 is completely proved. ¤

4 Some Examples

4.1 Classical Dirichlet forms with densities

We apply Theorem 3.1 to the Friedrichs extension of the operator

Lu = ∆u + 2
∇ρ

ρ
· ∇u, u ∈ C∞

0 (Rd), (4.1)

on L2(ρ2dx), where dx denotes Lebesgue measure and ρ ∈ H1(Rd). Here H1 is the usual
Sobolev space and H−1 denotes its dual space.

In this case, equation (1.1) can be written as:





dX(t)− (∆ + 2
∇ρ

ρ
· ∇)Ψ(X(t))dt = B(t,X(t))dW (t), on [0, T ]× Rd,

X(0) = x on Rd,

(4.2)

i.e., here we choose E to be Rd, B(E) to be B(Rd), µ := ρ2dx. Now let us determine F1,2

and hence F ∗
1,2. Clearly, ∆u ∈ L2(ρ2dx), since u ∈ C∞

0 (Rd). In addition, since ρ ∈ H1,

2
∇ρ

ρ
· ∇u ∈ L2(ρ2dx).

Hence L is a well-defined linear operator from C∞
0 (Rd) to L2(ρ2dx). To apply Theorem 3.1,

we need to find a strongly continuous contraction semigroup on L2(ρ2dx). The tool we use
here is based on Dirichlet space theory, we refer to [13].

Since
∫

Lu · vρ2dx =

∫
(∆u + 2

∇ρ

ρ
· ∇u) · vρ2dx

=

∫
∆u · vρ2dx + 2

∫ ∇ρ

ρ
· ∇u · vρ2dx

=

∫
div∇u · vρ2dx = −

∫
∇u · ∇(vρ2)dx

= −
∫
∇u · ∇vρ2dx−

∫
∇u · v · 2ρ · ∇ρdx

= −
∫
∇u · ∇vρ2dx =

∫
u · Lvρ2dx,
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which implies both that L is a symmetric operator and

〈Lu, u〉 ≤ 0.

According to [13, Proposition 3.3], we hence know that there exists a Dirichlet form (E , D(E))
on L2(ρ2dx), which is in fact the closure of

E(u, v) =

∫
〈∇u,∇v〉Rdρ2dx, for all u, v ∈ C∞

0 (Rd),

on L2(ρ2dx) such that its generator (L,D(L)) is an extension of the operator defined in (4.1).
(L,D(L)) is thus the Friedrichs extension of (L,C∞

0 (Rd)) on L2(Rd, ρ2dx).
As a result, we know Tt = etL is the desired strongly continuous contraction sub-

Markovian semigroup on L2(Rd, ρ2dx) and F1,2 = D(E) with inner product

〈u, v〉F1,2 =

∫ (〈∇u,∇v〉Rd + u · v)
ρ2dx, u, v ∈ D(E).

Now, we can use Theorem 3.1 to get the existence and uniqueness of the solutions to equation
(4.2) for any B, Ψ satisfying (H1), (H2) with L2(ρ2dx) and F1,2 as above.

4.2 General regular symmetric case

The example in Section 4.1 is a special case of the example in [13, Chapter 2]: Let E :=
U ⊂ Rd, U open, and m a positive Radon measure on U such that supp[m] = U . For
u, v ∈ C∞

0 (U), define

E(u, v) : =
d∑

i,j=1

∫
∂u

∂xi

∂v

∂xj

dνij

+

∫

U×U\∆
(u(x)− u(y))(v(x)− v(y))J(dx, dy) +

∫
uv dk. (4.3)

Here k is a positive Radon measure on U and J is a symmetric positive Radon measure on
U × U \∆, where ∆ := {(x, x)|x ∈ U}, such that for all u ∈ C∞

0 (U)

∫
|u(x)− u(y)|2J(dxdy) < ∞. (4.4)

For 1 ≤ i, j ≤ d, νij is a Radon measure on U such that for every K ⊂ U , K compact,

νij(K) = νji(K) and
∑d

i,j=1 ξiξjνij(K) ≥ 0 for all ξi, · · ·, ξd ∈ Rd.

Then (E , C∞
0 (U)) is a densely defined symmetric positive definite bilinear form on L2(U ; m).

Suppose that (E , C∞
0 (U)) is closable on L2(U ; m) and let (E , D(E )) be its closure, then

(E , D(E )) is a symmetric Dirichlet form. Hence by [13] we know there exists a self-adjoint
negative definite linear operator (L,D(L)) on L2(U ; m) defined by

D(L) := {u ∈ D(E )|∃ Lu ∈ L2(m), s.t. E (u, v) = (−Lu, v),∀v ∈ D(E )}.

Hence (L,D(L)) is the generator of a sub-Markovian strongly continuous contraction semi-
group (Tt)t>0 on L2(U ; m) given by

Tt := etL, t > 0.
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Hence we can apply our Theorem 3.1 with the above generator (L,D(L)) to obtain a
solution to SDE (1.1) for this L, and F1,2 := D(E).

Remark:
(i) Our result thus in particular applies to the case where L is the fractional Laplace

operator
L := −(−∆)α, α ∈ (0, 1],

since it is just a special case of the above (see [13, Chapter 2]).
(ii) Similarly, using Dirichlet form theory on fractals, Theorem 3.1 applies when L is the

Laplace operator on a fractal to solve (1.1) where the state space E is this fractal, (see, e.g.,
in [8, 11] for details).
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