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Abstract

New weak and strong existence and weak and strong uniqueness results for
multi-dimensional stochastic McKean–Vlasov equation are established under
relaxed regularity conditions.

1 Introduction

1.1 Setting

Solutions of the stochastic Itô–McKean–Vlasov (or, for short, simply McKean–
Vlasov’s) equation in Rd

dXt = b[t,Xt, µt]dt+ σ[t,Xt, µt]dWt, X0 = x0, (1)
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are considered, under the convention,

b[t, x, µ] =

∫
b(t, x, y)µ(dy), σ[t, x, µ] =

∫
σ(t, x, y)µ(dy), (2)

except for only one result – the Theorem 4 below – where σ does not depend on µ;
notice that, however, we consider this Theorem 4 as the most important. Here W
is a standard d1-dimensional Wiener process, b and σ are vector and matrix Borel
functions of corresponding dimensions d and d × d1, µt is the distribution of the
process X at t. The initial data x may be random, but independent of W . Such
a class of equations was proposed by M. Kac [11] as a stochastic “toy model” for
the Vlasov kinetic equation of plasma. By a suggestion of Kac, the study of such
equations was initiated by McKean [16]. We refer to [20] as an introduction to the
whole area and to [5] as an important preceding background paper. It should be
noticed that, although the paper [5] relates to purely non-stochastic issues, much of
the technique from it has been used in further stochastic papers on the subject; in
particular, this technique allows to tackle the case of a constant unit matrix σ of the
equation (1) in dimension d practically without change. In other words, Dobrushin’s
deterministic technique suits well certain stochastic cases, at least, for equations with
a constant diffusion.

Vlasov’s idea – called mean field interaction in mathematical physics and stochas-
tic analysis – assumes that for a large multiparticle ensemble with “weak interaction”
between particles, this interaction for one particle with others may be effectively re-
placed by an averaged field. This leads to integration of this interaction with respect
to the empirical distribution of the particles approximated by the distribution of the
same particle itself. In fact, Vlasov has written in [26] his version of Maxwell’s equa-
tions and not equations for Newtonian particle ensemble; the former equations are
more involved. Nevertheless, the term “McKean–Vlasov” is already well established
in mathematical physics and relates to the equations (1)–(2), so we will stick to this
understanding.

The equation (1) leads to the following nonlinear equation for measures,

∂tµt = L∗(µt)µt, (3)

with

L(t, x, µ) =
1

2
(σσ∗)[t, x, µ]

∂2

∂x∂x
+ b[t, x, µ]

∂

∂x
,

with a given initial value µ0 in the sense that the distribution of Xt solves the
equation (3) and the distribution of X0 is µ0 and provided that the process W is
independent from X0. For simplicity, initial value X0 in the paper will be fixed,

2



although a generalization to any initial measure with (or without) appropriate finite
moments is possible and straightforward.

1.2 Motivation

Why are McKean–Vlasov’s equations important? Except for the authority of Kac
[11] and McKean [16], such equations naturally appear as limits for multi-particle or
multi-agent systems – cf. [1, 2] – and in some other areas of high interest such as
filtering, cf. [4]. These processes also very closely relate to so called self-stabilizing
processes (diffusions, in particular), which is, actually, another name for non-linear
diffusions in the “ergodic” situation, cf. [7]. Although in this paper the authors
deliberately left aside the issues of ergodicity and propagation of chaos, their hope
is that new results may help in these important areas in the future.

Why earlier existence and uniqueness results do not suffice? McKean–Vlasov’s
equations are clearly more involved than Itô’s SDEs. Hence, it is not too surprising
that the theory of the former equations is yet less developed in comparison to the
latter. Even existence and uniqueness (as usual, weak or strong) still requires further
studies. In particular, most of control problems lead to discontinuous coefficients.
Hence, establishing existence and uniqueness under minimal or no regularity at all
is in a big demand, indeed.

It may be noticed that much efforts in this area related to establishing approx-
imation results, including time discretization and “propagation of chaos” for multi-
particle case. In the authors’ view, it could be more natural and hopefully fruitful
to separate different aspects, hence, in particular, considering approximations differ-
ently from the more basic existence and uniqueness issues. In what concerns “prop-
agation of chaos” for the equation (1), we refer the reader to [20] and [3, Theorem
4.3]; this direction will not be considered below.

We establish weak existence more general than in earlier papers; it may be called
an analogue of Krylov’s weak existence for Itô’s equations. Notice that although it is
not easy to compare our assumptions with those in [6], because the latter are given
not just in terms of coefficients, but essentially in terms of existence of Lyapunov
functions, (cf. with (2.1) in the Assumption I from [6]; also note that [6] tackles the
martingale problem and not an SDE). More general growth conditions were studied
in [3]; however, our regularity conditions admit just measurable coefficients and,
hence, overall, our results are not covered by [3] either. Only the Theorem 2 below,
which is presented mainly for completeness is some variation of the result from [3];
however, firstly, we consider formally a more general equation with a possibly non-
square matrix σ, which may be useful in applications and which case was not covered
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in [3], and secondly, we propose a different method. Note that in the homogeneous
case and under less general conditions but using a different technique, weak existence
and weak uniqueness was established in [9] and [10]. Notice that in [24] there is a
result on strong existence for the equation similar to (1) only with a unit matrix
diffusion; however, strong and weak uniqueness – along with “propagation of chaos”,
i.e., with convergence of particle approximations – is established under additional
assumptions on the drift which include Lipschitz and some other conditions. In
this paper we do not touch the problem of particle approximations; yet, weak and
strong uniqueness is established for bounded and measurable drifts under additional
assumptions on the (variable) diffusion coefficient.

Strong existence in this paper is derived from strong existence for “ordinary”
Itô’s equations. Weak uniqueness and strong uniqueness are established in the sec-
tion 4 below under identical (for weak and for strong) sets of conditions. The latter
do involve some restriction on the diffusion coefficient, which may not depend on
the measure in the Theorem 4 below. Notice that instead of the famous Yamada–
Watanabe principle [27], [28], [8], [15] – that weak existence and pathwise uniqueness
together imply strong existence – here weak existence implies directly strong unique-
ness, while strong existence, is a much easier claim, which, generally speaking, may
not necessarily imply strong uniqueness. Notice, however, that we do not claim that
weak and pathwise uniqueness are fully equivalent without additional assumptions.

In some results of the paper we assume both drift and diffusion satisfying a linear
growth bound condition; in others we assume boundedness of one or both coefficients,
and diffusion coefficient is always non-degenerate except for the complementary The-
orem 2. The linear growth is useful because of a numerous applications where, at
least, the drift is not bounded; further extensions on a faster non-linear growth usu-
ally require Lyapunov type conditions, which are not considered in this paper. The
nondegeneracy is quite a standard restriction, although in certain applications de-
generacy may be highly desirable; however, the authors postpone considering more
general cases to future papers.

1.3 The news and the structure of the paper

Let us summarize briefly what is new in this paper: (1) new extended weak existence
under non-degeneracy assumptions; (2) a new method of establishing weak existence
via approximations; (3) new strong existence; (4) new strong and weak uniqueness
– the Theorem 4.

The structure of the paper is as follows. The section 1 is introductory. In the
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section 2 a new weak existence is established. In the section 3 strong existence is
discussed. The section 4 is devoted to weak and strong uniqueness. Because of these
three different topics, each section is divided into two parts - results and proofs - so
that the proofs are provided after the main results in each section. For a completeness
of the paper, a classical Skorokhod’s lemma on convergence of stochastic integrals is
provided in the Appendix.

2 Weak existence

2.1 Main results

Before we turn to the main results, let us recall a simple but useful fact from func-
tional analysis, see, for example, [17, Theorem 2.6.8].

Proposition 1 For any Borel function f(z, y) and any probability measure µ(dy),

the function f [z, µ] :=

∫
f(z, y)µ(dy) is a Borel function in z.

Note that in most of textbooks on function analysis a similar statement is usually
presented as a part of the Fubini theorem and only in the Lebesgue measurability
format, which is not sufficient for the aims of this paper.

The next corollary shows why this Borel measurability is important here: it
guarantees that the equation (1) is well-posed without any additional regularity
assumptions on the coefficients.

Corollary 1 Given the marginal distribution (µt), t ≥ 0, the functions b̃(t, x) :=
b[t, x, µt] and σ̃(t, x) := σ[t, x, µt] are Borel in (t, x).

Proof. In the sequel, measurability is always understood as a Borel one. We have,
β(t, x, ω) := b(t, x,Xt) is a measurable function of (t, x, ω) as a composite function
of two measurable ones: b(t, x, y) and Xt(ω); recall that Xt(ω) is measurable with
respect to ω and continuous with respect to t, hence, is measurable with respect to
(t, ω). Thus, b[t, x, µt] may be understood as a result of integration of a measurable
function of (t, x) and ω (i.e., β(t, x, ω)) with respect to the measure P (dω). In other
words, we have

b[t, x, µt] = Eβ(t, x, ω) ≡
∫
β(t, x, ω)P(dω),
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where the right hand side is measurable w.r.t. (t, x) due to the Proposition 1 with
z = (t, x), y = ω, µ = P, f = β, as required. The Corollary 1 is proved.

Recall what was said earlier: due to this Corollary, the equation (1) is well-posed
since a substitution of any (weak) solution Xt in both coefficients leads to adapted
and integrable in the sense of the standard Itô’s integral processes.

In the next two theorems, the first one is new; the second one is just a new version
of some earlier result presented here for completeness. The Theorem 1, in fact, mimics
Krylov’s weak existence result for Itô’s SDEs – see [12] for a homogeneous case, and
[14] and [25] for a non-homogeneous case – which does not assume any regularity
of the coefficients. To the best of the authors’ knowledge, the only previous result
about strong existence for the Mckean–Vlasov stochastic equation with a (bounded)
Borel measurable drift without any further regularity restriction has been established
in [24] for the case of a unit matrix diffusion coefficient. In this respect, notice
that the hypotheses in [6] and [3] do require certain continuity assumptions for weak
existence. Also note that Krylov’s weak existence theorems, in turn, use Skorokhod’s
single probability space method, cf. [12].

The second theorem is an existence result in the style of Skorokhod for Itô’s
SDEs with both continuous coefficients. It is also a variation of the Theorem 2.1
from [6] and the Theorem 3.6 from [3] on weak existence and is provided here only
for completeness. Yet, there are some little news here related to dimensions and
there is also some difference in the assumptions. On one hand, our conditions are
a little bit more restrictive than those in [3] because our intention here was to give
conditions explicitly in terms of properties of the original coefficients b(t, x, y) and
σ(t, x, y), which is not the case of the result from [3]. On the other hand, unlike in
the paper [3], we allow non-homogeneous coefficients, i.e., they may depend on time;
a formal reduction of this case to a homogeneous one by considering a couple (t,Xt)
would require unnecessary additional conditions due to the degeneracy. Our method
of proof is also different from that used in [3]: we use explicitly Skorokhod’s single
probability space approach as well as Krylov’s integral estimates for Itô’s processes.
It is a bit less evident how the Theorem 2 below may be compared to analogous
results in [6] because both the conditions and the statement in the [6, Theorem 2.1]
are formulated in different terms; in any case, apparently, they do not allow linear
growth in y.

Theorem 1 Suppose the following two conditions are both satisfied.
1. The functions b and σ admit linear growth condition in (x, y), i.e., there exists
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C > 0 such that

|b(s, x, y)|+ ‖σ(s, x, y)‖ ≤ C(1 + |x|+ |y|), ∀ s, x, y, (4)

where |·| stands for the Euclidean norm in Rd for b and ‖·‖ for the ‖σ‖ =
√∑

i,j σ
2
ij .

2. Diffusion matrix σ is uniformly nondegenerate in the following sense:

inf
s,x,y

inf
|λ|=1

λ∗σ(s, x, y)σ(s, x, y)∗λ =: σ2
0 > 0. (5)

Then the equation (1) has a weak solution, that is, a solution on some probability
space with a standard d1-dimensional Wiener process with respect to some filtration
(Ft, t ≥ 0).

Recall that in the Theorem 1 no regularity of any coefficient is assumed.

Theorem 2 Let the following two conditions be satisfied together.
1. The functions b and σ of dimensions d×1 and d×d1 respectively satisfy linear

growth condition (4).
2. Both coefficients are continuous in (x, y) for any t.

Then the equation (1) has a weak solution.

2.2 Proof of Theorem 1.

1. Firstly we establish the Theorem under a more restrictive assumption that d1 = d,
and that the matrix σ is symmetric and satisfies

inf
s,x,y

inf
|λ|=1

λ∗σ(s, x, y)λ = σ0 > 0. (6)

Exactly this assumption was assumed in [14]. In the end of the proof, all these
additional restrictions will be dropped.

2. The proof is based on Krylov’s integral estimate for any non-degenerate Itô
process (not necessarily a solution of an SDE) with bounded coefficients,

E
∫ T

0

f(t,Xt)dt ≤ N‖f‖Ld+1
,

see [14]. Here the constant N may depend on d, T and the bounds for sup–norm of
coefficients and inverse σσ∗. This estimate will be applied to a couple of processes,

E
∫ T

0

f(t,Xt, X̂t)dt ≤ N‖f‖L2d+1
,
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where X̂t is an independent copy of Xt and, hence, has exactly the same distribution;
the constant N in the latter inequality depends on the same norms as earlier but now
the dimension is 2d and, respectively, all norms for the new process may be different,
however, still finite. Of course, in order to apply this estimate, we will need first to
truncate all coefficients if they are not bounded from the beginning.

For bounded coefficients the hint is to smooth them so as to use existence theo-
rems which are known in the literature (in particular, for continuous coefficients, see
[6], and then to pass to the limit by using Skorokhod’s single space method.

3. Now, let us firstly truncate coefficients – of course, with diffusion remaining non-
degenerate – and only after this truncation let us smooth them. Eventually, we will
have to check tightness of corresponding measures, which tightness should let us
pass to the limit in the equation as n → ∞. For each coordinate bj of b we use the
following truncation,

bjK(t, x, y) = bj(t, x, y)1(|x|+ |y| ≤ K),

while for σ,

σK(t, x, y) = σ(t, x, y)1(|x|+ |y| ≤ K) + I 1(|x|+ |y| > K),

where I is a d×d unit matrix. Below, in this part of the proof we consider the case of
b and σ bounded and will not change notations because of that. However, because
for tightness we wish to have bounds uniform with respect to this truncation, recall
that the assumptions (4) are still valid with a constant independent on the truncation
parameter K.

Now, let us smooth both coefficients with respect to all variables, i.e., let

bn(t, x, y) = b(t, x, y) ∗ ψn(t) ∗ φn(x) ∗ φn(y),

where ψn(t), φn(x), φn(y) are defined in a standard way, i.e., as non-negative C∞

functions with a compact support, integrated to one, and so that this compact sup-
port squeezes to the one point set {O} (the origin for the corresponding variable); or,
in other words, that they are delta-sequences in the corresponding variables. Note
that, of course, for every n the coefficients remain bounded due to the truncation; at
the same time, without losing a generality, we may and will assume that the linear
growth assumption (4) holds true with the same constant for each n; in reality this
constant may increase a little bit still remaining uniformly bounded.
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4. By standard estimates weak compactness of the triple (Xn
t , ξ

n
t ,W

n
t , t ≥ 0) in

C(0,∞;R3d) can be verified; the next natural step will be a return to non-regularized
coefficients. In a standard way (see, e.g., [19], [14]) we get,

sup
0≤t≤T

E|Xn
t |2 ≤ CT (1 + |x0|2), (7)

and also

sup
0≤s≤t≤T ; t−s≤h

E|Xn
t −Xn

s |2 ≤ CT,x0h, (8)

with constants Ct, CT,x0 that does not depend on n. Recall that x0 ∈ Rd is the initial
(non-random) value of the process X. Bounds similar to (7) and (8) hold true also
for the component ξn and naturally for W n. So, the sequence (Xn, ξn,W n) is weakly
compact (= tight) in C([0, T ;Rd]).

Indeed, the inequality (8) follows straightforward from the bound

|Xn
t −Xn

s | ≤ |
∫ t

s

σ[r,Xn
r , µ

n
r ] dW n

r |+ |
∫ t

s

b[r,Xn
r , µ

n
r ] dr|,

because of the isometry property of stochastic integrals and by virtue of the in-
equality (7). Hence, for the convenience of the reader let us recall how to es-
tablish the inequality (7). In the sequel by E3σn(s,Xn

s , ξ
n
s ) we denote expecta-

tion with respect to the third variable ξns , i.e., expectation conditional on Xn
s ,

or, in other words, E3σn(s,Xn
s , ξ

n
s ) =

∫
σn(s,Xn

s , y)µξ
n

s (dy), where µξ
n

s stands for
the marginal distribution of ξns ; likewise, E3(σn(s,Xn

s , ξ
n
s ) − σn(s,Xs, ξs)) means

simply
∫
σn(s,Xn

s , y)µξ
n

s (dy) −
∫
σn(s,Xn

s , y)µξs(dy), where µξs is the marginal dis-
tribution of ξs, and, finally, E3|σn(s,Xn

s , ξ
n
s ) − σ(s,Xs, ξs))|2 is understood as∫

|σn(s,Xn
s , y)−σn(s,Xn

s , y)|2µξn,ξs (dy, dy′), where µξ
n,ξ
s (dy, dy′) denotes the marginal

distribution of the couple (ξns , ξs). From

|Xn
t | ≤ |x0|+ |

∫ t

0

σn[r,Xn
r , µ

n
r ] dW n

r |+ |
∫ t

0

bn[r,Xn
r , µ

n
r ] dr|,

we get,

1

3
E|Xn

t |2 ≤ |x0|2 + E(

∫ t

0

|bn[s,Xn
s , µ

n
s ]|ds)2 + (

∫ t

0

E|σn[s,Xn
s , µ

n
s ]|2ds)

≤ |x0|2 + t(E
∫ t

0

|bn[s,Xn
s , µ

n
s ]|2ds) + (

∫ t

0

E|σn[s,Xn
s , µ

n
s ]|2ds)
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= |x0|2 + t(

∫ t

0

E|E3bn(s,Xn
s , ξ

n
s )|ds)2 + (

∫ t

0

E|E3σn(s,Xn
s , ξ

n
s )|2ds)

≤ |x0|2 + t(

∫ t

0

EE3|bn(s,Xn
s , ξ

n
s )|ds)2 + (

∫ t

0

EE3|σn(s,Xn
s , ξ

n
s )|2ds)

≤ |x0|2 + t(

∫ t

0

EE3|bn(s,Xn
s , ξ

n
s )|2ds) + (

∫ t

0

EE3|σn(s,Xn
s , ξ

n
s )|2ds)

≤ |x0|2 + Ct(

∫ t

0

EE3(1 + |Xn
s |+ |ξns |)2ds) + C(

∫ t

0

EE3(1 + |Xn
s |+ |ξns |)2ds)

Since E3|ξns |k = E|ξns |k and E3|ξns |k = E|Xn
s |k for any k, we obtain,

1

3
E|ξnt |2 ≤ |x0|2 + C(t+ 1)

∫ t

0

E(1 + |ξns |)2ds,

or, equivalently,

1

3
E|Xn

t |2 ≤ |x0|2 + C(t+ 1)

∫ t

0

E(1 + |Xn
s |)2ds,

Here all expectations are finite and C does not depend neither on truncations, nor
on n. So, we can use Gronwall’s lemma with constants that are the same for all
truncations to obtain the following:

sup
0≤t≤T

E|Xn
t |2 ≤ 3(|x0|2 + CT + CT 2) exp(CT (T + 1)),

which justifies (7).

Now, due to this weak compactness implied by (7)–(8) and by virtue of Sko-
rokhod’s Theorem about single probability space and convergence in probability (see
[19, §6, ch. 1], or [14, Lemma 2.6.2]), without loss of generality we may and will
assume that not only µn =⇒ µ, but also on some probability space for any t,

(Xn
t , ξ

n
t ,W

n
t )

P→ (Xt, ξt,Wt), n→∞,

generally speaking, over a sub-sequence. Now, to be fully rigorous with notations we
should have redenoted all our processes; however, with a slight abuse of notations
we will not do it. Also, notice – this will be important in the sequel – that without
loss of generality we may and will assume that each process (ξnt , t ≥ 0) for any n ≥ 1
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is independent from (Xn,W n), as well as their limit ξt may be chosen independent
from the limits (X ,W ); the processes (W n

t ) are the Wiener ones, and Itô’s stochastic
integrals are all well-defined. See the details in the proof of the Theorem 2.6.1 in [14].
We could have also introduced Wiener processes for ξnt , but they will not show up
in this proof. For what follows, let us fix an arbitrary T > 0 and consider t ∈ [0, T ].

5. Now the next task is to pass to the limit in the integral equality,

Xn
t = x0 +

∫ t

0

bn[s,Xn
s , µ

n
t ] ds+

∫ t

0

σn[s,Xn
s , µ

n
t ] dW n

s , 0 ≤ t ≤ T. (9)

Note that due to the earlier truncation – see the item 3 of the proof – and because
of the compact support of the functions φn and ψn and the condition of squeezing of
this support,

bn(t, x, y) ≡ b(t, x, y), |x|+ |y| > C + 1,

and
σn(t, x, y) ≡ σ(t, x, y) ≡ I, |x|+ |y| > C + 1,

at least, for n large enough. Now, we will be using Krylov’s approach as in [14] so
as to establish the required convergence. We have, by Minkowskii’s inequality,

E|
∫ t

0

(E3bn(s,Xn
s , ξ

n
s )− E3b(s,Xs, ξs))ds|

≤ E
∫ t

0

E3|bn(s,Xn
s , ξ

n
s )− b(s,Xs, ξs))|ds

= EE3

∫ t

0

|bn(s,Xn
s , ξ

n
s )− b(s,Xs, ξs))|ds,

and similarly,

E|
∫ t

0

(E3σn(s,Xn
s , ξ

n
s )− E3σ(s,Xs, ξs))dWs|2

≤ E
∫ t

0

E3|σn(s,Xn
s , ξ

n
s )− σ(s,Xs, ξs))|2ds.

Here are the details. Let ε > 0. Let us find R > 0 and n0 such that

sup
n≥n0

P( sup
0≤s≤t

|(Xn
s , ξ

n
s )| > R) ≤ ε, (10)
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and for n ≥ n0,

‖bn(·)− b(·)‖
L2d+1([0,T ]×B

(2d)
R )

+ ‖σn(·)− σ(·)‖2
L2(2d+1)([0,T ]×B

(2d)
R )

< ε, (11)

where B
(2d)
R = {(x, y) : x, y ∈ Rd, |(x, y)| ≤ R}. Indeed, it is well-known that

smoothed functions converge to their originals in any Lp space on any bounded

domain. Since b and σ are bounded, they belong to every Lp([0, T ]× B(2d)
R ) for any

T,R > 0. Hence, (11) holds true as required.

Denote TR := inf(t ≥ 0 : |(Xt, ξt)| ≥ R) and T nR := inf(t ≥ 0 : |(Xn
t , ξ

n
t )| ≥ R).

We have,

E
∫ t

0

|bn[s,Xn
s , µ

n
s ]− b[s,Xs, µs]|ds

= E
∫ t

0

∣∣E3bn(s,Xn
s , ξ

n
s )− E3b(s,Xs, ξs)

∣∣ ds
≤ EE3

∫ t

0

|bn(s,Xn
s , ξ

n
s )− b(s,Xs, ξs)| ds

≤ EE3

∫ t

0

|bn(s,Xn
s , ξ

n
s )− bn0(s,Xn

s , ξ
n
s )| ds

+EE3

∫ t

0

|bn0(s,Xn
s , ξ

n
s )− bn0(s,Xs, ξs)| ds

+EE3

∫ t

0

|bn0(s,Xs, ξs)− b(s,Xs, ξs)| ds.

≡ J1 + J2 + J3.

Due to Krylov’s estimate applied to (Xn, ξn) and by virtue of (10) with (11) we have,

J1 = EE3

∫ t

0

|bn(s,Xn
s , ξ

n
s )− bn0(s,Xn

s , ξ
n
s )|ds

= E
∫ t

0

|bn(s,Xn
s , ξ

n
s )− bn0(s,Xn

s , ξ
n
s )|ds

= E
∫ t∧Tn

R

0

|bn(s,Xn
s , ξ

n
s )− bn0(s,Xn

s , ξ
n
s )|ds
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+E
∫ t

t∧Tn
R

|bn(s,Xn
s , ξ

n
s )− bn0(s,Xn

s , ξ
n
s )|ds

≤ K2d+1‖bn − bn0‖
L2d+1([0,T ]×B

(2d)
R )

+ 2Cε ≤ ε(2C +K2d+1).

Similarly, for J3 by Krylov’s estimate applied to (X, ξ),

J3 = EE3

∫ t

0

|bn0(s,Xs, ξs)− b(s,Xs, ξs)|ds

= E
∫ t

0

|bn(s,Xs, ξs)− bn0(s,Xs, ξs)|ds

= E
∫ t∧TR

0

|bn(s,Xs, ξs)− bn0(s,Xs, ξs)|ds

+E
∫ t

t∧TR
|bn(s,Xs, ξs)− bn0(s,Xs, ξs)|ds

≤ K2d+1‖bn − bn0‖
L2d+1([0,T ]×B

(2d)
R )

+ 2Cε ≤ ε(2C +K2d+1).

Finally, J2 → 0 as n→∞ by Lebesgue’s dominated convergence theorem.

6. For stochastic integrals the reasoning is similar, although, instead of Lebesgue’s
dominated convergence we have to use a special tool about convergence of stochastic
integrals established in [19, ch.2, §3] (see also [14, Lemma 2.6.3] without proof); we
formulate it in the Appendix for the reader’s convenience.

Further, we estimate,∫ T

0

σn[s,Xn
s , µ

n
s ] dW n

s −
∫ T

0

σ[s,Xs, µs] dWs

=

∫ T

0

E3σn(s,Xn
s , ξ

n
s ) dW n

s −
∫ T

0

E3σn0(s,Xn
s , ξ

n
s ) dW n

s

+

∫ T

0

E3σn0(s,Xn
s , ξ

n
s ) dW n

s −
∫ T

0

E3σn0(s,Xs, ξs) dWs

+

∫ T

0

(E3σn0(s,Xs, ξs)− E3σ(s,Xs, ξs)) dWs.

≡ J̃1 + J̃2 + J̃3.

13



By virtue of Skorokhod’s result (see the Lemma 1 in the Appendix), we have J̃2 →
0, n→∞. Indeed, in our case fns = σn0(s,Xn

s , ξ
n
s ) (cf. notations in the Lemma 1),

these processes are all uniformly bounded due to smoothing, and finally the condition
(26) of the Lemma holds true because

lim
h→0

sup
n

sup
|s−t|≤h

P{|σn0(s,Xn
s , ξ

n
s )− σn0(t,Xn

t , ξ
n
t )| > ε} = 0, (12)

due to (7) and uniform continuity of σn0 on any compact. Both other terms are
estimated with the help of Krylov’s bound as follows.

E|J̃1|2 = E
∫ T

0

‖σn(s,Xn
s , µ

n
s )− σn0(s,Xn

s , µ
n
s )‖2 ds

= E
∫ T

0

‖E3σn(s,Xn
s , ξ

n
s )− E3σn0(s,Xn

s , ξ
n
s )‖2 ds

≤ EE3

∫ T

0

‖σn(s,Xn
s , ξ

n
s )− σn0(s,Xn

s , ξ
n
s )‖2 ds

≤ K2d+1‖σn − σn0‖2L2(2d+1)([0,T ]×BR) + 4C2ε ≤ ε(2K2(2d+1) + 4C2).

Similarly, for the last term we have

E|J̃3|2 = E
∫ T

0

‖σn0(s,Xs, µs)− σ(s,Xs, µs)‖2 ds

= E
∫ T

0

‖E3σn0(s,Xs, ξs)− E3σ(s,Xs, ξs)‖2 ds

≤ EE3

∫ T

0

‖σn0(s,Xs, ξs)− σ(s,Xs, ξs)‖2 ds

≤ K2d+1‖σn0 − σ‖2L2(2d+1)([0,T ]×BR) + 4C2ε ≤ ε(K2(2d+1) + 4C2).

Hence, it now follows that the triple (Xt, ξt,Wt) is a solution of the corresponding
limiting SDE

Xt = x0 +

∫ t

0

E3b(s,Xs, ξs) ds+

∫ t

0

E3σ(s,Xs, ξs)dWs,

that is,

Xt = x0 +

∫ t

0

b[s,Xs, µs] ds+

∫ t

0

σ[s,Xs, µs] dWs,

as required.
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7. Now let us return to the non-truncated coefficients. To this end, we need a
priori estimates of some moments for solutions with truncated ones – denote them
temporarily by XN , µN and ξN – preferably uniform with respect to N . We shall
see that such estimates do exist. Indeed, partially repeating the calculus in the step
4, we have,

1

3
E|XN

t |2 ≤ |x0|2 + (

∫ t

0

E|b[s,XN
s , µ

N
s ]|ds)2 + (

∫ t

0

E|σ[s,XN
s , µ

N
s ]|2ds)

= |x0|2 + (

∫ t

0

E|E3b(s,XN
s , ξ

N
s )|ds)2 + (

∫ t

0

E|E3σ(s,XN
s , ξ

N
s )|2ds)

≤ |x0|2 + (

∫ t

0

EE3|b(s,XN
s , ξ

N
s )|ds)2 + (

∫ t

0

EE3|σ(s,XN
s , ξ

N
s )|2ds)

≤ |x0|2 + t(

∫ t

0

EE3|b(s,XN
s , ξ

N
s )|2ds) + (

∫ t

0

EE3|σ(s,XN
s , ξ

N
s )|2ds)

≤ |x0|2 + Ct(

∫ t

0

EE3(1 + |XN
s |+ |ξNs |)2ds) + C(

∫ t

0

EE3(1 + |XN
s |+ |ξNs |)2ds)

Since E3|ξNs |k = E|ξNs |k and E3|ξNs |k = E|XN
s |k for any k, we obtain,

1

3
E|ξNt |2 ≤ |x0|2 + C(t+ 1)

∫ t

0

E(1 + |ξNs |)2ds).

Here all expectations are finite. So, we can use Gronwall’s lemma with constants
that do not involve N .

sup
0≤s≤t

E|XN
s |2 ≤ 3|x0|2 + 3C(t+ 1)

∫ t

0

E(1 + |XN
s |)2ds).

From here,

sup
0≤t≤T

E|XN
t |2 ≤ 3(|x0|2 + CT + CT 2) exp(CT (T + 1)), (13)

where C does not depend on N , as required.

8. For t ≤ T , we similarly obtain

sup
0≤s≤t≤T ; t−s≤h

E|XN
t −XN

s |2 ≤ CT (1 + |x0|2)h.
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This signifies that (µN) is weakly compact (tight). Hence, again by using Skorokhod’s
lemma, we may choose a subsequence so as to pass to the limit as N →∞ from

XN
t = x0 +

∫ t

0

E3bN(s,XN
s , ξ

N
s )ds+

∫ t

0

E3σN(s,XN
s , ξ

N
s )dWN

s ,

to

Xt = x0 +

∫ t

0

E3b(s,Xs, ξs)ds+

∫ t

0

E3σ(s,Xs, ξs)dWs,

i.e., to

Xt = x0 +

∫ t

0

b[s,Xs, µs]ds+

∫ t

0

σ[s,Xs, µs]dWs.

Thus, weak solution of the equation (1) exists in the case of d1 = d and under a more
restrictive assumption (6) instead of (5). Recall that once µt is the distribution of
ξt, and distributions of ξt and Xt coincide, then µt is also the distribution of Xt.

9. Now we will show how to drop the assumption (6) and, in particular, the condition
d1 = d. We will use a hint from [25, section 4]; however, due to a more involved
structure of the equation and its coefficients in this paper, we repeat the details here.
Denote σ̃(t, x, y) :=

√
a(t, x, y), where a(t, x, y) := σ(t, x, y)σ∗(t, x, y), a[t, x, µ] :=

σ[t, x, µ]σ∗[t, x, µ], and let X̃t be a solution of the equation,

X̃t = x+

∫ t

0

b[s, X̃s, µs]ds+

∫ t

0

σ̃[s, X̃s, µs]dW̃s,

with some d-dimensional Wiener process (W̃t, t ≥ 0) on some probability space and
where µs stands for the distribution of X̃s. Without losing a generality we may and
will assume that on the same probability space there exists another independent d1-
dimensional Wiener process (W̄t, t ≥ 0). Let I denote a d1 × d1-dimensional unit
matrix and let

p[s, x, µ] = σ̃[s, x, µ]−1 σ[s, x, µ].

Note that (dropping the arguments for the brevity of presentation in some cases)

p∗p[s, x, µ] = σ∗(σ̃[s, x, µ]∗)−1σ̃[s, x, µ]−1 σ[s, x, µ] = σ∗(a)−1σ,

p∗pp∗p = σ∗(a)−1σσ∗(a)−1σ = σ∗(a)−1(a)(a)−1σ = σ∗(a)−1σ,

and let

W 0
t :=

∫ t

0

p∗[s, X̃s, µs] dW̃s +

∫ t

0

(I − p∗[s, X̃s, µs]p[s, X̃s, µs]) dW̄s.
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Notice that

σp∗ = a(a)−1/2 = (a)1/2,

σp∗p = (a)1/2p = (a)1/2(a)−1/2σ = σ.

Due to the multivariate Lévy characterization theorem this implies that W 0 is a
d1-dimensional Wiener process, since its matrix angle characteristic (also known as
a matrix angle bracket) equals

〈W 0,W 0〉t =

∫ t

0

p∗p ds+

∫
(I − p∗p)∗(I − p∗p) ds

=

∫
(p∗p+ I − 2p∗p+ p∗pp∗p) ds =

∫
(I − p∗p+ p∗pp∗p) ds

=

∫
(I − σ∗(a)−1σ + σ∗(a)−1(a)(a)−1σ) ds =

∫ t

0

I ds = t I.

Next, due to the stochastic integration rules (see [8]),∫ t

0

σ[s, X̃s, µs] dW
0
s =

∫
σp∗[s, X̃s, µs] dW̃ +

∫
σ(I − p∗p)[s, X̃s, µs] dW̄

=

∫
(a)1/2[s, X̃s, µs] dW̃ =

∫
σ̃[s, X̃s, µs] dW̃ = X̃t − x−

∫ t

0

b[s, X̃s, µs] ds.

In other words, (X̃,W 0) is a (weak) solution of the equation (1):

X̃t − x−
∫ t

0

b[s, X̃s, µs] ds−
∫ t

0

σ[s, X̃s, µs] dW
0
s = 0.

It remains to notice that since we did not change measures, µs is still the distribution
of X̃s by the assumption. So, the proof of the Theorem 1 is completed.

Remark. Notice that due to the Fatou lemma we have from (13),

Ex sup
0≤t≤T

|Xt|2 ≤ 3(|x|2 + CT + CT 2) exp(CT (T + 1)). (14)
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2.3 Proof of Theorem 2

1. In the case d1 = d it is possible to truncate and smooth the coefficients like in the
previous proof and then to pass to the limit in the equation (9) as in the Skorokhod’s
Lemma 1 from the Appendix, using only continuity of the coefficients.

2. For d1 > d the assertion follows in the same way as in the step 9 of the proof of
the previous result. The Theorem 2 is proved.

3 Strong existence

3.1 Main result

In this section it is shown that strong solution exists under appropriate conditions.
The first version mimics strong existence for Itô’s equations by Itô himself (see, e.g.,
[8]); notice that it requires Lipschitz condition in x, but not in y; on the other hand,
we do not claim strong uniqueness here, unlike in the classical Itô result. The second
version mimics strong existence for Itô’s equations from [22] and [23], but not in
y; on the other hand, emphasize that we do not claim strong uniqueness in this
theorem, but only strong existence. We also notice for interested readers that in [23]
the assumption of continuity in time was dropped in comparison to [22].

Theorem 3 Let either of the following two conditions hold true.

1. Let the coefficients b and σ satisfy a linear growth condition (4) in (x, y) uni-
formly with respect to s and let them also satisfy the following Lipschitz condi-
tion in x uniformly with respect to s and locally with respect to y,

|b(t, x, y)− b(t, x′, y)|+ ‖σ(t, x, y)− σ(t, x′, y)‖ ≤ C(1 + |y|2)|x− x′|. (15)

2. Let the coefficients b and σ satisfy a linear growth estimate in x uniformly with
respect to s, y and let σ be Lipschitz in x in the sense of (15) and uniformly
nondegenerate.

Then the equation (1) has a strong solution and, moreover, every solution is strong
and, in particular, solution may be constructed on any probability space equipped with
a d1-dimensional Wiener process.

Remark. Under such assumptions, strong (= pathwise) uniqueness still remains
an open problem.
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Proof. 1. The proof is based on the result from [22] about strong solutions for
SDEs and Borel drift, bounded or with a linear growth condition (see [22] and [23]; in
the latter reference the assumption on continuity of the diffusion matrix with respect
to t is dropped). Some (weak) solution exists, and whatever is its distribution µ,
the process X may be considered as an ordinary SDE with coefficients depending on
time,

b̃(t, x) = b[t, x, µt], σ̃(t, x) = σ[t, x, µt],

and, hence,
dXt = b̃(t,Xt)dt+ σ̃(t,Xt)dWt, X0 = x. (16)

2a. Now we ought to verify that new coefficients b̃ and σ̃ satisfy (local) linear
growth and Lipschitz conditions. We have, for any T > 0 and 0 ≤ t ≤ T ,

|b̃(t, x)| = |b[t, x, µt]| = |
∫
b(t, x, y)µt(dy))|

≤ C|
∫

(1 + |x|+ |y|)µt(dy))| ≤ CT (1 + |x|),

due to the moment estimate (14) above. Similarly, we show that also

‖σ̃(t, x)‖ ≤ C

∫
(1 + |x|+ |y|)µt(dy)) ≤ CT (1 + |x|).

2b. Further, we estimate, by virtue of the same moment estimate (14),

|σ̃(t, x)− σ̃(t, x′)| = |σ[t, x, µt]− σ[t, x′, µt]|

= |
∫
σ(t, x, y)µt(dy))−

∫
σ(t, x′, y)µt(dy))|

≤ C |x− x′|
∫

(1 + |y|2)µt(dy)) ≤ CT |x− x′|.

Under the assumption 1, we similarly establish Lipschitz condition for the drift co-
efficient.

3. Now, under either set of conditions 1 or 2 of the Theorem above, the latter
equation has a strong solution due to Itô’s or “Zvonkin-Veretennikov’s theorems” on
[0, T ], with any T > 0. The Theorem 3 is proved.
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Remark. Notice that as a solution of the equation (16), X is pathwise unique,
but so far it is not known if this implies the same property for X as a solution of
(1), unless weak uniqueness for the equation (1) has been established. In a restricted
framework this will be done in the next Theorem.

Remark. In the case of dimension one, Lipschitz condition may be relaxed to
Hölder of order 1/2 and, actually, a little bit further by using techniques from [27]
and [21].

4 Strong and weak uniqueness

4.1 Main result

In this section it will be shown that in certain cases weak uniqueness implies strong
uniqueness for the equation (1) and also both properties will be established under
appropriate conditions. This result – the Theorem 4 below – requires only a measur-
ability of the drift with respect to the state variable x, but assumes that diffusion σ
does not depend on y along with Lipschitz in x and nondegeneracy.

The next result is the main theorem of the paper. The linear growth condition is a
bit different from (4).

Theorem 4 Assume the functions b and σ are Borel measurable,

σ(s, x, y) ≡ σ(s, x),

that is, σ does not depend on the variable y; let σ satisfy the non-degeneracy
assumption (5); let d1 = d and let there exist C > 0 such that the function
b̃(s, x, y) := σ−1(s, x) b(s, x, y) is bounded. Assume that the equation

dX0
t = σ(t,X0

t ) dWt, X0
0 = x, (17)

has a unique strong solution for any x. Then solution of the equation (1) is weakly
and strongly unique.

Recall that no regularity on b is needed here; however, the price is a special form of
σ which should not depend on the measure. Denote by X0

t the solution of the Itô
equation (17).
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Remark. About strong solutions of Itô’s equation (17) see [22, 23].

Corollary 2 If the assumptions of the Theorem 4 holds, then there is a strong so-
lution, which is unique in distribution and pathwise unique.

4.2 Proof of Theorem 4

1. We start with the case where both b and σ are bounded; later this restriction
will be dropped. Note that under the assumptions of the theorem, any solution
is strong by virtue of the Theorem 3. Hence, it suffices to show weak uniqueness,
after which strong uniqueness will follow from strong uniqueness for the equation
(16). We will do it by contradiction. Suppose there are two solutions X1 and X2

with distributions µ1 and µ2 respectively in the space of trajectories C[0,∞;Rd].
Without a loss of generality, we may and will assume that both processes X1 and
X2 are realized on the same probability space and with the same Wiener process. It
will be shown that µ1 = µ2 and X1 = X2 a.s. Note that both solutions are Markov
processes (see [13]).

Both solutions (X i, µi) may be obtained from the same Wiener process W via
Girsanov’s transformations using the following stochastic exponents:

γi = exp(−
∫ T

0

b̃[s,X0
s , µ

i
s] dWs −

1

2

∫ T

0

|b̃[s,X0
s , µ

i
s]|2 ds), i = 1, 2,

where b̃(t, x, y) := σ−1(t, x) b(t, x, y), |b̃| stands for the module of the vector b̃, and
b̃[s,X0

s , µ
i
s] dWs is understood as a scalar product.

Denote

W̃t := Wt +

∫ t

0

b̃(s,X0
s , µ

1
s) ds, 0 ≤ t ≤ T.

This is a new Wiener process on [0, T ] under the probability measure P γ1 defined by
its density as (dP γ1/dP )(ω) = γ1. Note that

dW̃t = dWt + b̃(t,X0
t , µ

1
s) dt, or, dWt = dW̃t − b̃(t,X0

t , µ
1
s) dt.
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Recall that b̃ = bσ−1 is bounded. Then the density of µ2 with respect to µ1 equals

ρ = exp(−
∫ T

0

(b̃[s,X0
s , µ

2
s]− b̃[s,X0

s , µ
1
s])dW̃s

−1

2

∫ T

0

|b̃[s,X0
s , µ

2
s]− b̃[s,X0

s , µ
1
s]|2ds).

For the convenience of the reader we show the details below. Indeed, since for
i = 1, 2

dP γi

dP
(ω) = γi = exp(−

∫ T

0

b̃[s,X0
s , µ

i
s] dWs −

1

2

∫ T

0

|b̃[s,X0
s , µ

i
s]|2 ds),

we conclude that

dP γ2

dP γ1
(ω) =

γ2

γ1

= exp(−
∫ T

0

b̃[s,X0
s , µ

2
s] dWs −

1

2

∫ T

0

|b̃[s,X0
s , µ

2
s]|2 ds)

× exp(+

∫ T

0

b̃[s,X0
s , µ

1
s] dWs +

1

2

∫ T

0

|b̃[s,X0
s , µ

1
s]|2 ds)

= exp(−
∫ T

0

(b̃[s,X0
s , µ

2
s]− b̃[s,X0

s , µ
1
s]) dWs

× exp(−1

2

∫ T

0

|b̃[s,X0
s , µ

2
s]|2 ds+

1

2

∫ T

0

|b̃[s,X0
s , µ

1
s]|2 ds)

= exp(−
∫ T

0

(b̃[s,X0
s , µ

2
s]− b̃[s,X0

s , µ
1
s]) (dW̃s − b̃(s,X0

s , µ
1
s) ds)

× exp(−1

2

∫ T

0

|b̃[s,X0
s , µ

2
s]|2 ds+

1

2

∫ T

0

|b̃[s,X0
s , µ

1
s]|2 ds)

= exp(−
∫ T

0

(b̃[s,X0
s , µ

2
s]− b̃[s,X0

s , µ
1
s]) dW̃s

× exp(

∫ T

0

(−1

2
|b̃[s,X0

s , µ
2
s]|2 + b̃[s,X0

s , µ
1
s]b̃[s,X

0
s , µ

2
s]−

1

2
|b̃[s,X0

s , µ
1
s]|2) ds)
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= exp(−
∫ T

0

(b̃[s,X0
s , µ

2
s]− b̃[s,X0

s , µ
1
s]) dW̃s

−1

2

∫ T

0

|b̃[s,X0
s , µ

2
s]− b̃[s,X0

s , µ
1
s]|2ds),

as required.

Further, recall that the total variation norm between two probability measures is
defined as ‖µ− ν‖TV = 2 supA(µ− ν)(A), and it is known that

v(t) := ‖µ1
[0,t] − µ2

[0,t]‖TV = 1− Eγ1ρ ∧ 1 (18)

≤
√
Eγ1ρ2 − 1.

Let us show the calculus for completeness:

1− Eγ1(ρ ∧ 1) = Eγ1(1− ρ ∧ 1)

≤
√

Eγ1(1− ρ ∧ 1)2 =
√
Eγ1(1− ρ1(ρ ≤ 1)− 1(ρ > 1))2

=
√

Eγ1(1(ρ ≤ 1)− ρ1(ρ ≤ 1))2 =
√

Eγ11(ρ ≤ 1)(ρ− 1)2

≤
√

Eγ1(ρ− 1)2 =
√

Eγ1ρ2 − 1,

as required. We used the Cauchy–Bouniakovsky–Schwarz inequality. Now, again by
virtue of the Cauchy–Bouniakovsky–Schwarz inequality,

Eγ1ρ2 = Eγ1 exp(−2

∫ T

0

(b̃[s,X0
s , µ

2
s]− b̃[s,X0

s , µ
1
s])dW̃s

−
∫ T

0

|b̃[s,X0
s , µ

2
s]− b̃[s,X0

s , µ
1
s]|2ds)

= Eγ1 exp(−2

∫ T

0

(b̃[s,X0
s , µ

2
s]− b̃[s,X0

s , µ
1
s])dW̃s
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−4

∫ T

0

|b̃[s,X0
s , µ

2
s]− b̃[s,X0

s , µ
1
s]|2ds)

× exp(+3

∫ T

0

|b̃[s,X0
s , µ

2
s]− b̃[s,X0

s , µ
1
s]|2ds)

≤
(
Eγ1 exp(−4

∫ T

0

(b̃[s,X0
s , µ

2
s]− b̃[s,X0

s , µ
1
s])dW̃s

−8

∫ T

0

|b̃[s,X0
s , µ

2
s]− b̃[s,X0

s , µ
1
s]|2ds)

)1/2

×
(
Eγ1 exp(6

∫ T

0

|b̃[s,X0
s , µ

2
s]− b̃[s,X0

s , µ
1
s]|2ds)

)1/2

≤ (=)

√
Eγ1 exp

(
6

∫ T

0

|b̃[s,X0
s , µ

2
s]− b̃[s,X0

s , µ
1
s]|2ds

)
. (19)

We estimate,

Eγ1 exp

(
6

∫ T

0

|b̃[s,X0
s , µ

2
s]− b̃[s,X0

s , µ
1
s]|2ds

)
(20)

≤ Eγ1 exp

(
6‖b̃‖2B

∫ T

0

‖µ1
s − µ2

s‖2TV ds
)
.

Here the value under the expectation is non-random; hence, the symbol of this ex-
pectation may be dropped. Therefore, we have with C = 6‖b‖2B,

v(T ) ≤

√
exp

(
C

∫ T

0

v(s)2ds

)
− 1. (21)

Recall that v(t) ≤ 2, and the function v increases in t. Let us choose α > 0 small
so that exp(4α)− 1 ≤ 8α, and take T ≤ α/C. Then, the inequality

v(T ) ≤

√
exp

(
C

∫ T

0

v(s)2 ds

)
− 1 ≤

√
exp (CTv(T )2)− 1,

implies
v(T ) ≤

√
2CTv(T )2 =

√
2CTv(T ). (22)
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If we choose T so small that
√

2CT < 1, that is, T < 1/(2C), then it follows that
v(T ) = 0. Since v(t) is continuous in t – which may be easily seen, for example, from
(18) – we conclude that v(T ) = 0 for T = min(1/(2C), 1/(αC)).

2. We conclude by induction that

v(2T ) = v(3T ) = . . . = 0 (T = min(1/(2C), 1/(αC))). (23)

Indeed, assume that v(kT ) = 0 is already established for some integer k > 0. Rede-
fine the stochastic exponents:

γi = exp(−
∫ (k+1)T

kT

b̃[s,X0
s , µ

i
s] dWs −

1

2

∫ (k+1)T

kT

|b̃[s,X0
s , µ

i
s]|2 ds), i = 1, 2,

and re-denote

W̃t := Wt +

∫ kT+t

kT

b̃(s,X0
s , µ

1
s) ds, 0 ≤ t ≤ T.

This is a new Wiener process on [kT, (k+1)T ] starting at WkT under the probability
measure P γ1 defined by its density as (dP γ1/dP )(ω) = γ1. Repeating the calculus
leading to (19), (20), and (21), and having in mind the assumption v(kT ) = 0, we
obtain with the same constant C,

v((k + 1)T ) ≤

√√√√exp

(
C

∫ (k+1)T

kT

v(s)2ds

)
− 1, (24)

which straightforward implies

v((k + 1)T ) ≤
√

2CTv((k + 1)T )2 =
√

2CTv((k + 1)T ). (25)

As earlier, the condition T = min(1/(2C), 1/(αC)) guarantees that

v((k + 1)T ) = 0,

as required. This completes the induction (23).

Hence, solution is weakly unique on R+. As noticed above, strong uniqueness
also follows. The Theorem 4 is proved.
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5 Appendix

Lemma 1 (Skorokhod) Let fn : R × Ω → R, (n ≥ 0) be uniformly bounded
random processes on some probability space; let (W n (n ≥ 0)) be a sequence of
Wiener processes on the same probability space, and let all Itô’s stochastic integrals∫ T

0

fns dW
n
s , n ≥ 0 be well-defined. Assume that for any ε > 0,

lim
h→0

sup
n

sup
|s−t|≤h

E{|fns − fnt | > ε} = 0, (26)

and let for each s ∈ [0, T ]

(fns ,W
n
s )

P→ (f 0
s ,W

0
s ).

Then ∫ T

0

fns dW
n
s

P→
∫ T

0

f 0
s dW

0
s .
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