Global solutions to random 3D vorticity equations for small initial data

Viorel Barbu* Michael Röckner ${ }^{\dagger}$

Abstract

One proves the existence and uniqueness in $\left(L^{p}\left(\mathbb{R}^{3}\right)\right)^{3}, \frac{3}{2}<p<2$, of a global mild solution to random vorticity equations associated to stochastic $3 D$ Navier-Stokes equations with linear multiplicative Gaussian noise of convolution type, for sufficiently small initial vorticity. This resembles some earlier deterministic results of T. Kato [15] and are obtained by treating the equation in vorticity form and reducing the latter to a random nonlinear parabolic equation. The solution has maximal regularity in the spatial variables and is weakly continuous in $\left(L^{3} \cap L^{\frac{3 p}{4 p-6}}\right)^{3}$ with respect to the time variable. Furthermore, we obtain the pathwise continuous dependence of solutions with respect to the initial data.

Keywords: stochastic Navier-Stokes equation, vorticity, Biot-Savart operator.
MSC: 60H15, 35Q30.

1 Introduction

Consider the stochastic $3 D$ Navier-Stokes equation

[^0]\[

$$
\begin{array}{lr}
d X-\Delta X d t+(X \cdot \nabla) X d t=\sum_{i=1}^{N}\left(B_{i}(X)+\lambda_{i} X\right) d \beta_{i}(t)+\nabla \pi d t \\
& \text { on }(0, \infty) \times \mathbb{R}^{3}, \tag{1.1}\\
\nabla \cdot X=0 & \text { on }(0, \infty) \times \mathbb{R}^{3}, \\
X(0)=x & \text { in }\left(L^{p}\left(\mathbb{R}^{3}\right)\right)^{3},
\end{array}
$$
\]

where $\lambda_{i} \in \mathbb{R}, x: \Omega \rightarrow \mathbb{R}^{3}$ is a random variable. Here π denotes the pressure and $\left\{\beta_{i}\right\}_{i=1}^{N}$ is a system of independent Brownian motions on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with normal filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}, x$ is \mathcal{F}_{0}-measurable, and B_{i} are the convolution operators

$$
\begin{equation*}
B_{i}(X)(\xi)=\int_{\mathbb{R}^{3}} h_{i}(\xi-\bar{\xi}) X(\bar{\xi}) d \bar{\xi}=\left(h_{i} * X\right)(\xi), \xi \in \mathbb{R}^{3} \tag{1.2}
\end{equation*}
$$

where $h_{i} \in L^{1}\left(\mathbb{R}^{3}\right), i=1,2, \ldots, N$, and Δ is the Laplacian on $\left(L^{2}\left(\mathbb{R}^{3}\right)\right)^{3}$.
It is not known whether (1.1) has a probabilistically strong solution in the mild sense for all time. Therefore, we shall rewrite (1.1) in vorticity form and then transform it into a random PDE, which we shall prove, has a global in time solution for \mathbb{P}-a.e. fixed $\omega \in \Omega$, provided the initial condition is small enough.

Consider the vorticity field

$$
\begin{equation*}
U=\nabla \times X=\operatorname{curl} X \tag{1.3}
\end{equation*}
$$

and apply the curl operator to equation (1.1). We obtain (see e.g. [4], [8]) the transport vorticity equation

$$
\begin{array}{lr}
d U-\Delta U d t+((X \cdot \nabla) U-(U \cdot \nabla) X) d t=\sum_{i=1}^{N}\left(h_{i} * U+\lambda_{i} U\right) d \beta_{i} \\
& \text { in }(0, \infty) \times \mathbb{R}^{3} \tag{1.4}\\
U(0, \xi)=U_{0}(\xi)=(\operatorname{curl} x)(\xi), \xi \in \mathbb{R}^{3} . &
\end{array}
$$

The vorticity U is related to the velocity X by the equation

$$
\begin{equation*}
X(t, \xi)=K(U(t))(\xi), t \in(0, \infty), \xi \in \mathbb{R}^{3} \tag{1.5}
\end{equation*}
$$

where K is the Biot-Savart integral operator

$$
\begin{equation*}
K(u)(\xi)=-\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{\xi-\bar{\xi}}{|\xi-\bar{\xi}|^{3}} \times u(\bar{\xi}) d \tilde{\xi}, \quad \xi \in \mathbb{R}^{3} \tag{1.6}
\end{equation*}
$$

Then one can rewrite the vorticity equation (1.4) as

$$
\begin{align*}
& d U-\Delta U d t+((K(U) \cdot \nabla) U-(U \cdot \nabla) K(U)) d t \\
& \quad=\sum_{i=1}^{N}\left(h_{i} * U+\lambda_{i} U\right) d \beta_{i} \quad \text { in }(0, \infty) \times \mathbb{R}^{3} \tag{1.7}\\
& U(0, \xi)=U_{0}(\xi), \xi \in \mathbb{R}^{3}
\end{align*}
$$

Equivalently,

$$
\begin{align*}
U(t)= & e^{t \Delta} U_{0}-\int_{0}^{t} e^{(t-s) \Delta}((K(U(s)) \cdot \nabla) U(s)-(U(s) \cdot \nabla) K(U(s))) d s \\
& +\int_{0}^{t} \sum_{i=1}^{N} e^{-(t-s) \Delta}\left(h_{i} * U(s)\right)+\lambda_{i}(U(s)) d \beta_{i}(s), t \geq 0 \tag{1.8}
\end{align*}
$$

Now, we consider the transformation

$$
\begin{equation*}
U(t)=\Gamma(t) y(t), t \in[0, \infty) \tag{1.9}
\end{equation*}
$$

where $\Gamma(t):\left(L^{2}\left(\mathbb{R}^{3}\right)\right)^{3} \rightarrow\left(L^{2}\left(\mathbb{R}^{3}\right)\right)^{3}$ is the linear continuous operator defined by the equations

$$
\begin{equation*}
d \Gamma(t)=\sum_{i=1}^{N}\left(B_{i}+\lambda_{i} I\right) \Gamma(t) d \beta_{i}(t), t \geq 0, \quad \Gamma(0)=I \tag{1.10}
\end{equation*}
$$

where (see (1.2))

$$
\begin{equation*}
B_{i} u=h_{i} * u, \quad \forall u \in\left(L^{p}\left(\mathbb{R}^{3}\right)\right)^{3}, i=1, \ldots, N, p \in(1, \infty) \tag{1.11}
\end{equation*}
$$

We also set

$$
\begin{equation*}
\widetilde{B}_{i}=B_{i}+\lambda_{i} I, \quad i=1, \ldots, N \tag{1.12}
\end{equation*}
$$

where I is the identity operator.
Since $B_{i} B_{j}=B_{j} B_{i}$, equation (1.10) has a solution Γ and can be equivalently expressed as (see [9], Section 7.4)

$$
\begin{equation*}
\Gamma(t)=\prod_{i=1}^{N} \exp \left(\beta_{i}(t) \widetilde{B}_{i}-\frac{t}{2} \widetilde{B}_{i}^{2}\right), t \geq 0 \tag{1.13}
\end{equation*}
$$

Here (1.10) is meant in the sense that, for every $z_{0} \in\left(L^{2}\left(\mathbb{R}^{3}\right)\right)^{3}$, the continuous $\left(\mathcal{F}_{t}\right)$-adapted $\left(L^{2}\left(\mathbb{R}^{3}\right)\right)^{3}$-valued process $z(t):=\Gamma(t) z_{0}, t \geq 0$, solves the following SDE on $H:=\left(L^{2}\left(\mathbb{R}^{3}\right)\right)^{3}$,

$$
d z(t)=\sum_{i=1}^{N} \widetilde{B}_{i} z(t) d \beta_{i}(t), \quad z(0)=z_{0}
$$

where H is equipped with the usual scalar product \langle, \cdot,$\rangle .$
Applying the Itô formula in (1.7) (the justification for this is as in [2]), we obtain for y the random differential equation

$$
\begin{align*}
\frac{d y}{d t}(t) & -\Gamma^{-1}(t) \Delta(\Gamma(t) y(t))+\Gamma^{-1}(t)(K(\Gamma(t) y(t)) \cdot \nabla)(\Gamma(t) y(t)) \\
& -(\Gamma(t) y(t) \cdot \nabla)(K(\Gamma(t) y(t)))=0, \quad t \in[0, \infty), \tag{1.14}\\
y(0)= & U_{0}
\end{align*}
$$

Taking into account that, for all $i, B_{i} \Delta=\Delta B_{i}$ on $H^{2}\left(\mathbb{R}^{3}\right)$, it follows by (1.10), (1.13) that $\Delta \Gamma(t)=\Gamma(t) \Delta$ on $H^{2}\left(\mathbb{R}^{3}\right), \forall t \geq 0$.

In what follows, equation (1.14) will be taken in the following mild sense

$$
\begin{equation*}
y(t)=e^{t \Delta} U_{0}+\int_{0}^{t} e^{(t-s) \Delta} \Gamma^{-1}(s) M(\Gamma(s) y(s)) d s, \quad t \in[0, \infty) \tag{1.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(e^{t \Delta} u\right)(\xi)=\frac{1}{(4 \pi t)^{\frac{3}{2}}} \int_{\mathbb{R}^{3}} \exp \left(-\frac{|\xi-\bar{\xi}|^{2}}{4 t}\right) u(\bar{\xi}) d \bar{\xi}, t \in[0, \infty), \xi \in \mathbb{R}^{3} \tag{1.16}
\end{equation*}
$$

and M is defined by

$$
\begin{equation*}
M(u)=-[(K(u) \cdot \nabla)(u)-(u \cdot \nabla)(K(u))], t \in[0, \infty) . \tag{1.17}
\end{equation*}
$$

We note that $U(t)=\Gamma(t) y(t)$ is the solution to the equation

$$
\begin{equation*}
U(t)=e^{t \Delta} \Gamma(t) U_{0}+\int_{0}^{t} e^{(t-s) \Delta} \Gamma(t) \Gamma^{-1}(s) M(U(s)) d s \tag{1.18}
\end{equation*}
$$

which may be viewed as the random version of the stochastic vorticity equation (1.8).

Our aim here and the principal contribution of this work is to show that, for every $\varepsilon \in(0,1)$, there exists $\Omega_{\varepsilon} \in \mathcal{F}$ such that $\mathbb{P}\left(\Omega_{\varepsilon}\right) \geq 1-\varepsilon$ and, for all $\omega \in \Omega_{\varepsilon}$, we have the existence and uniqueness of a solution (in the mild sense) for (1.15) if the vorticity of x, i.e., $U_{0}=\operatorname{curl} x$, is \mathbb{P}-a.s. sufficiently small in a sense to be made precise in Theorem 1.1 below. We recall that, for a deterministic Navier-Stokes equation, such a result was first established by T. Kato [15] (see also T. Kato and H. Fujita [16]) and extended later to more general initial data by Y. Giga and T. Miyakawa [14], M. Taylor [21], H. Koch and D. Tataru [17]. However, the standard approach [15], [16] cannot be applied in the present case for one reason: the nonlinear inertial term $(X \cdot \nabla) X$ cannot be conveniently estimated in the space $C_{b}\left([0, \infty) ; L^{p}\left(\Omega \times \mathbb{R}^{d}\right)\right)$ and similarly for the nonlinearity arising in (1.7). As regards the stochastic $3 D$ Navier-Stokes equations, to best of our knowledge all global existence results were limited to martingale solutions. Since the fundamental work [11], the literature on (global) martingale solutions for stochastic 3D-NavierStokes equations has grown enormously. We refer, e.g., to [6], [10], [12], [13], [18], and the references therein.

In the following, we denote by $L^{p}, 1 \leq p \leq \infty$, the space $\left(L^{p}\left(\mathbb{R}^{3}\right)\right)^{3}$ with the norm $|\cdot|_{p}$, by $W^{1, p}$ the corresponding Sobolev space and by $C_{b}\left([0, \infty) ; L^{p}\right)$ the space of all bounded and continuous functions $u:[0, \infty) \rightarrow L^{p}$ with the sup norm. We also set $D_{i}=\frac{\partial}{\partial \xi_{i}}, i=1,2,3$, and denote by $\nabla \cdot u$ the divergence of u, while

$$
((u \cdot \nabla) v)_{j}=u_{i} D_{i} v_{j}, j=1,2,3, u=\left\{u_{i}\right\}_{i=1}^{3}, v=\left\{v_{j}\right\}_{j=1}^{3} .
$$

As usual

$$
q^{\prime}=\frac{q}{q-1} \text { for } q \in(1, \infty)
$$

We set for $p \in\left(\frac{3}{2}, 3\right)$

$$
\begin{equation*}
\eta(t)=\|\Gamma(t)\|_{L\left(L^{p}, L^{p}\right)}\|\Gamma(t)\|_{L\left(L^{\frac{3 p}{3-p}}, L^{\frac{3 p}{3-p}}\right)}\left\|\Gamma^{-1}(t)\right\|_{\left.L^{q}, L^{q}\right)}, t \geq 0 \tag{1.19}
\end{equation*}
$$

where for $q \in(1, \infty),\|\cdot\|_{L\left(L^{q}, L^{q}\right)}$ is the norm of the space $L\left(L^{q}, L^{q}\right)$ of linear continuous operators on L^{q}.

For $p \in[1, \infty)$, we denote by \mathcal{Z}_{p} the space of all functions $y:(0, \infty) \times$ $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that

$$
\begin{align*}
t^{1-\frac{3}{2 p}} y & \in C_{b}\left([0, \infty) ; L^{p}\right), \\
t^{\frac{3}{2}\left(1-\frac{1}{p}\right)} D_{i} y & \in C_{b}\left([0, \infty) ; L^{p}\right), i=1,2,3 \tag{1.20}
\end{align*}
$$

The space \mathcal{Z}_{p} is endowed with the norm

$$
\begin{equation*}
\|y\|_{p, \infty}=\sup \left\{t^{1-\frac{3}{2 p}}|y(t)|_{p}+t^{\frac{3}{2}\left(1-\frac{1}{p}\right)}\left|D_{i} y(t)\right|_{p} ; t \in(0, \infty), i=1,2,3\right\} \tag{1.21}
\end{equation*}
$$

In the following, we take $\lambda_{i} \in \mathbb{R}$ such that

$$
\begin{equation*}
\left|\lambda_{i}\right|>(\sqrt{12}+3)\left|h_{i}\right|_{1}, \quad \forall i=1,2, \ldots, N \tag{1.22}
\end{equation*}
$$

We note that

$$
\left\|B_{i}\right\|_{L\left(L^{q}, L^{q}\right)} \leq\left|h_{i}\right|_{L^{1}}, \forall i=1, \ldots, N
$$

Theorem 1.1 is the main result.
Theorem 1.1. Let $p, q \in(1, \infty)$ such that

$$
\begin{equation*}
\frac{3}{2}<p<2, \quad \frac{1}{q}=\frac{2}{p}-\frac{1}{3} \tag{1.23}
\end{equation*}
$$

Let $\Omega_{0}=\left\{\sup _{t \geq 0} \eta(t)<\infty\right\}$ and consider (1.15) for fixed $\omega \in \Omega_{0}$. Set $\Gamma(t):=\Gamma(t)(\omega), \eta(t):=\eta(t, \omega)$. Then $\mathbb{P}\left(\Omega_{0}\right)=1$ and there is a positive constant C^{*} independent of $\omega \in \Omega_{0}$ such that, if $U_{0} \in L^{\frac{3}{2}}$ is such that

$$
\begin{equation*}
\sup _{t \geq 0} \eta(t)\left|U_{0}\right|_{\frac{3}{2}} \leq C^{*} \tag{1.24}
\end{equation*}
$$

then the random equation (1.15) has a unique solution $y \in \mathcal{Z}_{p}$ which satisfies

$$
\begin{equation*}
M(\Gamma(t) y) \in L^{1}\left(0, T ; L^{q}\right) \tag{1.25}
\end{equation*}
$$

Moreover, for each $\varphi \in L^{3} \cap L^{q^{\prime}}$, the function $t \rightarrow \int_{\mathbb{R}^{3}} y(t, \xi) \varphi(\xi) d \xi$ is continuous on $[0, \infty)$. The map $U_{0} \rightarrow y$ is Lipschitz form $L^{\frac{3}{2}}$ to \mathcal{Z}_{p}.

In particular, the random vorticity equation (1.18) has a unique solution U such that $\Gamma^{-1} U \in \mathcal{Z}_{p}$.

Remark 1.2. Concerning condition (1.24), we note that an elementary calculation shows that

$$
\eta(t) \leq \prod_{i=1}^{N} \exp \left(3\left|\beta_{i}(t)\right|\left(\left|h_{i}\right|_{1}\left|+\left|\lambda_{i}\right|\right)-t \alpha_{i}\right), t \in[0, \infty)\right.
$$

where $\alpha_{i}:=\frac{1}{2} \lambda_{i}^{2}-\frac{3}{2}\left(\left|h_{i}\right|_{1}^{2}+2\left|\lambda_{i}\right|\left|h_{i}\right|_{1}\right)$, which is strictly positive by (1.22).

By the law of the iterated logarithm, it follows that

$$
\sup _{t \geq 0} \eta(t)<\infty, \quad \mathbb{P} \text {-a.e. }
$$

hence for $\Omega_{r}:=\left\{\sup _{t \geq 0} \eta(t) \leq r\right\}$ we have $\mathbb{P}\left(\Omega_{r}^{c}\right) \rightarrow 0$ as $r \rightarrow \infty$.
But, taking into account that, for each $r>0$ and all $\nu>0, i=1, \ldots, N$, we have (see Lemma 3.4 in [1])

$$
\mathbb{P}\left[\sup _{t \geq 0}\left\{\exp \left(\beta_{i}(t)-\nu t\right)\right\} \geq r\right]=r^{-2 \nu}
$$

and, more explicitly, we get that

$$
\mathbb{P}\left(\Omega_{r}^{c}\right) \leq 2 N r^{-\frac{N \alpha}{\gamma^{2}}}, \quad \forall r>0
$$

where $\alpha=\min _{1 \leq i \leq N} \alpha_{i}, \gamma=3 \max \left\{\left(\left|h_{i}\right|_{1}+\left|\lambda_{i}\right|\right) ; i \leq N\right\}$. Therefore, if $\omega \in \Omega_{r}$ and $U_{0}=U_{0}(\omega)$ satisfies

$$
\begin{equation*}
\left|U_{0}\right|_{\frac{3}{2}} \leq \frac{C^{*}}{r} \tag{1.26}
\end{equation*}
$$

then condition (1.24) holds. It is trivial to define such an \mathcal{F}-measurable function $U_{0}: \Omega \rightarrow L^{\frac{3}{2}}$, for instance,

$$
U_{0}:=\sum_{n=1}^{\infty} \frac{C^{*}}{n} 1_{\left\{n-1 \leq \sup _{t \geq 0} \eta(t)<n\right\}} u_{0}
$$

for some $u_{0} \in L^{\frac{3}{2}}$. But, of course, U_{0} is not \mathcal{F}_{0}-measurable and so the process $U(t), t \geq 0$, given by Theorem 1.1, is not $\left(\mathcal{F}_{t}\right)_{t \geq 0}$-adapted. Therefore, $U=$ $\Gamma(t) y$ is not a solution to the stochastic vorticity equation (1.8). However, it can be viewed as a generalized solution to (1.8).

It should also be mentioned that assumption (1.22) is not necessary for existence of a solution to equation (1.15), but only to make sure that condition (1.24) is not void.

2 Proof of Theorem 1.1

To begin with, we note below in Lemma 2.1 a few immediate properties of the operator Γ defined in (1.10)-(1.13).

Lemma 2.1. We have

$$
\begin{equation*}
|\Gamma(t) z|_{q}+\left|\Gamma^{-1}(t) z\right|_{q} \leq C_{t}|z|_{q}, t \in[0, \infty), \forall z \in L^{q}, \forall q \in[1, \infty) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
|\nabla(\Gamma(t) z)|_{q} \leq\|\Gamma(t)\|_{L\left(L^{q}, L^{q}\right)}|\nabla z|_{q}, \text { for all } z \in W^{1, q}\left(\mathbb{R}^{3}\right) \tag{2.2}
\end{equation*}
$$

Proof. By (1.2), (1.11) and by the Young inequality, we see that

$$
\begin{equation*}
\left|B_{i}(u)\right|_{q} \leq\left(\left|h_{i}\right|_{1}+\left|\lambda_{i}\right|\right)|u|_{q}, \forall u \in L^{q}, i=1, \ldots, N . \tag{2.3}
\end{equation*}
$$

Recalling (1.13), we see by (2.3) that (2.1), (2.2) hold, as claimed.
Lemma 2.2. Let $\frac{1}{q}=\frac{1}{r_{1}}+\frac{1}{r_{2}}, \frac{3}{2}<r_{1}<\infty, r_{1}^{*}=\frac{3 r_{1}}{3+r_{1}}, 1<q<\infty$. Then, for some $C>0$ independent of ω,

$$
\begin{align*}
|M(\Gamma(t) z)|_{q} \leq C\|\Gamma(t)\|_{L\left(L^{r_{1}}, L^{r_{1}}\right)}\|\Gamma(t)\|_{L\left(L^{r_{2}}, L^{r_{2}}\right)}\left(|z|_{r_{1}}|z|_{r_{2}}+|z|_{r_{1}^{*}}|\nabla z|_{r_{2}}\right), \tag{2.4}\\
t \in[0, \infty),
\end{align*}
$$

for all $z \in L^{r_{1}} \cap L^{r_{2}} \cap L^{r_{1}^{*}}$ with $\nabla z \in L^{r_{2}}$.
Proof. We have by (1.17) and (2.1)

$$
\begin{equation*}
|M(\Gamma(t) z)|_{q} \leq|(K(\Gamma(t) z) \cdot \nabla)(\Gamma(t) z)|_{q}+|(\Gamma(t) z \cdot \nabla) K(\Gamma(t) z)|_{q} \tag{2.5}
\end{equation*}
$$

On the other hand, by (2.2) and the Hölder inequality we have

$$
\begin{align*}
|(K(\Gamma(t) z) \cdot \nabla)(\Gamma(t) z)|_{q} & \leq|K(\Gamma(t) z)|_{r_{1}}|\nabla(\Gamma(t) z)|_{r_{2}} \\
& \leq\|\Gamma(t)\|_{L\left(L^{\left.r_{1}, L^{r_{1}}\right)}\right.}\|\Gamma(t)\|_{L\left(L^{\left.r_{2}, L^{r_{2}}\right)}\right.}|K(z)|_{r_{1}}|\nabla z|_{r_{2}} \tag{2.6}
\end{align*}
$$

Now, we recall the classical estimate for Riesz potentials (see [20], p. 119

$$
\left|\int_{\mathbb{R}^{3}} \frac{f(\bar{\xi})}{|\xi-\bar{\xi}|^{2}} d \xi\right|_{\beta} \leq C|f|_{\alpha}, \forall f \in L^{\alpha}
$$

where $\frac{1}{\beta}=\frac{1}{\alpha}-\frac{1}{3}, \alpha \in(1,3)$. By virtue of (1.6), this yields

$$
\begin{equation*}
|K(u)|_{\beta} \leq C|u|_{\alpha} ; \forall u \in L^{\alpha}, \frac{1}{\beta}=\frac{1}{\alpha}-\frac{1}{3} \tag{2.7}
\end{equation*}
$$

and so, for $\beta=r_{1}, \alpha=\frac{3 r_{1}}{3+r_{1}}=r_{1}^{*}$, we get by (2.2) and (2.6) the estimate

$$
\begin{equation*}
|(K(\Gamma(t) z) \cdot \nabla)(\Gamma(t) z)|_{q} \leq C\|\Gamma(t)\|_{L\left(L^{\left.r_{1}, L^{r_{1}}\right)}\right.}\|\Gamma(t)\|_{L\left(L^{r_{2}}, L^{r_{2}}\right)}|z|_{r_{1}^{*}}|\nabla z|_{r_{2}} \tag{2.8}
\end{equation*}
$$

(Here and everywhere in the following, $|\nabla z|_{p}$ means $\sup \left\{\left|D_{i} z\right|_{p} ; i=1,2,3\right\}$.) Taking into account that, by the Calderon-Zygmund inequality (see [7], Theorem 1),

$$
\begin{equation*}
|\nabla K(z)|_{\tilde{p}} \leq C|z|_{\tilde{p}}, \forall z \in L^{\tilde{p}}, 1 \leq \tilde{p}<\infty, \tag{2.9}
\end{equation*}
$$

one obtains that

$$
\begin{equation*}
|(\Gamma(t) z \cdot \nabla)(K(t) \Gamma(t) z)|_{q} \leq C\|\Gamma(t)\|_{L\left(L^{r_{1}}, L^{r_{1}}\right)}\|\Gamma(t)\|_{L\left(L^{r_{2}}, L^{r_{2}}\right)}|z|_{r_{1}}|z|_{r_{2}} \tag{2.10}
\end{equation*}
$$

Substituting (2.8), (2.10) in (2.5), one obtains estimate (2.4), as claimed.
Lemma 2.3. Let $r_{1}=\frac{3 r_{2}}{3-r_{2}}, \frac{3}{2}<r_{2}<3, q=\frac{3 r_{1}}{r_{1}+6}$. Then, we have, for some $C>0$ independent of ω,
$|M(\Gamma(t) z)|_{q} \leq C\|\Gamma(t)\|_{L\left(L^{r_{1}}, L^{r_{1}}\right)}\|\Gamma(t)\|_{L\left(L^{r_{2}}, L^{r_{2}}\right)}|z|_{r_{2}}|\nabla z|_{r_{2}}, \forall z \in W^{1, r_{2}}$.
Proof. We have by the Sobolev-Gagliardo-Nirenberg inequality (see, e.g., [5], p. 278)

$$
|z|_{r_{1}} \leq C|\nabla z|_{r_{2}}, \forall z \in W^{1, r_{2}}\left(\mathbb{R}^{3}\right)
$$

Substituting in (2.4) and taking into account that $r_{1}^{*}=r_{2}$, we obtain (2.11), as claimed.

In the following, we fix $p=r_{2}, r_{1}$ and q as in Lemma 2.3, (2.11), that is,

$$
\begin{equation*}
\frac{3}{2}<p<2, r_{1}=\frac{3 p}{3-p}, \frac{1}{q}=\frac{2}{p}-\frac{1}{3} \tag{2.12}
\end{equation*}
$$

We write equation (1.15) as

$$
\begin{equation*}
y(t)=G(y)(t)=e^{t \Delta} U_{0}+F(y)(t), t \in[0, \infty), \tag{2.13}
\end{equation*}
$$

where

$$
\begin{equation*}
F(z)(t)=\int_{0}^{t} e^{(t-s) \Delta} \Gamma^{-1}(s) M(\Gamma(s) z(s)) d s, t \in[0, \infty) \tag{2.14}
\end{equation*}
$$

By (1.16), we have for $1<\tilde{q} \leq \tilde{p}<\infty$ the estimates

$$
\begin{align*}
\left|e^{t \Delta} u\right|_{\tilde{p}} & \leq C t^{-\frac{3}{2}\left(\frac{1}{\tilde{q}}-\frac{1}{p}\right)}|u|_{\tilde{q}}, \quad u \in L^{\tilde{q}}, \tag{2.15}\\
\left|D_{j} e^{t \Delta} u\right|_{\tilde{p}} & \leq C t^{-\frac{3}{2}\left(\frac{1}{\tilde{q}}-\frac{1}{\bar{p}}\right)-\frac{1}{2}}|u|_{\tilde{q}}, \quad j=1,2,3 . \tag{2.16}
\end{align*}
$$

(Everywhere in the following, we shall denote by C several positive constants independent of ω and $t \geq 0$.)

We apply (2.15), with $\tilde{q}=q, \tilde{p}=p$. By (2.11)-(2.14), we obtain that

$$
\begin{align*}
&|F(z(t))|_{p} \leq C \int_{0}^{t}(t-s)^{-\frac{1}{2}\left(\frac{3}{p}-1\right)}\left|\Gamma^{-1}(s) M(\Gamma(s) z(s))\right|_{q} d s \\
& \leq C \int_{0}^{t}(t-s)^{-\frac{1}{2}\left(\frac{3}{p}-1\right)}\|\Gamma(s)\|_{L\left(L^{\left.\frac{3 p}{3-p}, L^{\frac{3 p}{3-p}}\right)}\right.} \tag{2.17}\\
& \quad\|\Gamma(s)\|_{L\left(L^{p}, L^{p}\right)}\left\|\Gamma^{-1}(s)\right\|_{L\left(L^{q}, L^{q}\right)}|z(s)|_{p}|\nabla z(s)|_{p} d s .
\end{align*}
$$

Similarly, we obtain by (2.16) that

$$
\begin{align*}
& \left|D_{j} F(z(t))\right|_{p} \leq C \int_{0}^{t}(t-s)^{-\frac{3}{2 p}}\|\Gamma(s)\|_{L\left(L^{\frac{3 p}{3-p}}, L^{\frac{3 p}{3-p}}\right)} \tag{2.18}\\
& \quad\|\Gamma(s)\|_{L\left(L^{p}, L^{p}\right)}\left\|\Gamma^{-1}(s)\right\|_{L\left(L^{q}, L^{q}\right)}|z(s)|_{p}|\nabla z(s)|_{p} d s, j=1,2,3 .
\end{align*}
$$

We consider the Banach space \mathcal{Z}_{p} defined by (1.20), that is,

$$
\begin{array}{r}
\mathcal{Z}_{p}=\left\{y ; t^{1-\frac{3}{2 p}} y \in C_{b}\left([0, \infty) ; L^{p}\right), t^{\frac{3}{2}\left(1-\frac{1}{p}\right)} D_{j} y \in C_{b}\left([0, \infty) ; L^{p}\right),\right. \tag{2.19}\\
j=1,2,3\},
\end{array}
$$

with the norm

$$
\begin{equation*}
\|z\|_{p, \infty}=\|z\|=\sup _{t>0}\left\{\left(t^{1-\frac{3}{2 p}}|z(t)|_{p}+t^{\frac{3}{2}\left(1-\frac{1}{p}\right)}\left|D_{i} z(t)\right|_{p}\right), i=1,2,3\right\} . \tag{2.20}
\end{equation*}
$$

We note that

$$
\begin{equation*}
|z(t)|_{p}|\nabla z(t)|_{p} \leq C t^{-\frac{5}{2}+\frac{3}{p}}\|z\|^{2}, \forall z \in \mathcal{Z}_{p}, t \in(0, \infty) \tag{2.21}
\end{equation*}
$$

By (2.17) and (2.20) we see that, for $z \in \mathcal{Z}_{p}$, we have

$$
\begin{align*}
&|F(z(t))|_{p} \leq \int_{0}^{t}(t-s)^{-\frac{1}{2}\left(\frac{3}{p}-1\right)}\|\Gamma(s)\|_{L\left(L^{\frac{3 p}{3-p}}, L^{\frac{3 p}{3-p}}\right)}\|\Gamma(s)\|_{L\left(L^{p}, L^{p}\right)} \\
& \quad\left\|\Gamma^{-1}(s)\right\|_{L\left(L^{q}, L^{q}\right)}|z(s)|_{p}|\nabla z(s)|_{p} d s \\
& \leq C \int_{0}^{t}(t-s)^{-\frac{1}{2}\left(\frac{3}{p}-1\right)}|s|^{-\frac{5}{2}+\frac{3}{p}}\|\Gamma(s)\|_{L\left(L^{\frac{3 p}{3-p}}, L^{\frac{3 p}{3-p}}\right)} \tag{2.22}\\
& \quad\|\Gamma(s)\|_{L\left(L^{p}, L^{p}\right)}\left\|\Gamma^{-1}(s)\right\|_{L\left(L^{q}, L^{q}\right)} d s\|z\|^{2} \\
& \leq C t^{\frac{3}{2 p}-1} \sup _{0 \leq s \leq t} \eta(s) \int_{0}^{1}(1-s)^{-\frac{1}{2}\left(\frac{3}{p}-1\right)} s^{-\frac{5}{2}+\frac{3}{p}} d s\|z\|^{2}, \forall t>0,
\end{align*}
$$

where η is given by (1.19). This yields

$$
\begin{equation*}
t^{1-\frac{3}{2 p}}|F(z(t))|_{p} \leq C \sup _{0 \leq s \leq t}\{\eta(s)\} B\left(\frac{3}{2}\left(\frac{2}{p}-1\right), \frac{3}{2}\left(1-\frac{1}{p}\right)\right)\|z\|^{2}, \forall t>0 \tag{2.23}
\end{equation*}
$$

where B is the classical beta function (which is finite by virtue of (1.23)).
Similarly, by (2.16) and (2.21), we have, for $j=1,2,3$,

$$
\begin{align*}
\left|D_{j} F(z)(t)\right|_{p} \leq & C \int_{0}^{t}(t-s)^{-\frac{3}{2 p}} S^{-\frac{5}{2}+\frac{3}{p}}\|\Gamma(s)\|_{L\left(L^{\frac{3 p}{3-p}}, L^{3^{3 p}-p}\right.} \\
& \|\Gamma(s)\|_{L\left(L^{p}, L^{p}\right)}\left\|\Gamma^{-1}(s)\right\|_{L\left(L^{q}, L^{q}\right)} d s\|z\|^{2} \tag{2.24}\\
\leq & C \sup _{0 \leq s \leq t}\{\eta(s)\} t^{-\frac{3}{2}\left(1-\frac{1}{p}\right)} B\left(3\left(\frac{1}{p}-\frac{1}{2}\right), 1-\frac{3}{2 p}\right)\|z\|^{2}, t>0 .
\end{align*}
$$

Hence,

$$
\begin{equation*}
t^{\frac{3}{2}\left(1-\frac{1}{p}\right)}\left|D_{j} F(z(t))\right|_{p} \leq C \sup _{0 \leq s \leq t} \eta(s)\|z\|^{2}, \forall z \in \mathcal{Z}_{p}, t>0, j=1,2,3 . \tag{2.25}
\end{equation*}
$$

By (2.15)-(2.16), we have

$$
\begin{aligned}
\left|e^{t \Delta} U_{0}\right|_{p} & \leq C t^{\frac{3}{2 p}-1}\left|U_{0}\right|_{\frac{3}{2}}, \quad t>0, \\
\left|D_{j} e^{t \Delta} U_{0}\right|_{p} & \leq C t^{\frac{3}{2 p}-\frac{3}{2}}\left|U_{0}\right|_{\frac{3}{2}}, \quad t>0, j=1,2,3 .
\end{aligned}
$$

Therefore, by (2.20) we get

$$
\begin{equation*}
\left\|e^{t \Delta} U_{0}\right\| \leq C\left|U_{0}\right|_{\frac{3}{2}} . \tag{2.26}
\end{equation*}
$$

By (2.20), (2.23), (2.25), (2.26), we get,

$$
\begin{equation*}
\|G(z)\| \leq C_{1}\left(\left|U_{0}\right|_{\frac{3}{2}}+\sup _{t \geq 0} \eta(t)\|z\|^{2}\right), \forall z \in \mathcal{Z}_{p} \tag{2.27}
\end{equation*}
$$

where $C_{1}>0$ is independent of ω.
We set

$$
\begin{equation*}
\eta_{\infty}=\sup _{t \geq 0} \eta(t) \tag{2.28}
\end{equation*}
$$

and so (2.27) yields

$$
\begin{equation*}
\|G(z)\| \leq C_{1}\left(\left|U_{0}\right|_{\frac{3}{2}}+\eta_{\infty}\|z\|^{2}\right), \forall z \in \mathcal{Z}_{p} . \tag{2.29}
\end{equation*}
$$

We set

$$
\Sigma=\left\{z \in \mathcal{Z}_{p} ;\|z\| \leq R^{*}\right\}
$$

and note that, by (2.29), it follows that $G(\Sigma) \subset \Sigma$ if

$$
\begin{equation*}
\left|U_{0}\right|_{\frac{3}{2}} \eta_{\infty} \leq\left(4 C_{1}^{2}\right)^{-1} \tag{2.30}
\end{equation*}
$$

(so U_{0} must depend on ω) and $R^{*}=R^{*}(\omega)$ is given by

$$
\begin{equation*}
R^{*}=2 C_{1}\left|U_{0}\right|_{\frac{3}{2}} . \tag{2.31}
\end{equation*}
$$

(We recall that C_{1} is independent of ω and U_{0}.) Moreover, by (1.17) and (2.14), we have, for all $z, \bar{z} \in \mathcal{Z}_{p}$,

$$
\begin{aligned}
& G(z)(t)-G(\bar{z})(t)=-\int_{0}^{t} e^{(t-s) \Delta} \Gamma^{-1}(s)[(K \Gamma(s)(z(s)-\bar{z}(s)) \cdot \nabla) \Gamma(s) z(s) \\
& +(K(\Gamma(s) \bar{z}(s)) \cdot \nabla) \Gamma(s)(z(s)-\bar{z}(s))-\Gamma(s)(z(s)-\bar{z}(s)) \cdot \nabla K(\Gamma(s) z(s)) \\
& -(\Gamma(s) \bar{z}(s) \cdot \nabla) K(\Gamma(s)(z(s)-\bar{z}(s)))] d s .
\end{aligned}
$$

Proceeding as above, we get, as in (2.17), (2.22), (2.23), that

$$
\begin{align*}
& |G(z)(t)-G(\bar{z})(t)|_{p} \\
& \leq C \int_{0}^{t}(t-s)^{-\frac{1}{2}\left(\frac{3}{p}-1\right)}\|\Gamma(s)\|_{L\left(L^{\frac{3 p}{p-3}}, L^{\frac{3 p}{p-3}}\right)}\|\Gamma(s)\|_{L\left(L^{p}, L^{p}\right)} \\
& \quad\left\|\Gamma^{-1}(s)\right\|_{L\left(L^{q}, L^{q}\right)}\left(|z(s)-\bar{z}(s)|_{p}\left(|\nabla z(s)|_{p}+|\nabla \bar{z}(s)|_{p}\right)\right. \tag{2.32}\\
& \left.\quad+|\nabla z(s)-\nabla \bar{z}(s)|_{p}\left(|z(s)|_{p}+|\bar{z}(s)|_{p}\right)\right) d s \\
& \leq C t^{-\left(1-\frac{3}{2 p}\right)} \sup _{0 \leq s \leq t} \eta(s)\|z-\bar{z}\|(\|z\|+\|\bar{z}\|), \forall t>0
\end{align*}
$$

and also (see (2.18), (2.24), (2.25))
$\left|D_{j} G(z)(t)-D_{j} G(\bar{z}(t))\right|_{p} \leq C t^{-\frac{3}{2}\left(1-\frac{1}{p}\right)} \sup _{0 \leq s \leq t} \eta(s)\|z-\bar{z}\|(\|z\|+\|\bar{z}\|), \quad \forall t>0$,
for $j=1,2,3$. Hence, by (2.20) and (2.28), we obtain that

$$
\begin{equation*}
\|G(z)-G(\bar{z})\| \leq C_{2} \eta_{\infty} R^{*}\|z-\bar{z}\|, \forall z, \bar{z} \in \Sigma, \tag{2.33}
\end{equation*}
$$

where C_{2} is independent of ω.

Then, by (2.31), (2.33), it follows that, if (2.30) and

$$
\begin{equation*}
2 C_{1} C_{2} \eta_{\infty}\left|U_{0}\right|_{\frac{3}{2}}<1 \tag{2.34}
\end{equation*}
$$

hold, then the operator G is a contraction on Σ and so there is a unique solution $U \in \Sigma$ to (1.15) provided (1.24) holds with $C^{*}<\left(2 C_{1} C_{2}\right)^{-1}$.

Now, as seen earlier, by (2.11), (1.15) and (2.21) we have

$$
\begin{align*}
|M(\Gamma(t) y(t))|_{q} & \leq C\|\Gamma(t)\|_{L\left(L^{\frac{3 p}{3-p}}, L^{\frac{3 p}{3-p}}\right)}\|\Gamma(t)\|_{L\left(L^{p}, L^{p}\right)}|y(t)|_{p}|\nabla y(t)|_{p} \\
& \leq C\|\Gamma(t)\|_{L\left(L^{\frac{3 p}{3-p}}, L^{3-p}\right)}\|\Gamma(t)\|_{L\left(L^{p}, L^{p}\right)} t^{-\frac{5}{2}+\frac{3}{p}}\|y\|^{2}, \forall t>0 . \tag{2.35}
\end{align*}
$$

On the other hand, we have for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$,

$$
\begin{align*}
& \int_{\mathbb{R}^{3}} y(t, \xi) \cdot \varphi(\xi) d \xi=\int_{\mathbb{R}^{3}}\left(e^{t \Delta}\right) U_{0}(\xi) \cdot \varphi(\xi) d \xi \tag{2.36}\\
& \quad+\int_{0}^{t} \int_{\mathbb{R}^{3}} \Gamma^{-1}(s) M(\Gamma(s) y(s)) \cdot e^{(t-s) \Delta} \varphi(\xi) d \xi d s
\end{align*}
$$

Recalling that, for all $1 \leq \tilde{p}<\infty,\left|e^{t \Delta} \varphi\right|_{\tilde{p}} \leq|\varphi|_{\tilde{p}}$, it follows by (2.35) that

$$
\begin{align*}
& \left|\int_{0}^{t} \int_{\mathbb{R}^{3}} \Gamma^{-1}(s) M(\Gamma(s) y(s)) \cdot e^{(t-s) \Delta} \varphi(\xi) d \xi d s\right| \\
& \quad \leq C \sup _{0 \leq s \leq t} \eta(s) \int_{0}^{t} s^{-\frac{5}{2}+\frac{3}{p}} d s\|y\|^{2}|\varphi|_{q^{\prime}} \tag{2.37}\\
& \quad \leq C \sup _{0 \leq s \leq t} \eta(s) t^{\frac{3}{p}-\frac{3}{2}}\|y\|^{2}|\varphi|_{q^{\prime}}, \forall t \in(0, \infty) .
\end{align*}
$$

We also have by (2.26)

$$
\left|\int_{\mathbb{R}^{3}} e^{t \Delta} U_{0}(\xi) \varphi(\xi) d \xi\right| \leq C\left|U_{0}\right|_{\frac{3}{2}}|\varphi|_{3}, \forall t \in[0, \infty)
$$

Combining the latter with (2.36), (2.37), we obtain that, for $T>0$,

$$
\left|\int_{\mathbb{R}^{3}} y(t, \xi) \cdot \varphi(\xi) d \xi\right| \leq C T^{\frac{3}{p}-\frac{3}{2}}\left(|\varphi|_{q^{\prime}}+|\varphi|_{3}\right), \forall \varphi \in L^{q^{\prime}} \cap L^{3}, t \in[0, T] .
$$

Hence, by (2.36) and since $t \rightarrow e^{t \Delta} U_{0}$ is continuous on $L^{\frac{3}{2}}$, the function $t \rightarrow y(t)$ is $L^{3} \cap L^{q^{\prime}}$ weakly continuous on $[0, \infty)$, where $q^{\prime}=\frac{3 p}{4 p-6}$.

If $U=y\left(t, U_{0}\right) \in \mathcal{Z}_{p}$ is the solution to (1.15), equivalently (2.13), we have for all U_{0}, \bar{U}_{0} satisfying (1.24) (see (2.26) and (2.33))

$$
\begin{gathered}
\left\|y\left(\cdot, U_{0}\right)-y\left(\cdot, \bar{U}_{0}\right)\right\| \leq\left\|e^{t \Delta}\left(U_{0}-\bar{U}_{0}\right)\right\|+\left\|F\left(y\left(\cdot, U_{0}\right)\right)-F\left(y\left(\cdot, \bar{U}_{0}\right)\right)\right\| \\
\leq C\left|U_{0}-\bar{U}_{0}\right|_{\frac{3}{2}}+\eta_{\infty} R^{*} C_{2}\left\|y\left(\cdot, U_{0}\right)-y\left(\cdot, \bar{U}_{0}\right)\right\| .
\end{gathered}
$$

Recalling that by (2.31) and (2.34) we have $R^{*} C_{2} \eta_{\infty}<1$, this yields

$$
\left\|y\left(\cdot, U_{0}\right)-y\left(\cdot, \bar{U}_{0}\right)\right\| \leq \frac{C}{1-R^{*} C_{2} \eta_{\infty}}\left|U_{0}-\bar{U}_{0}\right|_{\frac{3}{2}} \leq C(\omega)\left|U_{0}-\bar{U}_{0}\right|_{\frac{3}{2}},
$$

and so, the map $y \rightarrow U\left(\cdot, U_{0}\right)$ is Lipschitz from $L^{\frac{3}{2}}$ to \mathcal{Z}_{p}. This completes the proof of Theorem 1.1.

It should be noted that, by (2.30) and (2.31), we have by the Fernique theorem

$$
\left|U_{0}\right|_{\frac{3}{2}}, R^{*} \in \bigcap_{r \geq 1} L^{r}(\Omega)
$$

and so, taking into account that $y \in \Sigma$, we see by (2.19), (2.20) that

$$
\begin{equation*}
\sup _{t \geq 0}\left\{t^{1-\frac{3}{2 p}}|y(t)|_{p}+t^{\frac{3}{2}\left(1-\frac{1}{p}\right)}\left|D_{i} y(t)\right|_{p}\right\} \in \bigcap_{r \geq 1} L^{r}(\Omega), i=1,2,3 . \tag{2.38}
\end{equation*}
$$

We have, therefore, the following completion of Theorem 1.1.
Corollary 2.4. Under the assumptions of Theorem 1.1, the solution $y=$ $y(t, \omega)$ to the equation (1.15) satisfies (2.38). The same result holds for the solution $U(t)=\Gamma(t) y(t)$ of the random vorticity equation (1.18).

3 The random version of the $3 D$ Navier-Stokes equation

We fix in (1.1) the initial random variable x by the formula

$$
\begin{equation*}
x=K\left(U_{0}\right), \tag{3.1}
\end{equation*}
$$

where $U_{0}=\operatorname{curl} x, U_{0}=U_{0}(\omega)$ satisfies condition (1.24) for all $\omega \in \Omega_{0}$ (see Remark 1.2). If y is the corresponding solution to equation (1.15) given by Theorem 1.1, we define the process X by formula (1.5), that is,

$$
\begin{equation*}
X(t)=K(U(t))=K(\Gamma(t) y(t)), \quad \forall t \in[0, \infty) . \tag{3.2}
\end{equation*}
$$

By (2.7), where U is the solution to the vorticity equation (1.1), we have

$$
\begin{equation*}
|X(t)|_{\frac{3 p}{3-p}}^{3-p} \leq C|U(t)|_{p}, \quad \forall t \in[0, \infty) . \tag{3.3}
\end{equation*}
$$

(Everywhere in the following, C are positive constants independent of $\omega \in \Omega$.)
On the other hand, by the Carlderon-Zygmund inequality (2.9), we have

$$
\begin{equation*}
\left|D_{i} X(t)\right|_{p} \leq C|U(t)|_{p}, i=1,2,3 \tag{3.4}
\end{equation*}
$$

By (3.3) and by Theorem 1.1, it follows that

$$
\begin{equation*}
t^{1-\frac{3}{2 p}} X \in C_{b}\left([0, \infty) ; L^{\frac{3 p}{3-p}}\right) \tag{3.5}
\end{equation*}
$$

while, by (3.4), we have for $i=1,2,3$

$$
\begin{equation*}
t^{\frac{3}{2}\left(1-\frac{1}{p}\right)} D_{i} X \in C_{b}\left([0, \infty) ; L^{p}\right) \tag{3.6}
\end{equation*}
$$

Now, if in (2.9) we take $z=D_{j} X$, we get that, for all $i, j=1,2,3$,

$$
t^{\frac{3}{2}\left(1-\frac{1}{p}\right)}\left|D_{i} D_{j} X\right|_{p} \leq C t^{\frac{3}{2}\left(1-\frac{1}{p}\right)}\left|D_{i} U\right|_{p} \leq C, \forall t \in[0, \infty)
$$

This yields

$$
\begin{equation*}
t^{\frac{3}{2}\left(1-\frac{1}{p}\right)} D_{i j}^{2} X \in C_{b}\left([0, \infty) ; L^{p}\right), i, j=1,2,3 \tag{3.7}
\end{equation*}
$$

Moreover, by Corollary 2.4, we also have

$$
\begin{align*}
t^{1-\frac{3}{2 p}} X & \in C_{b}\left([0, \infty) ; L^{r}\left(\Omega ; L^{\frac{3 p}{3-p}}\right)\right), \forall r \geq 1, \tag{3.8}\\
t^{\frac{3}{2}\left(1-\frac{1}{p}\right)} D_{i} X & \in C_{b}\left([0, \infty) ; L^{r}\left(\Omega ; L^{p}\right)\right), i=1,2,3, \tag{3.9}\\
t^{\frac{3}{2}\left(1-\frac{1}{p}\right)} D_{i j} X & \in C_{b}\left([0, \infty) ; L^{r}\left(\Omega ; L^{p}\right)\right), i, j=1,2,3 . \tag{3.10}
\end{align*}
$$

Now, if in equation (1.18) one applies the Biot-Savart operator K, we obtain for X the equation

$$
\begin{array}{r}
X(t)=K\left(e^{t \Delta} \Gamma(t) \operatorname{curl} x\right)+\int_{0}^{t} K\left(e^{(t-s) \Delta} \Gamma(t) \Gamma^{-1}(s) M(\operatorname{curl} X(s))\right) d s \tag{3.11}\\
t \geq 0
\end{array}
$$

where M is given by (1.17). It should be noted that, by virtue of (3.7)-(3.10), the right hand side of (3.11) is well defined.

Equation (3.11) can be viewed as the random version of the Navier-Stokes equation (1.1). However, since, as seen earlier, U_{0} is not \mathcal{F}_{0}-measurable, the processes $t \rightarrow y(t), t \rightarrow U(t)$ are not $\left(\mathcal{F}_{t}\right)_{t \geq 0^{-}}$-adapted, and so X is not $\left(\mathcal{F}_{t}\right)_{t \geq 0^{-}}$ adapted, too. Therefore, (3.11) cannot be transformed back into (1.1). By Theorem 1.1, it follows that

Theorem 3.1. Under assumptions (1.24), the random Navier-Stokes equation (3.11) has a unique solution X satisfying (3.7)-(3.10).

Remark 3.2. As easily seen from the proofs, Theorem 1.1 extends mutatismutandis to the noises $\sum_{i=1}^{N} \sigma_{i}(t, X) \dot{\beta}_{i}(t)$, where

$$
\sigma_{i}(t, x)(\xi)=\int_{\mathbb{R}^{3}} h_{i}(t, \xi-\bar{\xi}) x(\bar{\xi}) d \bar{\xi}, \xi \in \mathbb{R}^{3}, i=1, \ldots, N
$$

where $t \rightarrow h_{i}(t, \xi)$ is continuous and

$$
\left|h_{i}(t)\right|_{1} \leq C, \quad \forall t \geq 0, \quad i=1, \ldots, N
$$

Remark 3.3. The linear multiplicative case $B_{i}(X):=\alpha_{i} X, i=1, \ldots, N$, that is $h_{i}:=\delta$, where δ is the Dirac measure, can be approximated by taking $h_{i}(\xi)=\frac{1}{\varepsilon^{d}} \rho\left(\frac{\xi}{\varepsilon}\right)$, where $\rho \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$, support $\rho \subset\left\{\xi ;|\xi|_{d} \leq 1\right\}, \int \rho(\xi) d \xi=1$.

Acknowledgements. Financial support through SFB701 at Bielefeld University is gratefully acknowledged. V. Barbu was also partially supported by a CNCS UEFISCDI (Romania) grant, project PN-II-ID-PCE-2012-4-0156.

References

[1] V. Barbu, G. Da Prato, Internal stabilization by noise of the NavierStokes equation, SIAM J. Control Optim., 49 (1) (2012), 1-20.
[2] V. Barbu, M. Röckner, An operatorial approach to stochastic partial differential equations driven by linear multiplicative noise, J. Eur. Math. Soc., 17 (2015), 1789-1815.
[3] V. Barbu, M. Röckner, D. Zhang, Stochastic nonlinear Schrödinger equations with linear multiplicative noise: rescaling approach, J. Nonlinear Sci., vol. 34 (2014), 383-409.
[4] G.K. Batchelor, Fluid Dynamics, Cambridge University Press, New York, 1988.
[5] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, Dordrecht, Heidelberg, London, 2011.
[6] Z. Brzezniak, E. Motyl, Existence and martingale solution of the stochastic Navier-Stokes equations in unbounded $2 D$ and $3 D$ domains, J. Differential Equations, 254 (2013), 1627-1642.
[7] A.P. Calderon, A. Zygmund, On the existence of certain singular integrals, Acta Mathematica, 88 (1) (1952), 85-139.
[8] A.J. Chorin, J.E. Mardsen, A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, 1975.
[9] G. Da Prato, J.Zabczyk, Stochastic Equations in Infinite Dimensions, Second Edition, Cambridge University Press, Cambridge, 2014.
[10] A. Debussche, C. Odasso, Markov solutions for $3 D$ stochastic NavierStokes equations, with state dependent noise, J. Evol. Equ., 6 (2006), 305-324.
[11] F. Flandoli, D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391.
[12] F. Flandoli, M. Romito, Markov solutions for the 3D stochastic NavierStokes equations, Probab. Theory Related Fields, 140 (2008), 407-458.
[13] B. Goldys, M. Röckner, X. Zhang, martingale solutions and Markov selections for stochastic partial differential equations, Stochastic Process. Appl., 119 (2009), 1725-1764.
[14] Y. Giga, T. Miyakawa, Navier-Stokes flow in \mathbb{R}^{3} with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations, 14 (1988), 577-618.
[15] T. Kato, Strong L^{p}-solutions of the Navier-Stokes equation in \mathbb{R}^{m} with applications to weak solutions, Math. Z., 187 (1984), 471-480.
[16] T. Kato, H. Fujita, On the nonstationary Navier-Stokes system, Rend. Sem. mat. Univ. Padova, 32 (1962), 243-260.
[17] H. Koch, D. Tataru, Well-posedness for the Navier-Stokes equations, Advances in Mathematics, 157 (1) (2001), 22-35.
[18] R. Mikulevicius, B. Rozovskii, Global L_{2}-solutions of stochastic NavierStokes equations, Ann. Probab., 33 (1) (2005), 137-176.
[19] R. Mikulevicius, B. Rozovskii, Stochastic Navier-Stokes equations for turbulent flows, SIAM J. Math. Anal., 35 (2004), 1250-1320.
[20] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
[21] M. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes equation, Comm. PDE, 17 (1992), 1407-1456.

[^0]: *Octav Mayer Institute of the Romanian Academy and Al.I. Cuza University, Iasi, Romania. Email: vb41@uaic.ro
 ${ }^{\dagger}$ Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany. Email: roeckner@math.uni-bielefeld.de

