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Abstract We construct a piecewise linear approximation for the dynamical Φ4
3 model on T3

by the theory of regularity structures in [Hai14], i.e. we prove a version of the Wong-Zakai
theorem for additive noise in this case. For the dynamical Φ4

3 model it is proved in [Hai14]
that a renormalisation has to be performed in order to define the nonlinear term. Compared
to the results in [Hai14] we consider piecewise linear approximations to space-time white noise
and prove that the solutions to the approximating equations converge to the solution to the
dynamical Φ4

3 model. The renormalisation in this case corresponds to adding the solution
multiplied by a function depending on t in the approximating equation.
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1 Introduction

In this paper we construct a piecewise linear approximation of the dynamical Φ4
3 model driven

by space-time white noise on T3:

dΦ = ∆Φdt− Φ3dt+ dW (t). (1.1)

This can be considered as a Wong-Zakai approximation (c.f. [WZ65a,WZ65b]) for additive
noise in this case. Here W is a two-sided cylindrical Wiener process on L2(T3). Formally, if we
define ξ by

∫
ϕ(t, x)ξ(dt, dx) =

∫
⟨ϕ, dW (s)⟩ for ϕ ∈ L2(R× T3), then ξ is periodic space-time

white noise. This model is also known as the stochastic quantisation of Euclidean quantum
field theory ( see [GJ87] and the reference therein). It is also considered as a universal model for
phase coexistence near the critical point (see [GLP99]). In two spatial dimensions, this problem
was previously treated in [AR91] and [DD03]. In three spatial dimensions this equation (1.1)
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is ill-posed and the main difficulty in this case is that W and hence Φ are so singular that the
non-linear term is not well-defined in the classical sense. It was a long-standing open problem
to give a meaning to this equation in the three dimensional case.

A breakthrough result was achieved recently by Martin Hairer in [Hai14], where he intro-
duced a theory of regularity structures and gave a meaning to this equation (1.1) successfully.
Also by using the paracontrolled distribution method proposed by Gubinelli, Imkeller and
Perkowski in [GIP13] existence and uniqueness of local solutions to (1.1) has been obtained
in [CC13]. Recently, these two approaches have been successful in giving a meaning to a lot
of ill-posed stochastic PDEs like the Kardar-Parisi-Zhang (KPZ) equation ([KPZ86], [BG97],
[Hai13]), the dynamical Φ4

3 model ([Hai14], [CC13]), the Navier-Stokes equation driven by
space-time white noise ([ZZ14], [ZZ15]), the dynamical sine-Gordon equation ([HS14]) and so
on (see [HP14] for more interesting examples). From a philosophical perspective, the theory
of regularity structures and the paracontrolled distribution are inspired by the theory of con-
trolled rough paths (see [Lyo98], [Gub04]). The main difference is that the regularity structure
theory considers the problem locally, while the paracontrolled distribution method is a global
approach using Fourier analysis.

An interesting question for SDE, especially the dynamical Φ4
3 model is as follows: Given a

sequence Wε of regularization of the noise W (for example convolutions with a mollifier), can
we obtain a non-trivial solution associated with W by taking the limit of Φε as ε goes to 0,
where Φε is the solution associated to Wε. In the finite dimensional case a series of classical
results has been obtained by Wong and Zakai [WZ65a,WZ65b]. However, the answer to this
question for the dynamical Φ4

3 model is no (see [HRW12]). Indeed, we have to consider the
following modified equation

∂tΦε = ∆Φε + CεΦε − Φ3
ε + ξε. (1.2)

In [Hai14] Martin Hairer considered an ε-approximation ξε to space-time white noise. Here ξε
is given by convolution with a mollifier, i.e. ξε := ρε ∗ ξ, where the convolution means that we
view ξ as a distribution on R4 and do convolution on R4. ρε(t, x) is a compactly supported
smooth mollifier that is scaled by ε in the spatial directions and by ε2 in the time direction, i.e.
ρε(t, x) = ε−5ρ(ε−2t, ε−1x) for some smooth, compactly supported function ρ. Let Φε denote
the solution to (1.2). It is proved in [Hai14] that there exist choices of constants Cε diverging
as ε → 0, as well as a process Φ such that Φε → Φ in probability. Furthermore, while the
constants Cε do depend crucially on the choice of the mollifiers ρε, the limit Φ does not depend
on them. Also in [CC13] purely spatial regularization has been considered and a similar result
has been obtained.

In this paper we consider another approximation given by piecewise linear approximations
combined with convolution with a mollifier. First, we convolute with a mollifier: Wε(t) =∫ t
0
ξε(s)ds, t ∈ R, with ξε given as above and then consider piecewise linear approximations: for

t ∈ [kϑ, (k + 1)ϑ), k ∈ Z, ϑ > 0

Wε,ϑ(t) = Wε(kϑ) +
t− kϑ

ϑ
(Wε((k + 1)ϑ)−Wε(kϑ)),

and ξε,ϑ(t) = ∂tWε,ϑ = 1
ϑ

∫ (k+1)ϑ

kϑ
ξε(u)du for t ∈ [kϑ, (k + 1)ϑ), k ∈ Z, which is our regularised

noise.
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This approximation is the celebrated Wong-Zakai approximation of the solution and is re-
lated to a classical problem: approximating solutions in terms of a simpler model, where the
stochastic integral is changed into a deterministic one and replacing the noise by its piece-
wise linear interpolation on a time grid. For finite-dimensional diffusion processes, this kind of
approximation is well-known (see, e.g. [T96, LQZ02] and the references therein). There is a sub-
stantial number of publications devoted to Wong-Zakai approximations of infinite dimensional
stochastic equations (see [N04, CM11] and the references therein).

In this paper we use the theory of regularity structures to study this approximation for
the dynamical Φ4

3 model. The key idea of the theory of regularity structures is as follows:
we perform an abstract Talyor expansion on both sides of the equation. Originally, Talyor
expansions are only for functions. Here the right objects, e.g. a regularity structure whose
elements could possibly take the place of Taylor polynomials, can be constructed. Given a
noise ξ, the regularity structure can be endowed with a model ιξ, which is a concrete way of
associating every element in the abstract regularity structure to the actual Taylor polynomial
at every point. Multiplication, differentiation, the state space of solutions, and the convolution
with singular kernels can be defined on this regularity structure, which is the major difficulty
when trying to give a meaning to such singular stochastic partial differential equations as above.
On the regularity structure, a fixed point argument can be applied to obtain local existence and
uniqueness of the solutions Φ̄ to the equation lifted onto the regularity structure. Furthermore,
we can go back to ”the real world” with the help of another central tool of the theory, namely
the reconstruction operator R. If ξ is a smooth process, Φ = RΦ̄ coincides with the classic
solution to the equation. Now we have the following maps

ξ 7→ ιξ 7→ Φ̄ 7→ RΦ̄.

The last two maps are continuous with respect to suitable topologies, while the above sequence
ιξε of canonical models fails to converge with a smooth approximation ξε to the noise ξ. It may,
however, still be possible to renormalise the model ιξε to some converging model ι̂ξε, which in
turn can be related to a specific renormalised equation (1.2).

In this paper for the approximating sequence ξε,ϑ we build the associated model ιξε,ϑ, which
also need to be renormalised into some converging model ι̂ξε,ϑ. This in turn can be related to
the following renormalised equation (1.3):

∂tΦε,ϑ(t) = ∆Φε,ϑ(t) + C(ε,ϑ)(t)Φε,ϑ(t)− Φ3
ε,ϑ(t) + ξε,ϑ(t). (1.3)

Here C(ε,ϑ) are functions depending only on time t.
With these notations at hand, the main result of this article is as follows:

Theorem 1.1 Let ξε,ϑ be defined as above. Denote by Φε,ϑ the solution to (1.3). Suppose
that ρ(t, x) = ρ1(t)ρ2(x) for smooth functions ρ1, ρ2. Then there exist choices of functions C(ε,ϑ)

diverging as ε, ϑ→ 0 such that Φε,ϑ → Φ in probability locally in time. Here Φ is the solution
to the dynamical Φ4

3 model obtained in [Hai14].

Remark 1.2 (i) We can also first do purely spatial regularization corresponding to ρ(t, x) =
δ(t)ρ2(x) for the Dirac distribution δ and then do piecewise linear approximation. In this case
the results in Theorem 1.1 still holds (see Remark 3.8). In fact, the only difference is the proof
of Theorem 3.7.
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(ii) The function C(ε,ϑ) in (1.3) is given as follows:

C(ε,ϑ) := 3C
(ε,ϑ)
1 − 9C

(ε,ϑ)
2 ,

where C
(ε,ϑ)
1 and C

(ε,ϑ)
2 are defined in (A.4) and (A.8). Moreover,

C
(ε,ϑ)
1 w 1

ε
, C

(ε,ϑ)
2 w − log ε.

Here we emphasize that each function C
(ε,ϑ)
i (t), i = 1, 2, cannot be separated as a diverging

constant and a converging function. In fact, for the case that ρ(t, x) = δ(t)ρ2(x), by a straight-

forward calculation we know that |C(ε,ϑ)
1 (t1)− C

(ε,ϑ)
1 (t2)| ≃ 1

ε
for t1 ̸= t2.

As mentioned in Remark 1.2 (ii), in our case it is required in (1.3) to minus Φε,ϑ multiplied
by a function C(ε,ϑ) depending on t such that the associated solutions Φε,ϑ converge to the
solution to the dynamical Φ4

3 model as ε, ϑ → 0, which is the main difference from the result
in [Hai14]. We introduce a new symbol C in the regularity structure to represent C(ε,ϑ)(t) and
define a bigger regularity structure T1 including C as well as the original regularity structure
TF associated with the Φ4

3 model, which helps us to construct a suitable renormalised model
corresponding to (1.3) for TF (see Remark 3.4).

We would also like to emphasize that the proof in this paper is not restricted to the specific
equation (1.1). Similar arguments would yield similar results for the models that can be treated
with the methods developed in [Hai14].

In Section 2 we present a summary of some notions of the theory of regularity structures.
In Section 3 we construct the renormalised model and prove the main results. The convergence
of the renormalised model is proved in Section 4. The Appendix contains the proof of Theorem
3.7.

2 Regularity structures

In this section we recall some preliminaries for the theory of regularity structures from [Hai14].

Definition 2.1 A regularity structure T = (A, T,G) consists of the following elements:
(i) An index set A ⊂ R such that 0 ∈ A, A is bounded from below and locally finite.
(ii) A model space T , which is a graded vector space T = ⊕α∈ATα, with each Tα a Banach

space. Furthermore, T0 is one-dimensional and has a basis vector 1. Given τ ∈ T we write
∥τ∥α for the norm of its component in Tα.

(iii) A structure group G of (continuous) linear operators acting on T such that for every
Γ ∈ G, every α ∈ A and every τα ∈ Tα one has

Γτα − τα ∈ T<α :=
⊕
β<α

Tβ.

Furthermore, Γ1 = 1 for every Γ ∈ G.

The canonical example is the space T̄ =
⊕

n∈N T̄n of abstract polynomials in finitely many
indeterminates, with A = N and T̄n denoting the space of monomials that are homogeneous of
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degree n. In this case, a natural group of transformations G acting on T̄ is given by the group
of translations.

Given a scaling s = (s0, s1, ..., sd) of Rd+1. We call |s| = s0 + s1 + ...+ sd scaling dimension.
We define the associate metric on Rd+1 by

∥z − z′∥s := ds(z, z
′) :=

d∑
i=0

|zi − z′i|1/si .

For k = (k0, ..., kd) we set |k|s =
∑d

i=0 siki.

2.1 Specific regularity structures

We start with the regularity structure T̄ given by all polynomials in d + 1 indeterminates,
let us call them X0, ..., Xd, which denote the time and space directions respectively. Recall
Xk = Xk0

0 · · ·Xkd
d with k a multi-index. For the case of the dynamical Φ4

3 model, d = 3 and the
scaling is s = (2, 1, 1, 1). In the regularity structure we use the symbol Ξ to replace the driving
noise ξ. We introduce the integration maps I and Ik for a multi-index k associated with the
operation of convolution with a truncation of the heat kernel G and its derivative respectively.

We recall the following notations from [Hai14]: define a set F by postulating that {1,Ξ, Xj} ⊂
F and whenever τ, τ̄ ∈ F , we have τ τ̄ ∈ F and Ik(τ) ∈ F ; define F+ as the set of all ele-
ments τ ∈ F such that either τ = 1 or |τ |s > 0 and such that, whenever τ can be written as
τ = τ1τ2 we have either τi = 1 or |τi|s > 0; H,H+ denote the sets of finite linear combinations
of all elements in F ,F+, respectively. Here for each τ ∈ F a weight |τ |s is obtained by setting
|1|s = 0,

|τ τ̄ |s = |τ |s + |τ̄ |s,
for any two formal expressions τ and τ̄ in F such that

|Ξ|s = α, |Xi|s = si, |Ik(τ)|s = |τ |s + 2− |k|s,

with −18
7
< α < −5

2
.

As in [Hai14] we construct the regularity structure, which contains those that are actually
useful for the abstract reformulation of the equation (1.1). Define

MF = {Ξ, Un : n ≤ 3},

and the sets W0 = U0 = ∅ and Wn,Un for n > 0 recursively by

Wn = Wn−1 ∪
∪

Q∈MF

Q(Un−1,Ξ),

Un = {Xk} ∪ {I(τ) : τ ∈ Wn},
and

FF :=
∪
n≥0

(Wn ∪ Un).

Then FF contains the elements required to describe both the solutions and the terms in the
equation. We denote by HF the set of all finite linear combinations of elements in FF .
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Now we follow [Hai14] to construct the structure group GF . Define a linear projection
operator P+ : H → H+ by imposing that

P+τ = τ, τ ∈ F+, P+τ = 0, τ ∈ F \ F+,

and two linear maps ∆ : H → H⊗H+ and ∆+ : H+ → H+ ⊗H+ by

∆1 = 1⊗ 1, ∆+1 = 1⊗ 1,

∆Xi = Xi ⊗ 1+ 1⊗Xi, ∆+Xi = Xi ⊗ 1+ 1⊗Xi,

∆Ξ = Ξ⊗ 1,

and recursively by
∆(τ τ̄) = (∆τ)(∆τ̄)

∆(Ikτ) = (Ik ⊗ I)∆τ +
∑
l,m

X l

l!
⊗ Xm

m!
(P+Ik+l+mτ),

∆+(τ τ̄) = (∆+τ)(∆+τ̄)

∆+(Ikτ) = (I ⊗ Ikτ) +
∑
l

(P+Ik+l ⊗
(−X)l

l!
)∆τ.

By using the theory of regularity structures (see [Hai14, Section 8]) a structure group GF of
linear operators acting onHF satisfying Definition 2.1 can be defined as follows: For g ∈ H∗

+, the
dual of H+, satisfying g(τ τ̄) = g(τ)g(τ̄) for τ, τ̄ ∈ H+, define Γg : H → H,Γgτ = (I ⊗ g)∆τ .
Following [Hai14, Theorem 8.24] the regularity structure associated with the dynamical Φ4

3

model can be constructed:
Let T = HF with Tγ = ⟨{τ ∈ FF : |τ |s = γ}⟩, A = {|τ |s : τ ∈ FF}. Then TF = (A,HF , GF )

defines a regularity structure associated with the dynamical Φ4
3 model.

2.2 Models

Now that we have fixed our algebraic regularity structure TF = (A,HF , GF ), we introduce a
family of objects which is a concrete way of associating every τ ∈ HF and x0 ∈ Rd+1 with
the actual ”Taylor polynomial based at x0” represented by τ in order to allow us to describe
solutions to (1.1) locally.

First we introduce some notations: Given a smooth compactly supported test function φ
and a space-time coordinate z = (t, x1, ..., xd) ∈ Rd+1, we write φλz as a shorthand for

φλz (s, y1, ..., yd) = λ−|s|φ(
s− t

λs0
,
y1 − x1
λs1

, ...,
yd − xd
λsd

).

Let Bα denote the set of all smooth test functions φ : Rd+1 7→ R that are supported in the
centred ball of radius 1 and such that their derivatives of order up to 1 + |α| are uniformly
bounded by 1. We also denote by S ′ the space of all distributions on Rd+1 and denote by
L(E,F ) the set of all continuous linear maps between the topological vector spaces E and F .
With these notations at hand we give the definition of a model:
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Definition 2.2 Given a regularity structure T = (A, T,G), a model for T consists of maps

Rd+1 ∋ z 7→ Πz ∈ L(T,S ′), Rd+1 × Rd+1 ∋ (z, z′) 7→ Γzz′ ∈ G,

satisfying the algebraic compatibility conditions

ΠzΓzz′ = Πz′ , Γzz′ ◦ Γz′z′′ = Γzz′′ ,

as well as the analytical bounds

|Πzτ(φ
λ
z )| . λα∥τ∥α, ∥Γzz′τ∥β . ∥z − z′∥α−βs ∥τ∥α.

Here, the bounds are imposed uniformly over all τ ∈ Tα, all β < α ∈ A with α < γ, γ > 0, and
all test functions φ ∈ Br with r = inf A. They are imposed locally uniformly in z and z′.

Then for every compact set R ⊂ Rd+1 and any two models Z = (Π,Γ) and Z̄ = (Π̄, Γ̄) we
define

|||Z; Z̄|||γ;R := sup
z∈R

[ sup
φ,λ,α,τ

λ−α|(Πzτ − Π̄zτ)(φ
λ
z )|+ sup

∥z−z′∥s≤1

sup
α,β,τ

∥z − z′∥β−αs ∥Γzz′τ − Γ̄zz′τ∥β],

where the suprema are taken over the same sets as in Definition 2.2, but with ∥τ∥α = 1. This
gives a natural topology for the space of all models for a given regularity structure.

To describe the models for the regularity TF we are interested in, we fix a kernelK : R4 → R
with the following properties:

(i) K =
∑

n≥0Kn, where each Kn : R4 → R is smooth and compactly supported in a ball
of radius 2−n around the origin. Furthermore, we assume that for every multi-index k, one has
a constant C such that

sup
x

|DkKn(x)| ≤ C2n(2+|k|s),

holds uniformly in n. Finally, we suppose that
∫
Kn(x)P (x)dx = 0 for every polynomial P of

degree at most r for some sufficiently large value of r.
(ii) K(t, x) = 0 for t ≤ 0 and K(t,−x) = K(t, x).

(iii) For (t, x) with |x|2 + t < 1/2 and t > 0, K(t, x) = 1
|4πt|3/2 e

− |x|2
4t , and K is smooth on

{|x|2 + t ≥ 1/4}.

The kernel K satisfying these properties can be obtained from the heat kernel G as in
[Hai14, Lemma 5.5].

Definition 2.3 A model (Π,Γ) for TF is admissible if it satisfies (ΠxX
k)(y) = (y − x)k as

well as

(ΠxIτ)(y) =
∫
K(y − z)(Πxτ)(z)dz +

∑
l

(y − x)l

l!
fx(P+Ilτ), (2.1)

for τ ∈ HF with I(τ) ∈ HF . Here fx(Ilτ) are defined by

fx(Ilτ) = −
∫
Dl

1K(x− z)(Πxτ)(z)dz. (2.2)
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Furthermore, we impose fx(Xi) = −xi, fx(τ τ̄) = fx(τ)fx(τ̄) and extend this to all of H+ by
linearity. Γ is given by

Γxy = (Γfx)
−1 ◦ Γfy , (2.3)

where Γfxτ := (I ⊗ fx)∆τ for τ ∈ HF .

Let ξ be a periodic space-time white noise and ρ : R4 → R, ρ(t, x) = ρ1(t)ρ2(x) be a
smooth compactly supported function integrating to 1, set ρε(t, x) = ε−5ρ( t

ε2
, x
ε
). Given the

following approximation ξε,ϑ to ξ, there is a canonical way of lifting it to an admissible model
(Π(ε,ϑ),Γ(ε,ϑ)) as follows. We set for k ∈ Z,

ξε = ρε ∗ ξ, ξε,ϑ(t, x) =
1

ϑ

∫ (k+1)ϑ

kϑ

ξε(u, x)du, t ∈ (kϑ, (k + 1)ϑ],

(Π(ε,ϑ)
x Ξ)(z) = ξε,ϑ(z), (Π

(ε,ϑ)
x Xk)(z) = (z − x)k

and recursively define
(Π(ε,ϑ)

x τ τ̄)(z) = (Π(ε,ϑ)
x τ)(z)(Π(ε,ϑ)

x τ̄)(z),

and

(Π(ε,ϑ)
x Iτ)(z) =

∫
K(z − z1)(Π

(ε,ϑ)
x τ)(z1)dz1 +

∑
l

(z − x)l

l!
f (ε,ϑ)
x (P+Ilτ). (2.4)

Here f
(ε,ϑ)
x (Ilτ) are defined by

f (ε,ϑ)
x (Ilτ) = −

∫
Dl

1K(x− z1)(Π
(ε,ϑ)
x τ)(z1)dz1. (2.5)

Furthermore we impose f
(ε,ϑ)
x (Xi) = −xi, f (ε,ϑ)

x (τ τ̄) = f
(ε,ϑ)
x (τ)f

(ε,ϑ)
x (τ̄) and extend this to all

of H+ by linearity. Then define

Γ(ε,ϑ)
xy = Γ

f
(ε,ϑ)
x

◦ (Γ
f
(ε,ϑ)
y

)−1, (2.6)

where Γ
f
(ε,ϑ)
x

τ := (I ⊗ f
(ε,ϑ)
x )∆τ for τ ∈ HF .

Then by [Hai14, Proposition 8.27] it is easy to check that (Π(ε,ϑ),Γ(ε,ϑ)) is an admissible
model for the regularity structure TF constructed in Section 2.1.

Now we give the following definition for the spaces of distributions Cαs , α < 0, which is an
extension of the definition of Hölder spaces to include α < 0.

Definition 2.4 Let η ∈ S ′ and α < 0. We say that η ∈ Cαs if the bound

|η(φλz )| . λα,

holds uniformly over all λ ∈ (0, 1], all φ ∈ Bα and locally uniformly over z ∈ Rd+1.

For every compact set R ⊂ Rd+1, we will denote by ∥η∥α;R the seminorm given by

∥η∥α;R := sup
z∈R

sup
φ∈Bα

sup
λ≤1

λ−α|η(φλz )|.
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We also write ∥ · ∥α for the same expression with R = Rd+1. In the following we also use Cα to
denote Cαs̄ on Rd for the scaling s̄ := (s1, ..., sd).

We also have the following definition of spaces of modelled distributions, which are the
Hölder spaces on the regularity structure. Set P = {(t, x) : t = 0}. Given a subset R ⊂ Rd+1

we denote by RP the set

RP = {(z, z̄) ∈ (R \P)2 : z ̸= z̄ and ∥z − z̄∥s ≤ |t|
1
s0 ∧ |t̄|

1
s0 ∧ 1},

where z = (t, x), z̄ = (t̄, x̄).

Definition 2.5 Let (Π,Γ) be a model for the regularity structure TF and P as above. Then
for any γ > 0 and η ∈ R, the space Dγ,η consists of all functions f : Rd+1 \P →

⊕
α<γ Tα such

that for every compact set R ⊂ Rd+1 one has

|||f |||γ,η;R := sup
z∈R\P

sup
l<γ

∥f(z)∥l
|t|

η−l
s0

∧0
+ sup

(z,z̄)∈RP

sup
l<γ

∥f(z)− Γzz̄f(z̄)∥l
∥z − z̄∥γ−ls (|t| ∧ |t̄|)

η−γ
s0

<∞.

Here we wrote ∥τ∥l for the norm of the component of τ in Tl and also used t and t̄ as shorthands
for the time components of the space-time points z and z̄.

For f ∈ Dγ,η and f̄ ∈ D̄γ,η (denoting by D̄γ,η the space built over another model (Π̄, Γ̄)),
we also set

|||f ; f̄ |||γ,η;R := sup
z∈R\P

sup
l<γ

∥f(z)− f̄(z)∥l
|t|

η−l
s0

∧0
+ sup

(z,z̄)∈RP

sup
l<γ

∥f(z)− f̄(z)− Γzz̄f(z̄) + Γ̄zz̄f̄(z̄)∥l
∥z − z̄∥γ−ls (|t| ∧ |t̄|)

η−γ
s0

,

which gives a natural distance between elements f ∈ Dγ,η and f̄ ∈ D̄γ,η.

Given a regularity structure, we say that a subspace V ⊂ T is a sector of regularity α if it
is invariant under the action of the structure group G and it can be written as V = ⊕β∈AVβ
with Vβ ⊂ Tβ, and Vβ = {0} for β < α. We will use Dγ,η(V ) to denote all functions in Dγ,η

taking values in V .
Under suitable regularity assumptions, we can reconstruct from a given modelled distri-

bution f , a distribution Rf in the real world which ”looks like Πxf(x) near x”. This result,
which defines the so-called reconstruction operator, is one of the most fundamental results in
the theory of regularity structures.

Theorem 2.6 (cf. [Hai14, Proposition 6.9]) Given a regularity structure and a model (Π,Γ).
Let f ∈ Dγ,η(V ) for some sector V of regularity α ≤ 0, some γ > 0, and some η ≤ γ. Then
provided that α ∧ η > −s0, there exists a unique distribution Rf ∈ Cη∧αs such that

|(Rf − Πzf(z))(φ
λ
z )| . λγ,

holds uniformly over λ ∈ (0, 1] and φ ∈ Br with φλz compactly supported away from P and
locally uniformly over z ∈ Rd+1.

Moreover, (Π,Γ, f) → Rf is jointly (locally) Lipschitz continuous with respect to the metric
for (Π,Γ) and f defined in Definitions 2.2 and 2.5.

9



2.3 Abstract fixed point problem

We reformulate (1.1) as a fixed point problem in Dγ,η for suitable γ and η. By Duhamel’s
formula, (1.1) is equivalent for smooth ξ to the integral equation

u = G ∗ ((ξ − u3)1t>0) +Gu0.

Here, G denotes the heat kernel, ∗ denotes space-time convolution, and Gu0 denotes the solution
to the heat equation with initial condition u0. In order to interpret this equation as an identity
in Dγ,η, we need the following result from [Hai14, Proposition 6.16].

Theorem 2.7 Let TF = (A,HF , GF ) be the regularity structure constructed above and
(Π,Γ) be an admissible model for TF . Let γ > 0, η ≤ γ and I act on some sector V of
regularity α ≤ 0. Then provided that α ∧ η > −2, γ + 2, η + 2 not in N, there exists a
continuous linear operator Kγ : Dγ,η(V ) → Dγ′,η′ with γ′ = γ + 2 and η′ = (η ∧ α) + 2, such
that

RKγf = K ∗ Rf,

holds for f ∈ Dγ,η(V ).

In the following we will only consider (1.1) with periodic boundary conditions. By the
theory of regularity structures proposed in [Hai14] we can define translation maps and use it
to define the periodic modelled distribution. Here the fundamental domain of the translation
maps is compact. We use the notations OT = (−∞, T ]×Rd and use ||| · |||γ,η;T as a short hand
for ||| · |||γ,η;OT

. Moreover, we have that for γ, η, γ′, η′ in Theorem 2.7 and some θ > 0

|||Kγ1t>0f |||γ′,η′;T . T θ|||f |||γ,η;T .

Now we reformulate the fixed point map as

v =(Kγ̄ +RγR)(1t>0Ξ),

u =− (Kγ̄ +RγR)(1t>0u
3) + v + Gu0.

(2.7)

Here 1t>0(t, x) = 1 for t > 0 and 1t>0(t, x) = 0 otherwise, and for the smooth function
R = G−K,

Rγ : Cαs → Dγ,η, (Rγf)(z) =
∑
|k|s<γ

Xk

k!

∫
DkR(z − z̄)f(z̄)dz̄,

Gu0 =
∑
|k|s<γ

Xk

k!
Dk(Gu0)(z),

where γ, γ̄ will be chosen below and we define R(1t>0Ξ) as the distribution ξ1t>0.
We consider the second equation in (2.7): Define

V := I(FF )⊕ T̄ .

Now for u0 ∈ Cη(R3), η not in N, periodic, [Hai14, Lemma 7.5] implies that Gu0 ∈ Dγ,η for
γ > (η ∨ 0).
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We define for any β < 0 and any compact set R the norm

|ξ|β;R = sup
s∈R

∥ξ1t≥s∥β;R,

and we denote by C̄βs the intersections of the completions of smooth functions under | · |β;R for
all compact sets R. By [Hai14, Proposition 9.5] we know that for every α ∈ (−3,−5

2
), the

space-time white noise ξ belongs to C̄αs almost surely and K ∗ξ ∈ C(R, Cα+2(R3)) almost surely.
With these notations at hand, we recall the following results from [Hai14].

Proposition 2.8 ( [Hai14, Proposition 9.8]) Let TF be the regularity structure associated to
(Φ4) with α ∈ (−18

7
,−5

2
). Let η ∈ (−2

3
, α+2), γ > |2α+4|, γ̄ = γ+2α+4 and let Z = (Π,Γ) be

an admissible model for TF with the additional properties that ξ := RΞ belongs to C̄αs and that
K ∗ ξ ∈ C(R, Cη). Then there exists a maximal solution SL(u0, Z) ∈ Dγ,η(V ) to the equation
(2.7).

Furthermore, let TL(u0, Z) ∈ R+∪{+∞} be the first time such that ∥(RSL(u0, Z))(t, ·)∥η ≥
L and set O = [−1, 2]×Rd. Then, for every ε > 0 and C > 0 there exists δ > 0 such that, setting
T = 1 ∧ TL(u0, Z) ∧ TL(ū0, Z̄), one has the bound |||SL(u0, Z) − SL(ū0, Z̄)|||γ,η;T ≤ ε, for all
u0, ū0, Z, Z̄ satisfying |||Z|||γ;O ≤ C, |||Z̄|||γ;O ≤ C, ∥u0∥η ≤ L/2, ∥ū0∥η ≤ L/2, ∥u0 − ū0∥η ≤ δ,
and |||Z; Z̄|||γ;O ≤ δ, and satisfying the bounds |ξ|α;O + |ξ̄|α;O ≤ C, supt∈[0,1] ∥(K ∗ ξ)(t, ·)∥η +
supt∈[0,1] ∥(K ∗ ξ̄)(t, ·)∥η ≤ C, as well as

|ξ − ξ̄|α;O ≤ δ, sup
t∈[0,1]

∥(K ∗ ξ)(t, ·)− (K ∗ ξ̄)(t, ·)∥η ≤ δ,

Here we have set ξ̄ = R̄Ξ, where R̄ is the reconstruction operator associated to Z̄.

3 Renormalisation procedure and main result

In Section 2 we have constructed a model associated with ξε,ϑ and in this section we will prove
the convergence result required in Proposition 2.8, which at last implies Theorem 1.1. As we
mentioned in the introduction, the sequence of models does not converge to a limit. We have
to renormalise the model into some converging renormalised model.

3.1 Renormalised model

In this subsection we renormalise the model and prove that it is also an admissible model for
the regularity structure TF associated with the dynamical Φ4

3 model. In our case we should

subtract some functions (denoted by C
(ε,ϑ)
1 , C

(ε,ϑ)
2 ) depending on t in the renormalisations (see

the proof of Theorem 3.7), which cannot be written as the sum of diverging constants and
converging functions as explained in Remark 1.2. This is the main difference from the case in
[Hai14], where all the terms being subtracted in the renormalisations are constants. To prove
that the renormalised model is admissible in our case, we define a bigger regularity structure
T1 including the original regularity structure TF and two symbols C1,C2, where C1 and C2

represent C
(ε,ϑ)
1 , C

(ε,ϑ)
2 in the regularity structure, respectively. We build a model for T1 and

use it to prove the desired result.
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First, we construct the regularity structure T1. Define a set F1 by postulating that {1,Ξ, Xj,
C1,C2} ⊂ F1 and whenever τ, τ̄ ∈ F1, we have τ τ̄ ∈ F1 and Ik(τ) ∈ F1; define F1

+ as the set
of all elements τ ∈ F1 such that either τ = 1 or |τ |s > 0 and such that, whenever τ can be
written as τ = τ1τ2 we have either τi = 1 or |τi|s > 0; H1,H1

+ denote the sets of finite linear
combinations of all elements in F1,F1

+, respectively. Here for each τ ∈ F1 a weight |τ |s is
defined as in Section 2 and by setting |C1|s = |C2|s = −δ0 with 4α+10 < −δ0 < 0. The reason
for 4α + 10 < −δ0 < 0 is to make sure that the homogeneity of C2 is bigger than I(Ψ2)Ψ2.

Recall that MF = {Ξ, Un : n ≤ 3}. We define the sets W1
n,U1

n for n ≥ 0 recursively by

W1
0 = U1

0 = ∅,

W1
n = W1

n−1 ∪
∪

Q∈MF

Q(U1
n−1,Ξ),

U1
n = {Xk,C1,C2} ∪ {I(τ) : τ ∈ Wn}

and
F1
F :=

∪
n≥0

(W1
n ∪ U1

n).

We denote by H1
F the set of all finite linear combinations of elements in F1

F and denote
by F1,+

F the set of those basis vectors τ̄ ∈ F1
+ that can be written as τ̄ = X l0ΠiIliτi for some

multiindices li and some elements τi ∈ F1
F . Denote H

1,+
F the set of all finite linear combinations

of elements in F1,+
F .

Now we construct the structure group G1
F . We define the operators from H1 to H1⊗H1

+ and
from H1

+ to H1
+ ⊗H1

+ as ∆,∆+ in Section 2. We still use ∆,∆+ to denote them for notational
simplicity. ∆ on 1, Xi, Ξ and ∆+ on 1, Xi can be defined as in Section 2. Define

∆C1 = C1 ⊗ 1, ∆C2 = C2 ⊗ 1.

For all other terms ∆,∆+ can also be defined recursively as in Section 2.
By using the theory of regularity structures (see [Hai14, Section 8]) we can define a structure

group G1
F of linear operators acting on H1

F satisfying Definition 2.1 as follows: For g ∈ H1,∗
+ , the

dual of H1
+, satisfying g(τ τ̄) = g(τ)g(τ̄) for τ, τ̄ ∈ H1

+, define Γg : H1 → H1,Γgτ = (I ⊗ g)∆τ .
By [Hai14, Theorem 8.24] we construct the following regularity structure.

Theorem 3.1 Let T = H1
F with Tγ = ⟨{τ ∈ F1

F : |τ |s = γ}⟩, A1 = {|τ |s : τ ∈ F1
F}. Then

T1 = (A1,H1
F , G

1
F ) defines a regularity structure T1.

We emphasize that we do not change the regularity structure associated with Φ4 in our
case. The introduction of T1 is to prove that the renormalised model is an admissible model
for TF . In the following we extend the model (Π(ε,ϑ),Γ(ε,ϑ)) constructed in Section 2 to a model
for T1, which is used to construct the renormalised model. We still denote it by (Π(ε,ϑ),Γ(ε,ϑ))
for simplicity.

Given continuous functions C
(ε,ϑ)
1 (t), C

(ε,ϑ)
2 (t), for z = (t, y) we extend the models as follows:

(Π(ε,ϑ)
x C1)(z) = C

(ε,ϑ)
1 (t), (Π(ε,ϑ)

x C2)(z) = C
(ε,ϑ)
2 (t),
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and recursively as in Section 2.2. Moreover, we extend f
(ε,ϑ)
x to all of H1,+

F by linearity. More-

over, Γ
(ε,ϑ)
xy is still given by (2.6).

Proposition 3.2 (Π(ε,ϑ),Γ(ε,ϑ)) is a model for the regularity structure T1 constructed in
Theorem 3.1.

Proof Since C
(ε,ϑ)
1 , C

(ε,ϑ)
2 are continuous functions, a similar argument as in the proof of [Hai14,

Proposition 8.27] implies the result. �
Now we introduce the following sets as in [Hai14, Section 9]. Define

F0 := {1,Ξ,Ψ,Ψ2,Ψ3,Ψ2Xi, I(Ψ3)Ψ, I(Ψ3)Ψ2,

I(Ψ2)Ψ2, I(Ψ2), I(Ψ)Ψ, I(Ψ)Ψ2, Xi},

F∗ := {Ψ,Ψ2,Ψ3},
where Ψ = I(Ξ) and the index i corresponds to any of the three spatial directions.

Then F0 ⊂ FF contains every τ ∈ FF with |τ |s ≤ 0 and for every τ ∈ F0, ∆τ ∈ H0 ⊗H+
0 .

Here H0 denotes the linear span of F0 and H+
0 denotes the linear span of the elements in F+

of the form Xk
∏

i Iliτi for some multiindices k and li such that |Iliτi|s > 0 and τi ∈ F∗.
With these notations at hand, we construct a linear map M from H0 to H1

F by

MΨ2 =Ψ2 −C1,

M(Ψ2Xi) =Ψ2Xi −C1Xi,

MΨ3 =Ψ3 − 3C1Ψ,

MI(Ψ2) =I(Ψ2)− I(C1),

M(I(Ψ2)Ψ2) =(I(Ψ2)− I(C1))(Ψ
2 −C1)−C2,

M(I(Ψ3)Ψ) =(I(Ψ3)− 3I(C1Ψ))Ψ,

M(I(Ψ3)Ψ2) =(I(Ψ3)− 3I(C1Ψ))(Ψ2 −C1)− 3C2Ψ,

M(I(Ψ)Ψ2) =I(Ψ)(Ψ2 −C1),

(3.1)

as well as Mτ = τ for the remaining basis elements τ ∈ F0. In our case, Ci, i = 1, 2, are
not in T̄ and hence, I(Ci) ̸= 0. Now similarly as in [Hai14, Section 8] we introduce the
following linear maps which are used to construct the renormalised model. Define a linear map
∆M : H0 → H1

F ×H1,+
F by

∆Mτ = (Mτ)⊗ 1,

for those elements τ ∈ F0 not containing a factor I(Ψ2) or I(Ψ3). For the remaining elements,
we define

∆MI(Ψ2) = (M(I(Ψ2)))⊗ 1+Xi ⊗ Ii(C1),

∆MI(Ψ2)Ψ2 = (M(I(Ψ2)Ψ2))⊗ 1+ (Ψ2 −C1)Xi ⊗ Ii(C1),

∆MI(Ψ3)Ψ = (M(I(Ψ3)Ψ))⊗ 1+ 3ΨXi ⊗ Ii(C1Ψ),

∆MI(Ψ3)Ψ2 = (M(I(Ψ3)Ψ2))⊗ 1+ 3(Ψ2 −C1)Xi ⊗ Ii(C1Ψ).

Moreover, we introduce a linear map M̂ : H+
0 → H1,+

F , which is a multiplicative morphism and
leaves Xk invariant, and

M̂I(Ψn) = I(MΨn), M̂Ii(Ψ) = Ii(Ψ).
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Then we can easily check that
M̂Ik = M(Ik ⊗ I)∆M , (3.2)

(I ⊗M)(∆⊗ I)∆M = (M ⊗ M̂)∆. (3.3)

Here M : H1,+
F ×H1,+

F → H1,+
F denotes the multiplication map.

Furthermore, define a linear multiplicative morphism: ∆̂M : H+
0 → H1,+

F ×H1,+
F by

∆̂MXk = Xk ⊗ 1,

and
∆̂MI(Ψn) =I(MΨn)⊗ 1+ 3δn3(Xi ⊗ Ii(C1Ψ)−XiIi(C1Ψ)⊗ 1)

+ δn2(Xi ⊗ Ii(C1)−XiIi(C1)⊗ 1).

Then we can easily check that

(AM̂A⊗ M̂)∆+ = (I ⊗M)(∆+ ⊗ I)∆̂M .

Here A is as given in [Hai14, Section 8] for the regularity structure T1.
Now we give the renormalised model by using the above maps: Define for τ ∈ H0, τ1 ∈ H+

0 ,

ΠM,ε,ϑ
x τ = (Π(ε,ϑ)

x ⊗ f (ε,ϑ)
x )∆Mτ, fM,ε,ϑ

x τ1 = f (ε,ϑ)
x M̂τ1,

and define ΓMxy = (FM
x )−1 ◦ FM

y with FM
x := (I ⊗ fMx )∆. Then by a similar argument as in the

proof of [Hai14, Theorem 8.44] we have the following result.

Proposition 3.3 (ΠM ,ΓM) is an admissible model for TF on H0. Furthermore, it extends
uniquely to an admissible model for all of TF .

Proof By the definition of ΠM and the expression for ∆M we know that (ΠM
x τ)(φ

λ
x) can be

written as a finite linear combination of terms of the type (Πxτ̄)(φ
λ
x) with |τ̄ |s ≥ |τ |s and

τ̄ ∈ H1
F . Then Proposition 3.2 implies the required scaling as a function of λ.

Define γxy := (fxA⊗ fy)∆
+ and we have Γxy = (I ⊗ γxy)∆. Since (Π(ε,ϑ),Γ(ε,ϑ)) is a model

for T1, this implies that for τ ∈ H1,+
F

|γxyτ | . ∥x− y∥|τ |ss .

Since ΓMxy = (I⊗γMxy)∆ with γMxy = (γxy⊗fy)∆̂M and ∆̂Mτ = τ⊗1+
∑
τ 1⊗τ 2 with |τ 1|s > |τ |s,

it follows from the expression of ∆̂M that for τ ∈ H+
0

|γMxyτ | . ∥x− y∥|τ |ss .

Thus (ΠM ,ΓM) is a model on H0. By (3.2), (3.3) and similar arguments as in [Hai14, Section 8]
we know that (ΠM ,ΓM) is also an admissible model on H0. Finally applying [Hai14, Theorem
5.14, Proposition 3.31] (ΠM ,ΓM) can be extended uniquely to all of TF . �

Remark 3.4 (i) It is a little different from the case in [Hai14] to construct the renormalised
model. In [Hai14] the renormalised map M is a linear map from H0 to H0, which is enough
for the construction of the renormalised model. In our case we have to subtract some functions
C1, C2 to make the diverging terms converge in some sense. As we explained at the beginning

14



of the section, we construct a new regularity structure T1 including C1,C2 which represent
the functions C1 and C2, respectively. The renormalised map M is a linear map from H0 to
H1
F , which does not belong to the renormalisation group defined in [Hai14, Definition 8.41].

However, we could still use it to define M̂,∆M , ∆̂M and construct the renormalised model on
HF . We emphasize that the renormalised model (ΠM ,ΓM) is associated with the regularity
structure TF . Below we still consider the regularity structure TF . T1 is a tool to prove that
the renormalised model is an admissible model for TF .

(ii) In fact, we can also define the renormalised model for the bigger regularity structure
T1 and apply directly the results in [Hai14, Section 8] to conclude that the renormalised model
is an admissible model for T1, which is also the required renormalised model when restricted
on TF . For this argument we need to define the corresponding F0 for T1, which is a little bit
complicated. Therefore, we rather use the above proof, because it appears to be simpler.

3.2 Renormalised solutions

Let uε,ϑ = S̄L(u0, ξε,ϑ) denote the classical solution map to the equation

∂tuε,ϑ = ∆uε,ϑ − u3ε,ϑ + ξε,ϑ, uε,ϑ(0) = u0.

Here u0 ∈ Cη(T3). The renormalised map S̄LM(u0, ξε,ϑ) is given by the classical solution map to
the equation

∂tuε,ϑ = ∆uε,ϑ + (3C
(ε,ϑ)
1 − 9C

(ε,ϑ)
2 )uε,ϑ − u3ε,ϑ + ξε,ϑ, uε,ϑ(0) = u0.

By the same argument as in the proof of [Hai14, Proposition 9.10] we obtain the following
result:

Proposition 3.5 Let Zε,ϑ = (Π(ε,ϑ),Γ(ε,ϑ)) denote the model given in Section 2, and ZM
ε,ϑ =

(ΠM,ε,ϑ,ΓM,ε,ϑ) the renormalised model in Propostion 3.3. Then for every u0 ∈ Cη(T3) one has
the identities

RSL(u0, Zε,ϑ) = S̄L(u0, ξε,ϑ), RSL(u0, ZM
ε,ϑ) = S̄LM(u0, ξε,ϑ).

Here SL(u0, Zε,ϑ) and SL(u0, ZM
ε,ϑ) are the solutions obtained in Proposition 2.8.

3.3 Proof of the main result

In this subsection we prove Theorem 1.1. We first prove the required convergence in Proposition
2.8 for ξε,ϑ and K ∗ ξε,ϑ. Our argument essentially follows [Hai14, Proposition 9.5].

Proposition 3.6 Let ξ be white noise on R × T3, which we extend periodically to R4, and
define ξε,ϑ as in Subsection 2.2. Then for every compact set R ⊂ R4 and every 0 < κ < −α− 5

2

we have
E|ξε,ϑ − ξ|α;R . εκ + ϑ

κ
2 . (3.4)

Finally for every 0 < κ < −2α+5
4

, the bound

E sup
t∈[0,1]

∥K ∗ ξε,ϑ(t, ·)−K ∗ ξ(t, ·)∥α+2 . ε2κ + ϑκ,
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holds uniformly over ε, ϑ ∈ (0, 1].

Proof For any scaling s of R4 and any n ∈ Z, define

Λns = {
3∑
j=0

2−nsjkjej : kj ∈ Z},

where ej denotes the jth element of the canonical basis of R4. We choose a wavelet basis

{ψn,sx = 2−
5
2
nψ2−n

x , φ(· − y), n ≥ 0, x ∈ Λns ∩R, y ∈ Λ0
s ∩R, ψ ∈ Ψ} as in [Hai14, Section 3.2] on

R4. Writing Ψ⋆ = Ψ ∪ {φ}, we note that for every p > 1, we have the bound

E∥(ξε,ϑ − ξ)1t∈[0,s]∥2pα;R
≤

∑
ψ∈Ψ⋆

∑
n≥0

∑
x∈Λn

s ∩R̄

E22αnp+|s|np|⟨(ξε,ϑ − ξ)1t∈[0,s], ψ
n,s
x ⟩|2p

.
∑
ψ∈Ψ⋆

∑
n≥0

∑
x∈Λn

s ∩R̄

22αnp+|s|np(E|⟨(ξε,ϑ − ξ)1t∈[0,s], ψ
n,s
x ⟩|2)p.

Here we wrote R̄ for the 1-fattening of R. Since it has been obtained in [Hai14, Proposition
9.5] that

E|⟨(ξε − ξ)1t∈[0,s], ψ
n,s
x ⟩|2 .1 ∧ (22ns) ∧ (22nε2),

for ξε = ξ ∗ ρε, it suffices to estimate E|⟨(ξε,ϑ − ξε)1t∈[0,s], ψ
n,s
x ⟩|2. By the definition of ξε,ϑ we

know that

1t∈[0,s][ξε,ϑ(t)− ξε(t)]

=

[ s
ϑ
]−1∑

k=0

1t∈[kϑ,(k+1)ϑ)
1

ϑ

∫ (k+1)ϑ

kϑ

(ξε(u)− ξε(t))du+ 1t∈[[ s
ϑ
]ϑ,s]

1

ϑ

∫ ([ s
ϑ
]+1)ϑ

[ s
ϑ
]ϑ

ξε(u)du− 1t∈[[ s
ϑ
]ϑ,s]ξε(t).

:=I1 + I2 − I3.

In the following we estimate E|⟨Ii, ψn,sx ⟩|2 for i = 1, 2, 3 separately. Since ∥ρε ∗ f∥L2 ≤ ∥f∥L2 , a
straightforward calculation yields that

E|⟨I1, ψn,sx ⟩|2 =E|
∫ [ s

ϑ
]−1∑

k=0

1

ϑ

∫ (k+1)ϑ

kϑ

∫ (k+1)ϑ

kϑ

(ψn,sx (u, y)− ψn,sx (t, y))ξε(t, y)dudtdy|2

.
∫ ∫ ( [ s

ϑ
]−1∑

k=0

1

ϑ
1t∈[kϑ,(k+1)ϑ)

∫ (k+1)ϑ

kϑ

[ψn,sx (u, y)− ψn,sx (t, y)]du

)2

dtdy

. 1

ϑ2

∫ [ s
ϑ
]−1∑

k=0

∫ (k+1)ϑ

kϑ

(∫ (k+1)ϑ

kϑ

∫ (k+1)ϑ

kϑ

|Dũψ
n,s
x (ũ, y)|dũdu

)2

dtdy

.ϑ2

∫ s

0

∫
|Dũψ

n,s
x (ũ, y)|2dũdy

.1 ∧ (22ns) ∧ (22nϑ).
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Similarly,

E|⟨I2, ψn,sx ⟩|2 + E|⟨I3, ψn,sx ⟩|2 .1

ϑ

∫
(

∫ s

[ s
ϑ
]ϑ

|ψn,sx (u, y)|du)2dy +
∫ s

[ s
ϑ
]ϑ

∫
|ψn,sx (t, y)|2dtdy

.1 ∧ (22ns) ∧ (22nϑ).

Combining the above estimates we obtain

E|⟨(ξε,ϑ − ξ)1t∈[0,s], ψ
n,s
x ⟩|2 . 1 ∧ (22ns) ∧ (22nε2) + 1 ∧ (22ns) ∧ (22nϑ).

Thus, it follows that for 0 < κ < −5
2
− α,

E∥(ξε,ϑ − ξ)1t∈[0,s]∥2pα;R . [ϑ
− 5

2−α−κ

2 + ε−
5
2
−α−κ]2ps

κp
2
− 5

2 .

Then the required bound (3.4) follows from Kolomogorov’s continuity criterion by choosing p
large enough.

Now we prove the second result: it has been obtained in [Hai14, Proposition 9.5] that for
every 0 < κ < −2α+5

4
, the bound E supt∈[0,1] ∥K ∗ ξε(t, ·)−K ∗ ξ(t, ·)∥α+2 . ε2κ holds uniformly

over ε, ϑ ∈ (0, 1]. It suffices to consider E supt∈[0,1] ∥K ∗ ξε,ϑ(t, ·) −K ∗ ξε(t, ·)∥α+2. We choose

the scaling s̄ = (1, 1, 1) and choose a wavelet basis on R3: {ψn,̄sx = 2
3
2
nψ(2n(·−x)), φ(·−y), n ≥

0, x ∈ Λns̄ , y ∈ Λ0
s̄ , ψ ∈ Ψ̄} as in [Hai14, Section 3.2] on R3 with Λns̄ = {

∑3
j=1 2

−nkjej : kj ∈ Z}.
Set Ψ̄⋆ = Ψ̄∪{φ}. We would like to estimate E∥(K∗ξε,ϑ−K∗ξε)(t, ·)−(K∗ξε,ϑ−K∗ξε)(s, ·)∥2pα+2

for t > s ≥ 0 and use Kolmogorov’s continuity test. Here we only consider the case that s = 0
for simplicity. For general s, we can obtain the desired estimates similarly. We note that ∥·∥α+2

on T3 is equivalent to the Besov norm ∥·∥Bα+2
∞,∞(T3), which by [Tri83, Theorem 9.2.1] is equivalent

to the weighted Besov norm (cf. [RZZ15, (2.1)]). Moreover, by [Tri06, Theorem 6.15] we have
on T3, for every p > 1

∥f∥2pα+2 .
∑
ψ∈Ψ̄⋆

∑
n≥0

∑
x∈Λn

s̄

22(α+2)pn+|s̄|np|⟨f, ψn,̄sx ⟩|2pw(x)2p,

for w(x) = (1 + |x|2)−2, which combined with Gaussian hypercontractivity implies the bound

E∥(K ∗ ξε,ϑ −K ∗ ξε)(t, ·)− (K ∗ ξε,ϑ −K ∗ ξε)(0, ·)∥2pα+2

.
∑
ψ∈Ψ̄⋆

∑
n≥0

∑
x∈Λn

s̄

22(α+2)pn+|s̄|np(E|⟨(K ∗ ξε,ϑ −K ∗ ξε)(t, ·)

− (K ∗ ξε,ϑ −K ∗ ξε)(0, ·), ψn,s̄x ⟩|2)pw(x)2p.

We have the following identity

K ∗ ξε,ϑ(t, y) =
[ t
ϑ
]−1∑

k=−∞

∫ (k+1)ϑ

kϑ

∫
K(t− u, y − y1)

1

ϑ

∫ (k+1)ϑ

kϑ

ξε(u1, y1)du1dy1du

+

∫ t

[ t
ϑ
]ϑ

∫
K(t− u, y − y1)

1

ϑ

∫ ([ t
ϑ
]+1)ϑ

[ t
ϑ
]ϑ

ξε(u1, y1)du1dy1du,
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which implies that

E|⟨(K ∗ ξε,ϑ −K ∗ ξε)(t, ·)− (K ∗ ξε,ϑ −K ∗ ξε)(0, ·), ψn,̄sx (·)⟩|2

.J1 + J2 + J3 + J4,

where

J1 :=E|⟨
[ t
ϑ
]−1∑

k=0

1

ϑ

∫ ∫ (k+1)ϑ

kϑ

∫ (k+1)ϑ

kϑ

[K(t− u, · − y1)−K(t− u1, · − y1)]du

ξε(u1, y1)du1dy1, ψ
n,s̄
x (·)⟩|2,

J2 :=E|⟨1
ϑ

∫ ∫ t

[ t
ϑ
]ϑ

K(t− u, · − y1)du

∫ ([ t
ϑ
]+1)ϑ

[ t
ϑ
]ϑ

ξε(u1, y1)du1dy1, ψ
n,s̄
x (·)⟩|2,

J3 :=E|⟨
∫ ∫ t

[ t
ϑ
]ϑ

K(t− u1, · − y1)ξε(u1, y1)du1dy1, ψ
n,̄s
x (·)⟩|2

and

J4 :=E|⟨
∫ −1∑

k=−∞

∫ (k+1)ϑ

kϑ

1

ϑ

∫ (k+1)ϑ

kϑ

[K(t− u, · − y1)−K(t− u1, · − y1)−K(−u, · − y1)

+K(−u1, · − y1)]duξε(u1, y1)du1dy1, ψ
n,s̄
x (·)⟩|2.

Now we bound each term separately: For J1 we have

J1 .
∫ [ t

ϑ
]−1∑

k=0

∫ (k+1)ϑ

kϑ

⟨
∫ (k+1)ϑ

kϑ

1

ϑ
|K(t− u, · − y1)−K(t− u1, · − y1)|du, |ψn,s̄x (·)|⟩2du1dy1,

We introduce the notation: for (t, y) ∈ R4, α ∈ R+

G
(α)
0 (t, y) :=

1

|t|α2 + |y|α
1{|t|+|y|2≤C}. (3.5)

Here C is a constant. Now we use [Hai14, Theorem 10.18] to control |K(t− u, y− y1)−K(t−
u1, y − y1)| by ϑ

δ
2 (G

(3+δ)
0 (t− u, y − y1) +G

(3+δ)
0 (t− u1, y − y1)), which implies that

J1 .
∫ [ t

ϑ
]−1∑

k=0

1

ϑ2

∫ (k+1)ϑ

kϑ

∫ (k+1)ϑ

kϑ

∫ (k+1)ϑ

kϑ

ϑδ(G
(3+δ)
0 (t− u, y − y1) +G

(3+δ)
0 (t− u1, y − y1))

(G
(3+δ)
0 (t− ũ, ȳ − y1) +G

(3+δ)
0 (t− u1, ȳ − y1))|ψn,s̄x (y)ψn,̄sx (ȳ)|dudũdu1dY.

Here and in the following we introduce the notation dY to denote dydȳdy1 if there’s no confusion.
Differently from [Hai14], we calculate the integrals with respect to time and space separately.
Observing that each term on the right hand side of the above inequality only contains at most

two of u, ũ, u1 and using [|t− u| 32+ δ
2 + |y − y1|3+δ]−1 . |t− u|− 1−β

2 |y − y1|−2−δ−β for 0 < β < 1,
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we have that J1 can be bounded by

ϑδ
∫ [ t

ϑ
]−1∑

k=0

1

ϑ

∫ (k+1)ϑ

kϑ

∫ (k+1)ϑ

kϑ

[
|t− u|−

1−β
2 |y − y1|−2−δ−β|t− ũ|−

1−β
2 |ȳ − y1|−2−δ−β

+ |t− u|−1+β|y − y1|−2−δ−β|ȳ − y1|−2−δ−β]|ψn,s̄x (y)ψn,s̄x (ȳ)|dudũ1{|y1|≤C}dY

.ϑδ
∫ ∫ [ t

ϑ
]ϑ

0

|t− u|−1+β|y − y1|−2−δ−β|ȳ − y1|−2−δ−β|ψn,s̄x (y)ψn,s̄x (ȳ)|1{|y1|≤C}dudY

.ϑδ|t|β
∫ ∫

|ψn,s̄x (y)ψn,s̄x (ȳ)||y − ȳ|−1−2δ−2βdydȳ,

(3.6)

for β, δ > 0, 2β + 4δ < −(2α + 5). Here in the first inequality we used Young’s inequality and
in the last inequality we used [Hai14, Lemma 10.14]. For J2, J3 by similar calculations and the
fact that |K(z)| . ∥z∥−3

s we have

J2 + J3 .
∫ ∫ t

[ t
ϑ
]ϑ

∫ t

[ t
ϑ
]ϑ

G
(3)
0 (t− u, y − y1)G

(3)
0 (t− ũ, ȳ − y1)dudũ

1

ϑ
|ψn,s̄x (y)ψn,̄sx (ȳ)|dY

+

∫ ∫ t

[ t
ϑ
]ϑ

|G(3)
0 (t− u1, y − y1)G

(3)
0 (t− u1, ȳ − y1)ψ

n,̄s
x (y)ψn,s̄x (ȳ)|du1dY.

Similar calculations as in (3.6) yield that J2 + J3 can also be bounded by

ϑδ|t|β
∫ ∫

|ψn,̄sx (y)ψn,s̄x (ȳ)||y − ȳ|−1−2δ−2βdydȳ.

Now we consider J4:

J4 .
∫ −1∑

k=−[C
ϑ
]

1

ϑ2

∫ (k+1)ϑ

kϑ

∫ (k+1)ϑ

kϑ

|K(t− u, y − y1)−K(t− u1, y − y1)

−K(−u, y − y1) +K(−u1, y − y1)|du
∫ (k+1)ϑ

kϑ

|K(t− ũ, ȳ − y1)−K(t− u1, ȳ − y1)

−K(−ũ, ȳ − y1) +K(−u1, ȳ − y1)|dũ|ψn,s̄x (y)ψn,s̄x (ȳ)|du1dY.

Here we used that K has compact support. Now we can use [Hai14, Theorem 10.18] to control

|K(t− u, y − y1)−K(t − u1, y − y1)| by ϑ
δ
2 (G

(3+δ)
0 (t − u, y − y1) + G

(3+δ)
0 (t − u1, y − y1)) and

to control |K(t− u, y − y1)−K(−u, y − y1)| by t
β
2 (G

(3+β)
0 (t− u, y − y1) +G

(3+β)
0 (−u, y − y1))

for δ, β > 0, which combined with interpolation and similar calculations as in (3.6) imply that

J4 .ϑδ|t|β
∫ ∫

|ψn,s̄x (y)ψn,s̄x (ȳ)||y − ȳ|−1−4δ−2βdydȳ.

Combining the above estimates we obtain that

E|⟨(K ∗ ξε,ϑ −K ∗ ξε)(t, ·)− (K ∗ ξε,ϑ −K ∗ ξε)(0, ·), ψn,s̄x ⟩|2

.ϑδ|t|β
∫ ∫

|ψn,s̄x (y)ψn,s̄x (ȳ)||y − ȳ|−1−4δ−2βdydȳ

.ϑδ|t|β2−3n+n(1+4δ+2β),
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where β, δ > 0, 2β + 4δ < −(2α + 5). Thus, the above estimates yield that

E∥(K ∗ ξε,ϑ −K ∗ ξε)(t, ·)− (K ∗ ξε,ϑ −K ∗ ξε)(0, ·)∥2pα+2

.
∑
ψ∈Ψ̄⋆

∑
n≥0

22(α+
5
2
)np+|s̄|np+|s̄|nϑpδ|t|βp2−3np+np(4δ+2β),

and the results follow from Kolmogorov’s continuity test (in time) if we choose p sufficiently
large. �

In [Hai14, Theorem 10.22] a random model Ẑ has been obtained by taking the limit of the
models associated with the convolution approximation ξε. Define Φ = RSL(u0, Ẑ). Then Φ
is the local solution to the dynamical Φ4

3 model. In our case we also have the following main
convergence result at the level of models:

Theorem 3.7 Let TF be the regularity structure associated to the dynamical Φ4
3 model, and

ρ(t, x) = ρ1(t)ρ2(x), let ξε,ϑ be as in Subsection 2.2 and let Zε,ϑ be the associated model. Then

there exist choices of C
(ε,ϑ)
1 (t), C

(ε,ϑ)
2 (t) such that Ẑε,ϑ = ZM

ε,ϑ → Ẑ in probability.

More precisely, for any κ < −5
2
− α, any compact set R, and any γ < r one has that the

bound
E|||ZM

ε,ϑ; Ẑ|||γ;R . εκ + ϑκ/2,

holds uniformly over ε, ϑ ∈ (0, 1].

The proof of Theorem 3.7 is the content of Section 4 and the Appendix below.

Remark 3.8 If ρ(t, x) = δ(t)ρ2(x) for the Dirac distribution δ, the convergence results in
Proposition 3.6 and Theorem 3.7 still hold. In fact, if |K(z)| . ∥z∥ζs for −4 < ζ < 0 it is

sufficient to control |K ∗ ρ2,ε−K| by (t−
δ
2 εζ−ζ̄ |x|ζ̄+δ)∧ |t| ζ2 for ζ̄ + δ > −3. By this and similar

calculations as in Section 4 we could also deduce the results. Here ρ2,ε(y) = ε−3ρ2(
y
ε
).

We now have all the tools in place to prove the main convergence result of this article.

Proof of Theorem 1.1 The proof of the theorem is essentially a collection of the results of this
paper. As obtained in Proposition 3.5, RSL(u0, ZM

ε,ϑ) = Φε,ϑ. Define Φ = RSL(u0, Ẑ). By
the continuity of the map R and Proposition 2.8, Theorem 3.7, we obtain that there exists a
sequence of random times τL converging to the explosion time τ of Φ such that

sup
t∈[0,τL]

∥Φε,ϑ − Φ∥η →P 0, as ε, ϑ→ 0.

4 Convergence of the renormalised model

In the previous section we have defined the renormalised models Ẑε,ϑ = (Π̂(ε,ϑ), Γ̂(ε,ϑ)). The
goal of this section is to obtain the convergence of the renormalised models. The proof follows
by a similar argument as in the proof of [Hai14, Theorem 10.22], if we can prove the following
lemmas. For the completeness of the paper we put the proof of Theorem 3.7 in the Appendix.
In the following we prove these lemmas. First, we introduce the following notations:
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Define for (t, y), (t2, y2) ∈ R4

Kε,ϑ(t, y, t2, y2) :=

[ t
ϑ
]−1∑

k=−∞

∫ (k+1)ϑ

kϑ

∫
K(t− u, y − y1)

1

ϑ

∫ (k+1)ϑ

kϑ

ρε(u1 − t2, y1 − y2)du1dy1du

+

∫ t

[ t
ϑ
]ϑ

∫
K(t− u, y − y1)

1

ϑ

∫ ([ t
ϑ
]+1)ϑ

[ t
ϑ
]ϑ

ρε(u1 − t2, y1 − y2)du1dy1du

:=K
(1)
ε,ϑ(t, y, t2, y2) +K

(2)
ε,ϑ(t, y, t2, y2),

(4.1)

Kε(t− t2, y − y2) :=K ∗ ρε =
∫ ∫ [ t

ϑ
]ϑ

−∞
K(t− u, y − y1)ρε(u− t2, y1 − y2)dudy1

+

∫ ∫ t

[ t
ϑ
]ϑ

K(t− u, y − y1)ρε(u− t2, y1 − y2)dudy1

:=K(1)
ε (t, y, t2, y2) +K(2)

ε (t, y, t2, y2).

(4.2)

Then for τ = I(Ξ) = Ψ we have

(Π̂(ε,ϑ)Ψ)(z) =K ∗ ξε,ϑ(z) =
∫
Kε,ϑ(z, z1)ξ(z1)dz1.

For φ smooth and x ∈ R4 we have that

E|⟨K ∗ ξε,ϑ, φλx⟩|2 =
∫ ∫

f (ε,ϑ)(z, z̄)φλx(z)φ
λ
x(z̄)dzdz̄.

Here for z = (t, y), z̄ = (t̄, ȳ)

f (ε,ϑ)(z, z̄) :=
2∑

i,j=1

J ij(z, z̄),

with

J ij(z, z̄) =

∫
K

(i)
ε,ϑ(z, z1)K

(j)
ε,ϑ(z̄, z1)dz1, i, j = 1, 2.

In the following we prove estimates for f (ε,ϑ) and Kε,ϑ−Kε. Recall that ρ(t, x) = ρ1(t)ρ2(x).
We first give an estimate for the convolution K ∗ρ2,ε with respect to space, which is required for
the estimate of f (ε,ϑ). Here ρ2,ε(y) = ε−3ρ2(

y
ε
). By a similar argument as the proof in [Hai14,

Lemma 10.17] we obtain:

Lemma 4.1 If |K(z)| . ∥z∥ζs for ζ ∈ (−4, 0), then

|K ∗ ρ2,ε(z)| ≤ Ct−
δ
2 (∥z∥ζ+δs ∧ εζ+δ),

for 0 < δ < 1, 0 > ζ + δ > −3.

Proof We can write

K ∗ ρ2,ε(t, x) =
∫
K(t, x− y)ρ2,ε(y)dy.
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We use the notation z = (t, x). |K(t, x− y)| can be bounded by C|t| ζ2 , and

|K ∗ ρ2,ε(t, x)| ≤ C|t|
ζ
2

follows from the fact that ρ2,ε integrates to 1. Without loss of generality we assume that ρ2 is

supported in the set {x : |x| ≤ 1}. For |x| ≥ 2ε, we have |x − y| ≥ |x|
2
, which implies that for

0 < δ < 1, 0 > ζ + δ > −3,

|K ∗ ρ2,ε(t, x)| ≤ Ct−
δ
2 |x|ζ+δ ≤ Ct−

δ
2 εζ+δ.

For |x| ≤ 2ε we use the fact that |ρ2,ε| is bounded by a constant multiple of ε−3

|K ∗ ρ2,ε(t, x)| . ε−3

∫
|y|≤3ε

t−
δ
2 |y|ζ+δdy . Ct−

δ
2 εζ+δ . Ct−

δ
2 |x|ζ+δ.

Combining all the estimates the result follows. �
In the following we prove some useful estimates for f (ε,ϑ) and K

(i)
ε,ϑ −K

(i)
ε , which are used

in the proof of Theorem 3.7.

Lemma 4.2
(i) For every δ > 0

|f (ε,ϑ)(z, z̄)| . ∥z − z̄∥−1−δ
s .

(ii)
|f (ε,ϑ)(z, z̄)− f(z − z̄)| . (ϑκ + ε2κ)∥z − z̄∥−1−2κ−δ

s

holds uniformly over ε, ϑ ∈ (0, 1], provided that κ < 1 and that δ > 0, where f(z − z̄) =
K ∗K(z − z̄).

(iii) For i = 1, 2

|⟨(K(i)
ε,ϑ −K(i)

ε )(z, ·), (K(i)
ε,ϑ −K(i)

ε )(z̄, ·)⟩| . ϑκ∥z − z̄∥−1−2κ−δ
s ,

holds uniformly over ε, ϑ ∈ (0, 1], provided that κ < 1 and that δ > 0.

Proof In the following we use the notations z = (t, y), z̄ = (t̄, ȳ). Consider (i) first: We consider
the integral w.r.t. space and time separately: Since ρ1 has compact support, there exists some

constant C0 such that for ρ1,ε(t) := ε−2ρ1(
t
ε2
),

∫ (k+1)ϑ

kϑ

∫ (k1+1)ϑ

k1ϑ
ρ1,ε ∗ ρ1,ε(u1 − u2)du1du2 ̸= 0 if

and only if |k − k1| ≤ C0ε2

ϑ
+ 1, and in this case

|
∫ (k+1)ϑ

kϑ

∫ (k1+1)ϑ

k1ϑ

ρ1,ε ∗ ρ1,ε(u1 − u2)du1du2| . ϑ(1 ∧ ϑ

ε2
), (4.3)

which implies that

J11 .
[ t
ϑ
]−1∑

k=−[C
ϑ
]

[ t̄
ϑ
]−1∑

k1=−[C
ϑ
],|k1−k|≤C0ε

2

ϑ
+1

∫
1

ϑ

∫ (k+1)ϑ

kϑ

|t− u|−
δ
2 [G

(3−δ)
0 (t− u, y − y1) ∧ ε−3+δ]du

∫ (k1+1)ϑ

k1ϑ

|t̄− ũ|−
δ
2 [G

(3−δ)
0 (t̄− ũ, ȳ − y1) ∧ ε−3+δ]dũdy1(1 ∧

ϑ

ε2
),

(4.4)
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for δ > 0, where we used Lemma 4.1 and G
(3−δ)
0 is defined as in (3.5). Now we consider this

term in the following three cases:
Case I: t̄− t ≥ 2C0ε

2 + 4ϑ. Since |u− ũ| ≤ C0ε
2 + 2ϑ, we deduce that

t̄− ũ > t− u. (4.5)

Furthermore, we have that

t̄− ũ = t̄− t+ t− u+ u− ũ ≥ C0ε
2 + 2ϑ ≥ ũ− u+ u− t = ũ− t,

which implies that

|t̄− ũ| ≥ |t̄− t|
2

. (4.6)

By (4.4), (4.5), (4.6) and using

[|t− u|
3−δ
2 + |y − y1|3−δ]−1 . (t− u)−a|y − y1|−b (4.7)

for a, b > 0 satisfying 2a+ b = 3− δ, we obtain that

J11 .
[ t
ϑ
]−1∑

k=−[C
ϑ
]

∫ ∫ (k+1)ϑ

kϑ

(
(t− u)−1+δ/4|y − y1|−1−δ/2(t̄− t)−

1
2
− δ

2 |ȳ − y1|−2+δ

)
∧(

(t− u)−1+δ/2|y − y1|−1−2δ|ȳ − y1|−3+δ

)
du1|y1|≤Cdy1

.|t− t̄|−
1
2
− δ

2 ∧ |y − ȳ|−1−δ,

(4.8)

is valid for every δ > 0, where we first used (4.4), (4.7) and then (4.5), (4.6) in the first
inequality and used [Hai14, Lemma 10.14] in the last inequality.

Case II: t− t̄ ≥ 2C0ε
2 + 4ϑ. Similarly as Case I.

Case III: |t̄− t| ≤ 2C0ε
2 + 4ϑ. We have that for every δ > 0

1

ϑ

∫ (k1+1)ϑ

k1ϑ

(t̄− ũ)−
1
2
− δ

2dũ . ϑ− 1
2
− δ

2 ,

which combined with (4.7) implies that

J11 .
[ t
ϑ
]−1∑

k=−[C
ϑ
]

∫ ∫ (k+1)ϑ

kϑ

(t− u)−1+δ/4|y − y1|−1−δ/2ϑ− 1
2
− δ

2 |ȳ − y1|−2+δdu1{|y1|≤C}dy1

.ϑ− 1
2
− δ

2 .

(4.9)

holds for every δ > 0, where we used [Hai14, Lemma 10.14] in the last inequality. (4.4) and
(4.7) also imply that

J11 .(
ϑ

ε2
∧ 1)

[ t
ϑ
]−1∑

k=−[C
ϑ
]

[ t̄
ϑ
]−1∑

k1=−[C
ϑ
],|k1−k|≤C0

ε2

ϑ
+1

∫
1

ϑ

∫ (k+1)ϑ

kϑ

∫ (k1+1)ϑ

k1ϑ

[(t− u)−
1
2
+ δ

4 |y − y1|−2− δ
2

(t̄− ũ)−
1
2
+ δ

4 |ȳ − y1|−2− δ
2 ]dudũ1{|y1|≤C}dy1 . |y − ȳ|−1−δ,

(4.10)
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where we used [Hai14, Lemma 10.14] and (t− u)−
1
2
+ δ

4 (t̄− ũ)−
1
2
+ δ

4 ≤ (t− u)−1+ δ
2 + (t̄− ũ)−1+ δ

2

in the last inequality. Moreover, by interpolation we have that

|t− u|−
δ
2 [G

(3−δ)
0 (t− u, y − y1) ∧ ε−3+δ] . (t− u)−

1
2
+ δ

8 |y − y1|−
3
2
+ δ

4 ε−
1
2
− δ

2 ,

which combined with (4.4) yields that

J11 .(
ϑ

ε2
∧ 1)

[ t
ϑ
]−1∑

k=−[C
ϑ
]

[ t̄
ϑ
]−1∑

k1=−[C
ϑ
],|k1−k|≤C0

ε2

ϑ
+1

∫
1

ϑ

∫ (k+1)ϑ

kϑ

∫ (k1+1)ϑ

k1ϑ

[(t− u)−
1
2
+ δ

8 |y − y1|−
3
2
+ δ

4 ε−1−δ

(t̄− ũ)−
1
2
+ δ

8 |ȳ − y1|−
3
2
+ δ

4 ]dudũ1{|y1|≤C}dy1 . ε−1−δ,
(4.11)

where we used [Hai14, Lemma 10.14] and (t− u)−
1
2
+ δ

8 (t̄− ũ)−
1
2
+ δ

8 ≤ (t− u)−1+ δ
4 + (t̄− ũ)−1+ δ

4

in the last inequality. Combining (4.9)-(4.11) we obtain that

J11 . ε−1−δ ∧ ϑ− 1
2
− δ

2 ∧ |y − ȳ|−1−δ . |t− t̄|−
1
2
− δ

2 ∧ |y − ȳ|−1−δ .∥z − z̄∥−1−δ
s ,

is valid for every δ > 0.
We now turn to J22. J22 ̸= 0 if and only if |t − t̄| ≤ 2C0ε

2 + 4ϑ. Lemma 4.1, (4.3) and
similar arguments as in (4.9-4.11) imply that for every δ > 0

J22 .
(∫ ∫ t

[ t
ϑ
]ϑ

(t− u)−1+δ/4|y − y1|−1− δ
2ϑ− 1+δ

2 |ȳ − y1|−2+δdu1{|y1|≤C}dy1

)
∧(∫

1

ϑ

∫ t

[ t
ϑ
]ϑ

∫ t̄

[ t̄
ϑ
]ϑ

[(t− u)−
1
2
+ δ

4 |y − y1|−2− δ
2 (t̄− ũ)−

1
2
+ δ

4 |ȳ − y1|−2− δ
2 ]

∧ [(t− u)−
1
2
+ δ

8 |y − y1|−
3
2
+ δ

4 ε−1−δ(t̄− ũ)−
1
2
+ δ

8 |ȳ − y1|−
3
2
+ δ

4 ]dũdu1{|y1|≤C}dy1

)
.|t− t̄|−

1
2
− δ

2 ∧ |y − ȳ|−1−δ.

(4.12)

J12, J21 can be estimated similarly. Thus (i) follows.
(ii) We have

|f (ε,ϑ)(z, z̄)− f(z − z̄)|
.|f (ε,ϑ)(z, z̄)− f (ε)(z − z̄)|+ |f (ε)(z − z̄)− f(z − z̄)|

where f (ε)(z− z̄) = Kε ∗Kε(z− z̄), Kε = K ∗ρε. Here |f (ε,ϑ)(z, z̄)−f (ε)(z− z̄)| can be separated
as J ij1 , i, j = 1, 2, with

J ij1 =

∣∣∣∣ ∫ (K
(i)
ε,ϑ(z, z1)K

(j)
ε,ϑ(z̄, z1)−K(i)

ε (z, z1)K
(j)
ε (z̄, z1))dz1

∣∣∣∣,
where K

(i)
ε,ϑ and K

(i)
ε are defined as in (4.1) and (4.2). Each term can be estimated as in the

proof of (i). We take J11 as an example:

J11
1 =

∣∣∣∣ [ t
ϑ
]−1∑

k=−∞

[ t̄
ϑ
]−1∑

k1=−∞

1

ϑ2

∫ ∫ ∫ (k+1)ϑ

kϑ

∫ (k1+1)ϑ

k1ϑ

∫ (k+1)ϑ

kϑ

∫ (k1+1)ϑ

k1ϑ

[
(K(t− u, y − y1)

−K(t− u1, y − y1))K(t̄− ũ, ȳ − y2) +K(t− u1, y − y1)(K(t̄− ũ, ȳ − y2)

−K(t̄− u2, ȳ − y2))
]
dudũρε ∗ ρε(u1 − u2, y1 − y2)du1du2dy1dy2

∣∣∣∣.
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By [Hai14, Lemma 10.18] we can control |K(t−u, y− y1)−K(t−u1, y− y1)| by ϑκ(G(3+2κ)
0 (t−

u, y− y1) +G
(3+2κ)
0 (t− u1, y− y1)) provided that κ > 0. Observing that each term on the right

hand side of the above inequality only contains at most two of u, ũ, u1, u2 and using (4.3) as
well as Lemma 4.1 we obtain that J11

1 can be bounded by a term similar as in (4.4). Then
by similar arguments as the estimates for (4.4), we deduce that J11

1 . ϑκ∥z − z̄∥−1−2κ−δ
s . The

other terms can be estimated similarly, which implies that

|f (ε,ϑ)(z, z̄)− f (ε)(z − z̄)| . ϑκ∥z − z̄∥−1−2κ−δ
s ,

holds uniformly over ε, ϑ ∈ (0, 1], provided that κ < 1 and that δ > 0. Since K and Kε are of
order −3, by [Hai14, Lemma 10.17] we obtain that

|f (ε)(z − z̄)− f(z − z̄)| . ε2κ∥z − z̄∥−1−2κ−δ
s .

Combining the above estimates we deduce (ii) easily.
(iii) We have for z = (t, y), z̄ = (t̄, ȳ)

|⟨(K(1)
ε,ϑ −K(1)

ε )(z, ·), (K(1)
ε,ϑ −K(1)

ε )(z̄, ·)⟩|

=

∣∣∣∣ [ t
ϑ
]−1∑

k=−∞

[ t̄
ϑ
]−1∑

k1=−∞

∫ ∫ ∫ (k+1)ϑ

kϑ

∫ (k1+1)ϑ

k1ϑ

∫ (k+1)ϑ

kϑ

∫ (k1+1)ϑ

k1ϑ

(K(t− u, y − y1)−K(t− u1, y − y1))

(K(t̄− ũ, ȳ − y2)−K(t̄− u2, ȳ − y2))dudũ
1

ϑ2
ρε ∗ ρε(u1 − u2, y1 − y2)du1du2dy1dy2

∣∣∣∣.
By [Hai14, Lemma 10.18] we can control |K(t−u, y− y1)−K(t−u1, y− y1)| by ϑκ(G(3+2κ)

0 (t−
u, y− y1)+G

(3+2κ)
0 (t− u1, y− y1)). Then by similar arguments as in the proof of (ii) we obtain

that
|⟨(K(1)

ε,ϑ −K(1)
ε )(z, ·), (K(1)

ε,ϑ −K(1)
ε )(z̄, ·)⟩| . ϑκ∥z − z̄∥−1−2κ−δ

s .

For i = 2 we can argue similarly as for estimating J22 in (i) and the result follows. �

Lemma 4.3 The following holds:
(i) For every δ > 0

|f (ε,ϑ)(z, z̄1)− f (ε,ϑ)(z, z̄2)| . ∥z̄1 − z̄2∥δs(∥z − z̄1∥−1−2δ
s + ∥z − z̄2∥−1−2δ

s ).

(ii) For i = 1, 2,

|⟨(K(i)
ε,ϑ −K(i)

ε )(z, ·), (K(i)
ε,ϑ −K(i)

ε )(z̄1, ·)− (K
(i)
ε,ϑ −K(i)

ε )(z̄2, ·)⟩|
.ϑκ∥z̄1 − z̄2∥δs(∥z̄1 − z∥−1−2δ−2κ

s + ∥z̄2 − z∥−1−2δ−2κ
s )

holds uniformly over ε, ϑ ∈ (0, 1], provided that κ < 1 and that δ > 0.

Proof Without loss of generality for z̄1 = (t̄1, ȳ1), z̄2 = (t̄2, ȳ2) we suppose that t̄1 ≤ t̄2.
|f (ε,ϑ)(z, z̄1) − f (ε,ϑ)(z, z̄2)| can be separated into two kinds of terms: one is similar to J ij in
the proof of Lemma 4.2 with one of K(t̄, ȳ) in J ij replaced by K(t̄1, ȳ)−K(t̄2, ȳ); the other is
the corresponding terms from t̄1 to t̄2. For the first case, we apply [Hai14, Lemma 10.18] to
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deduce that |K(t̄1, ȳ)−K(t̄2, ȳ)| . |t̄1− t̄2|
δ
2 (G

(3+δ)
0 (t̄1, ȳ)+G

(3+δ)
0 (t̄2, ȳ)), which combined with

similar arguments as in the proof of Lemma 4.2 implies the desired estimates. Now we give
the calculations for the most complicated term in the second case and the other terms can be
handled similarly. Define

J =

∣∣∣∣ [ t
ϑ
]−1∑

k=−∞

[
t̄2
ϑ
]−1∑

k1=[
t̄1
ϑ
]+1

∫ ∫ ∫ (k+1)ϑ

kϑ

K(t− u, y − y1)du

∫ (k1+1)ϑ

k1ϑ

K(t̄2 − ũ, ȳ2 − y2)dũ

1

ϑ2

∫ (k+1)ϑ

kϑ

∫ (k1+1)ϑ

k1ϑ

ρε ∗ ρε(u1 − u2, y1 − y2)du1du2dy1dy2

∣∣∣∣.
By (4.3) and Lemma 4.1, similarly as in (4.4) we have that for δ > 0

J .
[ t
ϑ
]−1∑

k=−[C
ϑ
]

[
t̄2
ϑ
]−1∑

k1=[
t̄1
ϑ
]+1,|k1−k|≤C0

ε2

ϑ
+1

∫ ∫ (k+1)ϑ

kϑ

|t− u|−δ/2[G(3−δ)
0 (t− u, y − y1) ∧ ε−3+δ]du

∫ (k1+1)ϑ

k1ϑ

|t̄2 − ũ|−δ/2[G(3−δ)
0 (t̄2 − ũ, ȳ2 − y1) ∧ ε−3+δ]dũ

1

ϑ
dy1(

ϑ

ε2
∧ 1).

(4.13)

Then by (4.7) and |t̄2 − t̄1| ≥ |t̄2 − ũ| we obtain

J .
[ t
ϑ
]−1∑

k=−[C
ϑ
]

[
t̄2
ϑ
]−1∑

k1=[
t̄1
ϑ
]+1,|k1−k|≤C0

ε2

ϑ

∫ ∫ (k+1)ϑ

kϑ

∫ (k1+1)ϑ

k1ϑ

|t− u|−
1
2
+ δ

2 |y − y1|−2−δdu

|t̄2 − t̄1|
δ
4 (t̄2 − ũ)−

1
2
+ δ

4 |ȳ2 − y1|−2−δdũ
1

ϑ
1{|y1|≤C}(

ϑ

ε2
∧ 1)dy1.

Moreover, by Young’s inequality we have

|t̄2 − t̄1|
δ
4 (t̄2 − ũ)−

1
2
+ δ

4 |t− u|−
1
2
+ δ

2 ≤ |t̄2 − t̄1|
δ
2 |t− u|−1+δ + (t̄2 − ũ)−1+ δ

2 ,

which combined with [Hai14, Lemma 10.14] implies that

J .|t̄2 − t̄1|
δ
2 |y − ȳ2|−1−2δ.

Furthermore, we estimate J in the following three cases:
Case I: t− t̄2 ≥ 2C0ε

2+4ϑ. Similar arguments as in the proof of (4.6) imply that t−u ≥ t−t̄2
2
,

which combined with (4.7) and (4.13) implies that for δ > 0

J .
[
t̄2
ϑ
]−1∑

k1=[
t̄1
ϑ
]+1

∫ ∫ (k1+1)ϑ

k1ϑ

(t− t̄2)
− 1

2
−δ|y − y1|−2+2δ(t̄2 − ũ)−1+δ/2|ȳ2 − y1|−1−δdũ1|y1|≤Cdy1

.|t− t̄2|−
1
2
−δ|t̄2 − t̄1|

δ
2 .
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Case II: t̄2 − t ≥ 2C0ε
2 + 4ϑ. Similarly as in Case I, we have t̄2 − ũ ≥ t̄2−t

2
, which combined

with |t̄2 − t̄1| ≥ |t̄2 − ũ| implies that

J .
[ t
ϑ
]−1∑

k=−[C
ϑ
]

∫ ∫ (k+1)ϑ

kϑ

(t− u)−1+ δ
4 |y − y1|−1− δ

2 |t̄2 − t̄1|
δ
2 (t̄2 − t)−

1
2
−δ|ȳ2 − y1|−2+δdu1|y1|≤Cdy1

.|t− t̄2|−
1
2
−δ|t̄2 − t̄1|

δ
2 .

Case III: |t̄2 − t| ≤ 2C0ε
2 + 4ϑ. In this case

1

ϑ

∫ (k+1)ϑ

kϑ

(t− u)−
1
2
−δdu . ϑ− 1

2
−δ,

which combined with [Hai14, Lemma 10.14] implies that

J .
[
t̄2
ϑ
]−1∑

k1=[
t̄1
ϑ
]+1

∫ ∫ (k1+1)ϑ

k1ϑ

ϑ− 1
2
−δ|y − y1|−2+2δ(t̄2 − ũ)−1+δ/2|ȳ2 − y1|−1−δdũ1|y1|≤Cdy1

.ϑ− 1
2
−δ|t̄2 − t̄1|

δ
2 .

On the other hand, a similar argument as in (4.11) and |t̄2 − t̄1| ≥ |t̄2 − ũ| imply that

J .
[ t
ϑ
]−1∑

k=−[C
ϑ
]

[
t̄2
ϑ
]−1∑

k1=[
t̄1
ϑ
]+1,|k1−k|≤C0

ε2

ϑ
+1

∫ ∫ (k+1)ϑ

kϑ

∫ (k1+1)ϑ

k1ϑ

|t− u|−
1
2
+ δ

8 |y − y1|−
3
2
+ δ

4 ε−1−2δdu

|t̄2 − t̄1|δ/2(t̄2 − ũ)−
1
2
+ δ

8 |ȳ2 − y1|−
3
2
+ δ

4dũ
1

ϑ
1{|y1|≤C}(

ϑ

ε2
∧ 1)dy1

.ε−1−2δ|t̄2 − t̄1|
δ
2 .

Combining the above estimates we obtain that

J .∥z̄1 − z̄2∥δs∥z − z̄2∥−1−2δ
s .

Thus (i) follows. Combining the arguments in (i) and the proof for Lemma 4.2 (iii), we can
deduce (ii) easily. �

Appendix. Proof of Theorem 3.7

By [Hai14, Theorem 10.7] we only need to show that the renormalised model converges for
those elements τ ∈ FF with non-positive homogeneity. In the case of the dynamical Φ4

3 model,
these elements are given by

F− = {Ξ,Ψ,Ψ2,Ψ3,Ψ2Xi, I(Ψ3)Ψ, I(Ψ2)Ψ2, I(Ψ3)Ψ2}.

By [Hai14, Theorem 10.7] it is sufficient to prove that for τ ∈ F− with |τ |s < 0, any test
function φ ∈ Br and every x ∈ R4, and for some 0 < κ < −5

2
− α,

E|(Π̂(ε,ϑ)
x τ)(φλx)|2 . λ2|τ |s+κ, E|(Π̂xτ − Π̂(ε,ϑ)

x τ)(φλx)|2 . (ε2κ + ϑκ)λ2|τ |s+κ, (A.1)
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where Π̂xτ is obtained as in the proof of [Hai14, Theorem 10.22]. Since the map φ 7→
(Π̂

(ε,ϑ)
x τ)(φ) is linear, we can find some functions Ŵ(ε,ϑ;k)

x τ with (Ŵ (ε,ϑ;k)
x τ)(y) ∈ L2(R×T3)⊗k,

for y ∈ R4 and satisfying

(Π̂(ε,ϑ)
x τ)(φ) =

∑
k≤∥τ∥

Ik

(∫
φ(y)(Ŵ(ε,ϑ;k)

x τ)(y)dy

)
,

where ∥τ∥ denotes the number of occurrences of Ξ in the expression τ and Ik is defined as in
[Hai14, Section 10.1]. We also use the following notation as in [Hai14, Section 10]:

(Π̂xτ)(φ) =
∑
k≤∥τ∥

Ik

(∫
φ(y)(Ŵ(k)

x τ)(y)dy

)
,

where Ŵ(k)
x τ ∈ L2(R×T3)⊗k. By [Hai14, Proposition 10.11] we know that to obtain (A.1) it suf-

fices to estimate the terms |⟨(Ŵ(ε,ϑ;k)
x τ)(z), (Ŵ(ε,ϑ;k)

x τ)(z̄)⟩| and |⟨(δŴ(ε,ϑ;k)
x τ)(z), (δŴ(ε,ϑ;k)

x τ)(z̄)⟩|,
where δŴ(ε,ϑ;k)

x τ = Ŵ (ε,ϑ;k)
x τ − Ŵ (k)

x τ .
For τ = I(Ξ) = Ψ we have

(Π̂(ε,ϑ)Ψ)(z) =K ∗ ξε,ϑ(z) =
∫
Kε,ϑ(z, z1)ξ(z1)dz1,

which implies that
(Ŵ(ε,ϑ;1)

x Ψ)(z, z1) = Kε,ϑ(z, z1).

For φ smooth and x ∈ R4 we have that

E|⟨K ∗ ξε,ϑ, φλx⟩|2 =
∫ ∫

f (ε,ϑ)(z, z̄)φλx(z)φ
λ
x(z̄)dzdz̄.

In the following we use z1 z to represent a factor K(z−z1) and z1 z to represent
Kε,ϑ(z, z1). We also use the convention that if a vertex is drawn in grey, then the corresponding
variable is integrated out. Now we have

f (ε,ϑ)(z, z̄) = z

z̄

.

By Lemma 4.2 (i) we obtain that

|⟨(Ŵ (ε,ϑ;1)
x Ψ)(z), (Ŵ(ε,ϑ;1)

x Ψ)(z̄)⟩| = | z

z̄

| . ∥z − z̄∥−1−δ
s ,

holds uniformly over ε, ϑ ∈ (0, 1). Now for Π̂xΨ = K ∗ ξ as in the proof of [Hai14, Theorem
10.22] we also have

(δŴ (ε,ϑ;1)
x Ψ)(z, z1) =Kε,ϑ(z, z1)−K(z − z1)

=(K
(1)
ε,ϑ(z, z1)−K(1)

ε (z, z1)) + (K
(2)
ε,ϑ(z, z1)−K(2)

ε (z, z1))

+ (Kε(z − z1)−K(z − z1))

:=(δŴ(ε,ϑ;11)
x Ψ)(z, z1) + (δŴ (ε,ϑ;12)

x Ψ)(z, z1) + (δŴ(ε,ϑ;13)
x Ψ)(z, z1).
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By Lemma 4.2 (iii) and [Hai14, Lemmas 10.14, 10.17] we have that for i = 1, 2

|⟨(δŴ(ε,ϑ;1i)
x Ψ)(z), (δŴ (ε,ϑ;1i)

x Ψ)(z̄)⟩| . ϑκ∥z − z̄∥−1−δ−2κ
s , (A.2)

and
|⟨(δŴ(ε,ϑ;13)

x Ψ)(z), (δŴ(ε,ϑ;13)
x Ψ)(z̄)⟩| . ε2κ∥z − z̄∥−1−δ−2κ

s , (A.3)

holds uniformly over ε, ϑ ∈ (0, 1] provided that 0 < κ < 1 and that 0 < δ < 1, from which we

deduce (A.1) for τ = Ψ easily. In the following we use | zz̄ | to represent

3∑
i=1

|⟨(δŴ(ε,ϑ;1i)
x Ψ)(z), (δŴ (ε,ϑ;1i)

x Ψ)(z̄)⟩|.

By (A.2) and (A.3) we have

| z

z̄

| . (ϑκ + ε2κ)∥z − z̄∥−1−δ−2κ
s .

For τ = Ψ2 we could choose for z = (t, y)

C
(ε,ϑ)
1 (t) =

∫
Kε,ϑ(z, z1)

2dz1. (A.4)

Here, since ρ = ρ1ρ2, we can easily deduce that C
(ε,ϑ)
1 only depends on t. We obtain that

(Ŵ(ε,ϑ,2)
x Ψ2)(z) = z .

By Lemma 4.2 we have that for every δ > 0

|⟨(Ŵ(ε,ϑ,2)
x Ψ2)(z), (Ŵ(ε,ϑ,2)

x Ψ2)(z̄)⟩| = f (ε,ϑ)(z, z̄)2 . ∥z − z̄∥−2−δ
s ,

holds uniformly over ε, ϑ ∈ (0, 1]. As in the proof of [Hai14, Theorem 10.22] Ŵ(2)
x Ψ2(z; z1, z2) =

K(z, z1)K(z, z2). By (A.2), (A.3) and Lemma 4.2 we have that

|⟨(δŴ(ε,ϑ,2)
x Ψ2)(z), (δŴ (ε,ϑ,2)

x Ψ2)(z̄)⟩| . (ϑκ + ε2κ)∥z − z̄∥−2−2κ−δ
s ,

holds uniformly over ε, ϑ ∈ (0, 1], provided that 0 < κ < 1 and that 1 > δ > 0, which implies
that (A.1) holds for τ = Ψ2.

Similar arguments also imply that (A.1) holds for τ = Ψ3.
Regarding τ = Ψ2Xi the corresponding bound follows from those for τ = Ψ2.
Now for τ = I(Ψ3)Ψ we have

(Π̂(ε,ϑ)
x τ)(z) = (Π̂(ε,ϑ)

x Ψ)(z)[K ∗ (Π̂(ε,ϑ)
x Ψ3)(z)−K ∗ (Π̂(ε,ϑ)

x Ψ3)(x)].

For the term in the fourth Wiener chaos we have

(Ŵ(ε,ϑ,4)
x τ)(z) = z − x z .
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We have the following estimates:

|⟨(Ŵ (ε,ϑ,4)
x τ)(z), (Ŵ(ε,ϑ,4)

x τ)(z̄)⟩|

.
∫ ∫

∥z − z̄∥−1−δ
s |K(z − z1)−K(x− z1)|∥z1 − z̄1∥−3−δ

s

|K(z̄ − z̄1)−K(x− z̄1)|dz1dz̄1,

(A.5)

where we used Lemma 4.2 to obtain the estimate. We now use [Hai14, Lemma 10.18] to control

|K(z − z1) −K(x − z1)| by ∥z − x∥
1
2
−δ

s

(
∥z − z1∥−3.5+δ

s + ∥x− z1∥−3.5+δ
s

)
with 0 < δ < 1

2
and

obtain that

|⟨(Ŵ (ε,ϑ,4)
x τ)(z), (Ŵ(ε,ϑ,4)

x τ)(z̄)⟩|

.∥z − z̄∥−1−δ
s ∥z − x∥

1
2
−δ

s ∥z̄ − x∥
1
2
−δ

s (G(z − x) +G(z̄ − x) +G(z − z̄) +G(0)),
(A.6)

holds uniformly over ε, ϑ ∈ (0, 1], where the function G is a bounded function given by

G(z − z̄) =
δ − 3.5 −3− δ −3.5 + δz z̄

. (A.7)

Here as in [Hai14, Theorem 10.22] we also use the notation αz z̄ to represent ∥z −
z̄∥αs 1∥z−z̄∥s≤C for a constant C. Choose Ŵ(4)

x τ as Ŵ(ε,ϑ,4)
x τ with each instance of Kε,ϑ replaced

by K, which is the same as in the proof of [Hai14, Theorem 10.22]. By (A.2), (A.3), Lemma
4.2 (i) and [Hai14, Lemma 10.18] we deduce that

|⟨(δŴ (ε,ϑ,4)
x τ)(z), (δŴ (ε,ϑ,4)

x τ)(z̄)⟩| .(ϑκ + ε2κ)[∥z − z̄∥−1−δ
s ∥z − x∥

1
2
−κ−δ

s ∥z̄ − x∥
1
2
−κ−δ

s

+ ∥z − z̄∥−1−2κ−δ
s ∥z − x∥

1
2
−δ

s ∥z̄ − x∥
1
2
−δ

s ],

holds uniformly over ε, ϑ ∈ (0, 1], provided that 0 < κ < 1 and that 1 > δ > 0. For the term in
the second Wiener chaos, we also have the following identity:

(Ŵ(ε,ϑ,2)
x τ)(z) = 3( z − x z ) := 3((Ŵ(ε,ϑ,21)

x τ)(z)− (Ŵ(ε,ϑ,22)
x τ)(z)).

For Ŵ(ε,ϑ,21)
x τ we have that for every δ > 0

|⟨(Ŵ(ε,ϑ,21)
x τ)(z), (Ŵ (ε,ϑ,21)

x τ)(z̄)⟩|

.| −δ − 4 −2− δ −4− δz z̄

| . ∥z − z̄∥−3δ
s ,

where we used Lemma 4.2 (i) in the first inequality and [Hai14, Lemma 10.14] in the last

inequality. Choose Ŵ(21)
x τ as Ŵ(ε,ϑ,21)

x τ with each instance of Kε,ϑ replaced by K, which is the
same as in the proof of [Hai14, Theorem 10.22]. By Lemmas 4.2 and (A.2), (A.3) we have that

|⟨(δŴ(ε,ϑ,21)
x τ)(z), (δŴ(ε,ϑ,21)

x τ)(z̄)⟩| . (ϑκ + ε2κ)∥z − z̄∥−2κ−3δ
s ,
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holds uniformly over ε, ϑ ∈ (0, 1], provided that 0 < κ < 1 and that 0 < δ < 1. For Ŵ(ε,ϑ,22)
x τ

by Lemma 4.2 we have that

|⟨(Ŵ(ε,ϑ,22)
x τ)(z), (Ŵ(ε,ϑ,22)

x τ)(z̄)⟩|

.|

−3

−2 − δ

−3x x

z̄z
−1− δ

−1− δ |
.∥z − x∥−4δ

s (G1(z − x) +G1(z̄ − x) +G1(z − z̄) +G1(0)),

holds uniformly over ε, ϑ ∈ (0, 1], provided that 0 < κ < 1 and that 0 < δ < 1, where we used
[Hai14, (10.37)] in the last inequality and that the function G1 is a bounded function given by

G1(z − z̄) =
3δ − 4 −2− δ −4− δz z̄

.

Define Ŵ(22)
x τ as Ŵ (ε,ϑ,22)

x τ with each instance of Kε,ϑ replaced by K. For the difference by
Lemma 4.2 and (A.2), (A.3) we have that

|⟨(δŴ(ε,ϑ,22)
x τ)(z), (δŴ(ε,ϑ,22)

x τ)(z̄)⟩| . (ϑκ + ε2κ)∥z − x∥−2κ−4δ
s ,

holds uniformly over ε, ϑ ∈ (0, 1], provided that 0 < κ < 1 and that 0 < δ < 1. Combining all
the estimates above we obtain that (A.1) holds for τ = I(Ψ3)Ψ.

Now we come to the case τ = I(Ψ2)Ψ2. We have for z = (t, y)

(Π̂(ε,ϑ)
x τ)(z) = (Π̂(ε,ϑ)

x Ψ2)(z)[K ∗ (Π̂(ε,ϑ)
x Ψ2)(z)−K ∗ (Π̂(ε,ϑ)

x Ψ2)(x)]− C
(ε,ϑ)
2 (t).

For the term in the fourth Wiener chaos, we have

(Ŵ(ε,ϑ,4)
x τ)(z) = z − x z .

By similar calculations as in (A.5), (A.6) we have that

|⟨(Ŵ(ε,ϑ,4)
x τ)(z), (Ŵ (ε,ϑ,4)

x τ)(z̄)⟩|
.∥z − z̄∥−2−δ

s ∥z − x∥1−δs ∥z̄ − x∥1−δs (G2(z − x) +G2(z̄ − x) +G2(z − z̄) +G2(0))

holds uniformly over ε, ϑ ∈ (0, 1], where we apply [Hai14, Lemma 10.18] to control |K(z−z1)−

K(x− z1)| by ∥z − x∥1−δs

(
∥z − z1∥−4+δ

s +∥x− z1∥−4+δ
s

)
for 0 < δ < 1 and the function G2 is

a bounded function given by

G2(z − z̄) =
δ − 4 −2− δ −4 + δz z̄

.

Choose Ŵ(4)
x τ as Ŵ (ε,ϑ,4)

x τ with each instance of Kε,ϑ replaced by K, which is the same as in
the proof of [Hai14, Theorem 10.22]. Similarly, by Lemma 4.2 and (A.2), (A.3) we have that

|⟨(δŴ(ε,ϑ,4)
x τ)(z), (δŴ(ε,ϑ,4)

x τ)(z̄)⟩|
.(ϑκ + ε2κ)[∥z − z̄∥−2−δ

s ∥z − x∥1−κ−δs ∥z̄ − x∥1−κ−δs + ∥z − z̄∥−2−2κ−δ
s ∥z − x∥1−δs ∥z̄ − x∥1−δs ],
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holds uniformly over ε, ϑ ∈ (0, 1], provided that 0 < κ < 1 and that 1 > δ > 0. For the term in
the second Wiener chaos, we have the following identity

(Ŵ(ε,ϑ,2)
x τ)(z) = 4( z − x z ).

Then by Lemma 4.2 we obtain that

|⟨(Ŵ(ε,ϑ,2)
x τ)(z), (Ŵ(ε,ϑ,2)

x τ)(z̄)⟩|

.
∫ ∫

∥z − z̄∥−1−δ
s ∥z − z1∥−1−δ

s |K(z − z1)−K(x− z1)|∥z1 − z̄1∥−1−δ
s

|K(z̄ − z̄1)−K(x− z̄1)|∥z̄ − z̄1∥−1−δ
s dz1dz̄1

.∥z − z̄∥−1−δ
s ∥z − x∥

1
2
−2δ

s ∥z̄ − x∥
1
2
−2δ

s (G3(z, z̄) +G3(z, x) +G3(x, z̄) +G3(x, x)),

holds uniformly over ε, ϑ ∈ (0, 1]. Here the function G3 is a bounded function given by

G3(a, b) =

−3.5 + 2δ

−1 − δ

−3.5 + 2δa b

z̄z
−1− δ

−1− δ ,

and we used Young’s inequality to obtain that G3 is bounded. Choose Ŵ(2)
x τ as Ŵ(ε,ϑ,2)

x τ with
each instance of Kε,ϑ replaced by K, which is the same as in the proof of [Hai14, Theorem
10.22]. Similarly, by Lemma 4.2 and (A.2), (A.3) we have that

|⟨(δŴ (ε,ϑ,2)
x τ)(z), (δŴ(ε,ϑ,2)

x τ)(z̄)⟩|

.(ϑκ + ε2κ)[∥z − z̄∥−1−δ
s ∥z − x∥

1
2
−2δ−κ

s ∥z̄ − x∥
1
2
−2δ−κ

s + ∥z − z̄∥−1−2κ−δ
s ∥z − x∥

1
2
−2δ

s ∥z̄ − x∥
1
2
−2δ

s ],

holds uniformly over ε, ϑ ∈ (0, 1], provided that 0 < κ < 1 and that 1 > δ > 0. We now turn
to the component in the 0th Wiener chaos. For z = (t, y), choose

C
(ε,ϑ)
2 (t) = 2

∫
f (ε,ϑ)(z, z1)

2K(z − z1)dz1 = 2 z . (A.8)

Here C
(ε,ϑ)
2 only depends on t. We have

(Ŵ(ε,ϑ,0)
x τ)(z) = −2

∫
f (ε,ϑ)(z, z1)

2K(x− z1)dz1,

which combined with Lemma 4.2 impies that

|(Ŵ(ε,ϑ,0)
x τ)(z)| .

∫
∥z − z1∥−2−δ

s |K(x− z1)|dz1 . ∥z − x∥−δs ,

for every δ > 0. Choose Ŵ(0)
x τ as above with each instance of Kε,ϑ replaced by K, which is the

same as in the proof of [Hai14, Theorem 10.22]. Then Lemma 4.2 yields that

|(Ŵ(ε,ϑ,0)
x τ)(z)− (Ŵ (0)

x τ)(z)|

.(ε2κ + ϑκ)

∫
∥z − z1∥−2−δ−2κ

s |K(x− z1)|dz1

.(ε2κ + ϑκ)∥z − x∥−δ−2κ
s ,
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holds uniformly over ε, ϑ ∈ (0, 1], provided that 0 < κ < 1 and that 1 > δ > 0.
For τ = I(Ψ3)Ψ2, we have the following identity for z = (t, y)

(Π̂(ε,ϑ)
x τ)(z) = (Π̂(ε,ϑ)

x Ψ2)(z)[K ∗ (Π̂(ε,ϑ)
x Ψ3)(z)−K ∗ (Π̂(ε,ϑ)

x Ψ3)(x)]− 3C
(ε,ϑ)
2 (t)(Π̂(ε,ϑ)

x Ψ)(z).

For the term in the fifth Wiener chaos, we have

(Ŵ(ε,ϑ,5)
x τ)(z) = z − x z .

By similar calculations as in (A.5) and (A.6) we obtain that

|⟨(Ŵ(ε,ϑ,5)
x τ)(z), (Ŵ (ε,ϑ,5)

x τ)(z̄)⟩|

.∥z − z̄∥−2−δ
s ∥z − x∥

1
2
−δ

s ∥z̄ − x∥
1
2
−δ

s (G(z − x) +G(z̄ − x) +G(0) +G(z − z̄)),

where the function G is given by (A.7). Choose Ŵ(5)
x τ as Ŵ(ε,ϑ,5)

x τ with each instance of Kε,ϑ

replaced by K, which is the same as in the proof of [Hai14, Theorem 10.22]. For the difference
by Lemma 4.2 and (A.2), (A.3) we have similar estimates:

|⟨(δŴ(ε,ϑ,5)
x τ)(z), (δŴ(ε,ϑ,5)

x τ)(z̄)⟩|

.(ϑκ + ε2κ)[∥z − z̄∥−2−δ
s ∥z − x∥

1
2
−κ−δ

s ∥z̄ − x∥
1
2
−κ−δ

s + ∥z − z̄∥−2−2κ−δ
s ∥z − x∥

1
2
−δ

s ∥z̄ − x∥
1
2
−δ

s ],

which is valid uniformly over ε, ϑ ∈ (0, 1], provided that 0 < κ < 1 and that 1 > δ > 0.
The component in the third Wiener chaos is very similar to what was obtained previously.

Indeed, we have

(Ŵ(ε,ϑ,3)
x τ)(z) = 6( z − x z ) := 6((Ŵ(ε,ϑ,31)

x τ)(z)− (Ŵ(ε,ϑ,32)
x τ)(z)).

Then we obtain that for every δ > 0

|⟨(Ŵ(ε,ϑ,31)
x τ)(z), (Ŵ (ε,ϑ,31)

x τ)(z̄)⟩|

.∥z − z̄∥−1−δ
s | −δ − 4 −2− δ −4− δz z̄

| . ∥z − z̄∥−1−4δ
s ,

where we used Lemma 4.2 in the first inequality and [Hai14, Lemma 10.14] in the last inequality.

Choose Ŵ(31)
x τ as Ŵ(ε,ϑ,31)

x τ with each instance of Kε,ϑ replaced by K, which is the same as in
the proof of [Hai14, Theorem 10.22]. Similarly, by Lemma 4.2 and (A.2), (A.3) we have that

|⟨(δŴ(ε,ϑ,31)
x τ)(z), (δŴ(ε,ϑ,31)

x τ)(z̄)⟩| . (ϑκ + ε2κ)∥z − z̄∥−1−2κ−4δ
s ,

holds uniformly over ε, ϑ ∈ (0, 1], provided that 0 < κ < 1 and that 1 > δ > 0. Similarly, we
obtain

|⟨(Ŵ(ε,ϑ,32)
x τ)(z), (Ŵ(ε,ϑ,32)

x τ)(z̄)⟩|

.|

−3

−2 − δ

−3x x

z̄z
−1− δ

−1− δ |∥z − z̄∥−1−δ
s

.[|

−3

−2 − δ

−4 − δx x

z
−1− δ |+ |

−3

−2− δ

x

z̄z
−1− δ

−4− δ |]∥z − z̄∥−1−δ
s

.∥z − z̄∥−1−δ
s (∥z − x∥−3δ

s + ∥z − z̄∥−3δ
s ),
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where we used Young’s inequality in the second and last inequalities as well as [Hai14, Lemma
10.14] in the last inequality. By Lemma 4.2, (A.2), (A.3) and similar arguments as above we
have

|⟨(δŴ (ε,ϑ,32)
x τ)(z), (δŴ(ε,ϑ,32)

x τ)(z̄)⟩|
.(ϑκ + ε2κ)[∥z − z̄∥−1−δ

s (∥z − x∥−2κ−3δ
s + ∥z − z̄∥−2κ−3δ

s ) + ∥z − z̄∥−1−2κ−δ
s (∥z − x∥−3δ

s + ∥z − z̄∥−3δ
s )],

which is valid uniformly over ε, ϑ ∈ (0, 1], provided that 0 < κ < 1 and that 1 > δ > 0.
We turn to the first Wiener chaos:

(Ŵ(ε,ϑ,1)
x τ)(z) =[(6 z − 3C

(ε,ϑ)
2 (t) z )− 6 x

z

]

:=6[(Ŵ(ε,ϑ,11)
x τ)(z)− (Ŵ(ε,ϑ,12)

x τ)(z)].

By Lemmas 4.2 and 4.3 we have that for every δ > 0

|⟨(Ŵ(ε,ϑ,11)
x τ)(z), (Ŵ(ε,ϑ,11)

x τ)(z̄)⟩|

.
∫ ∫

|f (ε,ϑ)(z, z1)
2K(z − z1)[f

(ε,ϑ)(z1, z̄1)− f (ε,ϑ)(z, z̄1)− f (ε,ϑ)(z1, z̄) + f (ε,ϑ)(z, z̄)]

f (ε,ϑ)(z̄, z̄1)
2K(z̄ − z̄1)|dz1dz̄1

.
∫ ∫

∥z − z1∥−5+δ
s ∥z̄ − z̄1∥−5+δ

s [∥z1 − z̄1∥−1−8δ
s + ∥z − z̄1∥−1−8δ

s + ∥z1 − z̄∥−1−8δ
s + ∥z − z̄∥−1−8δ

s ]

1{∥z1∥s≤C}1{∥z̄1∥s≤C}dz1dz̄1

.∥z − z̄∥−1−8δ
s ,

(A.9)
where we used interpolation in the second inequality and [Hai14, Lemma 10.14] in the last

inequality. Choose Ŵ(11)
x τ(z, z1) =

∫
(L(z − z2)(K(z2 − z1) −K(z − z1))dz2 as in the proof of

[Hai14, Theorem 10.22], where L = (K ∗K)2K.
Moreover, by Lemma 4.3, interpolation and [Hai14, Lemmas 10.14, 10.17] we have

2∑
i=1

|⟨(K(i)
ε,ϑ −K(i)

ε )(z, ·)− (K
(i)
ε,ϑ −K(i)

ε )(z1, ·), (K(i)
ε,ϑ −K(i)

ε )(z̄, ·)− (K
(i)
ε,ϑ −K(i)

ε )(z̄1, ·)⟩|

+ |⟨(Kε −Kε)(z, ·)− (Kε −Kε)(z1, ·), (Kε −K)(z̄, ·)− (Kε −K)(z̄1, ·)⟩|
.(ε2κ + ϑκ)∥z − z1∥δs∥z̄ − z̄1∥δs
(∥z̄1 − z∥−1−4δ−2κ

s + ∥z̄ − z∥−1−4δ−2κ
s + ∥z̄1 − z1∥−1−4δ−2κ

s + ∥z̄ − z1∥−1−4δ−2κ
s ),

which combined with similar arguments as those for (A.9) implies the desired estimates for

δŴ(ε,ϑ,11)
x τ . Also by Lemma 4.2 we obtain that

|⟨(Ŵ(ε,ϑ,12)
x τ)(z), (Ŵ(ε,ϑ,12)

x τ)(z̄)⟩|

.|

−3

−1 − δ

−3x x

z̄z
−2− δ

−2− δ |

.∥z − x∥−
1
2
−2δ

s ∥z̄ − x∥−
1
2
−2δ

s (G4(z − z̄) +G4(z − x) +G4(z̄ − x) +G4(0)),
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holds uniformly over ε, ϑ ∈ (0, 1], provided that 0 < κ < 1 and that 1 > δ > 0. Here we used
[Hai14, (10.37)] in the last inequality and that the function G4 is a bounded function given by

G4(z − z̄) =
δ − 4.5 −1− δ −4.5 + δz z̄

.

Similarly, by Lemma 4.2 and (A.2), (A.3), we have that

|⟨(δŴ (ε,ϑ,12)
x τ)(z), (δŴ(ε,ϑ,12)

x τ)(z̄)⟩| . (ε2κ + ϑκ)∥z − x∥
−1−4δ

2
−κ

s ∥z̄ − x∥
−1−4δ

2
−κ

s ,

holds uniformly over ε, ϑ ∈ (0, 1], provided that 0 < κ < 1 and that 1 > δ > 0. Hence we
conclude that (A.1) holds for all τ ∈ F−, which implies the results.
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