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Abstract

We study the convergence of a Douglas-Rachford type splitting
algorithm for the infinite dimensional stochastic differential equation

dX + A(t)(X)dt = X dW in (0, T ); X(0) = x,

where A(t) : V → V ′ is a nonlinear, monotone, coercive and demicon-
tinuous operator with sublinear growth and V is a real Hilbert space
with the dual V ′. V is densely and continuously embedded in the
Hilbert space H and W is an H-valued Wiener process. The general
case of a maximal monotone operators A(t) : H → H is also investi-
gated.
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1 Introduction

We consider here the stochastic differential equation

dX(t) + A(t)X(t)dt = X(t)dW (t), t ∈ (0, T ),

X(0) = x,
(1.1)
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in a real separable Hilbert space H, whose elements are functions or dis-
tributions on a bounded and open set O ⊂ Rd with smooth boundary ∂O.
In particular, H can be any of the spaces L2(O), H1

0 (O), H−1(O), H1(O),
k = 1, 2, ..., with the corresponding Hilbertian structure. HereH1

0 (O), Hk(O)
are the standard L2-Sobolev spaces on O, and W is a Wiener process of the
form

W (t, ξ) =
∞∑
j=1

µjej(ξ)βj(t), ξ ∈ O, t ≥ 0, (1.2)

where {βj}∞j=1 is an independent system of real-valued Brownian motions
on a probability space {Ω,F ,P} with natural filtration (Ft)t≥0. Here, ej ∈
C2(O) ∩H, j ∈ N, is an orthonormal basis in H, and µj ∈ R, j = 1, 2, ....

The following hypotheses will be in effect throughout this work.

(i) There is a Hilbert space V with dual V ′ such that V ⊂ H, continuously
and densely. Hence V ⊂ H (≡ H ′) ⊂ V ′ continuously and densely.

(ii) A : [0, T ] × V × Ω → V ′ is progressively measurable, i.e., for every
t ∈ [0, T ], this operator restricted to [0, t]×V ×Ω is B([0, t])⊗B(V )⊗Ft-
measurable.

(iii) There is δ ≥ 0 such that, for each t ∈ [0, T ], ω ∈ Ω, the operator
u 7→ δu+A(t, ω)u is monotone and demicontinuous (that is, strongly-
weakly continuous) from V to V ′.

Moreover, there are αi, γi ∈ R, i = 1, 2, 3, α1 > 0, such that, P-a.s.,

〈A(t, ω)u, u〉 ≥ α1|u|2V + α2|u|2H + α3, ∀u ∈ V, t ∈ [0, T ], (1.3)

|A(t, ω)u|V ′ ≤ γ1|u|V + γ2, ∀u ∈ V, t ∈ [0, T ]. (1.4)

(iv) e±W (t) is, for each t, a multiplier in V and a multiplier in H such that
there exists an (Ft)-adapted, R+-valued process Z(t), t ∈ [0, T ], with

E

[
sup
t∈[0,T ]

|Z(t)|

]
<∞ for all r ∈ [1,∞) and such that, P-a.s.,

|e±W (t)y|V ≤ Z(t)|y|V , ∀t ∈ [0, T ], ∀y ∈ V,
|e±W (t)y|H ≤ Z(t)|y|H , ∀t ∈ [0, T ], ∀y ∈ H.

(1.5)
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One assumes also that, for each ω ∈ Ω, the function t→ e±W (t) is H-valued
continuous on [0, T ].

Throughout in the following, | · |V and | · |V ′ denote the norms of V and
V ′, respectively, and by 〈·, ·〉 we denote the duality pairing between V and
V ′ with H as pivot space; on H × H, 〈·, ·〉 is just the scalar product of H.
The norms of V and V ′ are denoted by | · |H and | · |V , | · |V ′ , respectively,
B(H), B(V ) etc. are the classes of Borel sets in the corresponding spaces.

As regards the orthonormal basis {ej}∞j=1 in (1.2), we assume that there
exist γ̃j ∈ [1,∞) such that

|yej|H ≤ γ̃j|y|H , ∀y ∈ H, j = 1, 2, ..., ν :=
∞∑
j=1

µ2
j γ̃

2
j |ej|2∞ <∞. (1.6)

and we assume also that

µ :=
1

2

∞∑
j=1

µ2
je

2
j (1.7)

is a multiplier in V , V ′ and H.
It should be noted that X dW = σ(X)dW̃ where σ : H → L2(H) (the

space of Hilbert-Schmidt operators on H) is defined by

σ(u)v =
∞∑
j=1

µju 〈v, ej〉 ej, ∀v ∈ H,

and so, W̃ =
∞∑
j=1

ejβj is a cylindrical Wiener process on H (see [5]).

Definition 1.1. By a solution to (1.1) for x ∈ H, we mean an (Ft)t≥0-
adapted process X : [0, T ]→ H with continuous sample paths which satisfies

X(t) +
∫ t
0
A(s)X(s)ds = x+

∫ t
0
X(s)dW (s), t ∈ [0, T ], (1.8)

X ∈ L2((0, T )× Ω;V ). (1.9)

The stochastic integral arising in (1.8) is considered in Itô’s sense.
In [3], the authors developed an operatorial approach to (1.1) under the

more general hypotheses than (i)–(iv) above. As a special case (see Theorem
3.1 in [3]), we have

3



Theorem 1.2. Under Hypotheses (i)–(iv), for each x ∈ H, equation (1.1)
has a unique solution X (in the sense of Definition 1.1). Moreover, the
function t 7→ e−W (t)X(t) is V ′-absolutely continuous on [0, T ] and

E
∫ T

0

∣∣∣∣eW (t) d

dt

(
e−W (t)X(t)

)∣∣∣∣2
V ′
dt <∞. (1.10)

In a few words, the method developed in [3] is the following. By the
transformation

X(t) = eW (t)y(t), t ≥ 0, (1.11)

one reduces equation (1.1) to the random differential equation

dy

dt
(t) + e−W (t)A(t)

(
eW (t)y(t)

)
+ µy(t) = 0, a.e. t ∈ (0, T ),

y(0) = x,

(1.12)

and treat (1.12) as an operatorial equation of the form

By +Ay = 0 (1.13)

in a suitable Hilbert space H of stochastic processes on [0, T ]. Here, A and B
are maximal monotone operators suitable defined from V to V ′, where (V ,V ′)
is a dual pair of spaces such that V ⊂ H ⊂ V ′ with dense and continuous
embeddings.

The operatorial form (1.13) of equation (1.12) suggests to approximate
the solution y by the Douglas–Rachford splitting algorithm ([6]–[8]).

The exact form and convergence of the corresponding splitting algorithm
for equation (1.13) will be given below in Section 2. As seen later on in
Theorem 2.1, it leads to a convergent splitting algorithm for the stochastic
differential equation (1.1).

In this way, the operator theoretic approach to equation (1.1) written in
the form (1.13) allows to design a convergent splitting scheme for equation
(1.1) inspired by the Rockafellar [9] proximal point algorithm for nonlinear
operatorial equations (on these lines see also [4]). By our knowledge, the
splitting algorithm obtained here for the stochastic equation is new and might
have implications in numerical approximation of stochastic PDEs.

Notations. If U is a Banach space, we denote by Lp(0, T ;U), 1 ≤ p ≤ ∞,
the space of all Lp-integrable U -valued functions on (0, T ). The space
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Lp((0, T )× Ω;U) is defined similarly. We refer to [2] for notation and stan-
dard results of the theory of maximal monotone operators in Banach spaces.
If O is an open domain of Rd, we denote by W 1,p(O), 1 ≤ p ≤ ∞ and
H1(O), H−1(O) the standard Sobolev spaces on O.

2 Main results

Without loss of generality, we may assume that, besides assumptions (i)–(iii),
A(t) satisfies also the strong monotonicity condition

〈A(t)u− A(t)v, u− v〉 ≥ ν|u− v|2H , ∀u, v ∈ V, (2.1)

where ν > 0 is given by (1.6). (In fact, as easily seen, by the substitution
X → exp(−(ν + δ)t)X with a suitable δ, equation (1.1) can be rewritten as

dX + Ã(t)X dt = X dW,

where the operator X → Ã(t)X = e−(ν+δ)tA(t)(e(ν+δ)tX) + (ν+ δ)X satisfies
conditions (i)–(iii) and (2.1).)

We associate with equation (1.1) the following splitting algorithm

λdZn+1 + J(Zn+1)dt+ λνZn+1dt = λZn+1dW − λA(t)Xndt

+λνXn dt+ J(Xn)dt, t ∈ (0, T ),

Zn+1(0) = x, n = 0, 1, ...

(2.2)

λA(t)Xn+1(t) + J(Xn+1(t))− λνXn+1(t)

= J(Zn+1(t)) + λA(t)Xn(t)− λνXn(t),
(2.3)

where X0 ∈ L2((0, T ) × Ω;V ) is (Ft)t≥0-adapted and arbitrary. Here, the
parameter λ > 0 is arbitrary but fixed and J : V → V ′ is the canonical
isomorphism of the space V onto its dual V ′.

Taking into account assumptions (i)–(iii) and (2.1), which, in particular,
implies that the operator Γ0 : L2(0, T ;V ) → L2(0, T ;V ′), Γ0u = λA(t)u +
J(u) − λνu, u ∈ L2(0, T ;V ), is demicontinuous, locally bounded, and with
inverse continuous, we see that the sequence (Zn, Xn) is well defined by (2.2),
(2.3) and we have also

Xn, Zn ∈ L2((0, T )× Ω;V ) and Zn ∈ L2(Ω;C([0, T ];H)), n = 1, 2, ... (2.4)

Moreover, the processes Xn, Zn are (Ft)t≥0-adapted on [0, T ].
Theorem 2.1 is the main result.
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Theorem 2.1. Under Hypotheses (i)–(iv) and (2.1), assume that x ∈ V and
λ > 0. If (Xn, Zn) is the sequence defined by (2.2), (2.3), we have for n→∞

Xn → X weakly in L2((0, T )× Ω;V ), (2.5)

where X is the solution to equation (1.1) given by Theorem 1.2. Assume
further that the operator u → A(t)u is odd, that is, A(t)(−u) = −A(t)u,
∀u ∈ V. Then, for n→∞,

Xn → X strongly in L2((0, T )× Ω;V ). (2.6)

The splitting scheme (2.2)–(2.3) reduces the approximation of problem
(1.1) to a sequence of simpler linear equations. In fact, at each step n, one
should solve a linear stochastic differential equation of the form

dZn+1 +
1

λ
J(Zn+1)dt+ νZn+1dt = Zn+1dW + Fndt, t ∈ (0, T ),

Zn+1(0) = x,
(2.7)

and the stationary random equation (2.3), where

Fn = −λA(t)Xn + λνXn + J(Xn).

By Itô’s formula (see, e.g., [3]), equation (2.7) has, for each n, the solution

Zn+1 = eW zn+1,

where zn+1 is the solution to the random differential equation

d

dt
zn+1 +

1

λ
e−WJ(eW zn+1) + (µ+ ν)zn+1 = e−WFn,

zn+1(0) = x.

(2.8)

If F : L2((0, T ) × Ω;V ′) → L2((0, T ) × Ω;V ) is the linear continuous
operator defined by

F (f) = Y,

where Y is the solution to the stochastic equation

dY +
1

λ
J(Y )dt+ νY dt = Y dW + f dt; Y (0) = x,
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then we may rewrite (2.2)–(2.3) as

Xn+1 = (λ(A−νI)+J)−1[JF ((λ(νI−A)+J)(Xn))+λ(A−νI)Xn], n = 0, 1, ...

Equivalently,
Xn+1 = ΓnX0, ∀n ∈ N, (2.9)

where Γ : L2((0, T )×Ω;V )→ L2((0, T )×Ω;V ) is the Lipschitzian and given
by

Γ = (λ(A− νI) + J)−1[JF (λ(νI − A) + J) + λ(A− νI)]. (2.10)

Then, by Theorem 2.1, we get

Corollary 2.2. Under assumptions (i)-(iv), (2.1), for each λ > 0 the solution
X to (1.1) is expressed as

X = w − lim
n→∞

ΓnX0 in L2((0, T )× Ω;V ), (2.11)

where X0 ∈ L2((0, T )× Ω;V ) is an arbitrary (Ft)t≥0-adapted process.

Here w − lim indicates the weak limit.

3 Proof of Theorem 2.1

Proceeding as in [3], we consider the spaces H,V and V ′, defined as follows.
H is the Hilbert space of all (Ft)t≥0-adapted processes y : [0, T ] → H such
that

|y|H =

(
E
∫ Y

0

|eW (t)y(t)|2Hdt
) 1

2

<∞,

where E denotes the expectation in the probability space (Ω,F ,P). The
space H is endowed with the norm | · |H generated by the scalar product

〈y, z〉H = E
∫ T

0

〈
eW (t)y(t), eE(t)y(t)

〉
dt.

V is the space of all (Ft)t≥0-adapted processes y : [0, T ]→ V such that

|y|V =

(
E
∫ T

0

|eW (t)y(t)|2V dt
) 1

2

<∞.
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V ′ (the dual of V) is the space of all (Ft)t≥0-adapted processes y : [0, T ]→ V ′

such that

|y|V ′ =

(
E
∫ T

0

|eW (t)y(t)|2V ′dt

) 1
2

<∞.

We have V ⊂ H ⊂ V ′ with continuous and dense embeddings. Moreover,

V ′ 〈u, v〉V = E
∫ T

0

〈
eW (t)u(t), eW (t)v(t)

〉
dt, v ∈ V , u ∈ V ′,

is the duality pairing between V and V ′, with the pivot space H, that is,

V ′ 〈u, v〉V = 〈u, v〉H , ∀u ∈ H, v ∈ V .

Now, for x ∈ H, define the operators A : V → V ′ and B : D(B) ⊂ V → V ′ as
follows:

(Ay)(t) = e−W (t)A(t)(eW (t)y(t))− νy(t), a.e. t ∈ (0, T ), y ∈ V ,

(By)(t) =
dy

dt
(t) + (µ+ ν)y(t), a.e. t ∈ (0, T ), y ∈ D(B),

(3.1)

D(B) =
{
y ∈ V : y ∈ AC([0, T ];V ′) ∩ C([0, T ];H), P-a.s.,

dy

dt
∈ V ′, y(0) = x

}
.

(3.2)

Here, AC([0, T ];V ′) is the space of all absolutely continuous V ′-valued func-
tions on [0, T ]. If y ∈ D(B), then y ∈ C([0, T ];H) and dy

dt
is the derivative

of y in the sense of V ′-valued distributions on (0, T ). Then, equation (1.12)
can be expressed as

By +Ay = 0. (3.3)

Then, the map Λ : V → V ′ defined by

Λv = e−WJ(eWv), v ∈ V, (3.4)

is the canonical isomorphism of V onto V ′ and the scalar product V 〈·, ·〉V of
the space V can be expressed as

V 〈v, v̄〉V = V 〈v,Λv̄〉V ′ , ∀v, v̄ ∈ V . (3.5)
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We set

(A∗u)(t) = Λ−1Au(t) = e−WJ−1(A(t)(eWu)− νeWu), ∀u ∈ V , (3.6)

(B∗u)(t) = Λ−1Bu(t) = e−WJ−1
(
eW
(
du

dt
+ (µ+ ν)u

))
, (3.7)

∀u ∈ D(B∗) = D(B).

Since the operators A, B and A + B are maximal monotone in V × V ′ ([3],
Lemma 4.1, Lemma 4.2), it is easily seen by (3.6)-(3.7) that A∗, B∗ and
A∗ + B∗ are maximal monotone in V × V .

On the other hand, by (3.3) we can rewrite equation (3.3) as

B∗y +A∗y = 0. (3.8)

Let y ∈ D(B) be the unique solution to equation (3.3) (see [3], Proposition
3.3). Then, y is also the solution to (3.8) and so, by Theorem 1 in [8] (see,
also, Corollary 6.1 in [7]), we have that

y = lim
n→∞

(I + λA∗)−1vn weakly in V as n→∞, (3.9)

where {vn} ⊂ V is, for n ≥ 0, defined by

vn+1 = (I + λB∗)−1(2(I + λA∗)−1vn − vn) + (I − (I + λA∗)−1)vn, (3.10)

and v0 is arbitrary in V . Here, I is the identity operator in V .
The splitting algorithm (3.9)–(3.10) is just the Douglas–Rachford algo-

rithm ([6]) for equation (3.8) and it can be equivalently expressed as

y = lim
n→∞

yn weakly in V , (3.11)

yn = (I + λA∗)−1vn, n = 0, 1, ..., (3.12)

yn+1 + λA∗yn+1 = zn+1 + vn − yn, (3.13)

zn+1 + λB∗zn+1 = 2yn − vn, (3.14)

where v0 ∈ V . (To get (3.12)-(3.14) from (3.10), we have used the identity
(I + λB∗)−1(v + λB∗v) = v, ∀v ∈ D(B∗) and the linearity of B∗.)

In fact, the weak convergence of {vn} in the space V is also a consequence
of the convergence of the Rockafellar proximal point algorithm [9] for the
maximal monotone operator v → G−1(v)− v, where

G(z) = (I +λB∗)−1(2(I +λA∗)−1z− z) + z− (I +λA∗)−1z, ∀z ∈ V . (3.15)
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(See [7], Theorem 4.) Taking into account (3.6), (3.7), (3.12) we rewrite
(3.14) as

e−WJ(eW zn+1) + λ

(
dzn+1

dt
+ (µ+ ν)zn+1

)
= e−WJ(eW (2yn − vn)) = e−WJ(eW (−λA∗yn + yn))

= −λe−WA(t)(eWyn) + λνyn + e−WJ(eWyn)

(3.16)

and (3.13) as

J(eWyn+1) + λA(t)(eWyn+1)− λνeWyn+1

= J(eW (zn+1 + vn − yn)).
(3.17)

We set
Xn = eWyn, Zn = eW zn.

Then, by (3.16), we get via Itô’s formula (see [3] and (2.8), (2.7))

λdZn+1 + J(Zn+1)dt+ λνZn+1dt = λZn+1dW − λA(t)Xndt

+λνXndt+ J(Xn)dt,
Zn+1(0) = x.

By (3.17) and (3.12), we also get that

λA(t)Xn+1(t) + J(Xn+1(t))− λνXn+1(t)

= J(Zn+1(t)) + λA(t)Xn(t)− λνXn(t), t ∈ (0, T ),

which are just equations (2.2), (2.3). Moreover, by (3.11), we see that (2.5)
holds.

Assume now that A(t) : V → V ′ is odd. Then so is A∗ : V → V and also
the operator G defined by (3.15). Then, according to a result of J. Baillon
[1], the sequence {vn} defined by (3.10), that is vn+1 = G(vn), is strongly
convergent in V . Recalling (3.9), we infer that so is the sequence {yn} and,
consequently, (2.6) holds. This completes the proof of Theorem 2.1.

Remark 3.1. One might expect that a similar splitting scheme can be con-
structed for nonlinear monotone operators A(t) : V → V ′, where V is a
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reflexive Banach space and A(t) are demicontinuous coercive and with poly-
nomial growth as in [3]. In fact, in this case, one might replace (2.2) by

λdZn+1 + Zn+1dt+ λνZn+1dt = Zn+1dW − λAH(t)Xndt+ λνXndt+Xndt,
t ∈ (0, T ),

λAH(t)Xn+1 +Xn+1 − λνXn+1 = Zn+1 + λAH(t)Xn − λνXn,

where AH(t)u = A(t)u ∩ H. This question will be addressed in Section 5
below (see Remark 5.2).

4 Examples

We shall illustrate here the splitting algorithm (2.2)–(2.3) for a few parabolic
stochastic differential equations.

Example 4.1. Nonlinear stochastic parabolic equations.

Consider the reaction-diffusion stochastic equation in O ⊂ Rd,

dX − div(a(t, ξ,∇X))dt+ νXdt+ ψ(X)dt = XdW in (0, T )×O,
X = 0 on (0, T )× ∂O, X(0) = x in O.

(4.1)

Here, a : (0, T )×O×Rd → Rd is measurable in (t, ξ, r) continuous in r on Rd,
a(t, ξ, 0) = 0. (The more general case, when a : (0, T )×O × Ω× Rd)→ Rd

is progressively measurable, could also be considered.) We assume also that

(a(t, ξ, r1)− a(t, ξ, r2)) · (r1 − r2) ≥ 0, ∀r1, r2 ∈ Rd, (t, ξ) ∈ (0, T )×O,
a(t, ξ, r) · r ≥ a1|r|2d + a2, ∀r ∈ Rd, (t, ξ) ∈ (0, T )×O,
|a(t, ξ, r)|d ≤ c1|r|d + c2, ∀r ∈ Rd, (t, ξ) ∈ (0, T )×O,

where a1, c1, ν > 0, a2, c2 ∈ R, are independent of (t, ξ), and ψ : R → R is
a continuous and monotonically nondecreasing function such that ψ(0) = 0

and |ψ(r)| ≤ C(|r|
2d
d+2 + 1), ∀r ∈ R. Here O ⊂ Rd is a bounded open subset

with smooth boundary ∂O, and | · |d is the Euclidean norm of Rd.
If H = L2(O), V = H1

0 (O), V ′ = H−1(O) and , for t ∈ (0, T ), the
operator A(t) : V → V ′ is defined by

V ′ 〈A(t)y, ϕ〉V =

∫
O

(a(t, ξ,∇y) · ∇ϕ+ ψ(y)ϕ)dξ, ∀ϕ ∈ H1
0 (O), y ∈ H1

0 (O),
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then Hypotheses (i)–(iii) are satisfied. As regards the Wiener process W , we
assume here that, besides (1.6), the following condition holds:

∞∑
j=1

µ2
j |∇ej|2∞ <∞.

Then, by Theorem 2.1, where H, V and A(t) are defined above and J = −∆
with Dirichlet homogeneous boundary conditions, if x ∈ H1

0 (O), the solution

X ∈ L2(Ω;C([0, T ];L2(O)) ∩ L2((0, T )× Ω;H1
0 (O)))

to (4.1) can be obtained as

X = w − lim
n→∞

Xn in L2((0, T )× Ω;H1
0 (O)), (4.2)

where (Xn, Zn) ∈ L2((0, T )×Ω;H1
0 (O)) is the solution to the system (we take

λ = 1)

dZn+1 −∆Zn+1dt+ νZn+1dt = Zn+1dW + div(a(t, ξ,∇Xn))dt−∆Xndt

in (0, T )×O,
Zn+1(0) = x in O,
Zn+1 = 0 in (0, T )× ∂O,
div a(∇Xn+1) + ∆Xn+1 = ∆Zn+1 + div(a(t, ξ,∇Xn)) in (0, T )×O,

(4.3)
where X0 ∈ L2((0, T ) × Ω;H1

0 (O)) is arbitrary but Ft-adapted. Moreover,
if a(t, ξ,−r) ≡ −a(t, ξ, r), ∀r ∈ Rd, then the convergence (4.2) is strong in
L2((0, T )× Ω;H1

0 (O)).

Example 4.2. Stochastic porous media equations.

Consider the stochastic equation

dX −∆ψ(t, ξ,X)dt− ν∆Xdt = XdW in (0, T )×O,
X(0, ξ) = x(ξ) in O,
ψ(t, ξ,X(t, ξ)) = 0 on (0, T )× ∂O,

(4.4)

whereO is a bounded domain in Rd, ν > 0, the function ψ : [0, T ]×O × R→ R
is continuous, r → ψ(t, ξ, r) is monotonically increasing in r, and there exist
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a ∈ (0,∞) and c ∈ [0,∞) such that

rψ(t, ξ, r) ≥ a|r|2 − c, ∀r ∈ R, (t, ξ, r) ∈ [0, T ]×O,

|ψ(t, ξ, r)| ≤ c(1 + |r|), ∀r ∈ R, (t, ξ, r) ∈ [0, T ]×O.
(4.5)

We shall write equation (4.4) under the form (1.1) with H = H−1(O).
Namely, we take V = L2(O), H = H−1(O), and V ′ is the dual of V with the
pivot space H−1(O). Then, V ⊂ H ⊂ V ′ and

V ′ = {θ ∈ D′(O) : θ = −∆v, v ∈ L2(O)},

where ∆ is taken in the sense of distributions on O. (Here D′(O) is the space
of Schwartz distributions on O.) The duality V ′ 〈·, ·〉V is defined as

V ′ 〈θ, u〉V =

∫
O
θ̃u dξ, θ̃ = (−∆)−1θ,

where ∆ is the Laplace operator with homogeneous Dirichlet boundary con-
ditions on ∂O. The duality mapping J : V → V ′ is just the operator −∆
defined from L2(O) to V ′ ⊂ D′(O) by

∆u(ϕ) =

∫
O
u∆ϕdξ, ∀ϕ ∈ H1

0 (O) ∩H2(O).

The operator A(t) : V → V ′ is defined by

V ′ 〈A(t)y, v〉V =

∫
O
ψ(t, ξ, y)v dξ, ∀y, v ∈ V = L2(O), t ∈ [0, T ].

Then, Hypotheses (i)–(iv) hold and so, if x ∈ L2(O), by Theorem 2.1, the
solution X ∈ L2(Ω;C([0, T ];H−1(O)) ∩ L2((0, T ) × Ω;L2(O))) to (4.4) is
given by

X = w − lim
n→∞

Xn in L2((0, T )× Ω;L2(O)),

where

dZn+1 −∆Zn+1dt+ νZn+1dt = Zn+1dW −∆ψ(t, ·, Xn)dt−∆Zndt

in (0, T )×O,

Zn+1(0) = x ∈ L2(O), n = 0, 1, ..., (4.6)

∆ψ(t, ·, Xn+1) +Xn+1 = Zn+1 + ∆ψ(t, ·, Xn), in O,
ψ(t, ·, Xn+1(t, ·)) = 0 on ∂O,

n = 0, 1, ..., X0 ∈ L2(0, T ;L2(Ω;L2(O))).
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If ψ(t, ξ, r) = −ψ(t, ξ,−r), ∀r ∈ R, then the convergence of the sequence
{Xn} is strong in L2((0, T )× Ω;L2(O)).

5 The case where A(t) is maximal monotone

in H ×H
Consider now equation (1.1) under the following assumptions on A:

(j) A : [0, T ] × H × Ω → H is progressively measurable and, for each
(t, ω)× [0, T ]×Ω the operator u→ A(t, ω, u) is maximal monotone in
H ×H. Moreover, there is f ∈ L2((0, T )× Ω;H) such that

(I + A(t))−1f(t) ∈ L2((0, T )× Ω;H). (5.1)

We assume also that condition (2.1) holds.
It should be noted that, if A(t) : V → V ′ satisfies assumptions (i)-(ii),

where V is a reflexive Banach space, then the operator A(t) : H → H,
defined by

A(t)Hu = A(t)u ∩ V,

satisfies assumption (j). However, the class of the operators A satisfying (j)
is considerably larger.

We consider the splitting scheme (which is well defined by strong mono-
tonicity of A∗1 + B∗1)

λdYn+1 + (1 + λν)Yn+1dt = λYn+1dW

+ (Vn − ((1− λν)I − λA(t))−1Vn)dt,

Yn+1(0) = x in (0, T ),

Vn+1 = Yn+1 + Vn − ((1− λν)I − λA(t))−1Vn,

(5.2)

where V0 ∈ L2((0, T )×Ω;H) is an (Ft)t≥0-adapted process such that A(t)V0 ∈
L2((0, T )× Ω;H). We have

Theorem 5.1. Assume that x ∈ H and that equation (1.1) has a solution
X ∈ L2(Ω;C([0, T ];H)) such that A(t)X ∈ L2((0, T )× Ω;H).

Then, for n→∞,

Vn → V weakly in L2((0, T )× Ω;H), (5.3)
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where X = ((1− λν)I + A(t))−1V is the solution to (1.1).
If A(t) is odd, then the convergence (5.3) is strong.

Proof. The operators A∗1 and B∗1 defined by

(A∗1u)(t) = e−WA(t)(eWu)− νu, ∀u ∈ D(A∗1),

(B∗1u)(t) =
du

dt
+ (µ+ ν)u, ∀u ∈ D(B∗1),

with the domains

D(A∗1) = {u ∈ H; e−WA(t)(eWu)− νu ∈ H},
D(B∗1) = {u ∈ H; u ∈ W 1,2([0, T ];H) · P-a.s., u(0) = x}

are, by the above hypotheses, maximal monotone in H × H (see also [4]).
Moreover, there is at least one solution y∗ to the equation

A∗1y∗ + B∗1y∗ = 0. (5.4)

Then, again by [8], it follows that the sequence {vn} ⊂ H defined by

vn+1 = (I + λB∗1)−1(2(I + λA∗1)−1vn − vn) + vn − (I + λA∗1)−1vn,
n = 0, 1, ...

(5.5)

is weakly convergent in H to v∗, where (1 + λA∗1)−1v∗ = y∗ is the solution to
equation (5.4).

We set
z̃n+1 = vn+1 − vn + (I + λA∗1)−1vn (5.6)

and, by (5.5), we have

z̃n+1 + λB∗1zn+1 = vn − (I + λA∗1)−1vn. (5.7)

Then, if Yn = eW z̃n and Vn = eWvn, we can rewrite (5.6)-(5.7) as (5.2) and
get (5.3), as claimed.

Remark 5.2. The convergence of the splitting algorithm (5.1)-(5.2) does not
require conditions of the form (ii)-(iii) for the operator A(t) but in change it
requires the existence of a sufficiently regular solution X for equation (1.1)
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(A(t)x ∈ L2((0, T )×Ω;H)) which is not the case for Examples 4.1, 4.2. Such
a condition holds, however, for the stochastic reaction-diffusion equation

dX −∆X dt+ Ψ(X)dt = X dW in (0, T )×O,
X = 0 on (0, T )× ∂O,
X(0) = x,

if x ∈ H1
0 (O) and Ψ : R→ R is continuous and monotonically increasing and

for other stochastic parabolic equations as well.
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