Estimates of distances between solutions of Fokker-Planck-Kolmogorov EQUATIONS WITH PARTIALLY DEGENERATE DIFFUSION MATRICES

Oxana A. Manita ${ }^{a}$, Maxim S. Romanov ${ }^{a}$, Stanislav V. Shaposhnikova ${ }^{a, b} 1$
${ }^{a}$ Department of Mechanics and Mathematics, Moscow State University, Moscow, Russia; ${ }^{b}$ National Research University Higher School of Economics, Moscow, Russia.

Using a metric which interpolates between the Kantorovich metric and the total variation norm we estimate the distance between solutions of Fokker-Planck-Kolmogorov equations with degenerate diffusion matrices. Some relations between the degeneracy of a diffusion matrix and the regularity of a drift coefficient are analysed. Applications to nonlinear Fokker-Planck-Kolmogorov equations are given.

Keywords: Fokker-Planck-Kolmogorov equation, Degenerate diffusion matrix.
MSC: 35K10, 35K55, 60J60.
We study the Cauchy problem for the Fokker-Planck-Kolmogorov equation:

$$
\begin{equation*}
\partial_{t} \mu=L_{A, b}^{*} \mu,\left.\quad \mu\right|_{t=0}=\mu_{0} \tag{1}
\end{equation*}
$$

where μ_{0} is a probability measure on \mathbb{R}^{d} and the operators $L_{A, b}$ and $L_{A, b}^{*}$ are given by the following expressions

$$
\begin{gathered}
L_{A, b} u(t, x)=\sum_{i, j=1}^{d} a^{i j}(t, x) \partial_{x_{i}} \partial_{x_{j}} u(x)+\sum_{i=1}^{d} b^{i}(t, x) \partial_{x_{i}} u(x), \\
L_{A, b}^{*} u(t, x)=\sum_{i, j=1}^{d} \partial_{x_{i}} \partial_{x_{j}}\left(a^{i j}(t, x) u(x)\right)-\sum_{i=1}^{d} \partial_{x_{i}}\left(b^{i}(t, x) u(x)\right) .
\end{gathered}
$$

Further assume that $A(x, t)=\left(a^{i j}(x, t)\right)_{i, j \leq d}$ is a nonnegative symmetric matrix (called the diffusion matrix) with Borel measurable entries, $b(x, t)=\left(b^{i}(x, t)\right)_{i=1}^{d}:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a Borel measurable mapping (called the drift coefficient) and a solution $\mu=\mu_{t}(d x) d t$ is given by a family of probability measures μ_{t} on \mathbb{R}^{d}.

The goal of this paper is to estimate the distance (with respect to a suitable metric) between two solutions $\mu=\mu_{t}(d x) d t$ and $\sigma=\sigma_{t}(d x) d t$ to Fokker-Planck-Kolmogorov equations

$$
\partial_{t} \mu=L_{A, b_{\mu}}^{*} \mu \quad \text { and } \quad \partial_{t} \sigma=L_{A, b_{\sigma}}^{*} \sigma
$$

with different drifts b_{μ} and b_{σ}. The diffusion matrix A is allowed to be fully degenerate. Furthermore we analyse some relations between the degeneracy of the diffusion matrix and the regularity of the drift coefficient. Let us consider two different cases: $A=I$ and $A=0$. In the first case the estimate

$$
\left\|\mu_{t}-\sigma_{t}\right\|_{T V} \leq\left\|\mu_{0}-\sigma_{0}\right\|_{T V}+\left(\int_{0}^{t} \int_{\mathbb{R}^{d}}\left|b_{\mu}-b_{\sigma}\right|^{2} d \sigma_{s} d s\right)^{1 / 2}
$$

where $\left\|\|_{T V}\right.$ is the total variation norm, was established in [6, Remark 2.3] for locally bounded coefficients $b_{\mu}^{i}, b_{\sigma}^{i} \in L^{1}(\mu+\sigma)$. Note that even the equations with different

[^0]diffusion matrices were investigated in [6]. In the second case for the Lipschitzian drifts b_{μ} and b_{σ} the estimate
$$
W\left(\mu_{t}, \sigma_{t}\right) \leq W\left(\mu_{0}, \sigma_{0}\right)+C \int_{0}^{t} \int_{\mathbb{R}^{d}}\left|b_{\mu}-b_{\sigma}\right| d \sigma_{s} d s
$$
where W is the Kantorovich metric
$$
W\left(\mu^{1}, \mu^{2}\right)=\sup \left\{\int_{\mathbb{R}^{d}} \varphi d\left(\mu^{1}-\mu^{2}\right):|\varphi| \leq 1,|\varphi(x)-\varphi(y)| \leq|x-y|\right\},
$$
can be derived directly from the expressions for the solutions μ_{t} and σ_{t}. We stress that the last estimate does not hold for continuous drifts b_{μ} and b_{σ}. Moreover the Kantorovich metric cannot be replaced by the total variation norm. The aim of our paper is to study the intermediate case:
$$
L_{A, b} u=\sum_{i=1}^{p} \partial_{x_{i}}^{2} u+\sum_{i=1}^{d} b^{i} \partial_{x_{i}} u, \quad 0 \leq p \leq d
$$

In particular we obtain the following estimate. Suppose that b_{μ} (not b_{σ}) is a Lipschitz mapping with respect to $\left(x_{p+1}, \ldots, x_{d}\right)$; then the estimate

$$
\begin{aligned}
& d_{p}\left(\mu_{t}, \sigma_{t}\right) \leq K d_{p}\left(\mu_{0}, \sigma_{0}\right)+K \int_{0}^{t} \int_{\mathbb{R}^{d}} \sum_{i=p+1}^{d}\left|b_{\mu}^{i}-b_{\sigma}^{i}\right| d \sigma_{s} d s+ \\
+ & K\left(\int_{0}^{t} \int_{\mathbb{R}^{d}} \sum_{i=1}^{p}\left|b_{\mu}^{i}-b_{\sigma}^{i}\right|^{2} d \sigma_{s} d s\right)^{1 / 2}\left(1+\int_{0}^{t} \int_{\mathbb{R}^{d}}\left[\sum_{i=1}^{p}\left|b_{\mu}^{i}-b_{\sigma}^{i}\right|^{2}+\sum_{i=p+1}^{d}\left|b_{\mu}^{i}-b_{\sigma}^{i}\right|\right] d \sigma_{s} d s\right)^{1 / 2}
\end{aligned}
$$

holds true under the condition that $\sum_{i=1}^{p}\left(\left|b_{\mu}^{i}\right|^{2}+\left|b_{\sigma}^{i}\right|^{2}\right)$ and $\sum_{i=p+1}^{d}\left(\left|b_{\mu}^{i}\right|+\left|b_{\sigma}^{i}\right|\right)$ are integrable with respect to $\mu+\sigma$. Here the metric d_{p} is defined by the following way:

$$
d_{p}\left(\mu^{1}, \mu^{2}\right)=\sup _{\psi} \int_{\mathbb{R}^{d}} \psi d\left(\mu^{1}-\mu^{2}\right),
$$

where $\psi \in C\left(\mathbb{R}^{d}\right),|\psi| \leq 1$ and $\left|\psi\left(x+h_{p}\right)-\psi(x)\right| \leq\left|h_{p}\right|$ for all $h_{p}=\left(0, \ldots, 0, y_{p+1}, \ldots, y_{d}\right)$. The main novelty is the investigation of degenerate Fokker-Planck-Kolmogorov equations for measures with nonsmooth unbounded coefficients. In addition we obtain new existence and uniqueness conditions for nonlinear Fokker-Planck-Kolmogorov equations. Since the equations are degenerate the solutions μ and σ do not possess densities with respect to Lebesgue measure. Thus the approach from [6] cannot be applied here and we use the approximative Holmgren method which was developed in [4] and [5]. The main difficulty is to obtain the gradient estimate for a solution of the adjoint equation. The drifts b_{μ} and b_{σ} are irregular mappings and we cannot obtain the required estimate by the maximum principle directly. Let us remark that we do not assume that b_{μ} and b_{σ} are locally bounded or locally integrable with respect to Lebesgue measure. Thus even in the case $p=d$ our result seems to be new.

Equations with partially degenerate diffusion matrices arise in the Vlasov-FokkerPlanck systems and play a crucial role in physics (see, for instance [14], [7]). The uniqueness of solutions of linear equations with degenerate diffusion matrix is investigated in [3]. The estimates of the total variation and Kantorovich distances between solutions are given in [6] and [10]. In [9] the authors present quantitative stability estimates for the solutions of degenerate Fokker-Planck equations in L^{p}. The pointwise estimates for the difference of two transition densities of diffusions are given in [8]. In [2], a survey of results about Fokker-Planck-Kolmogorov linear equations is presented. In [12] and [11] the existence and uniqueness of solutions to nonlinear Fokker-Planck-Kolmogorov equations are investigated.

Let us explain precisely our framework.
A Borel measure μ on $[0, T] \times \mathbb{R}^{d}$ is given by a family of probability measures $\left(\mu_{t}\right)_{t \in[0, T]}$ if $\mu_{t} \geq 0, \mu_{t}\left(\mathbb{R}^{d}\right)=1$, for every Borel set B the mapping $t \rightarrow \mu_{t}(B)$ is measurable and for every $u \in C_{0}^{\infty}\left((0, T) \times \mathbb{R}^{d}\right)$ one has

$$
\int_{[0, T] \times \mathbb{R}^{d}} u d \mu=\int_{0}^{T} \int_{\mathbb{R}^{d}} u(x, t) \mu_{t}(d x) d t .
$$

We write $\mu(d x d t)=\mu_{t}(d x) d t$ or $\mu=\mu_{t} d t$.
We say that a measure $\mu=\mu_{t} d t$ given by a family of probability measures μ_{t} satisfies the Cauchy problem

$$
\begin{equation*}
\partial_{t} \mu=L_{A, b}^{*} \mu,\left.\quad \mu\right|_{t=0}=\mu_{0} \tag{2}
\end{equation*}
$$

if $a^{i j}, b^{i} \in L^{1}([0, T] \times U, \mu)$ for every ball $U \subset \mathbb{R}^{d}$ and for every function u such that $u(x, t) \equiv 0$ if $|x| \geq R$ for some $R>0$ and $u \in C_{t, x}^{1,2}\left((0, T) \times \mathbb{R}^{d}\right) \bigcap C\left([0, T] \times \mathbb{R}^{d}\right)$ the equality

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} u(x, t) \mu_{t}(d x)=\int_{\mathbb{R}^{d}} u(x, 0) d \nu+\int_{0}^{t} \int_{\mathbb{R}^{d}}\left[\partial_{t} u+L_{A, b} u\right] \mu_{s}(d x) d s \tag{3}
\end{equation*}
$$

holds for every $t \in[0, T]$.
Suppose that for a number $\lambda>0$ and some integer $0 \leq p \leq d$ one has
(H1) $\langle A(x, t) \xi, \xi\rangle \geq \lambda \sum_{i=1}^{p} \xi_{i}^{2}$ for all $x, \xi \in \mathbb{R}^{d}$ and $t \in[0, T]$, where the right hand side equals zero if $p=0$.

Let μ be a bounded Borel measure on $[0, T] \times \mathbb{R}^{d}$. For $p \geq 1$ we denote by μ^{p} the projection of μ on the first p coordinates x_{1}, \ldots, x_{p} and t, that is $\mu^{p}(B)=\mu\left(B \times \mathbb{R}^{d-p}\right)$ for every Borel set $B \subset[0, T] \times \mathbb{R}^{p}$.
Proposition 1. Let $p \geq 1$. Suppose that $\mu=\mu_{t} d t$, is a solution of the Cauchy problem (2) and μ_{t} is a family of probability measures on \mathbb{R}^{d}. Suppose also that the diffusion matrix A satisfies the condition (H1) and $a^{i j}, b^{i} \in L^{1}\left(\mu,[0, T] \times \mathbb{R}^{d}\right)$. Then the measure μ^{p} has a density $\varrho\left(t, x_{1}, \ldots, x_{p}\right)$ with respect to Lebesgue measure on $(0, T) \times \mathbb{R}^{d}$ and ϱ belongs to $L_{\text {loc }}^{(p+1) / p}\left((0, T) \times \mathbb{R}^{p}\right)$.
Proof. Since $a^{i j}, b^{i}$ belong to $L^{1}\left(\mu,[0, T] \times \mathbb{R}^{d}\right)$ we see that the definition of a solution μ holds true for every smooth bounded u that depends only on x_{1}, \ldots, x_{p} and t. It follows that for every $u \in C_{0}^{\infty}\left((0, T) \times \mathbb{R}^{p}\right)$ we have

$$
\int_{0}^{T} \int_{\mathbb{R}^{p}}\left[\partial_{t} u+\sum_{i, j=1}^{p} \tilde{a}^{i j} \partial_{x_{i}} \partial_{x_{j}} u\right] d \mu_{t}^{p} d t \leq C\left(\sup |u|+\sup \left|\nabla_{x} u\right|\right),
$$

where $\tilde{a}^{i j}=\mathbb{E}\left(a^{i j} \mid \sigma_{p}\right)$ and σ_{p} is generated by t, x_{1}, \ldots, x_{p}. Applying [2, Theorem 6.3.1] we obtain that $(\operatorname{det} \tilde{A})^{1 /(p+1)} \cdot \mu^{p}$ has a density $\varrho \in L_{\text {loc }}^{(p+1) / p}\left((0, T) \times \mathbb{R}^{p}\right)$. By (H1) we can find a set $I \subset(0, T) \times \mathbb{R}^{p}$ such that $\mu^{p}(I)=1$ and $\left\langle\tilde{A}\left(t, x_{1}, \ldots, x_{p}\right) \xi, \xi\right\rangle \geq \lambda|\xi|^{2}$ for every $\left(t, x_{1}, \ldots, x_{p}\right) \in I$ and every $\xi \in \mathbb{R}^{p}$. This implies that $\operatorname{det} \tilde{A}\left(t, x_{1}, \ldots, x_{p}\right) \geq \lambda^{p}>0$ for every $\left(t, x_{1}, \ldots, x_{p}\right) \in I$ and μ^{p} has a density.

Suppose also that
(H2) $a^{i j}$ are bounded continuous functions having two bounded continuous spatial derivatives and

$$
\sum_{k=p+1}^{d}(S A(x, t) S)^{k k} \geq \gamma \sum_{k=p+1}^{d}\left|\operatorname{tr}\left(\partial_{x_{k}} A(x, t) S\right)\right|^{2}
$$

for some $\gamma>0$ and every symmetric matrix S.
We stress that according to [15, Lemma 3.2.3] the last inequality holds true if $p=0$. Let us illustrate the case $p \geq 1$.

Example 1. Let the diffusion matrix A have the form

$$
\left(\begin{array}{cc}
R & 0 \\
0 & 0
\end{array}\right)
$$

where R is a symmetric $p \times p$ matrix, $\langle R \xi, \xi\rangle \geq \lambda|\xi|^{2}$ for every $\xi \in \mathbb{R}^{p}$ and R depends only on x_{1}, \ldots, x_{p}. It is clear that A satisfies (H1) and (H2).

Example 2. Let A have the following form

$$
\left(\begin{array}{cc}
R & 0 \\
0 & Q
\end{array}\right)
$$

where $R=\left(r^{i j}\right)$ is the same as above, $Q=\left(q^{i j}\right)$ is a symmetric and nonnegative matrix. Let us check that A satisfies (H2). Note that

$$
(S A S)^{k k}=\sum_{1 \leq i j \leq d} a^{i j} s_{i k} s_{j k}=\sum_{1 \leq i, j \leq p} r^{i j} s_{i k} s_{j k}+\sum_{p+1 \leq i, j \leq d} q^{i j} s_{i k} s_{j k},
$$

where the last term can be represented in the form $(Z Q Z)^{k k}, Z=\left(s_{m l}\right)_{p+1 \leq m, l \leq d}$. Applying [15, Lemma 3.2.3] we obtain the inequality

$$
\operatorname{tr}(Z Q Z) \geq \gamma \sum_{k}\left|\operatorname{tr}\left(\partial_{x_{k}} Q Z\right)\right|^{2}
$$

for some $\gamma>0$. Since R does not depend on x_{p+1}, \ldots, x_{d} we see that

$$
\sum_{k=p+1}^{d}\left|\operatorname{tr}\left(\partial_{x_{k}} A(x, t) S\right)\right|^{2}=\sum_{k}\left|\operatorname{tr}\left(\partial_{x_{k}} Q Z\right)\right|^{2} .
$$

It follows that (H2) is fulfilled.
Example 3. Let A have the form

$$
\left(\begin{array}{ll}
R & Y \\
Y & Q
\end{array}\right)
$$

where symmetric and nonnegative matrixes $R=\left(r^{i j}\right)_{1 \leq i, j \leq p}$ and $Q=\left(q^{i j}\right)_{p+1 \leq i, j \leq d}$ do not depend on x_{p+1}, \ldots, x_{d} and A satisfies (H1). Let us prove that A satisfies (H2). The condition (H1) implies that $(S A S)^{k k} \geq \lambda \sum_{i=1}^{p} s_{i k}^{2}$. Furthermore the inequality

$$
8^{-1}\left|\operatorname{tr}\left(\partial_{x_{k}} A(x, t) S\right)\right|^{2} \leq \sum_{1 \leq i \leq p, p+1 \leq j \leq d}\left|\partial_{x_{k}} y^{i j}\right|^{2}\left|s_{i j}\right|^{2}
$$

holds for every $k \geq p+1$. Taking into account that $\left|\partial_{x_{k}} y^{i j}\right|$ are bounded functions we obtain (H2).

Example 4. Assume that the matrix A has the same form as in Example 3, Q depends on x_{1}, \ldots, x_{d}, R does not depend on x_{p+1}, \ldots, x_{d}. Assume also that the inequality

$$
\langle A \xi, \xi\rangle \geq \lambda \sum_{i=1}^{p} \xi_{i}^{2}+\alpha \sum_{i, j=p+1}^{d} q^{i j} \xi_{i} \xi_{j}
$$

holds for every $\xi \in \mathbb{R}^{d}$. Let us show that A satisfies (H2).
Indeed, for every symmetric matrix S we have

$$
\sum_{k=p+1}^{d} \sum_{i, j=1}^{d} s_{k i} a^{i j} s_{j k} \geq \lambda \sum_{k=p+1}^{d} \sum_{i=1}^{p} s_{i k}^{2}+\alpha \sum_{i, j, k=p+1}^{d} q^{i j} s_{i k} s_{j k} .
$$

On the other hand, we obtain the inequality

$$
\begin{gathered}
\sum_{k=p+1}^{d}\left(\sum_{i, j=1}^{d} \partial_{x_{k}} a^{i j} s_{j i}\right)^{2} \leq \sum_{k=p+1}^{d}\left[8\left(\sum_{1 \leq i \leq p, p+1 \leq j \leq d} \partial_{x_{k}} y^{i j} s_{j i}\right)^{2}+2\left(\sum_{i, j=p+1} \partial_{x_{k}} q^{i j} s_{j i}\right)^{2}\right] \leq \\
\leq C\left(\sum_{1 \leq i \leq p, p+1 \leq j \leq d}\left|\partial_{x_{k}} y^{i j}\right|^{2}\left|s_{i j}\right|^{2}+\sum_{i, j, l=p+1}^{d} q^{i j} s_{i l} s_{j l}\right)
\end{gathered}
$$

Thus (H2) is fulfilled.
Example 5. Suppose that $a_{x_{k}}^{i_{0} j_{0}} \neq 0$, for some $i_{0}, j_{0} \leq p$ and $k>p$; then A does not satisfy (H2). Let $S=\left(s_{i j}\right), s_{i_{0} j_{0}}=s_{j_{0} i_{0}}=1$ and $s_{i j}=0$ otherwise. It is easy to prove that

$$
\sum_{k=p+1}^{d}(S A(x, t) S)^{k k}=0 \quad \text { and } \quad \sum_{k=p+1}^{d}\left|\operatorname{tr}\left(\partial_{x_{k}} A(x, t) S\right)\right|^{2}>0 .
$$

Recall that

$$
d_{p}\left(\mu^{1}, \mu^{2}\right)=\sup \left\{\int_{\mathbb{R}^{d}} \psi d\left(\mu^{1}-\mu^{2}\right): \psi \in C\left(\mathbb{R}^{d}\right),|\psi(x)| \leq 1,\left|\psi\left(x+h_{p}\right)-\psi(x)\right| \leq\left|h_{p}\right|\right\} .
$$

Let us formulate our main result.
Theorem 1. Assume that $\mu=\mu_{t} d t$ and $\sigma=\sigma_{t} d t$ are two solutions of the Cauchy problems (2) with the initial conditions μ_{0} and σ_{0} and with the operators $L_{A, b_{\mu}}$ and $L_{A, b_{\sigma}}$, where A satisfies (H1), (H2). Assume also that there exists $\Lambda>0$ such that

$$
\left|b_{\mu}(t, x)-b_{\mu}\left(t, x+h_{p}\right)\right| \leq \Lambda\left|h_{p}\right| \quad \forall h_{p}=\left(0, \ldots, 0, y_{p+1}, \ldots, y_{d}\right)
$$

and

$$
\sum_{i=1}^{p}\left|b_{\mu}^{i}\right|^{2}, \quad \sum_{i=1}^{p}\left|b_{\sigma}^{i}\right|^{2}, \quad \sum_{i=p+1}^{d}\left|b_{\mu}^{i}\right|, \quad \sum_{i=p+1}^{d}\left|b_{\mu}^{i}\right| \quad \text { belong to } \quad L^{1}(\mu+\sigma) .
$$

Then there exists a number $K=K(T, \lambda, \Lambda, \gamma)>0$ such that the estimate

$$
\begin{aligned}
& d_{p}\left(\mu_{t}, \sigma_{t}\right) \leq K d_{p}\left(\mu_{0}, \sigma_{0}\right)+K \int_{0}^{t} \int_{\mathbb{R}^{d}} \sum_{i=p+1}^{d}\left|b_{\mu}^{i}-b_{\sigma}^{i}\right| d \sigma_{s} d s+ \\
+ & K\left(\sum_{i=1}^{p} \int_{0}^{t} \int_{\mathbb{R}^{d}}\left|b_{\mu}^{i}-b_{\sigma}^{i}\right|^{2} d \sigma_{s} d s\right)^{1 / 2}\left(1+\int_{0}^{t} \int_{\mathbb{R}^{d}}\left[\sum_{i=1}^{p}\left|b_{\mu}^{i}-b_{\sigma}^{i}\right|^{2}+\sum_{i=p+1}^{d}\left|b_{\mu}^{i}-b_{\sigma}^{i}\right|\right] d \sigma_{s} d s\right)^{1 / 2} .
\end{aligned}
$$

holds for every $t \in[0, T]$.
The proof of Theorem 1 is based on the two lemmas below.
Lemma 1. Let f be a smooth bounded solution of the Cauchy problem

$$
\partial_{t} f+\sum_{i, j=1}^{d} a^{i j} \partial_{x_{i}} \partial_{x_{j}} f+\sum_{i=1}^{d} h^{i} \partial_{x_{i}} f=0, \quad f(T, x)=\psi(x) .
$$

Suppose that ψ and h are smooth bounded functions having bounded derivatives and

$$
|\psi| \leq 1, \quad\left|\partial_{x_{k}} \psi\right| \leq 1, \quad\left|\partial_{x_{k}} h\right| \leq \Lambda,
$$

for some $\Lambda>0$ and every $k=p+1, p+2, \ldots, d$. Then

$$
|f(t, x)|^{2}+\sum_{k=p+1}^{d}\left|\partial_{x_{k}} f(t, x)\right|^{2} \leq(1+d) e^{2 M t}, \quad M=2 \lambda^{-1} d^{2} \Lambda^{2}+4^{-1} \gamma^{-1}
$$

Proof. It is easily shown that the function $v=\left(f^{2}+\sum_{k=p+1}^{d}\left|\partial_{x_{k}} f\right|^{2}\right) / 2$ satisfies the following equation

$$
\partial_{t} v+\sum_{i, j=1}^{d} a^{i j} \partial_{x_{i}} \partial_{x_{j}} v+\sum_{i=1}^{d} h^{i} \partial_{x_{i}} v=Q
$$

where

$$
\begin{aligned}
Q=\sum_{1 \leq i, j \leq d} a^{i j} \partial_{x_{i}} f \partial_{x_{j}} f+ & \sum_{k=p+1}^{d} \sum_{1 \leq i, j \leq d} a^{i j} \partial_{x_{i}} \partial_{x_{k}} f \partial_{x_{j}} \partial_{x_{k}} f \\
& -\sum_{k=p+1}^{d} \sum_{1 \leq i, j \leq d} \partial_{x_{k}} a^{i j} \partial_{x_{i}} \partial_{x_{j}} f \partial_{x_{k}} f-\sum_{k=p+1}^{d} \sum_{1 \leq i \leq d} \partial_{x_{k}} h^{i} \partial_{x_{i}} f \partial_{x_{k}} f .
\end{aligned}
$$

Let $u=\left(\partial_{x_{i}} f\right)_{1 \leq i \leq d}$ and $S=\left(\partial_{x_{i}} \partial_{x_{j}} f\right)$. The expression Q can be represented in the form

$$
Q=\langle A u, u\rangle+\sum_{k=p+1}^{d}(S A S)^{k k}-\sum_{k=p+1}^{d} \operatorname{tr}\left(\partial_{x_{k}} A S\right) \partial_{x_{k}} f-\sum_{k=p+1}^{d} \sum_{1 \leq i \leq d} \partial_{x_{k}} h^{i} \partial_{x_{i}} f \partial_{x_{k}} f .
$$

Taking into account the estimates

$$
\sum_{k=p+1}^{d} \sum_{1 \leq i \leq d} \partial_{x_{k}} h^{i} \partial_{x_{i}} f \partial_{x_{k}} f \leq d \Lambda|u|\left(\sum_{k=p+1}^{d}\left|\partial_{x_{k}} f\right|^{2}\right)^{1 / 2} \leq \lambda|u|^{2}+2 \lambda^{-1} d^{2} \Lambda^{2} v
$$

and

$$
\sum_{k=p+1}^{d} \operatorname{tr}\left(\partial_{x_{k}} A S\right) \partial_{x_{k}} f \leq \gamma \sum_{k=p+1}^{d}\left|\operatorname{tr}\left(\partial_{x_{k}} A S\right)\right|^{2}+4^{-1} \gamma^{-1} v
$$

we obtain the inequality

$$
Q \geq-\left(2 \lambda^{-1} d^{2} \Lambda^{2}+4^{-1} \gamma^{-1}\right) v
$$

Consequently the function v satisfies the inequality

$$
\partial_{t} v+\sum_{i, j=1}^{d} a^{i j} \partial_{x_{i}} \partial_{x_{j}} v+\sum_{i=1}^{d} h^{i} \partial_{x_{i}} v+\left(2 \lambda^{-1} d^{2} \Lambda^{2}+4^{-1} \gamma^{-1}\right) v \geq 0
$$

and the required estimate follows from the maximum principle (see Theorem 3.1.1 [15]).

Lemma 2. Let $p \geq 1$ and μ be a bounded nonnegative Borel measure on $[0, T] \times \mathbb{R}^{d}$. Suppose that the projection μ^{p} of the measure μ on the first p coordinates x_{1}, \ldots, x_{p} and t has a density $\varrho \in L_{\text {loc }}^{q}\left((0, T) \times \mathbb{R}^{d}\right)$, where $q>1$. Suppose also that a measurable function $f \in L^{r}(\mu)$, where $r \geq 1$, satisfies the following condition:
(*) there exists $\Lambda>0$ such that

$$
\left|f(t, x)-f\left(t, x+h_{p}\right)\right| \leq \Lambda\left|h_{p}\right| \quad \forall h_{p}=\left(0, \ldots, 0, y_{p+1}, \ldots, y_{d}\right)
$$

Then there exists a sequence of smooth bounded functions f_{n} with bounded derivatives such that $\left\|f-f_{n}\right\|_{L^{r}(\mu)} \rightarrow 0$ and

$$
\left|f_{n}(t, x)-f_{n}\left(t, x+h_{p}\right)\right| \leq 4 \Lambda\left|h_{p}\right| \quad \forall h_{p}=\left(0, \ldots, 0, y_{p+1}, \ldots, y_{d}\right) .
$$

Proof. For simplicity we use the notation $z=\left(x_{1}, \ldots, x_{p}\right)$ and $y=\left(x_{p+1}, \ldots, x_{d}\right)$.
First let us prove that f can be approximated by the function g such that g satisfies the condition $\left(^{*}\right), g(t, z, y)=0$ if $|z|>R, t<\kappa$ or $t>T-\kappa$, and $|g(t, z, y)| \leq C$ for some $R>0, \kappa>0$ and $C>0$.

Let $I_{N}(t, z)=1$ if $|z|<1 / N, t \in\left[N^{-1}, T-N^{-1}\right]$, and $I_{N}(t, z)=0$ otherwise. Let us consider the function $g_{N}(t, z, y)=I_{N}(t, z) G_{N}(f(t, z, y))$, where $G_{N}(v)=v$ if $|v| \leq N$
and $G_{N}(v)=N \operatorname{sign} v$ if $|v|>N$. Since $\left|G_{N}\left(v_{1}\right)-G_{N}\left(v_{2}\right)\right| \leq\left|v_{1}-v_{2}\right|$ the function g_{N} satisfies $\left(^{*}\right)$. By the estimate $\left|g_{N}\right| \leq|f|$ and the Lebesgue dominated convergence theorem we have $\left\|g_{N}-f\right\|_{L^{r}(\mu)} \rightarrow 0$ as $N \rightarrow \infty$.

Now let us prove that the function g can be approximated by the function η such that η satisfies the condition (*) with $2 \Lambda,|\eta| \leq C, \eta(t, z, y)=0$ if $|z|>R$ or $|y|>R_{1}, t<\kappa$ or $t>T-\kappa$ for some positive numbers R, R_{1}, κ and C.

Let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{d-p}\right), 0 \leq \varphi \leq 1,|\nabla \varphi| \leq 1, \varphi(y)=1$ if $|y| \leq 1$ and $\varphi(y)=0$ if $|y|>2$. Let us approximate g by $\eta_{M}(t, z, y)=\varphi_{M}(y) g(t, z, y)$, where $\varphi_{M}(y)=\varphi(y / M)$. Applying the condition $\left(^{*}\right)$ we obtain $|g(t, z, y)| \leq|g(t, z, 0)|+\Lambda|y| \leq C+\Lambda|y|$. Let $C M^{-1}<\Lambda$. Then we obtain the estimates

$$
\left|\eta_{M}(t, z, y)-\eta_{M}\left(t, z, y^{\prime}\right)\right| \leq\left(C M^{-1}+\Lambda\right)\left|y-y^{\prime}\right| \leq 2 \Lambda_{f}\left|y-y^{\prime}\right|
$$

Moreover, $\left\|\eta_{M}-g\right\|_{L^{r}(\mu)} \rightarrow 0$ as $M \rightarrow \infty$.
Finally let us prove that η can be approximated by the required sequence f_{n}. We can assume that η is a smooth function with respect to y.

Let $\varepsilon>0$ and $\delta>0$. Let $\eta(t, z, y)=0$ if $t<\kappa$ or $t>T-\kappa$ and

$$
\eta_{\delta}(t, z, y)=\int_{0}^{T} \int_{\mathbb{R}^{p}} \omega_{\delta}(z-v, t-s) \eta(s, v, y) d v d s
$$

where $\omega_{\delta}(x, t)=\delta^{-p-1} \omega_{1}(x / \delta) \omega_{2}(t / \delta)$ and $\omega_{1} \in C_{0}^{\infty}\left(\mathbb{R}^{p}\right), \omega_{2} \in C_{0}^{\infty}(\mathbb{R}), 0 \leq \omega_{1} \leq 1$, $0 \leq \omega_{2} \leq 1,\left\|\omega_{1}\right\|_{L^{1}}=1,\left\|\omega_{2}\right\|_{L^{1}}=1$. There exists a family of Borel sets $\left\{B_{j}\right\}_{j=1}^{J}$ such that $B_{j} \subset \mathbb{R}^{d-p}, B_{j} \cap B_{i}=\emptyset,\{y:|y| \leq R\} \subset \cup_{j} B_{j}$ and $\sup _{z, y \in B_{j}}|z-y| \leq \varepsilon$. Let us take a point $y_{j} \in B_{j}$. Applying the condition (ii) we obtain

$$
\begin{aligned}
&\left\|\eta_{\delta}-\eta\right\|_{L^{r}(\mu)}^{r} \leq \sum_{j=1}^{J} \int_{\left([0, T] \times \mathbb{R}^{p}\right) \times B_{j}}\left|\eta_{\delta}\left(t, z, y_{j}\right)-\eta\left(t, z, y_{j}\right)\right|^{r} d \mu+C(r) \Lambda^{r} \varepsilon^{r} \leq \\
& \leq J \int_{[0, T] \times \mathbb{R}^{p}}\left|\eta_{\delta}\left(t, z, y_{j}\right)-\eta\left(t, z, y_{j}\right)\right|^{r} d \mu^{p}+C(r) \Lambda^{r} \varepsilon^{r}
\end{aligned}
$$

Since the mapping $(t, z) \rightarrow \eta(t, z, y)$ is bounded and $\mu_{p}=\varrho d x d t$, where $\varrho \in L_{l o c}^{q}$ and $q>1$, we can find a number $\delta>0$ such that $\left\|\eta_{\delta}-\eta\right\|_{L^{r}(\mu)}^{r} \leq \varepsilon+C(r) \Lambda^{r} \varepsilon^{r}$.

Proof of Theorem 1. Let f be a solution of the Cauchy problem

$$
\partial_{t} f+\sum_{i, j=1}^{d} a^{i j} \partial_{x_{i}} \partial_{x_{j}} f+\sum_{i=1}^{d} h^{i} \partial_{x_{i}} f=0, \quad f(T, x)=\psi(x)
$$

where h and ψ satisfy the conditions of Lemma 1 . Substituting u for f in (3) we get for the difference of the solutions $\mu=\mu_{t} d t$ and $\sigma=\sigma_{t} d t$ the following equality
$\int_{\mathbb{R}^{d}} \psi d\left(\mu_{t}-\sigma_{t}\right)=\int_{\mathbb{R}^{d}} f d\left(\mu_{0}-\sigma_{0}\right)+\int_{0}^{t} \int_{\mathbb{R}^{d}}\left\langle b_{\mu}-h, \nabla f\right\rangle d \mu_{s} d s-\int_{0}^{t} \int_{\mathbb{R}^{d}}\left\langle b_{\sigma}-h, \nabla f\right\rangle d \sigma_{s} d s$
Applying the maximum principle and Lemma 1 we obtain the estimates

$$
|f(x, t)| \leq 1, \quad \sum_{k=p+1}^{d}\left|\partial_{x_{k}} f(x, t)\right|^{2} \leq C_{1}^{2}
$$

for some $C_{1}>0$. By the definition of d_{p} we have

$$
\int_{\mathbb{R}^{d}} f d\left(\mu_{0}-\sigma_{0}\right) \leq\left(1+C_{1}\right) d_{p}\left(\mu_{0}, \sigma_{0}\right)
$$

Applying the Cauchy inequality we get

$$
\begin{aligned}
& \int_{0}^{t} \int_{\mathbb{R}^{d}}\left\langle b_{\mu}-h, \nabla f\right\rangle d \mu_{s} d s \leq \\
& \qquad\left(\int_{0}^{t} \int_{\mathbb{R}^{d}} \sum_{i=1}^{p}\left|b_{\mu}^{i}-h^{i}\right|^{2} d \mu_{s} d s\right)^{1 / 2}\left(\int_{0}^{t} \int_{\mathbb{R}^{d}} \sum_{i=1}^{p}\left|\partial_{x_{i}} f\right|^{2} d \mu_{s} d s\right)^{1 / 2}+ \\
& \\
& \quad+C_{1} \int_{0}^{t} \int_{\mathbb{R}^{d}} \sum_{i=p+1}^{d}\left|b_{\mu}^{i}-h^{i}\right| d \mu_{s} d s .
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
& -\int_{0}^{t} \int_{\mathbb{R}^{d}}\left\langle b_{\sigma}-h, \nabla f\right\rangle d \sigma_{s} d s \leq \\
& \leq\left(\int_{0}^{t} \int_{\mathbb{R}^{d}}\left|b_{\mu}^{i}-b_{\sigma}^{i}\right|^{2} d \sigma_{s} d s\right)^{1 / 2}\left(\int_{0}^{t} \int_{\mathbb{R}^{d}} \sum_{i=1}^{p}\left|\partial_{x_{i}} f\right|^{2} d \sigma_{s} d s\right)^{1 / 2} \\
& \quad+C_{1} \int_{0}^{t} \int_{\mathbb{R}^{d}} \sum_{i=p+1}^{d}\left|b_{\mu}^{i}-b_{\sigma}^{i}\right| d \sigma_{s} d s-\int_{0}^{t} \int_{\mathbb{R}^{d}}\left\langle b_{\mu}-h, \nabla f\right\rangle d \sigma_{s} d s,
\end{aligned}
$$

where the last term is estimated in the following way:

$$
\begin{aligned}
& -\int_{0}^{t} \int_{\mathbb{R}^{d}}\left\langle b_{\mu}-h, \nabla f\right\rangle d \sigma_{s} d s \leq \\
& \leq\left(\int_{0}^{t} \int_{\mathbb{R}^{d}} \sum_{i=1}^{p}\left|b_{\mu}^{i}-h^{i}\right|^{2} d \sigma_{s} d s\right)^{1 / 2}\left(\int_{0}^{t} \int_{\mathbb{R}^{d}} \sum_{i=1}^{p}\left|\partial_{x_{i}} f\right|^{2} d \sigma_{s} d s\right)^{1 / 2}+ \\
& \\
& \quad+C_{1} \int_{0}^{t} \int_{\mathbb{R}^{d}} \sum_{i=p+1}^{d}\left|b_{\mu}^{i}-h^{i}\right| d \sigma_{s} d s
\end{aligned}
$$

Let us estimate the following expression

$$
\int_{0}^{t} \int_{\mathbb{R}^{d}} \sum_{k=1}^{p}\left|\partial_{x_{k}} f(x, t)\right|^{2} d\left(\mu_{s}+\sigma_{s}\right) d s
$$

Substituting u for f^{2} in (3) we obtain

$$
\int_{\mathbb{R}^{d}} \psi^{2} d \mu_{t}=\int_{\mathbb{R}^{d}} f^{2} d \mu_{0}+\int_{0}^{t} \int_{\mathbb{R}^{d}} 2\langle A \nabla f, \nabla f\rangle+2 f\left\langle b_{\mu}-h, \nabla f\right\rangle d \mu_{s} d s
$$

Applying the inequalities $|f| \leq 1$ and

$$
\left|\left\langle b_{\mu}-h, \nabla f\right\rangle\right| \leq \sum_{i=1}^{d}\left|b_{\mu}^{i}-h^{i}\right|\left|\partial_{x_{i}} f\right| \leq \frac{\lambda}{2} \sum_{i=1}^{p}\left|\partial_{x_{i}} f\right|^{2}+\frac{1}{2 \lambda} \sum_{i=1}^{p}\left|b_{\mu}^{i}-h\right|^{2}+C_{1} \sum_{i=p+1}^{d}\left|b_{\mu}^{i}-h^{i}\right|,
$$

we get the estimate

$$
\int_{0}^{t} \int_{\mathbb{R}^{d}} \sum_{i=1}^{p}\left|\partial_{x_{i}} f\right|^{2} d \mu_{s} d s \leq \frac{1}{\lambda}+R_{1}(h)
$$

where

$$
R_{1}(h)=\int_{0}^{t} \int_{\mathbb{R}^{d}} \lambda^{-2} \sum_{i=1}^{p}\left|b_{\mu}^{i}-h\right|^{2}+2 C_{1} \lambda^{-1} \sum_{i=p+1}^{d}\left|b_{\mu}^{i}-h^{i}\right| d \mu_{s} d s
$$

By the same argument we obtain the estimate

$$
\int_{0}^{t} \int_{\mathbb{R}^{d}} \sum_{i=1}^{p}\left|\partial_{x_{i}} f\right|^{2} d \sigma_{s} d s \leq \frac{1}{\lambda}+R_{2}(h) .
$$

where

$$
R_{2}(h)=\int_{0}^{t} \int_{\mathbb{R}^{d}} \lambda^{-2} \sum_{i=1}^{p}\left|b_{\sigma}^{i}-h\right|^{2}+2 C_{1} \lambda^{-1} \sum_{i=p+1}^{d}\left|b_{\sigma}^{i}-h^{i}\right| d \sigma_{s} d s .
$$

Note that

$$
R_{2}(h) \leq Q_{1}+Q_{2}(h),
$$

where

$$
\begin{gathered}
Q_{1}=\int_{0}^{t} \int_{\mathbb{R}^{d}} 2 \lambda^{-2} \sum_{i=1}^{p}\left|b_{\mu}^{i}-b_{\sigma}^{i}\right|^{2}+2 C_{1} \lambda^{-1} \sum_{i=p+1}^{d}\left|b_{\mu}^{i}-b_{\sigma}^{i}\right| d \sigma_{s} d s \\
Q_{2}(h)=\int_{0}^{t} \int_{\mathbb{R}^{d}} 2 \lambda^{-2} \sum_{i=1}^{p}\left|b_{\mu}^{i}-h^{i}\right|^{2}+2 C_{1} \lambda^{-1} \sum_{i=p+1}^{d}\left|b_{\mu}^{i}-h^{i}\right| d \sigma_{s} d s .
\end{gathered}
$$

Applying Lemma 2 (or the standard approximation in the case $p=0$) we find a sequence of smooth vector fields h_{n} such that

$$
\lim _{n \rightarrow \infty} \int_{0}^{t} \int_{\mathbb{R}^{d}} 2 \lambda^{-2} \sum_{i=1}^{p}\left|b_{\mu}^{i}-h_{n}^{i}\right|^{2}+\sum_{i=p+1}^{d}\left|b_{\mu}^{i}-h_{n}^{i}\right| d\left(\mu_{s}+\sigma_{s}\right) d s=0
$$

It follows that $R_{1}\left(h_{n}\right) \rightarrow 0$ and $Q_{2}\left(h_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Substituting h for h_{n} in the previous estimates and letting $n \rightarrow \infty$, we obtain the estimate

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}} \psi d\left(\mu_{t}-\sigma_{t}\right) \leq\left(1+C_{1}\right) d_{p}\left(\mu_{0}, \sigma_{0}\right)+ \\
& \quad+\left(\int_{0}^{t} \int_{\mathbb{R}^{d}} \sum_{i=1}^{p}\left|b_{\mu}^{i}-b_{\sigma}^{i}\right|^{2} d \sigma_{s} d s\right)^{1 / 2}\left(\frac{1}{\lambda}+Q_{1}\right)^{1 / 2}+C_{1} \int_{0}^{t} \int_{\mathbb{R}^{d}} \sum_{i=p+1}^{d}\left|b_{\mu}^{i}-b_{\sigma}^{i}\right| d \sigma_{s} d s
\end{aligned}
$$

This completes the proof.
We apply the obtained estimates to nonlinear Fokker-Planck-Kolmogorov equations.
Suppose that
(NH1) $A=\left(a^{i j}\right)$ satisfies (H1) and (H2).
Let \mathcal{M}_{τ} be the set of all measures $\mu=\mu_{t} d t$ on $[0, \tau] \times \mathbb{R}^{d}$, where $\left(\mu_{t}\right)_{t \in[0, \tau]}$ is a family of probability measures on \mathbb{R}^{d}. Let \mathcal{M}_{0} be a subset of \mathcal{M}_{τ}. Assume that for every $\mu \in \mathcal{M}_{0}$ we are given Borel measurable functions $b^{i}(t, x, \mu)$.

Set

$$
L_{\mu}=\sum_{i, j=1}^{d} a^{i j}(t, x) \partial_{x_{i}} \partial_{x_{j}}+\sum_{i=1}^{d} b^{i}(t, x, \mu) \partial_{x_{i}} .
$$

We say that $\mu=\mu_{t} d t \in \mathcal{M}_{0}$ is a solution to the Cauchy problem on $[0, \tau] \times \mathbb{R}^{d}$

$$
\begin{equation*}
\partial_{t} \mu=L_{\mu}^{*} \mu,\left.\quad \mu\right|_{t=0}=\mu_{0}, \tag{4}
\end{equation*}
$$

for the nonlinear Fokker-Planck-Kolmogorov equation if μ is a solution to the Cauchy problem (2) on $[0, \tau] \times \mathbb{R}^{d}$ for the linear Fokker-Planck-Kolmogorov equation with the operator L_{μ}.

Denote by $\mathcal{P}\left(\mathbb{R}^{d}\right)$ the space of all probability measures on \mathbb{R}^{d}.

Let $V \in C^{2}\left(\mathbb{R}^{d}\right), V \geq 0$ and $\lim _{|x| \rightarrow \infty} V(x)=+\infty$. Let $\alpha>0$. Denote by $B_{\alpha, \tau}(V)$ the set of all mappings $\mu_{t}:[0, \tau] \rightarrow \mathcal{P}\left(\mathbb{R}^{d}\right)$ such that $t \rightarrow \mu_{t}(B)$ is a Borel measurable function for every Borel set B and

$$
\sup _{t \in[0, \tau]} \int_{\mathbb{R}^{d}} V(x) \mu_{t}(d x) \leq \alpha .
$$

Proposition 2. $B_{\alpha, \tau}(V)$ is a complete metric space with respect to the metric

$$
r(\mu, \sigma)=\sup _{t \in[0, \tau]} d_{p}\left(\mu_{t}, \sigma_{t}\right) .
$$

Proof. Note that $\mathcal{P}\left(\mathbb{R}^{d}\right)$ equipped with d_{p} is a complete metric space. Moreover, for every $\varphi \in C_{0}^{1}\left(\mathbb{R}^{d}\right)$ we get the estimate

$$
\sup _{t \in[0, \tau]}\left|\int_{\mathbb{R}^{d}} \varphi d\left(\mu_{t}-\sigma_{t}\right)\right| \leq C(\varphi) r(\mu, \sigma)
$$

Assume that $\mu^{n} \in B_{\alpha, \tau}(V)$ and $r\left(\mu^{n}, \mu\right) \rightarrow 0$. It is obvious that $\int_{\mathbb{R}^{d}} V d \mu_{t} \leq \alpha$. Note that $g_{n}(t)=\int_{\mathbb{R}^{d}} \varphi d \mu_{t}^{n}$ is a Borel measurable function for every n and $\varphi \in C_{0}^{1}\left(\mathbb{R}^{d}\right)$. In addition the sequence g_{n} uniformly converges to $g(t)=\int_{\mathbb{R}^{d}} \varphi d \mu_{t}$. This yields that g is a Borel measurable for every $\varphi \in C_{0}^{1}\left(\mathbb{R}^{d}\right)$. Applying the estimate $\|V\|_{L^{1}\left(\mu_{t}\right)} \leq \alpha$ we obtain that $g(t)$ is a Borel measurable for every bounded continuous function φ. According to the monotone class theorem (see [1, Theorem 2.12.9]) we have that $g(t)$ is a Borel measurable for every bounded Borel measurable φ. In particular the mapping $t \rightarrow \mu_{t}(B)$ is measurable for every Borel set B.

Suppose that
(NH2) for every $\alpha>0$ there exists $\Lambda=\Lambda(\alpha)>0$ such that for every $\sigma \in B_{\alpha, T}(V)$ we have

$$
\left|b(t, x, \sigma)-b\left(t, x+h_{p}, \sigma\right)\right| \leq \Lambda\left|h_{p}\right| \quad \forall h_{p}=\left(0, \ldots, 0, y_{p+1}, \ldots, y_{d}\right)
$$

and the mappings $x \rightarrow b^{i}(t, x, \sigma)$ are continuous uniformly in $t \in[0, T]$.
Theorem 2. Suppose that (NH1) and (NH2) are fulfilled and there exist positive numbers C_{1}, C_{2} and C_{3} such that for every $\alpha>0, \tau \in(0, T]$ and $\sigma, \mu \in B_{\alpha, \tau}(V)$ we have the estimates

$$
\begin{gathered}
|b(t, x, \sigma)| \leq C_{1}+C_{1} \sqrt{V(x)}, \quad L_{\sigma} V(t, x) \leq C_{2}+C_{2} V(x), \\
|b(t, x, \mu)-b(t, x, \sigma)| \leq C_{3}(1+\sqrt{V(x)}) d_{p}\left(\mu_{t}, \sigma_{t}\right)
\end{gathered}
$$

for every $(x, t) \in[0, \tau] \times \mathbb{R}^{d}$. Then for every probability measure μ_{0}, such that $V \in L^{1}\left(\mu_{0}\right)$, there exist $\tau \in(0, T]$ and $\alpha>0$ for which the Cauchy problem (4) has a unique solution in the space $B_{\alpha, \tau}(V)$.

Proof. We define the mapping F as follows:

$$
\mu=F(\sigma) \Leftrightarrow \partial_{t} \mu=L_{\sigma}^{*} \mu,\left.\quad \mu\right|_{t=0}=\nu
$$

According to [2, Theorem 6.7.3](see also [13]) and [2, Theorem 9.8.7](see also [3]) F is well-defined on $B_{\alpha, \tau}(V)$. Let $\mu=F(\sigma)$. By [2, Theorem 7.1.1] we get

$$
\int_{\mathbb{R}^{d}} V d \mu_{t} \leq e^{C_{2} t}+e^{C_{2} t} \int_{\mathbb{R}^{d}} V d \nu
$$

Setting

$$
\alpha=e^{C_{2} T}+e^{C_{2} T} \int_{\mathbb{R}^{d}} V d \nu
$$

we have $F: B_{\alpha, \tau}(V) \rightarrow B_{\alpha, \tau}(V)$ for every $\tau \in(0, T]$. By Theorem 1 we obtain the estimate

$$
r\left(F\left(\sigma^{1}\right), F\left(\sigma^{2}\right)\right) \leq C \tau r\left(\sigma^{1}, \sigma^{2}\right)
$$

where C depends on $C_{1}, C_{2}, T, \Lambda(\alpha, T)$ and α. Consequently the mapping F is contractive if $\tau<1 / C$. By the Banach contracting mapping theorem, there exists a unique solution $\mu \in B_{\alpha, \tau}(V)$.

Acknowledgements.

The authors are grateful to Prof. Vladimir I. Bogachev for fruitful discussions and valuable remarks.

The work was supported by the RFBR grant 15-31-20082, 17-01-00622, the President Grant MD-207.2017.1 and the CRC 701 at Bielefeld University.

References

[1] Bogachev V.I. Measure theory. Springer-Verlag, Berlin, 2007.
[2] Bogachev V.I., Krylov N.V., Röckner M., Shaposhnikov S.V. Fokker-Planck-Kolmogorov equations. Amer. Math. Soc., Providence, Rhode Island, 2015.
[3] Bogachev V.I., Röckner M., Shaposhnikov S.V. Uniqueness problems for degenerate Fokker-PlanckKolmogorov equations. Journal of Mathematical Sciences (New York), 2015, V. 207, N 2, P. 147-165.
[4] Bogachev V.I., Da Prato G., Röckner M., Shaposhnikov S.V. An analytic approach to infinitedimensional continuity and Fokker-Planck-Kolmogorov equations. Annali della Scuola Normale Superiore di Pisa, 2015, V. 14, N 3, P. 983-1023.
[5] Bogachev V.I., Da Prato G., Röckner M., Shaposhnikov S.V. On the uniqueness of solutions to continuity equations. Journal of Differential Equations, 2015, V. 259, N 8, P. 3854-3873.
[6] Bogachev V.I., Röckner M., Shaposhnikov S.V. Distances between transition probabilities of diffusions and applications to nonlinear Fokker-Planck-Kolmogorov equations. J. Funct. Anal., 2016, V. 271, P. 1262-1300.
[7] Frank T.D. Nonlinear Fokker-Planck equations. Fundamentals and applications. Springer-Verlag, Berlin, 2005.
[8] Konakov V., Kozhina A., Menozzi S. Stability of densities for perturbed Diffusions and Markov Chains. 2015, arXiv preprint arXiv:1506.08758.
[9] Li H., Luo D. Quantitative stability estimates for solutions of Fokker-Planck equations. 2017, arXiv preprint arXiv:1701.00566.
[10] Manita O.A. Estimates for the Kantorovich distances between solutions to the nonlinear Fokker-Planck-Kolmogorov equation with monotone drift. 2015, arXiv preprint arXiv:1507.04014.
[11] Manita O.A., Romanov M.S., Shaposhnikov S.V. On uniqueness of solutions to nonlinear Fokker-Planck-Kolmogorov equations. Nonlinear Analysis: Theory, Methods and Applications, 2015, V. 128, P. 199-226.
[12] Manita O.A., Shaposhnikov S.V. Nonlinear parabolic equations for measures. St. Petersburg Mathematical Journal, 2014, V. 25, N 1, P. 43-62.
[13] Manita O. A., Shaposhnikov S. V. On the Cauchy problem for Fokker-Planck-Kolmogorov equations with potential terms on arbitrary domains. Journal of Dynamics and Differential Equations, 2016, V. 28, N 2, P. 493-518.
[14] Risken H. The Fokker-Planck Equation. Springer-Verlag, Berlin, 1996.
[15] Stroock D.W., Varadhan S.R.S. Multidimensional diffusion processes. Berlin - New York: SpringerVerlag, 1979.

[^0]: ${ }^{1}$ Corresponding author
 e-mails: oxana.manita@gmail.com (O.A.Manita), mcliz@mail.ru (M.S.Romanov), starticle@mail.ru (S.V.Shaposhnikov).

