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Abstract

The paper is devoted to the construction of a probabilistic particle algorithm. This is related to nonlin-

ear forward Feynman-Kac type equation, which represents the solution of a nonconservative semilinear

parabolic Partial Differential Equations (PDE). Illustrations of the efficiency of the algorithm are provided

by numerical experiments.
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1 Introduction

In this paper, we consider a forward probabilistic representation of the semilinear Partial Differential Equa-

tion (PDE) on [0, T ]× R
d

{

∂tu = L∗
tu+ uΛ(t, x, u,∇u)

u(0, ·) = u0 ,
(1.1)

where u0 is a Borel probability measure on R
d and L∗ is a partial differential operator of the type

(L∗
tϕ)(x) =

1

2

d
∑

i,j=1

∂2ij(ai,j(t, x)ϕ)(x)−
d

∑

i=1

∂i(gi(t, x)ϕ)(x), for ϕ ∈ C∞
0 (Rd). (1.2)

In this specific case, a forward probabilistic representation of (1.1) is related to the solution Y of the

Stochastic Differential Equation (SDE) associated with the infinitesimal generatorL and the initial condition

u0, i.e.
{

Yt = Y0 +
∫ t

0
Φ(s, Ys)dWs +

∫ t

0
g(s, Ys)ds

Y0 ∼ u0 ,
(1.3)
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with ΦΦt = a. More precisely, if (1.3) admits a solution Y , then the marginal laws (ut(dx), t ≥ 0) of

(Yt, t ≥ 0) satisfy the Fokker-Planck (also called forward Kolmogorov) equation, which corresponds to

PDE (1.1) when Λ = 0. In this sense, the couple (Y, u) is a (forward) probabilistic representation of (1.1).

In the case where Λ 6= 0, we propose a representation which is constituted by a couple (Y, u), solution of

the system
{

Yt = Y0 +
∫ t

0
Φ(s, Ys)dWs +

∫ t

0
g(s, Ys)ds, Y0 ∼ u0

∫

Rd ϕ(x)u(t, x)dx = E

[

ϕ(Yt) exp
(

∫ t

0
Λ(s, Ys, u(s, Ys),∇u(s, Ys))

)]

, for t ∈ (0, T ] , ϕ ∈ Cb(Rd) .
(1.4)

The main starting point of the paper is the following. If (Y, u) is a solution of (1.4), then u solves (1.1) in the

sense of distributions. This follows by a direct application of Itô formula and integration by parts.

A function u solving the second line of (1.4) will be often identified as Feynman-Kac type representation of

(1.1). We emphasize that a solution to equation (1.4) introduced here, is a couple (Y, u), where Y is a process

solving a classical SDE, and u : [0, T ]× R
d → R satisfies the second line equation of (1.4).

Equation (1.4) constitutes a particular case of McKean type SDE, where the coefficients Φ and g do not

depend on u. In [18] and [17] we have fully analyzed a regularized version of the McKean type SDE, where

Φ, g together with Λ also depend on the unknown function u, but no dependence on ∇u was considered at

that level. The first paper focuses on various results on existence and uniqueness and the second one on

numerical approximation schemes. Even though, the present paper does not consider any McKean type

non linearity in the SDE, it extends the class of nonlinearities considered in [18, 17] with respect to (w.r.t.)

∇u. Indeed, in the present paper, the dependence of Λ appears to be more singular than in [18, 17], since it

involves not only u but also ∇u allowing to cover a different class of semilinear PDEs of the form (1.1). The

companion paper [19] focuses on the theoretical aspects of (1.1). In this article we propose an associated

numerical approximation scheme.

An important part of the literature for approaching semilinear PDEs is based on Forward Backward

Stochastic Differential Equations (FBSDEs) initially developed in [21], see also [20] for a survey and [22] for

a recent monograph on the subject. Based on that idea, many judicious numerical schemes have been pro-

posed (see for instance [7, 10]). All those rely on computing recursively conditional expectation functions

which is known to be a difficult task in high dimension. Besides, the FBSDE approach is blind in the sense

that the forward process X is not ensured to explore the most relevant regions of the space to approximate

efficiently the solution of the PDE. The FBSDE representation of fully nonlinear PDEs still requires complex

developments and is the subject of active research, see for instance [8]. Branching diffusion processes pro-

vide alternative probabilistic representation of semilinear PDEs, involving a specific form of non-linearity

on the zero order term, see e.g. in [12, 14]. More recently, an extension of the branching diffusion repre-

sentation to a class of semilinear PDEs has been proposed in [13]. As mentioned earlier, the main idea of

the present paper is to investigate the forward Feynman-Kac type representation (1.4) allowing to tackle

a large class of first order nonlinearities thanks to the dependence of the weighting function Λ on both u

and ∇u. In the time continuous framework, classical (forward) McKean representations are restricted to

the conservative case (Λ = 0). At the algorithmic level, [6] has contributed to develop stochastic particle

methods in the spirit of McKean to approach a PDE related to Burgers equation providing first the rate of

convergence. Comparison with classical numerical analysis techniques was provided by [5]. In the case

Λ = 0 with g = 0, but with Φ possibly discontinuous, some empirical implementations were conducted

in [1, 2] in the one-dimensional and multi-dimensional case respectively, in order to predict the large time

qualitative behavior of the solution of the corresponding PDE. An interesting aspect of this approach is that

it could potentially be extended to represent a specific class of second order nonlinear PDEs, by extending
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it to the case where Φ and g also depend on u. This more general setting, extending [18, 17], will be investi-

gated in a future work.

The main contribution of this paper is to propose and analyze an original Monte Carlo scheme (3.9) to

approximate the solution of (1.4) and consequently also the solution u of (1.1) which constitutes an equiv-

alent (deterministic) form. This numerical scheme relies on three approximation steps: a regularization

procedure based on a kernel convolution, a space discretization based on Monte Carlo simulations of the

diffusion Y (1.4) and a time discretization. In Section 3, we present our original particle approximation

scheme whose convergence is established in Theorem 3.4. Section 4 is finally devoted to numerical simula-

tions.

2 Preliminaries

2.1 Notations

Let d ∈ N
⋆. Let us consider Cd := C([0, T ],Rd) metricized by the supremum norm ‖ · ‖∞, equipped with its

Borel σ− field B(Cd) and endowed with the topology of uniform convergence.

If (E, dE) is a Polish space, P(E) denotes the Polish space (with respect to the weak convergence topology)

of Borel probability measures on E naturally equipped with its Borel σ-field B(P(E)). The reader can

consult Proposition 7.20 and Proposition 7.23, Section 7.4 Chapter 7 in [4] for more exhaustive information.

When d = 1, we simply note C := C1. Cb(E) denotes the space of bounded, continuous real-valued functions

on E.

In this paper, Rd is equipped with the Euclidean scalar product · and |x| stands for the induced norm

for x ∈ R
d. The gradient operator for functions defined on R

d is denoted by ∇. If a function u depends

on a variable x ∈ R
d and other variables, we still denote by ∇u the gradient of u with respect to x, if there

is no ambiguity. Md,p(R) denotes the space of Rd×p real matrices equipped with the Frobenius norm (also

denoted | · |), i.e. the one induced by the scalar product (A,B) ∈Md,p(R)×Md,p(R) 7→ Tr(AtB), where At

stands for the transpose matrix of A and Tr is the trace operator. Sd is the set of symmetric, non-negative

definite d× d real matrices and S+
d the set of strictly positive definite matrices of Sd.

Mf (R
d) is the space of finite Borel measures on R

d. ‖ · ‖TV denotes the associated total variation distance.

Cb(Rd) is the space of bounded, continuous functions on R
d and C∞

0 (Rd) the space of smooth functions

with compact support. For any positive integers p, k ∈ N, Ck,p
b := Ck,p

b ([0, T ] × R
d,R) denotes the set of

continuously differentiable bounded functions [0, T ] × R
d → R with uniformly bounded derivatives with

respect to the time variable t (resp. with respect to space variable x) up to order k (resp. up to order p). In

particular, for k = p = 0, C0,0
b coincides with the space of bounded, continuous functions also denoted by

Cb. For r ∈ N,W r,p(Rd) is the Sobolev space of order r in (Lp(Rd), || · ||p), with 1 ≤ p ≤ ∞. W 1,1
loc (R

d) denotes

the space of functions f : Rd → R such that f and ∇f (existing in the weak sense) belong to L1
loc(R

d).

For convenience we introduce the following notation.

• V : [0, T ]× Cd × C × Cd is defined for any functions x ∈ Cd, y ∈ C and z ∈ Cd, by

Vt(x, y, z) := exp

(
∫ t

0

Λ(s, xs, ys, zs)ds

)

for any t ∈ [0, T ] . (2.1)

The finite increments theorem gives, for all (a, b) ∈ R
2,

exp(a)− exp(b) = (b− a)

∫ 1

0

exp(αa+ (1− α)b)dα . (2.2)
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In particular, if Λ is supposed to be bounded and Lipschitz w.r.t. to its space variables (x, y, z), uniformly

w.r.t. t, we observe that (2.2) implies for all t ∈ [0, T ], x, x′ ∈ Cd, y, y′ ∈ C, z, z′ ∈ Cd,

|Vt(x, y, z)− Vt(x
′, y′, z′)| ≤ LΛe

tMΛ

∫ t

0

(

|xs − x′s|+ |ys − y′s|+ |zs − z′s|
)

ds , (2.3)

MΛ (resp. LΛ) denoting an upper bound of |Λ| (resp. the Lipschitz constant of Λ), see also Assumption 1.

In the whole paper, (Ω,F , (Ft)t≥0,P) will denote a filtered probability space and W an R
p-valued (Ft)-

Brownian motion.

2.2 Basic assumption

We introduce here the basic assumption of the paper on Borel functions Φ : [0, T ] × R
d → Md,p(R), g :

[0, T ]× R
d → R

d, and Λ : [0, T ]× R
d × R× R

d → R .

Assumption 1. 1. There exist positive reals LΦ, Lg such that for any (t, t′, x, x′) ∈ [0, T ]2 × (Rd)2,

|Φ(t, x)− Φ(t, x′)| ≤ LΦ

(

|t− t′| 12 + |x− x′|
)

,

and

|g(t, x)− g(t, x′)| ≤ Lg

(

|t− t′| 12 + |x− x′|
)

.

2. Φ and g belong to C0,3
b . In particular, Φ, g are uniformly bounded and MΦ (resp. Mg) denote the upper bound

of |Φ| (resp. |g|).

3. Φ is non-degenerate, i.e. there exists c > 0 such that for all x ∈ R
d

inf
s∈[0,T ]

inf
v∈Rd\{0}

〈v,Φ(s, x)Φt(s, x)v〉
|v|2 ≥ c > 0. (2.4)

4. There exists a positive real LΛ, such that for any (t, t′, x, x′, y, y′, z, z′) ∈ [0, T ]2 × (Rd)2 × R
2 × (Rd)2,

|Λ(t, x, y, z)− Λ(t′, x′, y′, z′)| ≤ LΛ

(

|t− t′| 12 + |x− x′|+ |y − y′|+ |z − z′|
)

.

5. Λ is supposed to be uniformly bounded: let MΛ be an upper bound for |Λ|.

6. u0 is a Borel probability measure on R
d admitting a bounded density (still denoted by the same letter) belonging

to W 1,1(Rd).

2.3 Solution to the PDE

In the whole paper we will write a = ΦΦt; in particular a : [0, T ] × R
d −→ Sd. Let Lt be the second order

partial differential operator such that

(Ltϕ)(x) =
1

2

d
∑

i,j=1

ai,j(t, x)∂
2
ijϕ(x) +

d
∑

i=1

gi(t, x)∂iϕ(x), ϕ ∈ C∞
0 (Rd). (2.5)

Its ”adjoint” L∗
t defined in (1.2), verifies

∫

Rd

Ltϕ(x)ψ(x)dx =

∫

Rd

ϕ(x)L∗
tψ(x)dx , ϕ, ψ ∈ C∞

0 (Rd), t ∈ [0, T ]. (2.6)

We recall the notion of weak solution to (1.1).
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Definition 2.1. Let u : [0, T ] × R
d −→ R be a Borel function such that for every t ∈]0, T ], u(t, ·) ∈ W 1,1

loc (R
d). u

will be called weak solution of (1.1) if for all ϕ ∈ C∞
0 (Rd), t ∈ [0, T ],

∫

Rd

ϕ(x)u(t, x)dx−
∫

Rd

ϕ(x)u0(dx) =

∫ t

0

∫

Rd

u(s, x)Lsϕ(x)dxds

+

∫ t

0

∫

Rd

ϕ(x)Λ(s, x, u(s, x),∇u(s, x))u(s, x)dxds .

We observe that when Λ = 0, (1.1) is the classical Fokker-Planck equation.

Theorem 3.6, Lemma 2.2, Remark 2.3 of [19] allow to state the following.

Theorem 2.2. Under Assumption 1 there exists a unique weak solution of (1.1) inL1([0, T ],W 1,1(Rd))∩L∞([0, T ]×
R

d,R).

2.4 Feynman-Kac type representation

A weak solution of (1.1) can be linked with a Feynman-Kac type equation, where we recall that a solution

is given by a function u : [0, T ]× R
d → R satisfying the second line equation of (1.4).

Let Y0 be a random variable distributed according to u0. Classical theorems for SDEs with Lipschitz

coefficients imply, under Assumption 1, strong existence and pathwise uniqueness for the SDE

dYt = Φ(t, Yt)dWt + g(t, Yt)dt. (2.7)

Theorem 2.3. Assume that Assumption 1 is fulfilled. We indicate by Y the unique strong solution of (2.7).

Any real valued function u ∈ L1([0, T ],W 1,1(Rd)) is a weak solution of (1.1) if and only if, for all ϕ ∈ Cb(Rd),

t ∈ [0, T ],

∫

Rd

ϕ(x)u(t, x)dx = E

[

ϕ(Yt) exp
(

∫ t

0

Λ(s, Ys, u(s, Ys),∇u(s, Ys))
)]

. (2.8)

Remark 2.4. (2.8) will be called a Feynman-Kac type representation of (1.1).

3 Particles system algorithm

In the present section, we propose a Monte Carlo approximation uε,N of u, providing an original numerical

approximation of the semilinear PDE (1.1), when both the number of particles N → ∞ and the regulariza-

tion parameter ε→ 0 with a judicious relative rate. Let us consider a mollifier of the following form.

K ∈W 1,1(Rd) ∩W 1,∞(Rd) ,

∫

Rd

|x|d+1 K(x)dx <∞ , and
∫

Rd

|x|d+1 |∇K(x)|dx <∞ . (3.1)

We introduce the sequence of mollifiers, (Kε)ε>0, explicitly given by

Kε(x) :=
1

εd
K

(x

ε

)

. (3.2)

Obviously

Kε −−−→
ε→0

δ0, (weakly) and ∀ ε > 0,Kε ∈W 1,1(Rd) ∩W 1,∞(Rd) . (3.3)
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3.1 Convergence of the particle system

For fixed N ∈ N
⋆, let (W i)i=1,··· ,N be a family of independent Brownian motions and (Y i

0 )i=1,··· ,N be i.i.d.

random variables distributed according to u0. For any ε > 0, we define the measure-valued functions

(γε,Nt )t∈[0,T ] such that for any t ∈ [0, T ]























ξit = ξi0 +
∫ t

0
Φ(s, ξis)dW

i
s +

∫ t

0
g(s, ξis)ds , for i = 1, · · · , N ,

ξi0 = Y i
0 for i = 1, · · · , N ,

γε,Nt =
1

N

N
∑

i=1

Vt
(

ξi, (Kε ∗ γε,N )(ξi), (∇Kε ∗ γε,N )(ξi)
)

δξit ,

(3.4)

where we recall that Vt is given by (2.1). The first line of (3.4) is a d-dimensional classical SDE whose strong

existence and pathwise uniqueness are ensured by classical theorems for Lipschitz coefficients. Clearly

ξi, i = 1, · · · , N are i.i.d.

The system (3.4) is well-posed. Indeed let us fix ε > 0 andN ∈ N
⋆. Consider the i.i.d. system (ξi)i=1,··· ,N

of particles, solution of the two first equations of (3.4). By Lemma 5.1 of [19] we know there exists a unique

function γε,N : [0, T ] → Mf (R
d) such that for all t ∈ [0, T ], γε,Nt is solution of (3.4). Let us introduce uε,N

such that for any t ∈ [0, T ],

uε,N (t, ·) := Kε ∗ γε,Nt . (3.5)

Recalling Corollary 5.4 of [19], uε,N constitutes an approximation of u solution of (1.1) in the following

sense.

Corollary 3.1. Under Assumption 1, there is a constant C (only depending on MΦ, Mg , MΛ, ‖K‖∞, ‖∇K‖∞, LΦ,

Lg , LΛ, T ) such that the following holds. If ε→ 0, N → +∞ such that

1√
Nεd+4

e
C

εd+1 → 0, (3.6)

then

E

[

‖uε,Nt − ut‖1
]

+ E

[

‖∇uε,Nt −∇ut‖1
]

−→ 0 . (3.7)

Remark 3.2. Condition (3.6) constitutes a "trade-off" between the speed of convergence of N and ε. Setting ψ(ε) :=

ε−(d+4)e
2C

εd+1 , that trade-off condition can be reformulated as

ψ(ε)

N
→ 0 when ε→ 0, N → +∞. (3.8)

An example of such trade-off between N and ε can be given by the relation ε(N) ∝ ( 1
log(N) )

1
d+4 . That type of tradeoff

was obtained for instance in [15], in the case of interacting particle system, without weighting function Λ. However,

we will observe that this theoretical sufficient condition is far from being optimal. Indeed, in our simulations we

observe that the classical tradeoff of kernel density estimates based on i.i.d. random variables, i.e. ε(N) ∝ ( 1
N )

1
d+4

(see e.g. [23]) seems to hold.

3.2 Time discretized scheme

We assume the validity of Assumption 1. For n ∈ N
⋆, we set δt = T/n and introduce the time grid

(

0 =

t0 < · · · < tk = kδt < · · · < tn = T
)

. For any N ∈ N
⋆, ε > 0 and n ∈ N

∗, we define the measure-valued

functions (γ̄ε,N,n
t )t∈[0,T ] such that for any t ∈ [0, T ],
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ξ̄it = ξ̄i0 +
∫ t

0
Φ(r(s), ξ̄ir(s))dW

i
s +

∫ t

0
g(r(s), ξ̄ir(s))ds , for i = 1, · · · , N,

ξ̄i0 = Y i
0 for i = 1, · · · , N ,

γ̄ε,N,n
t =

1

N

N
∑

i=1

V̄t
(

ξ̄i, (Kε ∗ γ̄ε,N,n)(ξ̄i), (∇Kε ∗ γ̄ε,N,n)(ξ̄i)
)

δξ̄it ,

(3.9)

where for (t, x, y, z) ∈ [0, T ]× Cd × C × Cd,

V̄t
(

x, y, z
)

:= exp
{

∫ t

0

Λ(r(s), xr(s), yr(s), zr(s)) ds
}

, (3.10)

and r : s ∈ [0, T ] 7→ r(s) ∈ {t0, · · · , tn} is the piecewise constant function such that r(s) = tk when

s ∈ [tk, tk+1[. The proposition below establishes the convergence of the time discretized scheme (3.9) to the

continuous time version (3.4).

Proposition 3.3. Suppose the validity of Assumption 1. In addition to condition (3.1), the gradient ∇K of K is also

supposed to be Lipschitz with the corresponding constant L∇K . For fixed parameters ε > 0, N ∈ N
⋆ and n ∈ N

⋆, we

introduce ūε,N,n such that for any t ∈ [0, T ],

ūε,N,n(t, ·) := Kε ∗ γ̄ε,N,n
t , (3.11)

where γ̄ε,N,n
t is defined by (3.9). Then

E

[

‖uε,Nt − ūε,N,n
t ‖1

]

+ E

[

‖∇uε,Nt −∇ūε,N,n
t ‖1

]

≤ C̄

εd+3
√
n
e

C̄

εd+1 , (3.12)

where C̄ is a finite, positive constant only depending on MΦ, Mg , MΛ, ‖K‖∞, ‖∇K‖∞, LΦ, Lg , LΛ, L∇K , T .

From Proposition 3.3 and Corollary 3.1 follows the result below.

Theorem 3.4. Suppose the validity of Assumption 1. In addition to condition (3.1), the gradient ∇K of K is

supposed to be Lipschitz with constant L∇K . Let C, C̄ be the constants appearing in Corollary 3.1, equation (3.6) and

Proposition 3.3, equation (3.12). If ε→ 0, n→ +∞ and N → +∞ such that

1√
Nεd+4

e
C

εd+1 −→ 0 and
1

εd+3
√
n
e

C̄

εd+1 −→ 0, (3.13)

then the particle approximation ūε,N,n
t defined by (3.11) converges to the unique solution, u, of (1.1), in the sense that

for every t,

E

[

‖ūε,N,n
t − ut‖1

]

+ E

[

‖∇ūε,N,n
t −∇ut‖1

]

−→ 0 . (3.14)

Proof. For all N,n ∈ N
⋆, ε > 0 and t ∈ [0, T ], we have

E

[

‖ūε,N,n
t − ut‖1

]

+ E

[

‖∇ūε,N,n
t −∇ut‖1

]

≤ E

[

‖ūε,N,n
t − uε,Nt ‖1

]

+ E

[

‖∇ūε,N,n
t −∇uε,Nt ‖1

]

+E

[

‖uε,Nt − ut‖1
]

+ E

[

‖∇uε,Nt −∇ut‖1
]

. (3.15)

Inequality (3.12) of Proposition 3.3 and the second trade-off condition in (3.13) imply that the first two

expectations in the r.h.s. of (3.15) converges to 0.

By Corollary 3.1, the third and fourth expectations in the r.h.s. of (3.15) also converges to 0. This concludes

the proof.

7



The proof of Proposition 3.3 above will be based on the following technical lemma proved in the ap-

pendix.

Lemma 3.5. We assume that the same assumptions as in Proposition 3.3 are fulfilled. Let ūε,N be the function,

ūε,N,n, defined by (3.11).

Then, there exists a constant C > 0, only depending on MΦ, Mg , MΛ, ‖K‖∞, ‖∇K‖∞, LΛ, L∇K and T , such that

for all t ∈ [0, T ], ε ∈]0, 1], n,N ∈ N
∗ the following estimates hold.

1. For almost all x, y ∈ R
d,

|ūε,Nt (x)− ūε,Nt (y)| ≤ C

εd+1
|x− y| and |∇ūε,Nt (x)−∇ūε,Nt (y)| ≤ C

εd+2
|x− y| . (3.16)

2.

E

[

‖ūε,Nt − ūε,Nr(t)‖∞
]

≤ C
√
δt

εd+1
and E

[

‖∇ūε,Nt −∇ūε,Nr(t)‖∞
]

≤ C
√
δt

εd+2
, (3.17)

where δt := T
n .

Proof of Proposition 3.3. In this proof, C denotes a real positive constant (depending on MΦ, Mg , MΛ, ‖K‖∞,

‖∇K‖∞, LΦ, Lg , LΛ, L∇K , T ) that may change from line to line. Let us fix ε > 0, N ∈ N
⋆, n ∈ N

⋆.

For any ℓ = 1, · · · , d, we introduce the real-valued function Gℓ
ε defined on R

d such that

Gℓ
ε(x) :=

1

εd
∂K

∂xℓ

(x

ε

)

, for almost all x ∈ R
d . (3.18)

Let us now prove inequality (3.12). It is easy to observe that there exists a constant C > 0 depending on

‖K‖1, ‖ ∂K
∂xℓ

‖1, ℓ = 1, · · · , d, such that

‖Kε‖1 +
d

∑

ℓ=1

‖Gℓ
ε‖1 ≤ C , (3.19)

and

‖Kε‖∞ +

d
∑

ℓ=1

‖Gℓ
ε‖∞ ≤ C

εd
. (3.20)

From (3.5) and (3.11), we recall that uε,N and ūε,N are defined by

∀ t ∈ [0, T ], uε,Nt = Kε ∗ γε,Nt and ūε,N,n
t = Kε ∗ γ̄ε,N,n

t . (3.21)

From now on we will set ūε,N := ūε,N,n and γ̄ε,N := γ̄ε,N,n. For all t ∈ [0, T ], we have

E

[

‖uε,Nt − ūε,Nt ‖1
]

+ E

[

‖∇uε,Nt −∇ūε,Nt ‖1
]

≤ E

[

‖Kε ∗ (γε,Nt − γ̄ε,Nt )‖1
]

+
1

ε

d
∑

l=1

E

[

‖Gℓ
ε ∗ (γε,Nt − γ̄ε,Nt )‖1

]

≤ E

[

‖γε,Nt − γ̄ε,Nt ‖TV

]

+
1

ε

d
∑

ℓ=1

‖Gℓ
ε‖1E

[

‖γε,Nt − γ̄ε,Nt ‖TV

]

=
C

ε
E

[

‖γε,Nt − γ̄ε,Nt ‖TV

]

by (3.19) . (3.22)
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For t ∈ [0, T ], let us consider

E

[

‖γε,Nt − γ̄ε,Nt ‖TV

]

=
1

N

N
∑

i=1

E

[∣

∣

∣
Vt
(

ξi, uε,N (ξi),∇uε,N (ξi)
)

− V̄t
(

ξ̄i, ūε,N (ξ̄i),∇ūε,N,n(ξ̄i)
)

∣

∣

∣

]

≤ 1

N

N
∑

i=1

E

[
∣

∣

∣
Vt
(

ξi, uε,N (ξi),∇uε,N (ξi)
)

− Vt
(

ξi, ūε,N (ξi),∇ūε,N (ξi)
)

∣

∣

∣

]

+
1

N

N
∑

i=1

E

[∣

∣

∣
Vt
(

ξi, ūε,N (ξi),∇ūε,N (ξi)
)

− Vt
(

ξ̄i, ūε,N (ξ̄i),∇ūε,N (ξ̄i)
)

∣

∣

∣

]

+
1

N

N
∑

i=1

E

[
∣

∣

∣
Vt
(

ξ̄i, ūε,N (ξ̄i),∇ūε,N (ξ̄i)
)

− V̄t
(

ξ̄i, ūε,N (ξ̄i),∇ūε,N (ξ̄i)
)

∣

∣

∣

]

.

(3.23)

We are now interested in bounding each term in the r.h.s. of (3.23). Let us fix t ∈ [0, T ], i ∈ {1, · · · , N}.

Since Λ is bounded and Lipschitz, inequality (2.3) implies

Ai,ε,N,n
t := E

[∣

∣

∣
Vt
(

ξi, uε,N (ξi),∇uε,N (ξi)
)

− Vt
(

ξi, ūε,N (ξi),∇ūε,N (ξi)
)

∣

∣

∣

]

≤ eMΛT
E

[

∫ t

0

∣

∣

∣
Λ(s, ξis, u

ε,N
s (ξis),∇uε,Ns (ξis))− Λ(s, ξis, ū

ε,N
s (ξis),∇ūε,Ns (ξis))

∣

∣

∣

]

ds

≤ eMΛTLΛ

∫ t

0

{

E
[

|uε,Ns (ξis)− ūε,Ns (ξis)|
]

+ E
[

|∇uε,Ns (ξis)−∇ūε,Ns (ξis)|
]

}

ds .

(3.24)

Taking into account (3.21), for all s ∈ [0, T ], it follows

E
[

|uε,Ns (ξis)− ūε,Ns (ξis)|
]

= E
[

|Kε ∗ (γε,Ns − γ̄ε,Ns )(ξis)|
]

≤ C

εd
E

[

‖γε,Ns − γ̄ε,Ns ‖TV

]

, (3.25)

where we have used inequality (3.20). Similarly, we also obtain

E
[

|∇uε,Ns (ξis)−∇ūε,Ns (ξis)|
]

=
1

ε

d
∑

ℓ=1

E
[

|Gℓ
ε ∗ (γε,Ns − γ̄ε,Ns )(ξis)|

]

≤ C

εd+1
E

[

‖γε,Ns − γ̄ε,Ns ‖TV

]

, (3.26)

for all s ∈ [0, T ]. Injecting (3.25) and (3.26) in the r.h.s. of (3.24) yields

Ai,ε,N,n
t ≤ C

εd+1

∫ t

0

E

[

‖γε,Ns − γ̄ε,Ns ‖TV

]

ds . (3.27)

Concerning the second term in the r.h.s. of (3.23), we invoke again (2.3) to obtain

Bi,ε,N,n
t := E

[∣

∣

∣
Vt
(

ξi, ūε,N (ξi),∇ūε,N (ξi)
)

− Vt
(

ξ̄i, ūε,N (ξ̄i),∇ūε,N (ξ̄i)
)

∣

∣

∣

]

≤ eMΛTLΛE

[

∫ t

0

∣

∣

∣
Λ(s, ξis, ū

ε,N
s (ξis),∇ūε,Ns (ξis))− Λ(s, ξ̄is, ū

ε,N
s (ξ̄is),∇ūε,Ns (ξ̄is))

∣

∣

∣

]

ds

≤ eMΛTLΛ

∫ t

0

{

E

[

|ξis − ξ̄is|
]

+ E
[

|ūε,Ns (ξis)− ūε,Ns (ξ̄is)|
]

+ E
[

|∇ūε,Ns (ξis)−∇ūε,Ns (ξ̄is)|
]

}

ds

≤ CeMΛTLΛT
√
δt

εd+2

≤ C

εd+2
√
n
, (3.28)
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where we have used successively classical bounds of the Euler scheme (see e.g. Section 10.2, Chapter 10 in

[16]) and (3.16).

Regarding the third term, similarly as for the above inequality (3.28), (2.3) yields

Ci,ε,N,n
t := E

[∣

∣

∣
Vt
(

ξ̄i, ūε,N (ξ̄i),∇ūε,N (ξ̄i)
)

− V̄t
(

ξ̄i, ūε,N (ξ̄i),∇ūε,N (ξ̄i)
)

∣

∣

∣

]

≤ eMΛTLΛ

∫ t

0

(

|s− r(s)| 12 + E

[

|ξ̄is − ξ̄ir(s)|
]

+ E

[

|ūε,Ns (ξ̄is)− ūε,Nr(s)(ξ̄
i
r(s))|

]

+ E

[

|∇ūε,Ns (ξ̄is)−∇ūε,Nr(s)(ξ̄
i
r(s))|

])

ds , (3.29)

where we have used Hölder property of Λ w.r.t. the time variable.

Boundedness of Φ, g with classical Burkholder-Davis-Gundy (BDG) inequality give

E
[

|ξ̄is − ξ̄ir(s)|
]

≤ 2C
√
δt ≤ C√

n
, s ∈ [0, T ] . (3.30)

To bound the third term in the r.h.s. of (3.29), we use the following decomposition: for all s ∈ [0, T ],

E
[

|ūε,Ns (ξ̄is)− ūε,Nr(s)(ξ̄
i
r(s))|

]

≤ E
[

|ūε,Ns (ξ̄is)− ūε,Ns (ξ̄ir(s))|
]

+ E
[

|ūε,Ns (ξ̄ir(s))− ūε,Nr(s)(ξ̄
i
r(s))|

]

. (3.31)

We first observe that the first inequality (3.16) gives

E
[

|ūε,Ns (ξ̄is)− ūε,Ns (ξ̄ir(s))|
]

≤ C

εd+1
E

[

|ξ̄is − ξ̄ir(s)|
]

≤ C
√
δt

εd+1
≤ C

εd+1
√
n
, (3.32)

for all s ∈ [0, T ]. Invoking now the first inequality of (3.17) leads to

E
[

|ūε,Ns (ξ̄ir(s))− ūε,Nr(s)(ξ̄
i
r(s))|

]

≤ C
√
δt

εd+1
≤ C

εd+1
√
n
, s ∈ [0, T ] . (3.33)

Injecting now (3.33) and (3.32) in (3.31) yield

E
[

|ūε,Ns (ξ̄is)− ūε,Nr(s)(ξ̄
i
r(s))|

]

≤ C

εd+1
√
n
, s ∈ [0, T ] . (3.34)

With very similar arguments as those used to obtain (3.34) (i.e. decomposition (3.31) and inequalities (3.16),

(3.17)), we obtain for all s ∈ [0, T ],

E

[

|∇ūε,Ns (ξ̄is)−∇ūε,Nr(s)(ξ̄
i
r(s))|

]

≤ C
√
δt

εd+2
≤ C

εd+2
√
n
. (3.35)

Gathering (3.35), (3.34) and (3.30) in (3.29) gives

Ci,ε,N,n
t ≤ C

√
δt

εd+2
≤ C

εd+2
√
n
. (3.36)

Finally, injecting (3.36), (3.28) and (3.27) in (3.23), we obtain for all t ∈ [0, T ],

E

[

‖γε,Nt − γ̄ε,Nt ‖TV

]

≤ C
( 1

εd+2
√
n
+

1

εd+1

∫ t

0

E

[

‖γε,Ns − γ̄ε,Ns ‖TV

]

ds
)

. (3.37)

Gronwall’s lemma applied to the function t ∈ [0, T ] 7→ E

[

‖γε,Nt − γ̄ε,Nt ‖TV

]

implies

E

[

‖γε,Nt − γ̄ε,Nt ‖TV

]

≤ C

εd+2
√
n
e

C

εd+1 , t ∈ [0, T ] . (3.38)

The result follows by injecting (3.38) in (3.22).
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The particle algorithm used to simulate the dynamics (3.9) consists of the following steps.

Initialization for k = 0.

1. Generate (ξ̄i0)i=1,..,N i.i.d.∼ u0(x)dx;

2. set Gi
0 := 1, i = 1, · · · , N ;

3. set ūε,Nt0 (·) := (Kε ∗ u0)(·).

Iterations for k = 0, · · · , n− 1.

• For i = 1, · · ·N , set ξ̄itk+1
:= ξ̄itk+Φ(tk, ξ̄

i
tk
)
√
δt ǫik+1+g(tk, ξ̄

i
tk
)δt ,where (ǫik)

i=1,··· ,N
k=1,···n is a sequence

of i.i.d centered and standard Gaussian variables;

• for i = 1, · · ·N , set Gi
k+1 := Gi

k × exp
(

Λ(tk, ξ̄
i
tk
, ūε,Ntk

(ξ̄itk),∇ū
ε,N
tk

(ξ̄itk))δt
)

;

• set ūε,Ntk+1
(·) = 1

N

N
∑

i=1

Gi
k+1 ×Kε(· − ξ̄itk+1

).

Remark 3.6. Observe that each particle evolves independently without any interaction by contrast to the case consid-

ered in [18, 17]. However, since the evaluation of the function ūε,N at any point (tk, ξ̄
i
tk
) requires to sum up N terms,

the complexity of the algorithm is still of order nN2. However, there are several strategies to speed up the evaluation

of ūε,Ntk
(ξ̄itk). By a judicious partition of the space, we can efficiently approximate this evaluation with a complexity

of order N log(N). The basic idea is that, only a small part of the particles will really contribute to ūε,Ntk
(ξ̄itk), most

of particles being too far away from ξ̄itk . Dual tree recursions based on k-d tree allow to perform this approximation

efficiently with tight accuracy guarantees, see [11].

4 Numerical simulations

The aim of this section is to illustrate the performances of our original numerical scheme to approximate

the solution of semilinear PDEs (1.1), inspect to what extent this approach remains valid out of Assump-

tion 1 and to provide a perspective of application to stochastic control problems. First we consider the one

dimensional Burgers equation and then the production / inventory control problem that we relate to the

d-dimensional KPZ equation.

4.1 Burgers equation

Let u0 be a probability density on R and set U0 =
∫ ·

−∞
u0(y)dy. Let us consider the viscid Burgers equation

in dimension d = 1, given by
{

∂tu = ν2

2 ∂xxu− u∂xu, (t, x) ∈ [0, T ]× R, ν > 0

u(0, ·) = u0 .
(4.1)

It is well-known (see e.g. [9]) that (4.1) admits a unique classical solution if u0 ∈ L1(Rd). Moreover, using

the so-called Cole-Hopf transformation, the solution u admits the semi-explicit formula

u(t, x) =
E[u0(x+ νBt)e

−
U0(x+νBt)

ν2 ]

E[e−
U0(x+νBt)

ν2 ]
, (t, x) ∈ [0, T ]× R, (4.2)

11



where B denotes the real-valued standard Brownian motion. Integrating against test functions in space it

is not difficult to show that the classical solution u is also a weak solution of (1.1) with

Φ = ν, g ≡ 0,Λ(t, x, y, z) = z.

Apparently our Assumption 1 is not fulfilled, at least for what concerns Λ. However choosing u0 being a

bounded probability density, it is not difficult to show that there existsM > 0 such that u is a solution of the

subsidiary equation of type (1.1) with Φ ≡ ν,Λ(t, x, y, z) := ΛM (z) where ΛM : R → R is a smooth bounded

function such that ΛM (z) = z if |z| ≤M and ΛM (z) = 0 if |z| > M +1. In this case Assumption 1 is fulfilled

for the subsidiary equation.

In our numerical tests, we have implemented the time discretized particle scheme (3.9) with the follow-

ing values of parameters Φ(t, x) := ν, g(t, x) := 0, Λ(t, x, y, z) := z , in order to approximate the solution

of (4.1).

4.2 The production/inventory control problem and KPZ (deterministic) equation

Let us introduce a multivariate extension of the Production/Inventory planning studied in [3]. Consider a

factory producing several goods indexed by i = 1, · · · , d. For each good i and any time t ∈ [0, T ], let (Xi
t)

denote the inventory level; (Di
t) the random demand rate and (pit) the production rate at time t. Let us

denote Xt := (Xi
t)i=1,··· ,d , pt := (pit)i=1,··· ,d and Dt := (Di

t)i=1,··· ,d. The d-dimensional inventory process

X is modelled as the controlled diffusion
{

dX0,x,p
t = ptdt− dDt , with dDt = d̄tdt+ diag(σ)dWt

X0,x,p
0 = x ,

(4.3)

where W is a d-dimensional Brownian motion, d̄t ∈ R
d is the (deterministic) average demand rate and

σ = (σ1, · · · , σd) with σi being the volatility of the demand rate Di. The aim is to minimize over non-

anticipative production rates (pt), the following expected cost:

E

[

g(XT ) +

∫ T

0

[

d
∑

i=1

ci(pis − p̄is)
2 + h(Xs)

]

ds

]

, (4.4)

where (ci)i and (p̄i)i are parameters for the quadratic production cost and h, g : x ∈ R
d 7→ h(x), g(x) ∈ R

are nonlinear functions respectively representing the inventory holding cost and the inventory terminal

cost. The value function is

v(t, x) := sup
p

E

[

g(Xt,x
T ) +

∫ T

t

[

d
∑

i=1

ci(pis − p̄is)
2 + h(Xt,x

s )
]

ds

]

. (4.5)

v is solution of the Hamilton-Jacobi-Bellman equation
{

∂tv +
∑d

i=1
1
4ci

(∂xi
v)2 +

∑d
i=1(p̄

i
t − d̄it)∂xi

v + 1
2

∑d
i=1 σ

2
i ∂

2
xixi

v − h = 0

v(T, x) = g(x),
(4.6)

provided (4.6) has a solution with some minimal regularity, according to the usual verification theorems in

stochastic optimal control. When g and h are quadratic functions, this retrieves a linear quadratic Gaussian

control problem for which an explicit solution is available, see [3]. Otherwise no explicit solution exists and

so we have to rely on numerical methods for non-linear PDEs.
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Consider the specific case where p̄ = d̄, ci = 1
2 and σi = ν > 0 for any i = 1, · · · , d and h = 0. By a

simple transformation involving a change of time (u(t, x) := 1
2v(T − t, x)), we remark that equation (4.6)

reduces to the KPZ equation
{

∂tu = ν2

2 ∆u+ |∇u|2, for any (t, x) ∈ [0, T ]× R
d,

u(0, dx) = u0(x)dx ,
(4.7)

where ∆ denotes as usual the Laplace operator and we recall that | · | denotes the Euclidean norm on R
d.

Using again the Cole-Hopf transformation, [9] have shown that there is a solution u admitting the semi-

explicit formula

u(t, x) = log
(

E
[

eu0(x+σBt)
]

)

, (4.8)

where B denotes a R
d-valued standard Brownian motion. In our numerical tests, (4.7) constitutes a bench-

mark for the stochastic control problem (4.3)-(4.5).

We suppose here that the initial condition u0 is chosen strictly positive which ensures u(t, x) 6= 0 for

all (t, x) ∈ [0, T ] × R
d. Indeed we have eu(t,x) = E

[

eu0(x+σBt)
]

≥ 1 + E[u0(x+ σBt)] > 1 for all (t, x) ∈
[0, T ] × R

d. We remark that a strictly positive function u is solution of (4.7) if and only if it is a solution of

equation










∂tu = ν2

2 ∆u+ uΛ(t, x, u,∇u), (t, x) ∈ [0, T ]× R
d,

Λ(t, x, y, z) := |z|2

y , for any (t, x, y, z) ∈ [0, T ]× R
d×]0,+∞[×R

d ,

u(0, ·) = u0 .

(4.9)

Notice that Λ here is clearly not Lipschitz and then it does not satisfy Assumption 1. However, in our nu-

merical tests, we have implemented the time discretized particle scheme (3.9) with the choice of parameters

Φ(t, x) := ν, g(t, x) := 0 and Λ(t, x, y, z) := |z|2

y , to approximate the solution of (4.9).

4.3 Details of the implementation

In our figures, we have reported an approximation of the L1-mean error committed by our numerical

scheme (3.9) at the terminal time T . This error is approximated by Monte Carlo simulations as

E[‖ūε,N,n
T − uT ‖1] ≈

1

MQ

M
∑

i=1

Q
∑

j=1

|ūε,N,n,i
T (Xj)− ûT (X

j)| u−1
0 (Xj) , where, (4.10)

• (ūε,N,n,i
T )i=1,··· ,M=100 are i.i.d. estimates based on M i.i.d. particle systems;

• (Xj)j=1,··· ,Q=1000 are i.i.d R
d-valued random variables (independent of the particles defining (ūε,N,n,i

T )i=1,··· ,M=100),

with common density u0;

• ûT denotes a Monte Carlo estimation of the exact solution, uT , with 10000 simulations approximating

the expectation formulas (4.2) for the Burgers equation and (4.8) for the KPZ equation.

The parameters of the problem in both cases (Burgers and KPZ) are T = 0.1, ν = 0.1 and the initial distri-

bution u0 is the centered and standard Gaussian distribution N (0, Id).

Concerning the parameters of our numerical scheme, n = 10 time steps and K = φd with φd being the stan-

dard and centered Gaussian density on R
d. To illustrate the trade-off condition (see (3.8)) between N and ε,

several values have been considered for the number of particles N = 1000, 3162, 10000, 31623, 50000 and

for the regularization parameter ε = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.
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4.4 Simulations results

We have reported the estimated L1 error (according to (4.10)) committed by our approximation scheme (3.9)

on Figure 1, for the Burgers equation (4.1) and on Figure 2, for the KPZ equation (4.7). The objective consists

in illustrating the tradeoff stated in (3.13) and to evaluate the convergence rate of the error. In both cases,

one can observe on the left graphs that the error decreases with the number of particles, at a rate N−1/2.

However, when the regularization parameter ε is big, the largest part of the error is due to ε so that the

impact of increasing N is rapidly negligible.

On the right-hand side graphs, for fixed N , we observe that the error diverges when ε goes to zero.

As already postulated in Remark 3.2, the convergence of the error to zero when ε goes to zero, holds only

lettingN goes to infinity according to some relationN 7→ ε(N). The graphs provide empirically the optimal

rate N 7→ εopt(N), which corresponds to the value of ε related to the minimum of the curve indexed by N .

We have reported on Figure 3 estimations of these optimal points (N, εopt(N)) in a logarithmic scale, for

N = 1000, 3162, 10000, 31623, 50000 and drawn a linear interpolation on those points. The related slopes

are −0.21 (resp. −0.12) for the one dimensional Burgers (resp. the five dimensional KPZ) example. These

optimal bandwidths seem to behave accordingly to classical kernel density estimation rules, which are of

the type εopt ∝ 1
N1/(d+4) . Indeed −0.21 ≈ −1/(d+ 4) = −1/5 for the one dimensional Burgers example and

−0.12 ≈ −1/(d + 4) = −1/9 for the five dimensional KPZ example. This suggests as already announced

in Remark 3.2 that the tradeoff condition (3.8) is far too rough and that the algorithm behaves better in

practice.
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Figure 1: L
1 error as a function of the number of particles, N , (on the left graph) and the mollifier window width, ǫ,

(on the right graph), for the Burgers equation (4.1), dimension d = 1.
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Figure 2: L
1 error as a function of the number of particles, N , (on the left graph) and the mollifier window width, ǫ,

(on the right graph), for the KPZ equation (4.7), dimension d = 5.
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Figure 3: Optimal bandwidth, εopt, as a function of the number of particles, for Burgers equation with d = 1 (left

graph) and for the KPZ equation (4.7) with d = 5 (right graph).

5 Appendix

Proof of Lemma 3.5. Let us fix ε > 0, N ∈ N
⋆, t ∈ [0, T ]. We first recall that for almost all x ∈ R

d,

ūε,Nt (x) =
1

N

N
∑

i=1

Kε(x− ξ̄it)V̄t
(

ξ̄i, ūε,N (ξ̄i),∇ūε,N (ξ̄i)
)

, (5.1)

for which V̄t is given by (3.10). Let us fix i ∈ {1, · · · , N}.

• Proof of (3.16). We only give details for the proof of the first inequality since the second one can be

established through similar arguments.
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From the second line equation of (5.1), we have

|ūε,Nr(t)(x)− ūε,Nr(t)(y)| ≤ 1

N

N
∑

i=1

∣

∣Kε(x− ξ̄ir(t))−Kε(y − ξ̄ir(t))
∣

∣V̄r(t)
(

ξ̄i, ūε,N (ξ̄i),∇ūε,N (ξ̄i)
)

≤ eMΛT

Nεd+1

N
∑

i=1

LK |x− y|

≤ eMΛTLK

εd+1
|x− y| , (5.2)

where for the second step above, we have used the fact that K is in particular Lipschitz. The same

arguments lead also to

|∇ūε,Nr(t)(x)−∇ūε,Nr(t)(y)| ≤ eMΛTL∇K

εd+2
|x− y| , (5.3)

which ends the proof of (3.16).

• Proof of (3.17). From

ūε,Nt (x) =
1

N

N
∑

i=1

Kε(x− ξ̄it)V̄t
(

ξ̄i, ūε,N (ξ̄i),∇ūε,N (ξ̄i)
)

, x ∈ R
d , (5.4)

we deduce, for almost all x ∈ R
d,

|ūε,Nt (x)− ūε,Nr(t)(x)| ≤ eMΛT

N

N
∑

i=1

∣

∣

∣
Kε(x− ξ̄it)−Kε(x− ξ̄ir(t))

∣

∣

∣

+
‖K‖∞
Nεd

N
∑

i=1

∣

∣V̄t
(

ξ̄i, ūε,N (ξ̄i),∇ūε,N (ξ̄i)
)

− V̄r(t)
(

ξ̄i, ūε,N (ξ̄i),∇ūε,N (ξ̄i)
)∣

∣ .

(5.5)

Since K is Lipschitz with related constant LK = ‖∇K‖∞, for almost all x ∈ R
d, we obtain

|ūε,Nt (x)− ūε,Nr(t)(x)| ≤ LKe
MΛT

Nεd+1

N
∑

i=1

|ξ̄it − ξ̄ir(t)|

+
LΛe

MΛT ‖K‖∞
Nεd

N
∑

i=1

∫ t

r(t)

Λ(r(s), ξ̄ir(s), ū
ε,N
r(s)(ξ̄

i
r(s)),∇ūε,Nr(s)(ξ̄

i
r(s)))ds ,

(5.6)

where the second term in (5.6) comes from inequality (2.3). Since Λ is bounded, by taking the supre-

mum w.r.t. x and the expectation in both sides of inequality above we have

E

[

‖ūε,Nt − ūε,Nr(t)‖∞
]

≤ LKe
MΛT

Nεd+1

N
∑

i=1

E

[

|ξ̄it − ξ̄ir(t)|
]

+
LΛe

MΛT ‖K‖∞
εd

MΛδt ≤
C
√
δt

εd+1
, (5.7)

where we have used the fact that E
[

|ξ̄is − ξ̄ir(s)|2
]

≤ Cδt, since Φ, g are bounded.

The bound of E
[

‖∇ūε,Nt −∇ūε,Nr(t)‖∞
]

is obtained by proceeding exactly in with the same way as above,

starting with

∂ūε,Nt

∂xℓ
(·) = 1

Nε

N
∑

i=1

∂Kε

∂xℓ
(· − ξ̄it)V̄t

(

ξ̄i, ūε,N (ξ̄i),∇ūε,N (ξ̄i)
)

, l = 1, · · · , d , (5.8)
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instead of (5.4), where xℓ denotes the ℓ-th coordinate of x ∈ R
d. It follows then

E

[

‖∇ūε,Nt − ∇̄uε,Nr(t)‖∞
]

≤ C
√
δt

εd+2
. (5.9)
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[22] E. Pardoux and A. Raşcanu. Stochastic differential equations, Backward SDEs, Partial differential equations,

volume 69. Springer, 2014.

[23] B. W. Silverman. Density estimation for statistics and data analysis. Monographs on Statistics and Applied

Probability. Chapman & Hall, London, 1986.

18


	Introduction
	Preliminaries
	Notations
	Basic assumption
	Solution to the PDE
	Feynman-Kac type representation

	Particles system algorithm
	Convergence of the particle system
	Time discretized scheme

	Numerical simulations
	Burgers equation
	The production/inventory control problem and KPZ (deterministic) equation
	Details of the implementation
	Simulations results

	Appendix
	Bibliography

