
Variational solutions to nonlinear
stochastic differential equations

in Hilbert spaces

Viorel Barbu∗ Michael Röckner†
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1 Introduction

Here, for λ ∈ (0,∞), we consider the stochastic differential equation

dX(t) + A(t)X(t)dt+ λX(t)dt 3 X(t)dWt, t ∈ (0, T ),

X(0) = x ∈ H,
(1.1)

in a real Hilbert spaced H whose elements are generalized functions on a
bounded domain O ⊂ Rd with a smooth boundary ∂O. In examples, we
have in mind that H is e.g. L2(O) or H1

0 (O), H1(O), H−1(O).
The norm of H is denoted by | · |H , its scalar product by (·, ·) and its

Borel σ-algebra by B(H).
W is a Wiener process of the form

W (t, ξ) =
∞∑
j=1

µjej(ξ)βj(t), ξ ∈ O, t ≥ 0, (1.2)

where {βj}∞j=1 is an independent system of real (Ft)-Brownian motions on
a probability space {Ω,F ,P} with natural filtration (Ft)t≥0 and {ej} is an
orthonormal basis in H such that both cj and e2j , j ∈ N, are multipliers in
H, while µj ∈ R, j = 1, 2, ..., satisfy (1.9) below.

As regards the nonlinear (multivalued) operator A = A(t, ω) : H → H,
the following hypotheses will be assumed below.

(i) Let ϕ : [0, T ]×H×Ω→ R =]−∞,+∞] be convex lower semicontinuous
in y ∈ H and progressively measurable, i.e., for each t ∈ [0, T ] the
function ϕ restricted to [0, t]×H×Ω is B([0, t])⊗B(H)⊗Ft measurable,
and let

A(t, ω) = ∂ϕ(t, ω), ∀(t, ω) ∈ [0, T ]× Ω. (1.3)

In particular, y → A(t, ω, y) is maximal monotone in H × H for all
(t, ω) ∈ [0, T ] × Ω. Furthermore, ϕ is such that there exists α ∈
L2([0, T ]× Ω;H) and β ∈ L2([0, T ]× Ω) such that

ϕ(t, y, ω) ≥ (α(t, ω), y)− β(t, ω) for dt⊗ P− a.e., (t, ω) ∈ [0, T ]× Ω.

(ii) e±W (t) is a multiplier in H such that there is an (Ft)t≥0-adapted R+-
valued process Z(t), t ∈ [0, T ], with

sup
t∈[0,T ]

|Z(t)| < ∞, P-a.s.,

|e±W (t)y|H ≤ Z(t)|y|H , ∀t ∈ [0, T ], y ∈ H,
(1.4)

t→ e±W (t) ∈ L(H,H) is continuous. (1.5)
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Recall that a multivalued mapping A : D(A) ⊂ H → H is said to be
maximal monotone if it is monotone, that is, for u1, u2 ∈ D(A),

(z1 − z2, u1 − u2) ≥ 0, ∀zi ∈ Aui, i = 1, 2,

and the range R(λI + A) is all of H for each λ > 0.
If ϕ : H → R is a convex, lower semicontinuous function, then its subdif-

ferential ∂ϕ : H → H

∂ϕ(u) = {v ∈ H; ϕ(u) ≤ ϕ(ū) + (v, u− ū), ∀ū ∈ H} (1.6)

is maximal monotone (see, e.g., [1]).
The conjugate ϕ∗ of H defined by

ϕ∗(v) = sup{(u, v)− ϕ(u); u ∈ H} (1.7)

satisfies
ϕ(u) + ϕ∗(v) ≥ (u, v), ∀u, v ∈ H,
ϕ(u) + ϕ∗(v) = (u, v), iff v ∈ ∂ϕ(u).

(1.8)

As regards the basis {ej} arising in the definition of the Wiener processW ,
we assume also that, for the multipliers e2j , we have

(iii) For γj = max{sup{|uej|H ; |u|H = 1}, (sup{ue2j |H ; |u|H = 1}) 1
2 , 1}, we

assume

ν =
∞∑
j=1

µ2
jγ

2
j <∞, (1.9)

and that λ > ν.

Clearly, then

µ =
1

2

∞∑
j=1

µ2
je

2
j (1.10)

is a multiplier in H.
It should be noted that the condition λ > ν in (1.9) is made only for

convenience. In fact, by the substitution X → exp(−λt)X and replacing
A(t) by u→ e−λtA(t)(eλtu) we can always change λ in (1.1) to a big enough
λ which satisfies λ > ν. It should be emphasized that a general existence
and uniqueness result for equation (1.1) is known only for the special case
where A(t) are monotone and demicontinuous operators from V to V ′, where
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(V, V ′) is a pair of reflexive Banach spaces in duality with the Hilbert space
H as pivot space, that is, V ⊂ H(≡ H ′) ⊂ V ′ densely and continuously. If,
in addition, for α1 ∈ (0,∞), α2, α3 ∈ R,

V ′(A(t)u, u)V ≥ α1‖u‖pV + α2|u|2H , ∀u ∈ V, (1.11)

‖A(t)u‖V ′ ≤ α3‖u‖p−1V , ∀u ∈ V, (1.12)

where 1 < p < ∞, then equation (1.1) has under assumptions (i)–(iii) a
unique strong solution X ∈ Lp((0, T ) × Ω;V ) (see [15], [16], [17], [18]).
We noted before that assumption (i) implies that A(t, ω) is maximal mono-
tone in H for all t ∈ [0, T ], though not every maximal monotone operator
A(t) : D(A(t)) ⊂ H → H has a realization in a convenient pair of spaces
(V, V ′) such that (1.8)–(1.9) hold. Though assumptions (1.11)–(1.12) hold
for a large class of stochastic parabolic equations in Sobolev spaces W 1,p(O),
1 ≤ p < ∞ (see [6]), some other important stochastic PDEs are not co-
vered by this functional scheme. For instance, the variational stochastic
differential equations, nonlinear parabolic stochastic equations in W 1,1(O),
in Orlicz-Sobolev spaces on O or in BV (O) (bounded variation stochastic
flows) cannot be treated in this functional setting. As a matter of fact, con-
trary to what happens for deterministic infinite differential equations, there
is no general existence theory for equation (1.1) under assumption (i)–(iii).
The definition of a convenient concept of a weak solution to be unique and
continuous with respect to data is a challenging objective of the existence
theory of the infinite dimensional SDE. In this paper, we introduce such a
solution X for (1.1) which is defined as a minimum point of a certain con-
vex functional defined on a suitable space of H-valued processes on (0, T ).
This idea was developed in [11] for nonlinear operators A(t) : V → V ′ sa-
tisfying condition (1.11)–(1.12) and is based on the so-called Brezis–Ekeland
variational principle [11]. Such a solution in the sequel will be called the
variational solution to (1.1). (Along these lines see also [2], [3], [5], [6].)

2 The variational solution to equation (1.1)

First, we transform equation (1.1) into a random differential equation via the
substitution

X(t) = eW (t)(y(t) + x), t ∈ [0, T ], (2.1)

which, by Itô’s product rule,
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dX = eWdy + eW (y + x)dW + µeW (y + x)dt,

leads to

dy(t)

dt
+ e−W (t)A(t)(eW (t)(y(t) + x)) + (µ+ λ)(y(t) + x) 3 0,

t ∈ (0, T ),

y(0) = 0.

(2.2)

(In the following, we shall omit ω from the notation A(t, ω).)
As a matter of fact, the equivalence between (1.1) and (2.2) is true only

for a smooth solution y to (2.2), that is, for pathwise absolutely continuous
strong solutions to (2.2) (see [9], [10]). In the sequel, we shall define a
generalized (variational) solution for the random Cauchy problem (2.2) and
will call the corresponding process X defined by (2.1) the variational solution
to (1.1).

We shall treat equation (2.2) by the operator method developed in [10].
Namely, consider the space H of all H-valued processes y : [0, T ] → H such
that

|y|H =

(
E
∫ s

0

|eW (t)y(t)|2Hdt
) 1

2

<∞,

which have an (Ft)t≥0-adapted version. Here E denotes the expectation with
respect to P. The space H is a Hilbert space with the scalar product

〈y, z〉 = E
∫ s

0

(eW (t)y(t), eW (t)z(t))dt, y, z ∈ H.

We set δ = 1
2

(λ − ν). Now, consider the operators A : D(A) ⊂ H → H
and B : D(B) ⊂ H → H defined by

(Ay)(t) = e−W (t)A(t)(eW (t)(y(t) + x)) + δ(y + x), ∀y ∈ D(A),
t ∈ [0, T ],

D(A) = {y ∈ H; eW (t)(y(t) + x) ∈ D(A(t)), ∀t ∈ [0, T ] and
e−WA(eW (y + x)) ∈ H},

(2.3)

(By)(t) =
dy

dt
(t) + (µ+ ν + δ)(y + x), a.e. t ∈ (0, T ), y ∈ D(B),

D(B) =

{
y ∈ H; y ∈ W 1,2

0 ([0, T ];H), P-a.s.,
dy

dt
∈ H

}
.

(2.4)
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Here, W 1,2
0 ([0, T ];H) denotes the space {y ∈ W 1,2([0, T ];H); y(0) = 0},

whereW 1,2([0, T ];H) is the Sobolev space
{
y ∈ L2(0, T ;H), dy

dt
∈ L2(0, T ;H)

}
.

We recall that W 1,2([0, T ];H) ⊂ AC([0, T ];H), the space of all H-valued ab-
solutely continuous functions on [0, T ].

Then we may rewrite equation (2.2) as

By +Ay 3 0. (2.5)

(If A(t) is multivalued, we replace A(t)(eW (y + x)) in (2.3) by {η(t); η(t) ∈
A(t)(eW (t)(y(t) + x)), a.e. (t, ω) ∈ (0, T )× Ω}.)

Consider the functions Φ : H → R defined by

Φ(y) = E
∫ T

0

(ϕ(t, eW (t)(y(t) + x)) +
δ

2
|eW (t)(y(t) + x)|2H)dt, ∀y ∈ H. (2.6)

It is easily seen that Φ is convex, lower-semicontinuous and

∂Φ = A. (2.7)

As regards the operator B, we have

Lemma 2.1 For each y ∈ D(B) we have

〈By, y〉 =
1

2
E|eW (T )y(T )|2H + (ν + δ)|y|2H

−1

2
E
∫ T

0

∞∑
j=1

|eWyej|2Hµ2
jdt

≥ 1

2
E|eW (T )y(T )|2H +

λ

2
|y|2H.

(2.8)

Proof. We have

〈By, y〉 = E
∫ T

0

(
eW (t)dy

dt
(t), eW (t)y(t)

)
dt

+E
∫ T

0

((µ+ ν + δ)eWy, eWy)dt.

(2.9)

Taking into account that

d(eWy) = eW dy + eWy dW + µeWy dt, ∀y ∈ D(B),
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we get via Itô’s formula that (see [6])

1

2
d|eWy|2H =

(
eW

dy

dt
, eWy

)
dt+ (eWy, eWy dW ) + (µeWy, eWy)dt

+
1

2

∞∑
j=1

µ2
j |eWyej|2Hdt.

Hence

E
∫ T

0

(
eW

dy

dt
, eWy

)
dt =

1

2
E|eW (T )y(T )|2H − E

∫ T

0

(µeWy, eWy)dt

−1

2
E
∫ T

0

∞∑
j=1

|eWyej|2Hµ2
j dt,

and so, because λ > ν, by (1.9), (2.9), we get (2.8), as claimed.

Consider now the conjugate Φ∗ : H → R of functions Φ, that is,

Φ∗(z) = sup{〈z, y〉H − Φ(y); y ∈ H}.

By (2.6), we see that (see [19])

Φ∗(z) = E
∫ T

0

(ψ∗(t, eW (t)z(t))− (eW (t)z(t), eW (t)x))dt, (2.10)

where ψ∗ is the conjugate of the function

ψ(t, y) = ϕ(t, y) +
δ

2
|y|2H , (2.11)

that is,

ψ∗(t, v) = sup{(v, y)− ϕ(t, y)− δ

2
|y|2H ; y ∈ H}. (2.12)

We recall (see (1.8)) that

Φ(y) + Φ∗(u) ≥ 〈y, u〉 , ∀y, u ∈ H, (2.13)

with equality if and only if u ∈ ∂Φ(y). We infer that y∗ is a solution to
equation (2.5) if and only if

y∗ = arg min
(y,u)∈D(B)×H

{Φ(y) + Φ∗(u)− 〈y, u〉 ; By + u = 0}

= arg min
(y,u)∈D(B)×H

{Φ(y) + Φ∗(u) + 〈By, y〉 ; By + u = 0}
(2.14)
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and
Φ(y∗) + Φ∗(u∗) + 〈By∗, y∗〉 = 0. (2.15)

Taking into account (2.10) and recalling (2.6), (2.8), we have

y∗ = arg min
(y,u)∈D(B)×H

{
E
∫ T

0

(
ϕ(t, eW (t)(y(t) + x)) +

δ

2
|eW (t)(y(t) + x)|2H

+ψ∗(t, eW (t)u(t))− (eW (t)u(t), eW (t)x)

+η(eW (t)y(t))
)
dt+

1

2
E|eW (T )y(T )|2H ; By + u = 0

}
,

(2.16)

where

η(z) = (ν + δ)|z|2H −
1

2

∞∑
j=1

|zej|2Hµ2
j . (2.17)

We note also that, by Itô’s product rule, we have, for u ∈ H, y ∈ D(B),

−E
∫ T

0

(eW (t)u(t), eW (t)x)dt

= E
∫ T

0

(
eWx, eW

(
dy

dt
+ (µ+ ν + δ)(y + x)

))
dt

= E
∫ T

0

(eWx, d(eWy))−
∫ T

0

(eWx, µeWy − (µ+ ν + δ)(y + x)eW )dt

= E
∫ T

0

(eWx, (µ+ δ + ν)(y + x)eW )dt

+E
∫ T

0

d(eWx, eWy)−
∫ T

0

(
(eWy, eW (1 + µ)x)− (µeWy, eWx)

)
dt

= E(eW (T )x, eW (T )y(T ))−
∫ T

0

(
(eWy, eW (1 + µ)x)− (µeWy, eWx)

)
dt

+E
∫ T

0

(eWx, (µ+ ν + δ)(y + x)eW )dt

= E(eW (T )x, eW (T )y(T )) + E
∫ T

0

(eWx, ((µ+ ν + δ)(y + x)− µy)eW )dt

−
∫ T

0

(eWy, eW (1 + µ)x)dt

= E
∫ T

0

(eW ((ν + δ)(y + x) + µx), eWx)dt+ E(eW (T )y(T ), eW (T )x)

−
∫ T

0

(eWy, eW (1 + µ)x)dt.
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Let H0 denote the set of all u ∈ L2([0, T ]×Ω;H) which have an (Ft)t≥0-
adapted version. We set, for y ∈ H, u ∈ H0,

G1(y) = E
∫ T

0

ϕ(t, eW (t)(y(t) + x))dt (2.18)

+E
∫ T

0

((eW (t)((ν + δ)(y(t) + x) + µx), eW (t)x)

+
δ

2
|eW (t)(y(t) + x)|2H + η(eW (t)y(t)))dt

+
1

2
E|eW (T )y(T )|2H + E(eW (T )y(T ), eW (T )x)

−E
∫ T

0

(eW (t)y(t), eW (t)(1 + µ)x)dt,

G2(u) = E
∫ T

0

ψ∗(t, u(t))dt, (2.19)

where ψ∗ is given by (2.12).
By (2.16) it follows that y∗ is a solution to equation (2.5) if and only if

y∗ = arg min
(y,u)∈D(B)×H0

{G1(y) +G2(u); eWBy + u = 0} (2.20)

and
G1(y

∗) +G2(u
∗) = 0. (2.21)

It should be said, however, that under our assumptions the convex minimiza-
tion problem (2.20) might have no solution (y∗, u∗) because, in general, G2

is not coercive on the space H. (G2 is, however, coercive if ϕ is bounded on
bounded sets of H. But such a condition is too restrictive for applications to
PDEs.) So, we are led to replace (2.20) by a relaxed optimization problem
to be defined below.

Let
X = L2(Ω; (W 1,2([0, T ];H))′), (2.22)

where (W 1,2([0, T ];H))′ is the dual space of W 1,2([0, T ];H).

Define the operator B̃ : H× L2(Ω;H)→ X by
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(B̃(y, y1))(θ) = E(eW (T )y1, θ(T )) + E
∫ T

0

((ν + δ)(y(t) + x)

+µx)eW (t), θ(t))dt− E
∫ T

0

(
eW (t)y(t),

dθ

dt
(t)

)
dt,

∀θ ∈ L2(Ω;W 1,2([0, T ];H)).

(2.23)

We note that y1(ω) ∈ H can be viewed as the trace of y(ω) at t = T .
Indeed, if y ∈ D(B), we have via Itô’s formula

E
∫ T

0

(eWBy, θ)dt = E
(∫ T

0

(d(eWy), θ)−
∫ T

0

(eWµy, θ)dt

)
+E

∫ T

0

(eW (µ+ ν + δ)(y + x), θ)dt

= E(eW (T )y(T ), θ(T ))

+E
∫ T

0

(eW ((y + x)(ν + δ) + µx), θ)dt

−E
∫ T

0

(
eWy,

dθ

dt

)
dt, ∀θ ∈ L2(Ω;W 1,2([0, T ];H)).

This means that B̃(y, y(T )) = eWBy, ∀y ∈ D(B). We set

G̃1(y, y1) = E
∫ T

0

ϕ(t, eW (t)(y(t) + x))dt

+E
∫ T

0

(
(eW (t)((ν + δ)(y(t) + x) + µx), eW (t)x)

+
δ

2
|eW (t)(y(t) + x)|2H + η(eW (t)y(t))

)
dt

−E
∫ T

0

(eW (t)y(t), eW (t)(1 + µ)x)dt+
1

2
E|eW (T )y1|2H

+E(eW (T )y1, e
W (T )x), ∀(y, y1) ∈ H × L2(Ω;H)

(2.24)

and note that G̃1(y; y(T )) = G1(y), ∀y ∈ D(B).
We note also that, if yn ∈ D(B) such that yn → y weakly in H and

yn(T )→ y1 weakly in L2(Ω;H), then

eWByn → B̃(y, y1) weakly in X . (2.25)
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Let G : H × L2(Ω;H) × X → R be the lower semicontinuous closure of

the function G(y, y1, u) = G̃1(y, y1) +G2(u) in H×L2(Ω;H)×X , on the set
{(y, y1, u) ∈ H × L2(Ω;H)×X ; eWBy + u = 0}, that is,

G(y, y1, u) = lim inf{G(z, z(T ), u); z(T )→ y1 in L2(Ω;H),

z ∈ D(B), (z, v)→ (y, u) in H×X ; eWBz + v = 0}.
(2.26)

(Here and everywhere in the following, by → we mean weak convergence.)

Taking into account that the function G̃1 is convex and lower semicon-
tinuous in H× L2(Ω;H), we have by (2.26)

G(y, y1, u)=G̃1(y, y1)+ lim inf{G2(v); (z, v)→(y, u) in H×X ,
eWBz+v=0}.

(2.27)

Now, we relax (2.20) to the convex minimization problem

(P) Min{G(y, y1, u); B̃(y, y1) + u = 0; (y, y1, u) ∈ H × L2(Ω;H)×X}.

We have

Theorem 2.2 Let x ∈ H. Then problem (P) has a unique solution (y∗, y∗1, u
∗)

∈ H×L2(Ω;H)×X , with u∗= − B̃(y∗, y∗1). Moreover, ϕ(·, eW (y∗ + x)) ∈
L1((0, T )×Ω).

Proof. Let m be the infimum in (P) and let (yn, un) ∈ D(B) × H be such
that

m ≤ G(yn, yn(T ), un) ≤ m+
1

n
, ∀n ∈ N, (2.28)

eWByn + un = 0. (2.29)

Since, by assumption (iii), for some C1, C2 ∈]0,∞[,

G̃1(yn, yn(T )) ≥ C1(|yn|2H + E|eW (T )yn(T )|2H)− C2,

we have along a subsequence

yn −→ y∗ weakly in H, yn(T )→ y∗1 weakly in L2(Ω;H),

and so, by (2.25), we have

un −→ u∗ = −B̃(y∗, y∗1) weakly in X .
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As G is weakly lower semicontinuous on H × L2(Ω;H) × X , we see by
(2.28) that

G(y∗, y∗1, u
∗) = m,

as claimed. The uniqueness of (y∗, y∗1, u
∗) is immediate because the function

G(·, ·, u) is strictly convex on H× L2(Ω;H) for all u ∈ X .

Definition 2.3 A pair (y∗, y∗1) such that (y∗, y∗1, u
∗) ∈ H × L2(Ω;H) × X ,

u∗ = −B̃(y∗, y∗1), is a solution to problem (P), is called the variational solu-
tion to equation (2.2), and X∗ = eW (y∗+x) is called the variational solution
to equation (1.1).

The variational solution X∗ : (0, T )→ H is an (Ft)t≥0-adapted process.
Theorem 2.2 can be rephrased as:

Theorem 2.4 Under hypotheses (i)–(iii), equation (1.1) has a unique varia-
tional solution X∗ ∈ L2((0, T )× Ω;H) with ϕ(t,X∗) ∈ L1((0, T )× Ω).

It should be noted that y∗ and X∗, as well, are not pathwise continuous on
[0, T ]. As seen later on, this happens, however, in some specific cases with
respect to a weaker topology.

In the next section, we shall see how problem (P) looks like in a few
important examples of stochastic PDEs.

Remark 2.5 The above formulation of the variational solutionX∗ is strongly
dependent on the subdifferential form (1.3) of the operator A(t). The ex-
tension of the above technique to a general maximal monotone function
A(t) : H → H remains to be done using the Fitzpatrick formalism (see [20]).

3 Nonlinear parabolic stochastic differential

equations

We consider here the stochastic differential equation

dX − divξ(a(t,∇X))dt+ λX dt = X dW in (0, T )×O,
X = 0 on (0, T )× ∂O,
X(0, ξ) = x(ξ), ξ ∈ O ⊂ Rd,

(3.1)
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where x ∈ H, W is the Wiener process (1.2) in H = L2(O), O is a bounded
and open subset of Rd with smooth boundary ∂O, and a : (0, T )×Rd → Rd

is a nonlinear mapping of the form

a(t, z) = ∂zj(t, z), ∀z ∈ Rd, t ∈ [0, T ], (3.2)

where j : (0, T )× Rd → R is measurable, convex, lower semicontinuous in z
and

lim
|z|→∞

j(t, z)

|z|
= +∞, t ∈ [0, T ], (3.3)

lim
|v|→∞

j∗(t, v)

|v|
= +∞, t ∈ [0, T ], (3.4)

uniformly with respect to t ∈ [0, T ].
We note that, if the function (t, y) → j(t, y) is bounded on bounded

subsets of [0, T ]×Rd, then (3.4) automatically holds by the conjugacy formula
(1.8), that is,

j∗(t, v) ≥ v · z − j(t, z), ∀v, z ∈ Rd, t ∈ [0, T ].

It should be noted that equation (3.1) cannot be treated in the functional
setting (1.11)-(1.12) which require polynomial growth and boundedness for
j(t, ·), while assumptions (3.3)–(3.4) allow nonlinear diffusions a with slow
growth to +∞ as well as superlinear growth of the form

a(t, z) = a0 exp(a1|z|psgn z).

We note also that assumptions (3.2)–(3.4) do not preclude multivalued
mappings a. Such an example is

j(t, z) ≡ |z|(log(|z|+ 1)),

a(t, z) =

(
log(|z|+ 1) +

1

|z|+ 1

)
sign z, ∀z ∈ Rd.

By (2.1), one reduces equation (3.1) to the random parabolic differential
equation

∂y

∂t
− e−Wdivξa(t,∇(eW (y + x)) + (λ+ µ)(y + x)) = 0

in (0, T )×O,
y = 0 on (0, T )× ∂O,
y(0, ξ) = 0, ξ ∈ O.

(3.5)
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We are under the conditions of Section 2, where

H = L2(O),

A(t)y = −divξa(t,∇y),

D(A(t)) = {y ∈ W 1,1
0 (O); divξa(t,∇y) ∈ L2(O)}

ϕ(t, y) =

∫
O
j(t,∇y(ξ))dξ.

By (2.12), we have

ψ∗(t, v) =

∫
O

(a(t,∇z) · ∇z − j(t,∇z) +
δ

2
z2)dξ, ∀v ∈ L2(O), (3.6)

where z is the solution to the equation

−div a(t,∇z) + δz = v in O,
z = 0 on ∂O,

(3.7)

or, equivalently,

z = arg min
z̃∈W 1,1

0 (O)

{∫
O
j(t,∇z̃)dξ −

∫
O
vz̃ dξ +

δ

2

∫
O
z̃2dξ

}
. (3.8)

By (3.3), it follows that (3.8) has, for each v ∈ L2(O) and t ∈ [0, T ], a unique
solution z ∈ W 1,1

0 (O). In fact, as easily seen, by condition (3.3) it follows
that the functional arising in the right side part of (3.8) is convex, lower
semicontinuous and coercive on W 1,1

0 (O). By (2.24)), we have

G̃1(y, y1) = E
∫ T

0

∫
O

(j(t,∇(eW (t)(y(t) + x))) +
δ

2
|eW (t)(y(t) + x)|2H

+ eW (t)((ν + δ)(y(t) + x) + µx)eW (t)x) dξ dt

−E
∫ T

0

(eW (t)y(t), eW (t)(1 + µ)x)dt

+E
∫ T

0

η(eW (t)y(t))dt+
1

2
E
∫
O
|eW (T )y1(ξ)|2dξ

+E(eW (T )y1, e
W (T )x), (y, y1) ∈ H × L2(Ω;H),

(3.9)

where (see (2.17))

η(z) = (ν + δ)

∫
O
|z|2dξ − 1

2

∞∑
j=1

µ2
j

∫
O
|zej|2dξ. (3.10)
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By (2.19) and (3.6)–(3.7), we also have

G2(u) = E
∫ T

0

∫
O

(a(t,∇z(t, ξ)) · ∇z(t, ξ))

−j(t,∇z(t, ξ)) +
δ

2
z2(t, ξ)dξ dt, u ∈ H,

(3.11)

where z(t, ω) ∈ W 1,1
0 (O) for dt ⊗ P-a.e., (t, ω) ∈ (0, T ) × Ω, is given by

(see (3.7))
−div a(t,∇z) + δz = u in O,

z = 0 on ∂O.
(3.12)

Taking into account that a(t,∇z) · ∇z ≥ j(t,∇z) − j(t, 0), we see by (3.3)
and (3.12) that

z ∈ L1((0, T )× Ω;W 1,1(O)) ∩ L2((0, T )×O × Ω).

Recalling (1.7)–(1.8), we have

a(t,∇z) · ∇z − j(t,∇z) = j∗(t, a(t,∇z)) a.e. in (0, T )×O,

and this yields

G2(u) = E
∫ T

0

∫
O

(j∗(t, a(t,∇z(t, ξ))) +
δ

2
z2(t, ξ))dξ dt. (3.13)

By (3.4), it follows via the Dunford–Pettis weak compactness theorem in L1

that every level set{
v;E

∫ T

0

∫
O
j∗(t, v(t, ξ))dx dξ ≤M

}
, M > 0,

is weakly compact in the space L1((0, T )×O×Ω). By (3.12) and (3.13), we
see that, if G2(un) ≤ M, where {un} ⊂ L2((0, T ) × O × Ω} and zn is the
solution to (3.12) with un replacing u, then, by the Dunford–Pettis theorem,
the sequence {a(t,∇zn)} is weakly compact in L1((0, T ) × O × Ω}. Hence
{un} is weakly compact in L1((0, T )× Ω;W−1,∞(O)).

By (3.13), it follows also that {zn} is weakly compact in L2((0, T )×O×Ω).
By (2.26), this means that, if x∈L2(O), then, for (y, y1, u)∈H×L2(Ω;H)×X ,

G(y, y1, u)

= G̃1(y, y1) + E
∫ T

0

∫
O

(
j∗(t, a(t,∇z(t, ξ)) +

δ

2
z2(t, ξ))

)
dξ dt,

(3.14)
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where z ∈ L1((0, T ) × Ω;W 1,−1
0 (O)) ∩ L2((0, T ) × O × Ω) is the solution to

(3.12).
Let (yn, un) ∈ H×H be such that eWByn+un = 0 and (yn, un)→ (y, u) in

H×X , yn(T )→ y1) in L2(Ω;H). Since sup
n
{G1(yn)} <∞, by (3.3) and (3.9),

it follows also that {∇(eW (yn +x)} is weakly compact in L1((0, T )×O×Ω),
and so eW (y+x) ∈ L1((0, T )×O;W 1,1

0 (O)). Moreover, it follows that
{
dyn
dt

}
is weakly compact in L1((0, T ) × Ω;W−1,∞(O)), and so dy

dt
∈ L1((0, T ) ×

Ω;W−1,∞(O)). This implies that the equation B̃(y∗, y∗1) + u∗ = 0 reduces to

eW
dy∗

dt
+ eW (µ+ ν + δ)(y∗ + x) + u∗ = 0 in D′(0, T ), P-a.s.,

y∗(0) = 0, y∗(T ) = y∗1.

Hence, if D(G1) = {(y, y1, u); G1(y, y1, u) <∞}, then we have

D(G1) ⊂ {(y, y1, u) ∈ H × L2(Ω;H)×H; eWy ∈ L1((0, T )× Ω;W 1,1
0 (O));

dy

dt
∈ L1((0, T )× Ω;W−1,∞(O)); u ∈ L1((0, T )× Ω;W−1,∞(O)), y1 = y(T )}.

This means that, in this case, problem (P) can be rewritten as

Min
{
G(y, y(T ), u); y ∈ L2((0, T )×O × Ω) ∩H,
eW (y + x) ∈ L1((0, T )× Ω;W 1,1

0 (O)),

dy

dt
∈ L1((0, T )× Ω;W−1,∞(O)),

u ∈ L1((0, T )× Ω;W−1∞(O)) ∩ X ;

subject to

dy

dt
+ (µ+ ν + δ)(y + x) + e−Wu = 0 on (0, T ); y(0) = 0

}
,

(3.15)

where G1 is defined by (3.14). By Theorem 2.2, there is a unique solution
(y∗, u∗) to (3.15). Taking into account that u∗ ∈ L1((0, T ) × Ω;W−1,∞(O))
and that

y∗(t) = −
∫ t

0

e−Wu∗(s)ds−
∫ t

0

(µ+ ν + δ)(y∗(s) + x)ds, ∀t ∈ (0, T ),

we infer that the process t→ y∗(t) in pathwiseW−1,∞(O) continuous on(0, T ).
By Theorem 2.4, we have, therefore,
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Theorem 3.1 Assume that x ∈ L2(O) and that conditions (3.2)–(3.4) hold.
Then, equation (3.1) has a unique variational solution

X∗ ∈ L2((0, T )×O × Ω), eWX∗ ∈ L1((0, T )× Ω;W 1,1
0 (O)). (3.16)

Moreover, the process t→ X∗(t) is (Ft)t≥0-adapted and pathwise W−1,∞(O)-
valued continuous on (0, T ).

The total variation flow

The stochastic differential equation

dX − div

(
∇X
|∇X|d

)
dt+ λX dt = X dW in (0, T )×O,

X(0) = x in O,
X = 0 on (0, T )× ∂O

(3.17)

with x ∈ L2(O) is the equation of stochastic variational flow in O ⊂ Rd,
1 ≤ d ≤ 3. The existence and uniqueness of a generalized solution to (3.17)
X : [0, T ] → BV (O) was established in [9] by using some specific approxi-
mation techniques. We shall treat now equation (3.17) in the framework of
variational solution developed above in the space H = L2(O) with the norm
| · |H = | · |2 and the scalar product (·, ·), and ϕ : L2(O)→ R defined by

ϕ(y) =

 ‖Dy‖+

∫
∂O
|γ0(y)|dHd−1, y ∈ BV (O) \ L2(O),

+∞ otherwise.

Here, BV (O) is the space of functions with bounded variation and ‖Dy‖ is
the total variation of y ∈ BV (O). (See, e.g., [9].) Then, with the notations
of Section 2, we have Ay = ∂ϕ(y), where ∂ϕ : L2(O) → L2(O) is the
subdifferential of ϕ and (see (2.2), (2.18))

∂y

∂t
+ e−WA(eW (y + x)) + µ(y + x) = 0 in (0, T )×O,

y(0, ξ) = 0, ξ ∈ O,
y = 0 on (0, T )× ∂O.

(3.18)

The function G̃1 is given, in this case, by
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G̃1(y, y1) = E
∫ T

0

(
ϕ(eW (t)(y(t) + x)) +

δ

2
|eW (t)(y(t) + x)|22

+(eW (t)((ν + δ)(y(t) + x) + µx), eW (t)x)

)
dt

−E
∫ T

0

(eW (t)y(t), eW (t)(1 + µ)x)dt

+E
∫ T

0

η(eW (t)y(t))dt+
1

2
E|eW (T )y1|22

+E(eW (T )y1, e
W (T )x), (y, y1) ∈ H × L2(Ω;H),

(3.19)

where η is given by (3.10). We have also (see (2.11), (2.12), (3.6))

ψ(y) = ϕ(y) +
δ

2
|y|22, ∀y ∈ D(ϕ),

ψ∗(v) = (v, θ)− ϕ(θ)− δ

2
|θ|22, v ∈ ∂ϕ(θ) + δθ.

Hence,

ψ∗(v) =
δ

2
|θ|2 + (∂ϕ(z), θ)− ϕ(θ)

=
δ

2
|(δI + ∂ϕ)−1v|22 + ϕ∗(v − (δI + ∂ϕ)−1v)

and, therefore, by (2.19),

G2(u) = E
∫ T

0

(
δ

2
|(δI + ∂ϕ)−1(u)|22 + ϕ∗(u− (δI + ∂ϕ)−1(u))

)
dt,

where ϕ∗ : L2(O)→ R is the conjugate of the function ϕ. This yields

G(y, y1, u) = G1(y, y1) + lim inf
(z,v)→(y,u)
in H×X

{
E
∫ T

0

(δ
2
|(I + ∂ϕ)−1(v(t))|22

+ϕ∗(v − (δI + ∂ϕ)−1(v(t)))
)
dt, eWBz + v = 0

}
,

(3.20)

where the space X is defined by (2.22).
By definition, the solution (y∗, y∗1) to the minimization problem

Min{G(y, y1, u); B(y, y1) + u = 0, (y, y1, u) ∈ H × L2(Ω;H)×X} (3.21)

is the variational solution to the random differential equation (3.18).
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Denote by V ∗ the dual of the space V = BV (O) ∩ L2(O). We note that
ϕ∗ can be extended as a convex lower semicontinuous convex function on F ∗,
and we also have

ϕ∗(u)

‖u‖V ∗
−→ +∞ as ‖u‖V ∗ −→ +∞.

Then, if (zn, yn) ∈ H ×H is convergent to (y, u) ∈ H × X , it follows by the
Dunford-Pettis compactness criterium (see [12]) that {vn} is weakly compact
in L1((0, T )× Ω;V ∗). This implies that

D(G) ⊂ L1((0, T )× Ω;BV (O))× L2(Ω;H)× L1((0, T )× Ω;V ∗),

and so, in particular, it follows that

y ∈ W 1,1([0, T ];V ∗), P-a.s.

We have, therefore,

Theorem 3.2 Let x ∈ BV (O)∩L2(O). Then equation (3.17) has a unique
variational solution X = eW (y + x) which is V ∗-valued pathwise continuous
and satisfies

ϕ(X) ∈ L1((0, T )× Ω), (3.22)

X ∈ L2((0, T )×O × Ω), AX ∈ L1((0, T )× Ω;V ∗), (3.23)

e−WX ∈ W 1,1([0, T ];V ∗), P-a.s. (3.24)

In [9], it was proved the existence and uniqueness of a generalized so-
lution X, also called the variational solution, which was obtained as limit
X∗ = lim

ε→0
Xε in L2(Ω;C((0, T );L2(O))), where Xε is the solution to the

approximating equation

dXε − div aε(∇Xε)dt+ λXε = XεdW in (0, T )×O,
Xε(0) = x, Xε = 0 on (0, T )×O,

(3.25)

where aε = ∇jε and jε is the Moreau–Yosida approximation of the function
r → |r|d. Since, as strong solution to (3.25), Xε is also a variational solution
to this equation in sense of Definition 2.3, it is clear by the structural stability
of convex minimization problems that, for ε → 0, we have also Xε → X,
where X is the variational solution given by Theorem 3.2.
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We may infer, therefore, that the function X given by Theorem 3.2 is just
the generalized solution of (3.17) given by Theorem 3.1 in [9]. In particular,
this implies that X is L2(O)-valued pathwise continuous.

In [4], it is developed a direct variational approach to (3.17), which leads
via first order conditions of optimality to sharper results. (On these lines,
see also [14].)

Stochastic porous media equations

Consider the equation

dX −∆β(X)dt+ λX dt = X dW in (0, T )×O,
X = 0 on (0, T )× ∂O,
X(0, ξ) = x(ξ), ξ ∈ O,

(3.26)

where O is a bounded and open domain of Rd, d ≥ 1, λ > 0, W is a
Wiener process in H = H−1(O) of the form (1.2) and β is a continuous and
monotonically nondecreasing function such that β(0) = 0 and

lim
|r|→∞

j(r)

|r|
= +∞. (3.27)

In this case,

H = H−1(O),

Ay = −∆β(y),

D(A) = {y ∈ H−1(O) ∩ L1(O), β(y) ∈ H1
0 (O)} and

A = ∂ϕ, where ϕ(y) =

∫
O
j(y(ξ))dξ.

By (2.11), we have also

ψ∗(v) =

∫
O
j∗(β(θ))dξ +

δ

2
|θ|2−1, v ∈ L2(O),

where θ ∈ H−1(O) ∩ L1(O),

2δθ −∆β(θ) = v in O,
θ = 0 on ∂O,

20



and | · |−1 is the norm of H−1(O). Then we have

G̃1(y, y1) = E
∫ T

0

(∫
O
j(eW (t)(y(t) + x))dξ +

δ

2
|eW (t)(y(t) + x)|2−1

)
dξ dt

+E
∫ T

0

∫
O
eW (t)((ν + δ)(y(t) + x) + µx)eW (t)x dξ dt

−E
∫ T

0

(eW (t)y(t), eW (t)(1 + µ)x)dt

+E
∫ T

0

η(eWy)dt+
1

2
E|eW (T )y(T )|2−1

+(eW (T )y1, e
W (T )x)−1,

while

G2(u) = E
∫ T

0

(∫
O
j∗(β(z̃))dξ +

δ

2
|z̃(t)|2−1

)
dt,

where
δz̃ −∆β(z̃) = u in O,

z̃ = 0 on ∂O.
(3.28)

(Here, (·, ·)−1 is the scalar product of H−1(O).)

Taking into account that j∗(r)
|r| → +∞ as |r| → ∞, it follows, as in the

previous case, for each M > 0, the set{
β(z̃); E

∫ T

0

∫
O
j∗(β(z̃))dt dξ ≤M

}
is weakly compact in L1((0, T )×O × Ω), we infer that

G(y, y1, u) = G̃1(y, y1) + E
∫ T

0

(∫
O
j∗(β(z̃))dξ +

δ

2
|z̃(t)|2−1

)
dt, (3.29)

where z̃ is the solution to (3.28). This implies that

D(G) ⊂ {(y, y1, u) ∈ H × L2(Ω;H)×X ; u ∈ L1((0, T )× Ω;Z)}.

Here Z = (−∆)−1(L1(O)) ⊂ W 1,p
0 (O), 1 ≤ p < d

d−1 , where ∆ is the Laplace
operator with homogeneous Dirichlet conditions and

D(G) = {(y, y1, u); G(y, y1, u) <∞}.
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We define, as above, the solution to (3.26) asX∗ = eWy∗, where (y∗, y∗1, u
∗)

is the solution to the minimization problem

Min

{
G(y, y1, u);

dy

dt
+(µ+ν+δ)(y+x)+e−Wu=0, y(0) = 0,

y(T )=y1, (y, y1, u) ∈ H × L2(Ω;H)×X
}
.

(3.30)

(Here, dy
dt

is taken in sense of distributions, i.e., in D′(0, T ;H).) We have,
therefore,

Theorem 3.3 Assume that x ∈ L2(O). Then equation (3.26) has a unique
variational solution X∗,

X∗ ∈ L2((0, T )×O × Ω); ϕ(X∗) ∈ L1((0, T )×O × Ω),

e−WX ∈ W 1,1([0, T ];W 1,1
0 (O)), P-a.s.

Moreover, the process t → X∗(t) is pathwise W 1,1
0 (O)-valued continuous

on (0, T ).

Remark 3.4 A different treatment of equation (3.26) under the general as-
sumptions (3.27) was developed in [7] (see also [8], Ch. 5).

4 Stochastic variational inequalities

Consider the stochastic differential equation

dX + A0X dt+NK(X)dt+ λX dt 3 X dW, t ∈ (0, T ),

X(0) = x,
(4.1)

in a real Hilbert space H with the scalar product (·, ·) and the norm | · |.
Assume that x ∈ H and

(j) A0 : D(A0) ⊂ H → H is a linear self-adjoint, positive definite operator
in H.

(jj) W is the Wiener process (1.2) and λ > ν.

(jjj) K is a closed, convex subset of H such that 0 ∈ K, (I+λA0)
−1K ⊂ K,

∀λ > 0.
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Here, NK : H → 2H is the normal cone to K, that is,

NK(u) = {η ∈ H; (η, u− v) ≥ 0, ∀v ∈ K}. (4.2)

By the transformation (2.1), equation (4.1) reduces to the nonlinear ran-
dom differential equation

dy

dt
+ e−WA0(e

W (y + x)) + e−WNK(eW (y + x)) + µ(y + x) = 0,

t ∈ (0, T ),

y(0) = 0.

(4.3)

(We note that, if W (t) =
N∑
j=1

µjβj(t), then (4.3) reduces to a deterministic

variational inequality.)
To represent this problem as an optimization problem of the form (P),

we set

ϕ(u) =
1

2
(A0u, u) + IK(u), ∀u ∈ H,

where IK is the indicator function

IK(u) =

{
0 if u ∈ K,
+∞ otherwise.

The function ϕ : H →]−∞,+∞] is convex and lower semicontinuous. Then,
by (2.6), (2.18), (2.19), we have

G̃1(y, y1) = E
∫ T

0

(
1

2
(A0(e

W (t)(y(t) + x)), eW (t)(y(t) + x)) (4.4)

+ e2W ((ν + δ)(y + x) + µy)x+
δ

2
|eW (t)(y(t) + x)|2H

+IK(eW (t)(y(t) + x)) + η(eW (t)y(t))

)
dt

−E
∫ T

0

(eWy, eW (1 + µ)y)dt (4.5)

+
1

2
E|eW (T )y1|2H + E(eW (T )y1, e

W (T )x),

G2(u) = E
∫ T

0

ψ∗(u(t))dt, (4.6)

where, by (2.11)-(2.12), we have
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ψ∗(eWu) = sup

{
(eWu, v)− 1

2
(A0v, v)− δ

2
|v|2; v ∈ K

}
= (eWu, z)− 1

2
(A0z, z)− δ

2
|z|2,

, (4.7)

where A0z+δz+NK(z) 3 eWu. (We note that, by (iii), z is uniquely defined.)
By (4.4)-(4.6), we see that

G(y, y1, u) = G̃1(y, y1) +
1

2
lim inf
n→∞

E
∫ T

0

(
(A0zn, zn) +

δ

2
|zn|2

)
dt,

where
A0zn + δzn +NK(zn) 3 un, eWByn + un = 0,

yn → y in H, yn(T )→ y1 in L2(Ω;H), un → u ∈ X .
(4.8)

This yields

E
∫ T

0

|A
1
2
0 zn|2dt ≤ C <∞, ∀n ∈ N, (4.9)

and, therefore, we have

G(y, y1, u) = G̃1(y, y1) +
1

2
E
∫ T

0

(|A
1
2
0 z|2 + δ|z|2)dt,

z = w − lim
n→∞

zn in L2((0, T )× Ω;V ),
(4.10)

where V = D(A
1
2
0 ). We note that D(G̃1) ⊂ L2((0, T )× Ω;V ).

We may conclude, therefore, by Theorem 2.4 that

Theorem 4.1 Under hypotheses (j)–(jjj), there is a unique variational solu-
tion X∗(t) ∈ K, a.e. t ∈ (0, T ), X∗ ∈ L2((0, T )× V ; Ω) to equation (4.1).

More insight into the problem can be gained in the following two special
cases.

Stochastic parabolic variational inequalities

The stochastic differential equation

dX −∆X dt+ λX dt+NK(X)dt 3 X dW in (0, T )×O,
X(0) = x in O,
X = 0 on (0, T )× ∂O,

(4.11)

where NK(X)⊂L2(O) is the normal cone to the closed convex set K of L2(O),
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K = {z ∈ L2(O); z ≥ 0, a.e. in O}, α ∈ R,
can be treated following the above infinite-dimensional scheme in the space
H = L2(O), where A0u = −∆u, u ∈ D(A0) = H1

0 (O) ∩H2(O).
Then the variational solution to (4.11) is defined by X = eWy, where y

is given by (??) and G is given by

G(y, y1, u) = G̃1(y, y1) +
1

2
E
∫ T

0

∫
O

(|∇z2|2 + δ|z|2)dξ dt,

where G1 is defined y (4.4) and z = w − lim
n→∞

zn in L2((0, T )× Ω;H1
0 (O)),

−∆zn + δzn + ηn = un, e
WByn + yn = 0,

ηn ∈ NK(zn), E
∫ T

0

∫
O
|∇zn|2dξ dt ≤ C, ∀n.

(4.12)

Since un → u in D′(0, T ;L2(O)) and ηn(t, ξ) ≤ 0 a.e. (t, ξ) ∈ (0, T )×O, by
(4.12), we infer that

−∆z + δz + η = u in D′((0, T )×O),

where η, u are inM((0, T )×O) the space of bounded measures on (0, T )×O.
If we denote by ηa, ua ∈ L1((0, T )×O) the absolutely continuous parts of η
and u, we get

−∆z + δz + ηa = ua in L1(O),

z ∈ H1
0 (O) and ηa(t, ξ) = 0, a.e. on [z(t, ξ) > 0]

ηa(t, ξ) ≥ 0, a.e. on [z(t, ξ) = 0].

Then the process X = eW (y+ x) is the variational solution to (4.11) and so,
by Theorem 4.1, we have

Corollary 4.2 There is a unique variational solution X∈L2((0, T )×Ω;H1
0 (O)),

X ≥ 0, a.e. on (0, T )× Ω.

Finite dimensional stochastic variational inequalities

Consider equation (4.1) in the special case K ⊂ Rd, int K 6= ∅, 0 ∈ K,

W =
N∑
i=1

µiβi and A0 ∈ L(Rd,Rd), A0 = A∗0. Then, as easily seen by (2.13),

we have
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ψ∗(u) ≥ α1|u| − α2, ∀u ∈ Rd. (4.13)

Let zn be the solution to (see (4.8))

A0zn + δzn +NK(zn) 3 un. (4.14)

Since, by (4.13)-(4.14), the sequence {un} is bounded in L1((0, T )× Ω,Rd),
it follows that it is weak-star compact in M(0, T ;Rd), ∀ε > 0, and so u ∈
M(0, T ;Rd). (Here,M(0, T ;Rd) is the space of Rd-valued bounded measures
on (0, T ). Letting n→∞ in (4.14), we get

A0z + δz + ζ = u, (4.15)

where u ∈ M(0, T ;Rd), ∀ε > 0, and ζ ∈ M((0, T );Rd), P-a.s. By the
Lebesgue decomposition theorem, we have

ζ = ζa + ζs, ζa ∈ L1(0, T ;Rd),

u = ua + us, ua ∈ L1(0, T ;Rd),

where us and ζs are singular measures and ζa ∈ NK(z). Hence, by (4.15), we
have

z = (A0 + δI +NK)−1(ua) = F (ua), ζs = us. (4.16)

As a matter of fact, the singular measure ζs belongs to the normal cone
NK(z) ⊂M(0, T ;Rd) to the setK = {z̃ ∈ C([0, T ];Rd); z̃(t) ∈ K, ∀t ∈ [0, T ]}
and it is concentrated on the set of t-values for which z(t) defined by (4.16)
lies on the boundary ∂K of K.

By (2.22)-(2.23), we have

G(y, y1, u) = G̃1(y, y1)+E
∫ T

0

(
1

2
(A0F (ua), F (ua))+

δ

2
|F (ua)|2

)
dt, (4.17)

where G̃1 is given by (4.4) and y ∈ H is solution to the equation

y = ya + ys, ya ∈ AC([0, T ];Rd), ys ∈ BV ([0, T ];Rd), P-a.s.,

dya
dt

+ (µ+ ν + δ)(ya + x) + e−Wua = 0, a.e. on (0, T ),

ya(0) = 0,

dys
dt

+ e−Wus = 0 in D′(0, T ;Rd),

(4.18)
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where BV ([0, T ];Rd) is the space of functions with founded variations on
[0, T ]. We note that, by (4.17), it follows also that

D(G) ⊂ {(y, y1, u) ∈ H × L2(Ω;H)×X ; y ∈ BV ([0, T ];Rd), P-a.s.,

F (ua) ∈ L2((0, T )× Ω× Rd)},

where D(G) = {(y, y1, u); G(y, y1, u) <∞}. We have, therefore,

Theorem 4.3 The minimization problem

Min{G(y, y1, u); (y, y1, u) ∈ H × L2(Ω;Rd)×X , subject to (4.18)} (4.19)

has a unique solution (y∗, y∗1) ∈ H×L2(Ω;Rd) satisfying (4.18). The process
X∗ = eWy∗ is the solution to the variational solution to (4.17).

Remark 4.4 Since y∗ ∈ BV ([0, T ];Rd) and, as seen by (4.18), the singular
measure ζs = us 6= 0, it follows that the processX∗ is not pathwise continuous
on [0, T ]. However, by the Lebesgue decomposition, we have, P-a.s., X∗(t) =
X∗a(t) + X∗1 (t) + X∗2 (t), ∀t ∈ [0, T ], where t → X∗a(t)e−W (t) is absolutely
continuous, X∗1 is a jump function and X∗2 is a singular function, that is,
X∗2 = eWy2, where dy2

dt
= 0. a.e.
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